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1Introduction

1.1 Motivation and Problem Statement (French
version)

L’ORSA (Own Risk Solvency and Assessment) est un ensemble de règles définies
par la directive européenne Solvabilité II, destiné à servir d’outil d’aide à la décision
et d’analyse stratégique des risques. Dans le cadre de l’ORSA, les compagnies
d’assurance doivent évaluer leur solvabilité future de façon continue et prospective.
Pour ce faire, elles doivent notamment obtenir des projections probabilistes de leur
bilan (actif et passif) sur un certain horizon temporel.

Dans ce travail de thèse, nous nous focalisons sur l’actif du bilan. Nous traitons
plus précisément des taux d’intérêts; de la construction, de l’extrapolation, et des
prévisions envisagées dans le futur pour la courbe de taux d’intérêt. Les tech-
niques présentées sont essentiellement basées sur des méthodes d’apprentissage
statistique.

Nous parlerons généralement dans le texte de courbe de taux, mais il s’agit en fait
de courbes de facteurs d’actualisation sans risque de défaut de contrepartie. Le
risque de défaut de contrepartie n’est pas explicitement traité, mais des techniques
similaires à celles développées ici, peuvent être transposées à la construction de
courbe de taux incorporant un risque de défaut de contrepartie.

Nous présentons dans un premier temps, une famille de courbes de facteurs d’actualisation
basées sur les modèles de taux (courts) dits d’absence d’opportunité d’arbitrage ou
exogènes. À une date donnée, la courbe d’actualisation est construite à l’aide de
produits dérivés de taux, dont les cotations sont disponibles sur les marchés fi-
nanciers pour un nombre donné de maturités. La régularité de la courbe obtenue
est paramétrable, en fonction du résultat recherché par l’utilisateur. Nous montrons
comment cette courbe de facteurs d’actualisation, obtenue à une date donnée, peut
être extrapolée au-delà des maturités disponibles sur les marchés, et comment les
courbes construites à différentes dates dans le temps, peuvent être utilisées pour
obtenir des prévisions de taux d’intérêts dans le futur. Pour ce dernier point portant
sur la prévision, des techniques basées sur l’analyse en composantes principales
(ACP) fonctionnelle sont appliquées aux paramètres du modèle.
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Nous présentons ensuite un modèle de prévision simultanée de séries temporelles
multivariées, basé sur des réseaux de neurones dits Random Vector Functional
Link (RVFL) networks. Les RVFL ont été utilisés avec succès par le passé, pour
des problèmes de régression, de classification, et de prévision de séries temporelles
univariées. La nouveauté ici, est de les appliquer à des séries temporelles multivariées
avec plusieurs contraintes de régularisation sur les paramètres, et des variables
explicatives quasi-aléatoires. Les exemples d’application portent sur la prévision de
courbes de facteurs d’actualisation. Le modèle ainsi obtenu est un modèle robuste,
notamment grâce à ses paramètres de régularisation, et on montre qu’il obtient de
très bonnes performances quand il est comparé à des modèles similaires. Il peut
également être utilisé dans le cadre de stress tests.

Dans le chapitre 4, des méthodes d’apprentissage dites ensemblistes sont appliquées
à la prévision simultanée de taux d’intérêts, et d’autres variables macroéconomiques
telles que l’inflation. Ces méthodes ensemblistes sont construites à partir de modèles
relativement plus simples; et le modèle de base utilisé ici pour la construction des
ensembles est le modèle RVFL. Trois types de méthodes ensemblistes sont envis-
agées: bootstrap aggregating, boosting, et stacked generalization. On observe
ici, généralement, que ces méthodes ensemblistes peuvent permettre d’obtenir des
améliorations de performance par rapport aux modèles de base qui les constituent.
Il est à noter que cette amélioration ne sera pas observée de façon systématique sur
d’autres jeux de données. Mais ce type de modèle aura toujours un intérêt à être
envisagé dans une optique d’accroissement des performances prédictives.

Le chapitre suivant étudie l’application des méthodes d’apprentissage basées sur des
noyaux (Kernel Regularized Least Squares, KRLS) à la prévision de courbes de
taux d’intérêt. Les modèles de type KRLS expriment la variable à expliquer (ici, le
taux spot) comme une combinaison linéaire de distances entre les observations des
variables explicatives. Ces méthodes sont appliquées ici, d’abord dans le contexte
populaire de Nelson-Siegel dynamique qui représente la courbe de taux en fonction
de trois facteurs explicatifs, puis directement aux taux spot. Cette deuxième approche
s’apparentant à des approches appliquées en géostatistique, permet d’obtenir de
bonnes performances de prévision, tout en reproduisant des faits stylisés de la courbe
de taux sans contrainte de forme supplémentaire.

