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ABSTRACT 

In practical applications of  Credibili ty Theory the structure parameters usually have 
to be estimated from the data. This leads to an estimator of  the a posteriori mean 
which is often biased and where the credibili ty factor depends on the data. A more 
coherent approach to the problem would be to also treat the unknown parameters as 
random variables and to simultaneously estimate the a posteriori mean and the 
structure parameters. Different statistical models are proposed which allow for such 
a solution. These models all lead to an estimation of  the posterior mean which is a 
weighted average of the prior mean and of the observed mean, the weights 
depending on the observations. 
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1. INTRODUCTION 

We have k different risks with a claims record over a certain number of  years 

X I I ,  XI2 . . . . .  g i n ,  

X21, X22 . . . . .  X2. 2 

Xkl, Xk2 . . . . .  Xk,~ 

Depending on the specific problem, the data are numbers of  claims from different 
insurance policies, loss ratios from insurance portfolios for instance in fire, liability 
or workmen 's  compensation insurance and burning costs from different reinsurance 
treaties. 

With each claims record Xij there is an associated measure of  risk exposure pij 
which is a number of  risk years, a sum insured, a turnover, a total amount of  wages 
or a premium income depending on the specific problem. 
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Within the framework of  credibility theory it is assumed that 
1. Each risk i is characterized by an individual unknown risk parameter 0/; the risk 

parameters 0~, 02 . . . . .  Ok are i.i.d, random variables. 
The random vectors (0/, X/, . . . . .  X,,,) i = 1 . . . . .  k are independent. 

2. Given 0/ the observations 

Xij, Xi2 ... . .  X/., 
are independent with finite second moments 

E(X,j 10/) = ,u (0,) 

Gr 2 
Var(X/j ]0i )  - (0/___ 2) 

Po 

The individual premium /~ (0/) is to be approximated by a premium which is 
linear in the observations 

iI, 

,/'~(0/) = a/o + Y~ o~/jx/j 
j = l  

and which minimizes the expected squared error 

ELu (0/) - ,h  (0/)] z 

it is shown that the optimal linear premium is a weighted average of  the 
individual mean and of the a priori mean 

/~(0i)  = zi-•/+ (I - z / ) m  

where 

m = E Lu (0)] 

The weight z/given to the individual mean .i:/. is called the credibility factor. It is 
equal to 

pi.b 
Z i  - -  

p i .b+w 

where 

Pi. = ~ Pq 
j = l  

b = Var [u (0 )  l 

w = E [a= (0)] 

b and w are the between risks and within risks variance components respectively. 
To practically compute the credibility premium we need to estimate the structure 
parameters m, b and w. 
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m is either known a priori e.g. from some nationwide statistics or is estimated 
from the collective. The best linear unbiased estimator for rn is 

k 

i = l  Z 

with 

k 

Z : ~ Z i .  
i = l  

In what follows we shall assume that m is known a priori and focus on the 
estimation of  b and w. [In KLUGMAN (1986) m is assumed to be a randorn variable 
and included in the Bayesian analysis]. 

In their pioneering paper BOHLMAN and STRAUB (1970) propose the following 
"natural"  estimators. 

= _1 ~ __l ~ pi:(xi :_.~i.)2 
k i=l n i - I  j 

g = _l ~ _p, (.~,._ ~)2 _ (k_ t) 
C i = l  p 

where 

P =  ZPi" 
i 

c= - -  1 -  
• p 

Since the estimator of  the between risks variance component may be negative, it 
is replaced by max (b, 0) in practical applications. 

Other estimators have also been proposed; for a review of  the subject see for 
instance DUBEY and GISLER (1981). A common property of  these estimators is that 
they usually lead to a biased estimator o f / t  (0). 

We shall adopt a different approach. Since b and w are unknown quantities we 
shall treat them as random variables and we shall propose statistical models which 
allow for a simultaneous estimation of  b, w and/~ (0). The credibility factor will 
depend upon the observations, but this is also the case for the Btihhnann-Straub 
estimator once b and w have been replaced by b and ~. 