Le dernier chapitre compare les différents modèles introduits dans les chapitres
précédents. Pour ce faire, il revisite le modèle RVFL introduit aux chapitre 3, en
adjoignant à ses paramètres une distribution a priori (Gaussienne multivariée).
Le modèle ainsi obtenu sert d’ingrédient de base à une méthode d’optimisation
bayésienne, appliquée à la minimisation de l’erreur de validation croisée des modèles
étudiés. De manière générale dans le texte et idéalement, il faudrait introduire en
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plus de l’erreur de validation croisée, une erreur de validation sur des données
nouvelles, non encore rencontrées par les modèles étudiés.

1.2 Motivation and Problem Statement (English
version)

The Own Risk Solvency and Assessment (ORSA) is a set of processes defined in
the European prudential directive Solvency II, that serve for decision-making and
strategic analysis. In the context of ORSA, insurance companies are required to
assess their solvency needs in a continuous and prospective way. For this purpose,
they notably need to forecast their balance sheet -asset and liabilities- over a defined
horizon.

Here, we specifically focus on the assets’ forecasting part. This thesis is about
the Yield Curve, Forecasting, and Forecasting the Yield Curve. We present a
few novel techniques for the construction, the extrapolation of static curves (that
is, curves which are constructed at a fixed date), and for forecasting the spot
interest rates over time. Cross validation is widely used here as a measure of model
performance, but ideally a validation set with unseen data could be considered.

Throughout the text, when we say ’Yield Curve’, we actually mean ’Discount curve’.
That is: we ignore the counterparty credit risk, and consider that the curves are
risk-free. Though, the same techniques could be applied to construct/forecast the
actual risk-free curves and credit spreads’ curves, and combine both to obtain pseudo-
discount curves incorporating the counterparty credit risk. The structure of the thesis
is described in section 1.3.

1.3 Thesis Structure

Chapter 2

We derived a class of discount curve construction and extrapolation methods, based
on a class of interest rate models called exogenous short-rate models. That means:
constructing a static Yield Curve at a given date, by using some specific financial
instruments with different maturities quoted at this date. Then, defining what are the
discount rates beyond the longest maturity observed for these financial instruments.
The extrapolated part of the curve is typically necessary for the pricing of long-term
insurance liabilities. In the framework that we propose, Yield Curve forecasts can

1.2 Motivation and Problem Statement (English version) 3



be obtained by using a functional principal components analysis on the model
parameters.

Chapter 3

We are interested in obtaining forecasts for multiple time series, by taking into
account the potential nonlinear relationships between their observations. For this
purpose, we used a specific type of regression model on an augmented dataset of
lagged time series. Our model is inspired by dynamic regression models, with the
response variable’s lags included as predictors, and is known as random vector
functional link (RVFL) neural networks. The RVFL neural networks have been
successfully applied in the past, to solving regression and classification problems.
The novelty of our approach is to apply an RVFL model to multivariate time series,
under two separate regularization constraints on the regression parameters, and
quasi-randomized features. The model can also be used for realizing stress tests.

Chapter 4

The goal of ensemble learning is to combine two or more statistical/machine learning
models - the base learners - into one, in order to obtain an ensemble model. The
ensemble model is expected to have an improved out-of-sample error over the base
models. We apply two popular ensemble learning methods to multiple time series
forecasting: bootstrap aggregating, known as bagging, boosting, and stacked
generalization, known as stacking. The base learners that we use, are the RVFL
introduced in the previous paragraph.

Chapter 5

Kernel regularized least squares (KRLS) learning methods are applied to Yield
Curve forecasting. Two types of formulations of the forecasting problem are tested.
One relying on a popular framework called Dynamic Nelson-Siegel, and another one,
in which we apply the KRLS directly to the explain the spot rates (response variable)
as a function of the observation dates and time to maturities (covariates).

Chapter 6

We present a bayesian quasi-randomized vector functional link neural network
model (BQRVFL), with one hidden layer. It’s a penalized regression model on
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an augmented data set, in which we assume that a prior multivariate gaussian
distribution governs the regression parameters. The BQRVFL model is presented,
along with the associated formulas for confidence interval around its predictions.
It is then applied as a workhorse for bayesian optimization of machine learning
cross-validation functions. The machine learning cross-validation functions that we
consider are those associated to the selection of hyperparameters of RVFL (in a DNS
framework, or directly applied to the spot rates’ time series) and KRLS models (in a
DNS framework, or directly applied to the spot rates).