A general discussion of  Bayesian inference on variance components in a normal 
model as well as in a generalisation of  the normal model can be found in Box and 
TIAO (1973). 

The present paper focuses on applications to credibility theory. 
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2. THE BASIC MODEL 

We assume that the data described at the outset is generated by the following 
model: 
- -  the individual premiums ,ui stem from a normal distribution with unknown 

precision s~; 
- -  the claims record of risk i 

Xil ,  Xi2 . . . . .  Xi,, 

stems from a norrnal distribution with mean ,u, and unknown precision /9. 
Note that instead of emphasizing the variance of a random variable, we 

emphasize its precision. This model is best illustrated by the following picture 
where the realizations of random variables are represented by drawings from an 
urn. 

7F 

to ( m , ~  

#b #2, .-., #k 

(~t' p~) I ~  
X 

ll 

I [p (p) 
P 

X 
kl 

X 
In 

1 

X 
kn k 
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C o n v e n t i o n s  a n d  n o t a t i o n  

- -  Densities are indexed by their arguments ; thus p (zr) and p (O) do not necessarily 
represent the same density. 

- -  Distribution laws of random variables are symbolized by p( . ) .  However we do 
not necessarily assume that the density of a random variable exists. 

- -  ~(m, cr 2) denotes the normal density with mean m and variance o 2. 
The formal model assumptions are as follows 

I) The precision sr of  the individual premiums and the precision p of the 
observations are random variables whose distribution function will be specified 
later. 

2) Each risk is characterized by an individual premium ui and a common 
precision p. 
i) ,ul, /~2 . . . . .  ,uk are independent random variables given ~;  their common 

density is cp (m, :~- i ). 
ii) ( ~ ,  xil . . . . .  x , , )  are independent random vectors given :r and p. 
iii) /.l~,/-~z . . . . .  /~, are independent random variables given :r. 

3) Given ~ l ,  P),  xij (j = I ..... n~) are independent random variables with common 
density cp (ui ,  P - i ). 

R e m a r k s  

I) If the distribution of  :r and g were degenerated [i.e. if the probability mass of 
the common distribution of  ~ and O is concentrated in some possibly unknown 
points (~0, O0)] the above model would be a special case of  the credibility 
model. 

2) A similar model, but with individual precisions Oij for each observation, has 
been proposed by JEWELL and SCHNIEPER (1983) for the treatment of outlin- 
ers. 

We now turn to the problem of the estimation of the individual premium. Let D 
denote the set of the claims records from all individual risks; the best estinaator of  
the individual premium (best in the sense that it minimizes the expected squared 
error) is the posterior mean. 

E(k , , ID )  = IE(/qJD, p, ~)p(p, =lD)dp .d= 

Because of  assumptions 2) and 3) we have 

E(/ . t i[  D,  p ,  :~) - z~m + ptzi.Yc i. _ X~ 

because the credibi l i ty formula is exact in the case of  a normal l ikel ihood (with 
known variance) and a normal prior. 

2i. is as in section I but with all measures of exposure equal to one. 
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Therefore we have 

/ / .m E(I, ,  I D) e pn, I O • ~,. + I O 
\ pn i  + ~ pni + 7r 

E(pi[D) = zi(D)xi. + [I - z , ( D ) ]  -m  

The posterior mean  is given by a credibil i ty type formula where the credibil i ty 
factor depends  on the data. To determine the credibil i ty factor and the posterior 
mean,  we must  determine the posterior distr ibution of  sz and O given the data. 

Using Bayes '  Theorem we have 

p(p, ; r i D )  = p(Dlp, zr)p(p, ~) 

The c o m m o n  density of  0 and ~ will be specified later; for the l ikelihood we 
obtain 

f p(D l& O, ~ ) p ~  lp, ~r)d~, ... d~,~ p(DIo, ~ )  
d 

where 

= (/~l, ,u2 . . . . .  lq-)- 

From assumpt ion 2) ii) and 3) it follows 

L 1 ~, n~ I 
- -  - - -  o Y £ ( x , -  I t . ) "  p(DJ&, £2, Yg) C c ~  0 2  " . e  2 " , ,  '~ ' 

and from 2) i) 

k 1 
Jr Z (u, - m)" 