1.3 Thesis Structure 5





2A swap curve for insurance risk
management, based on no
arbitrage short-rate models

2.1 Context

The new Solvency II directive defines the calculation of European insurers’ technical
provisions as the sum of two components, the Best Estimate Liabilities (BEL) and
the Risk Margin (RM). The Best Estimate Liabilities (BEL) are defined as the average
discounted value of the insurer’s future cash-flows, weighted by their probability of
occurrence. The Risk Margin is a supplemental amount required for covering the
non-hedgeable risks, by involving a capital lockup.

In order to discount the cash-flows relevant in the calculation of the BEL and Risk
Margin, an appropriate term structure of discount factors is needed. From the no
arbitrage pricing theory developed by [HP81], and widely used in insurance market
consistent pricing of liabilities, the zero rates related to the stochastic discount factors
have to be risk-free. That is, free from any counterparty credit risk.

There is no easy answer to the question of defining such a risk-free rate for insurance
liabilities. It could be related the insurer’s own assets return, where the liabilities
are perfectly backed by the assets. But in a market consistent approach as required
in Solvency II, since not every liability is perfectly backed by the assets, a more
fundamental risk-free rate also needs to be derived. Deriving such a common risk-free
rate from market-quoted instruments is also aimed at increasing transparency and
comparability of balance sheets across European countries.

For years, in banking, the construction of a term structure of risk-free discount factors
was based on the assumption that banks are not subject to counterparty credit risk
when lending to each other, and liquidity was not an issue. In this context, interbank
rates (loosely called LIBOR hereafter) were seen as the best proxies for risk-free
rates.

From the 2007-2008 financial crisis onwards, the spreads between swaps rates with
different tenors started to widen, partly due to the increased reticence of banks to

7



lend to each other. Today, LIBOR is no longer considered as a proxy for risk-free rates,
and market operators have increasingly started to use Overnight Interest Swaps
(OIS) discounting (see [HW12] for example).

Comparatively in the European Insurance market, throughout the quantitative impact
studies (the QIS) leading to Solvency II, the questions of risk-free term structure
construction for valuation have been tackled for years by the CEIOPS and later by the
EIOPA (see [CC10] for example). The difficulty in defining a fundamental risk-free
rate for the insurance market, mainly arises from the fact that a pure market risk-free
rate could introduce a lot of unwanted market volatility into the insurer’s balance
sheet. Hence, this discount curve has been adjusted with different spreads through
the QIS, and until its most recent specification, making it somewhat, less consistent
with the market.

As of June 2015 (see [EIO15]), the term structure of discount factors for insurers’
liability cash-flows is indeed derived from LIBOR EUR swap (IRS hereafter) rates,
as the market for vanilla swaps is considered as ‘Deep, Liquid, and Transparent’
(the DLT assumption). A credit risk adjustment (CRA) is prescribed by the directive,
consisting in a parallel shift applied to LIBOR swap rates. The parallel shift shall not
be lower than -35bps or greater than -10 bps. Furthermore, a matching adjustment
and a volatility adjustment are other optional parallel shifts which could be applied
to the constructed curve.

The volatility adjustment is designed to be used in case of a crisis, causing the
widening of sovereign or corporate bonds spreads. On the other hand, the matching
adjustment is used in cases where the liabilities are predictable, that is, almost
perfectly backed. In this paper, we focus on discount curve construction. The
matching premium and the volatility adjustment are not further discussed.

Beyond the data and curve adjustments concerns, and considering curve construction
methods, [AB13] distinguish between two types of methods: best fit methods, and
exact fit methods. Best fit methods, such as [NS87] and [Sve94] are widely used by
central banks. Exact fit methods such as cubic splines methods on the other hand,
generally have at least as much parameters as input market products, and provide
an exact fit to market data.

While the latter type of methods would be adapted for no arbitrage pricing and
trading, the former type are useful for forecasting the yield curve in real world
probability (see [DL06] for example). They fit the curve parsimoniously with a
few parameters; in an attempt to mimic the factors explaining the variance of the
yield curve changes (see [Lit+91] for details). There is another class of models,

8 Chapter 2 A swap curve for insurance risk management, based on no arbitrage short-rate
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which combine the idea of using a factors structure, which is the absence of dynamic
arbitrages in the curve diffusion, see [Chr+11] for example.

The extrapolation of the constructed curve is also an important subject matter for
insurers and pension funds. Indeed, some of their liability cash-flows may have
very long maturities, spanning beyond the longest liquid maturities available for
market-quoted instruments. The question is, how would spot rates for such long
maturities be determined?

As of 2016 in Solvency II, the construction and extrapolation of the swap curve is
made by using the Smith-Wilson method described in
[SW01] and in the technical specifications [EIO15]. The Smith-Wilson method
constructs the swap curve by exactly fitting the market IRS rates adjusted from a
CRA. After a chosen maturity - the last liquid point (LLP), equal to 20 years -, the
forward rate is forced by regulatory rules, to converge at an exogenously specified
speed to a fixed long term level called the Ultimate Forward Rate (UFR). The UFR is
derived as the sum of expected Euro inflation and expected real rates. As of 2016, it
is equal to 4.2%.