P ( ~ I Q ,  ~ ) o c ~ 2 . e  2 ' 

therefore the l ikelihood becomes 

p(D]~o, ~ ) = x 2 . e 2  ' -e - 

and upon integration we obtain 

k I 

~2 p2 ~'" 
p(D]p, Jr)= 

1 

IN (~ + Pni) 2 
i 

from which it is seen that 

+ ~) Z Y' (x) - ,u l ) :  ) j 
' ' ' a, ul • ... • d, uk 

I 
-- ~ (P ~ ('~']~ l (~  + pn l )a  ~ + ~rm z ) 

e J I 

,~, xi./ and ~ ,  x~ 
J J 

i = 1  . . . . .  k 
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are sufficient statistics. 
After some straightforward but tedious algebraic transformations the likelihood 

can be written in an intuitively more appealing form 

Lz,, 
- -~- ( =  Z (.~ - m )  2 + ~Y (:./) - .@) - ' )  p ( D [ p ,  st) ~ 2 p 2  ' ' -e I 

I 

i 

from which we can compute the posterior density of p and 7i (once the prior density 
has been specified) and the posterior mean. The reason why the problem remains 
tractable is because p (D J p, ~) is in analytical form ; this in turn is due to the fact 
that for given :r and p p (D[p ,  p, zr) and p (p [ p, zO are conjugate priors. 

Remark  

The following relation is true in general 

E[u,  ID] = f £[., D, p, zrlp(p, ~ [ D ) d p ,  dz~, 
J 

and from credibility theory we obtain 

E~ID, p, st] 
zrm + pn i .~  i. 

+ pni 

independently of the above distributional assumptions. 
Therefore the form of the optimal estimator 

£ [ m l D ]  = z(O).~i. + (I - z (D) )m 
is independent of the distributional assumptions ; these are only needed to compute 
the credibility factor 

, o ) :  f o,, - -  p (p ,  zr[D)dpdzr.  Z 

3 zr + pn i 

3. A NUMERICAL ILLUSTRATION 

We illustrate the results of section 2 with the following very simple numerical 
example 

1 
m = O, .7~ - -  

3 

1 

P = 0.001 

with probability 0.333 

with probability 0.667 

E(p) = 0 . 3 3 4  



144 RENI~ SCHNIEPER 

There is only one risk and let us also assume that there is only 
observation x. 

I D = f I with probability p(D [19 = 1)- 0.333 
0 

L 0.001 with probability p(D I~o = 0 .001) .0 .667 

with 

o n e  

t )' ' 
p(DIo) c~ 0 7 e-7(o.333.r*(o)2 +0 [ . . . . .  * (0112) 

0.333+19 

0x [0 .750x  f o r l g = l  
x:¢ (0) 

0 . 3 3 3 + 0  L0.003x for 19=0.001 

As x becomes " large" ,  i.e. deviates strongly from m the whole probability mass 
is shifted towards 0 =0.001 and E(ulD) converges towards 0.003x. 

x P (O = 0.001 ID) z(D) E(~I [D) 

0 0. I 12 O.666 0 
I 0.125 0.657 0.657 
2 0.172 0.621 1.243 
3 0.279 0.541 1.624 
4 0.481 0.391 1.564 
5 0.739 0.198 0.988 
6 0.918 0.064 0.387 
7 0.983 0.016 0.112 
8 0.997 0.005 0.040 
9 1.000 0.003 0.029 

I 0 1.000 0.003 0.030 

where 

0.333 + ~2 

E(:l [D) = z(D).x + [1 - z ( D ) ] - m  = z(O)'x 

If we take two observations instead of  one a more interesting picture emerges. 
Two " la rge"  observations are given a high credibility factor because the within 
variance component is low, whereas one "smal l "  and one " la rge"  observation are 
given a low factor. The result is best illustrated by the contour plot of  the posterior 
mean where X~ and X 2 are the two observations and the "est imate"  is the posterior 
mean. (See Appendix 1). 