For discount curve construction and extrapolation, we propose a method which relies
on closed-form formulas for discount factors available in exogenous (or no arbitrage)
short-rate model. It could be both an exact fit and best fit method, depending on the
data at hand, and on how the curve is calibrated to these data. In this framework,
the time-varying function ensuring an exact fit to market implied discount factors
in exogenous short-rate models is considered to be a piecewise constant function,
whose steps become model’s parameters. The interpolation of the curve at dates
comprised between quoted maturities directly comes from the properties of the
model. Pseudo-discount curves can also be constructed in a dual curve environment,
by using our method, along with the techniques described for example in [Whi12]
and [AB13].

The static discount curve calibrated to market data can then be extrapolated to longer,
unobserved maturities, with the forward rates converging to an ultimate forward rate.
Extrapolation is done by using the same model that the one used for interpolation.
On this particular point, our model is hence closer to the [SW01] model than to
models which use different methods for interpolation and extrapolation (such as
cubic splines for interpolation, and a modified version of [NS87] for extrapolation).
We describe ways to either derive an UFR from the data, or to constraint the model
to converge to a given UFR.

2.1 Context 9



When it comes to forecasting and/or simulation, if one is interested in no arbi-
trage pricing, then she can use simulations under a risk neutral probability of the
corresponding, consistent (in the sense of [BC99]) exogenous short-rate model.
Otherwise, forecasts of the yield curve under the historical probability can be ob-
tained by making use of a functional principal components analysis on the model
parameters. Functional principal components analysis is described in [RD91] and
[RS05]. It has been applied to forecasting mortality rates by [HU07], and in finance,
it has been applied for example in [Ben07].

The advantage of the model presented in this paper, is that, it reconciles in some
sense models like [DL06] or [SW01]. Its direct link with an exogenous short-rate
model (consistency in the sense of [BC99]) and the possibility of achieving an exact
fit to swap data means that it could be used as an input for pricing in a risk neutral
probability. In addition, although it could be less interpretable than models like
[DL06] (in terms of level, slope, and curvature), it could also be used for forecasting
the yield curve parsimoniously in historical probability, as demonstrated in sections
2.4.3 and 2.4.4.

In the next sections, we describe the model proposed for discount curve construction
and extrapolation, and explain how it could be calibrated to market data. Then, we
explain how to obtain forecast of the discount curve, by using the model’s parameters.
To finish, some numerical examples based on [HW06], [And07], [AP10], [AB13]
are presented.

2.2 Curve construction and extrapolation

The class of models proposed for discount curve construction and extrapolation
relies on short-rate models. Specifically, on short-rate models with a time-varying
mean-reversion parameter, also known as exogenous short-rate models. In this
section, we provide details on how they are derived.

2.2.1 Curve explicit analytical expressions

The exogenous short rates model that we consider under a risk-neutral probability
measure Q is an Hull-White extended Vasicek (citer Hull & White (1990)) model:

dXt = a(b(t)−Xt)dt+ σdWt (2.1)
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where (Wt)t≥0 is a standard brownian motion under Q. But the methodology can
be directly extended to any other no-arbitrage short rate model with closed form
formulas for discount factors, including multi-factor short rate models.

a controls the speed of mean reversion of the short rates, and σ is their volatility.
t 7→ b(t) is a time-varying deterministic function, used for fitting exactly the current
term structure of discount factors PM (0, t).

Assuming the absence of arbitrage, the value at time t0 of a discount factor with
maturity t (under model from equation (2.1)) is given by

P (t0, t) = EQ

[
exp

(
−
∫ t

t0
Xudu

)
|Ft0

]
(2.2)

where F is the natural filtration associated to the short-rate process X.

For (2.1), some closed-form formulas are available for discount factors (and implicitly
for discount rates and instantaneous forward rates). Indeed, assuming thatXt0 = X0,
we can write:

P (t0, t) = exp
(
−X0φ(t− t0)− a

∫ t

t0
b(u)φ(t− u)du− cψ(t− t0)

)
(2.3)

where φ and ψ are defined as

φ(s) := 1
a

(
1− e−as

)
, (2.4)

ψ(s) := −
∫ s

0

(
σ2

2 φ
2(s− θ)

)
dθ. (2.5)

t 7→ b(t) uses to be constructed as a function of fM (0, t) = ∂PM (0,t)
∂t . In our approach,

we are going to derive P (0, t) =: PM (0, t) from market inputs, based on (2.3). By
doing so, we avoid the use of cubic splines or Nelson-Siegel methods to obtain
PM (0, t). Instead, the curve fitting model is directly derived from the short rate
model (2.1) and from (2.3).

Deriving PM (0, t) in this framework uses some ideas from [SS00]. It requires the
time-varying function t 7→ b(t) to be a piece-wise constant function, whose steps
are derived from vanilla (IRS) or overnight swaps (OIS) cash-flows. For curve
extrapolation, the speed of convergence to the Ultimate Forward Rate (UFR) will be
controlled by the reversion speed of the short rates, a.
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2.2.2 Piecewise-constant long-term mean parameter b(t)

In order to obtain an exact fit in the Hull-White extended Vasicek model, we have to
choose:

b(t) = 1
a

dfM

dt
(0, t)− fM (0, t) + 1

2
σ2

a3

(
1− e−2at

)
(2.6)

where t 7→ fM (0, t) are the market implied instantaneous forward rates. In our
framework, the market-implied discount curve PM (0, t) at date t0 = 0 is constructed
by considering a piecewise constant function t 7→ b(t), whose steps are derived
from vanilla (IRS) or overnight swaps (OIS) cash-flows. We let T1, . . . , Tn, be the
maturities of market quoted IRS, with Credit Risk Adjustment (CRA), or OIS. We
assume that the function t 7→ b(t) is piecewise-constant, with:

b(t) = bi, for Ti−1 ≤ t < Ti, i = 1, . . . , n (2.7)

b(t) = bn+1, for t ≥ Tn (2.8)

and T0 = t0 = 0.

Under this specification of the long-term mean parameter, closed-form formulas can
be obtained for the discount factors. Given that t0 = 0, the integral term in equation
(2.3) becomes

In+1(t) =
n∑
k=1

bk (ξ(t− Tk−1 ∧ t)− ξ(t− Tk ∧ t)) (2.9)

for any t ≤ Tn and

In+1(t) =
n∑
k=1

bk (ξ(t− Tk−1)− ξ(t− Tk)) + bn+1ξ(t− Tn) (2.10)

for t > Tn where ξ is defined as

ξ(s) := s− φ(s), s ≥ 0. (2.11)

Given that t0 = 0, the integral term in equation becomes

In+1(t) =
n∑
k=1

bk (η(t− Tk−1 ∧ t)− η(t− Tk ∧ t)) (2.12)

for any t ≤ Tn and

In+1(t) =
n∑
k=1

bk (η(t− Tk−1)− η(t− Tk)) + bn+1η(t− Tn) (2.13)
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for t > Tn where η is defined as

η(s) := 2
[

s

h+ a
+ 1
σ2 log h+ a+ (h− a)e−hs

2h

]
. (2.14)

The previous result can also be found in [Bie+14] under a more general form.
[SS00] also consider an extended CIR model with piecewise-constant parameter
in order to construct initial yield-curves but prices of zero-coupon bonds are given
under a recursive form.

Recall that our aim is to construct a discount curve by fitting the mean-reversion
function b on quoted swaps observed for different standard maturities. The interpo-
lation of the curve at intermediary dates between quoted swaps maturities directly
comes from the properties of the model. Contrary to the Hull-White approach where
an exogenous term-structure is given as a model input, in our approach, the fitted
risk-neutral short-rate model is, by construction, consistent in the sense of [BC99].

In the next section, we explain how model parameters can be calibrated in different
situations, for the construction of OIS and IRS (with CRA) discount curves. We focus
our presentation on the particular extended Vasicek short-rate model

dXt = a(b(t)−Xt)dt+ σdWt. (2.15)

Pseudo-discount curves could also be constructed in a dual curve environment, by
using this method along with the techniques described for example in [AB13] and
[Whi12].

2.2.3 Calibration of the model

This section is about the calibration of our model. Section 2.2.3 discusses the
calibration of the liquid part of the curve to swaps, 2.2.3 is about calibration by
using swaps, caps and swaptions, and 2.2.3 describes curve extrapolation. Section
2.3 describes another way of choosing the parameters, by applying cross-validation
to forecasts under the historical measure.

Calibration of the liquid part

Considering that there are N quoted swaps used for constructing the discount curve
as of today, and at most M coupon payment dates for all the swaps, we let V be
the vector of current values for the market swaps with length equal to N . C is the
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N ×M matrix containing in each row, the swaps’ coupon payments. P is the vector
of discount factors that we are trying to derive, having a length equal to M .

Three methods might be envisaged for calibrating the model, depending on the data
at hand:

• A method to be used if an exact fit is required, and can be found. That is, if
we require V = CP

• A method to be used if an exact fit cannot necessarily be found, but approx-
imated

• A method to be used when the dataset is noisy, and a smooth curve is
required

These three methods are described hereafter, and numerical examples can be found
in section 2.4.