4. THE SIMPLE EXPONENTIAl.  FAMILY 

We now show that the method used to derive simultaneous estimations of the 
individual premium and of the hyperparameters can be applied to the whole simple 
exponential family. We use some of  the results of  JEWELL (1974). 
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Before def in ing the new model ,  we s impl i fy  our  parameter iza t ion .  In the basic 
model ,  the a posteriori  individual  p remium for risk i, g iven the precis ions ,  is 

;¢ • m + Pn i .~  i. 
E ( p ~ l o ,  p, ~ )  - 

which can be rewrit ten in the fo l lowing  way 

E O ~ I D ,  p, ~ )  - 

+ Qni 

1,'111 + night. 

7: + I1 i 

with 

g"  - -  

Q 

and it is apparent that only the ratio of :z over 0 ts relevant, and not the two 
variance components separately. 

We shall refer to v as to the time constant. It is equal to the number of individual 
claims records necessary for the credibility factor to be equal to one half. 

This new parametrisation is more "natural"  than the one introduced in section 2 
since in practical applications one often has a priori information on the credibility 
factor and therefore on the time constant but not necessarily on the two variance 
components separately. The reason for using both :~ and p in section 2 is 
mathematical tractability. 

The exponential family likelihoods with the sample mean as sufficient statistics is 

p ( x  l O) = a ( x ) c ( O ) -  ' e - 0 '  

and their  natural conjuga te  priors are 

p (0) = d (n 0, x 0) - i c (0) . . . .  e - 0.,0. 

JEWELL (1974) shows that under  certain regular i ty  condi t ions  

X0 
E [ u ( 0 ) ]  - - m 

I10 

The above  famil), is c losed under  sampl ing ,  so that if we observe  xil . . . . .  xi,,~ for 
f ixed 0i then p ( 0 i / D )  is of  the same form with new parameters  

71' 0 ~ II 0 "[- I? i 

It fo l lows that 
J 

X 0 + ~ x i j  

J 17 0 m + t l  i -~'i. 

I10 + I1 i 110 + I~ t 
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We now generalize the model by introducing a random time constant. The model 
assumptions are the following: 
1) The time constant v is a random variable whose distribution function will be 

specified later. 
2) Each risk is characterized by an individual parameter 0i. 

i) 01, 02 . . . . .  Ok are independent random variables given v; their common 
density is p(O Iv) = d(v, vm)- tc(O)-V e -Ovm 

ii) (0i, Xil ..... Xi,,) i = 1 ..... k are independent random vectors given v. 

3) Given 0~, X 0 ( j  = 1 . . . . .  hi) are independent with common density p(xlo) = 
a(x)c(O)-I e-Ox 

The posterior mean now is 

[D) = f E ~ ( O , ) I D ,  v )p (v lD)dv  E(l~(Oi) 
J 

where 

and therefore 

E~(Oi)  D, v] - 
vm + ni . i ;  i. 

v + n  i 

-( v 1 E[/~(O,)ID] E n, ID 2,.+ ID m 
V + ?l "V + IZ i 

= z(D) .x i .+ [ 1 - z ( D ) l ' m  

On the other hand 

pO' [D= = p(D [v)p(v). p(x)-' 

and 

p(Dlv )  = I p ( D l v ,  O~p(O ] v)dO,, dO2..., dOk 

oc ,=,fi Ic(Oi)-" ,e-° ,z" , ,d-I(v  ' vm)c(Oi)-Ve-°,"'"dOi 

k 

lql 
i=1 

"lv+"vm' .l 
d(v, vm) 
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As in our basic model, p (D I v) is in analytic form. This is so because for given v 
p(D [ O, v) and p(O [ v) are conjugate priors. 

We illustrate our general result with the following. 