• If an exact fit is required, then it is possible to guess reasonable values for
a and σ (say, a between 0.05 and 1, and σ between 1% and 5%), and use an
iterative curve calibration (also known as bootstrapping, but different from
statistical bootstrap resampling) to solve V = CP . On figure 2.1, we can
observe that the discount rates obtained for 1000 values of a ∈ [0.1, 10] and
σ ∈ [0, 0.1] do not exhibit particular differences at quoted swaps maturities.
The corresponding forward rates in figure 2.2 exhibit more differences.

This type of method was used for any vanilla swap before the 2007 crisis, no
matter its tenor. It is relevant only for extracting discount factors from OIS
which are considered to be perfectly collateralized, or in Solvency II context.
As of 2016, single curve construction in Solvency II, is applied to IRS, along
with a parallel CRA, comprised between 10bps and 35bps.

In order to describe the curve’s calibration procedure, we will use a formu-
lation similar to the one in [AP10]. We let T1 < . . . < Tn be the matu-
rity dates of OIS or IRS minus CRA, with the same currency on both legs.
The swap payment dates occur at dates tj , with a frequency belonging to
{1month, 3months, 6months, 1 year}.

The single curve construction, in the specific Hull & White-consistent case
treated in this paper, is made as follows:
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models



1. Guess a and σ: any reasonable values for a and σ will produce an exact fit
for discount factors and discount rates (cf. figure 2.1)

2. Loop on i: At each step Ti corresponding to the ith input swap maturity,
suppose that the discount factors and bjs are known for any tj < Ti

3. Make a guess for bi

4. Use results from section 2.2.2, to derive the discount factors at intermedi-
ate swap payment dates: Ti−1 ≤ tj ≤ Ti. No interpolation is required.

5. Calculate Vi, the value of the ith swap. While Vi 6= 0 return to point
2. Typically, the points 3 to 5 are solved iteratively with a root search
algorithm.

• If no solution is available for equation V = CP by iterative curve calibra-
tion, then similarly to [And07], it is possible to search for P minimizing:

1
2N (V − CP )T W 2 (V − CP ) (2.16)

W , a diagonal matrix of weights is used. These weights are based on inverse
duration, such as proposed by [Bli97]; with elements:

wj = 1/dj∑N
j=1 1/dj

(2.17)

Weights such as wj ’s are commonly used to give more importance to the short
end of the curve, which is hence fitted more accurately. But other weighting
schemes might be envisaged.

• If the swaps data are noisy, or if one is interested in fitting smoothly
noisy bonds data a third method could be envisaged. It consists in penalizing
the possibly large changes in forward rates’ (approximate) second derivatives
and/or in bis. The objective function to be minimized is:

1
2N (V − CP )T W 2 (V − CP )+λ1

N∑
i=1

(f ′′i −f
′′
i−1)2 +λ2

N∑
i=1

(bi−bi−1)2 (2.18)

where f
′′
i is the approximate second derivative (using finite differences) of

the discrete forward rates at time Ti. Typically, λ1 and λ2 can be found by
cross-validation. An example can be found in section 2.4.
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Fig. 2.1: Discount rates obtained for 1000 val-
ues of a ∈ [0.1, 10] and σ ∈ [0, 0.1]

Fig. 2.2: Forward rates obtained for 1000 val-
ues of a ∈ [0.1, 10] and σ ∈ [0, 0.1]

Calibration using derivatives

Another way for picking a and σ might be to calibrate the underlying short-rate
model to a set of caps and swaptions. The optimization procedure would involve
the following steps: choosing a and σ, construct the initial curve with an exact fit
using the results described in section 2.2.3; use it as an input for theoretical caps
and swaptions prices formulas implied by the underlying short-rate model, until a
and σ which minimize the difference between theoretical and market prices for caps
and swaptions are found.

Curve extrapolation

Using the Hull and White extended Vasicek model, it is possible to derive the
instantaneous forward rates from the discount factors formula. We can write:

f(0, t) = −∂log(P (0, t)
∂t

= X0e
−at + a

∫ t

0
e−a(t−u)b(u)du− σ2

2 φ
2(t) (2.19)
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Hence, in our framework, using the fact that t 7→ b(t) is piecewise constant, we can
also write:

fM (0, t) = X0e
−at+a

n∑
i=1

bi [φ(t− Ti−1 ∧ t)− φ(t− Ti ∧ t)]+abn+1φ(t−Tn∧t)−
σ2

2 φ
2(t)

(2.20)
This formula directly provides an input for the simulation of Hull & White short-rate,
with parameters a, σ and b1, . . . , bn previously calibrated to market data.