E x a m p l e  

We assume a Poisson likelihood and gamma prior. 

and we have 

OX 
p(xlO) = e -0 x =  O, 1 .. . .  

x! 
v m 

p (o I v) - i 1 '  o . . . .  ' e - o~, 0 > 0 

r(mv) 

v(vm ) / k 

p(ol~,) = H,., x,/kr@m--I~) 

r(vm + Ex i j )  
k 

H J 
,= i ( v  + h i )  ~ . . . . . .  ~'~'~) 

We have five risks, each with recorded number of  claims for two years 

2 I 
1 I 

D =  0 1 
0 0 
0 0 

using the estimators given in section 1, we have 

72,=0.2 

b = 0.325 

and the time constant is 

- - 0.615 
b 

If we compute the likelihood function p (d I v) another picture emerges 

~ M L E  ~ 9 

and the likelihood is very flat for v larger than 2, as is apparent from the graph in 
appendix 2 where we have assumed m = 0.6. From the shape of  the likelihood it is 
obvious that p(vID)  and therefore z(D) will heavily depend on the choice of  the 
prior p (v). 
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5. ARBITRARY MEASURES OF EXPOSURE - THE B U H L M A N N - S T R A U B  EXAMPLE 

Our basic model can be generalized to the case where the measures of exposure are 
arbitrary. We make the same assumptions as in section 2 except for assumption 3) 
which now reads: given (,us, ,o), X 0 (j  = I ..... n,) are independent random variables 
with common density (p (`us, (Ps jP)-  ~). Psi are known measures of  exposure. 

The posterior mean is computed as in section 2. 

E ( - s l D )  = f e(.,io, o, =)p(o, =lD)dpd= 
J 

but now we have 

,/-/:m + OPi.2i. 
E(`Ui[ D, O, ~) - - x~ 

+ QPi. 

with Pi and 2s as in section I. The posterior distribution of 0 and 0z is formally as 
in section 2. 

P(O, J r lD)  c c p ( O l o , ~ ) p ( O ,  ~) 

but the likelihood now is 

k /Y.  nl 
~2  p 2  ' I - - I,-r ~: (aT - m): + 0 Z ~ p,j % - -~,* I"1 

p ( D [ p ,  zc)~ . e  2 

l"I (~ + PPi.) 
i 

The proofs are as in section 2. We now reanalyze the data of  BOHLMAN-STRAUB 
(1970). In their paper the authors give as-if burning costs of  seven different excess 
of  loss treaties. For each treaty we have the burning costs from five different years 
and each treaty is characterized by a measure of  exposure and the gross premium 
income. 

The burning costs (in percent of the gross premium income) are as follows: 

Trealy 

Year 

0.0 0.0 4.2 0.0 7.7 
11.3 25.0 18.5 14.3 30.0 
8.0 1.9 7.0 3.1 5.2 
5.4 5.9 7.1 7.2 8.3 
9.7 8.9 6.7 10.3 11.1 
9.7 14.5 10.8 12.0 13.1 
9.0 9.6 8.7 11.7 7.0 

I 2 3 4 5 
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and the gross premium income (in some monetary unit) are 

149 

Treaty 

Year 

1 2 3 4 5 

5 6 8 10 12 
14 14 13 II 10 
18 20 23 25 27 
20 22 25 29 35 
21 24 28 34 42 
43 47 53 61 70 
70 77 85 92 100 

Btihlmann-Straub compute h., and h using the formula given in section 1; they 
obtain 

= 209.0 • 10 - 4 

= 12.1-10 -4  

which gives the following estimates for the precisions 

~ = ~ - I  = 4 8  

Yr = b - I  = 826 

the time constant being 

~ -  - 1 7  

Instead of  computing a point estimate we look at p ( D  I~r, 0). The contour plot of  
the likelihood is given in appendix 3. 

It is seen that the maximum likelihood estimator is approximately 

~,,,e -~ 50 

Yr,,ae -~ 500 

thus giving a much smaller time constant 

P - - H I 0  

Thus the impact of  the variance estimates on the credibility premium of a small 
treaty can be quite important. A full bayesian analysis would entail specifying a 
joint prior distribution for :r and 0 and computing the posterior mean through 
numerical integration. Since this is straightforward it is omitted here. 
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Appendix I 

Plot of estimate 
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Appendix 3 
Plot of  Ikhd 
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Appendix 2 
Plot o f  Ikhd vs nu 
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