Hence, let t grow to∞, we have:

fM (0,∞) = bn+1 −
σ2

2a2 (2.21)

If we assume that the UFR is exogenously chosen, and denote it by f∞, we are able
to derive the parameter bn+1 as:

bn+1 = f∞ + σ2

2a2 (2.22)

This enables to re-write equation (2.13), when extrapolation is required, as:

In+1(t) =
n∑
k=1

bk (ξ(t− Tk−1 ∧ t)− ξ(t− Tk ∧ t))+
(
f∞ + σ2

2a2

)
ξ(t−Tn∧t) (2.23)

If a fixed ultimate forward rate (UFR) is defined exogenously, one can increase
or decrease the parameter a, to achieve a convergence of fM (0, t) to f∞ at a pre-
specified maturity. A period of convergence τcv after the Last Liquid Point (LLP) is
defined. Starting from a low value such as a = 0.1, a is increased until:

fM (0, LLP + τcv) = f∞

or
|fM (0, LLP + τcv)− f∞| < tol

for a given σ, and a given numerical tolerance tol.

Otherwise, an ultimate forward rate (UFR) can be derived from market data. A
static discount curve is fitted to a fraction of the quoted swaps available, called the
training set. After the construction of the curve on this fraction of the data, we
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evaluate how well, when extrapolated to a given exogenous UFR, it would price the
remaining swaps in a test set.

The LLP provided by the prudential authority (as of 2016, a maturity 20 years),
could be used to define the frontier between the training and test set. Otherwise,
one can define a percentage of the swaps data to be used as a training dataset, for
example 80% or 90% of the available swaps.

Both of these methods for curve extrapolation are applied in the numerical examples,
in section 2.4.

2.3 Forecasting with Functional PCA

The idea that a few principal components explain a major part of the changes in
bonds returns originates from [Lit+91]. This idea is now well accepted and applied
to yield curve forecasting; the interested reader could refer to [DL06] or [Chr+11]
for example.

We use a similar rationale, but apply it somewhat differently. The changes in the
swap curve over time, are explained by the changes observed in the calibrated
parameters bis over time. Considering the fact that our model for fitting each cross
section of yields is already overparametrized (as it uses at least as much parameters as
swap rates available in the input dataset), the use of models such as an unrestricted
Vector Autoregressive (VAR) to predict the bis could lead to poor forecasts, with high
variance.

Functional Principal Components Analysis in the spirit of [RD91] and [RS05], and
more precisely Functional Principal Components Regression, was hence seen as one
of the most immediate candidate to achieve a reduction of the problem’s dimension.
This method is used for example by [HU07] for forecasting log mortality rates. It
has also been applied in finance, for example in [Ben07].

We consider functional data of the form:

ba,σx (t) (2.24)

These are the parameters bis obtained by fitting each cross section of swap rates; ob-
served at increasing times t ∈ {t1, . . . , tN}, for increasing maturities x ∈ {x1, . . . , xp}.
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The calibration method is the one described in section 2.2.3, with a and σ kept fixed
over time.

Finding the Functional Principal Components

Using the approach described in details in [RS05], we let B be the matrix containing
at line i and column j:

Bi,j = ba,σxj (ti) (2.25)

With i = 1, . . . , N and j = 1, . . . , n, n > p. For each cross section of bis calibrated at
time ti, a cubic spline interpolation is applied to x 7→ ba,σx (ti), so that the bis values
are now equally spaced on a larger grid of maturities spanning [x1, xp]. Let w be the
fixed interpolation step applied to x 7→ ba,σx (ti) on [x1, xp], and:

V = 1
N

BTB (2.26)

V is the covariance matrix of the bi’s, when we consider that the columns of B have
been centered. We are then looking for the vectors ξa,σ, the (approximate) functional
principal components, verifying:

wVξa,σ = ρξa,σ (2.27)

This is equivalent to searching the eigenvalues and eigenvectors of V, so that:

Vu = λu (2.28)

and ρ = wλ. This problem of finding eigenvalues and eigenvectors of V is typically
solved by using the Singular Value Decomposition (SVD) of B, and taking the
normalized right singular vectors as functional principal components. The interested
reader can refer to [Jol02] and [RS05] for details. Another interesting resource on
Functional Principal Component Analysis is [Sha14].

Forecasting using Principal Components regression

Having obtained the functional principal components, a least squares regression of
the cross sections of bis is carried out. The bis are expressed as a linear combination
of the previously constructed functional principal components, plus an error term:

∀t ∈ {t1, . . . , tN} , ba,σx (t) = βt,0 +
K∑
k=1

βt,kξ
a,σ
k (x) + εt(x) (2.29)
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K is the number of functional principal components. These functional principal
components are not highly correlated by construction, so that we can use univariate
time series forecasts for each of the K + 1 time series, and h-step ahead forecasts of
the bis as:

b̂a,σx (t+ h) = β̂t+h|t,0 +
K∑
k=1

β̂t+h|t,kξ
a,σ
k (x) (2.30)

Once the forecasts b̂a,σx (t+ h) are obtained, they can be plugged into formulae from
section 2.2.2 to deduce h-step ahead forecasts for the discount factors and discount
rates.

For choosing good values for a, σ and K, we typically used a cross-validation on
grids of values for these three parameters, and rolling origin estimation/forecasting,
as described in section 2.4.

2.4 Numerical examples

In order to illustrate how the methods described in the previous sections work,
we use IRS and OIS data from [And07], [AP10], [AB13], an example of bonds
data from [HW06]; a curve where all cubic splines produce negative forward rates.
For forecasting the curves, we use market EUR 6M IRS data, (from which we give
detailed summaries) with a CRA adjustment equal to 10bps.

For the data from [AP10], we assume that the swaps cash-flows payments occur
on an annual basis as for OIS. From [AB13], we consider mid quotes from Eonia
OIS and 6-month Euribor IRS as of December 11, 2012. These data sets are all
reproduced in the appendices.

In section 2.4.1, four calibration methods are tested to illustrate section 2.2.3. The
method proposed in this paper 1 is denoted by CMN. It is compared to two iterative
curve calibration methods, with linear (LIN) and natural cubic splines (SPL) interpo-
lation on missing dates, and the [SW01] method (SW). Section 2.4.1 also illustrates
2.2.3. We use a dataset from [And07]; a direct bootstrapping without regularization
produces wiggly spot and forward rates. The effects of the regularization of approx-
imate second derivative for forward rates and calibrated bi’s is illustrated. Such a
regularization could also be applied to noisy bonds data.

1Actually applied to Hull & White model, but which can be applied to other short-rate models.
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In section 2.4.1, the interpolation method is tested on a curve where all cubic methods
produce negative forward rates, from [HW06]. Section 2.4.2 illustrates the possi-
ble extrapolation methods described in section 2.2.3. 2.4.3 illustrates the curves’
forecasting method introduced in section 2.3.

The discount factors usually display no particular subtleties, so they are deliberately
omitted. We present discount rates and discrete forwards instead, and the discrete
forwards are taken to be 3-month forward rates.

2.4.1 Curve calibration

On swaps data from [AP10]

Below on figures 2.3, 2.4, 2.5, 2.6, are the discount rates and discrete forwards
obtained for the four methods described in the previous section; two bootstrapping
methods, with linear (LIN) and natural cubic splines (SPL) interpolation on missing
dates, the [SW01] method (SW), and the method described in 2.2.3 with an exact
fit, denoted as CMN. The discount rates are presented as a dashed line, and the
forward rates as a plain colored line.

Fig. 2.3: Bootstrapping with linear interpola-
tion

Fig. 2.4: CMN applied to Hull and White ex-
tended Vasicek

As demonstrated on figures 2.3, 2.4, 2.5 and 2.6, the discount rates produced by
the four methods are quite similar. The discrete forward rates better exhibit the
differences between them.
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Fig. 2.5: Smith-Wilson method Fig. 2.6: Natural cubic spline

Curve construction with linear interpolation between quoted swaps maturities (on
figure 2.3), produces a saw-tooth like forward curve, which might not be desirable,
and the other methods produce more regular forward curves.

For the method described in this paper - denoted as CMN on figure 2.4 - and applied
to the extended Vasicek model, the discrete forwards (with an exact fit required, as
described in section 2.2.3) reflect the fact that the discount factors’ construction
relies on a piece-wise constant function, with slight changes in first derivatives at
quoted swap maturities. This effect remains very reasonable however, as the discrete
forward curve is highly similar to those produced by the other models, and doesn’t
exhibit large changes at quoted swap maturities.

With a=0.2557, σ=0.1636, the parameters bis from table 2.1 are obtained. They
are presented along with the parameters ξis obtained by the method in [SW01],
with a = 0.1. a = 0.1 is actually given as default parameter by Solvency II’s technical
specifications, and using the notations from QIS5 technical specifications.

On noisy swaps data

This section illustrates what may happen if the method from section 2.2.3 is applied
directly to noisy data, without regularization of the parameters. We use data from
[And07].
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Tab. 2.1: Parameters obtained for CMN and Smith-Wilson

Maturity bi ξi

1 0.0661 -16.680
2 0.1894 23.556
3 0.2523 -0.8413
5 0.2523 -8.9116
7 0.2523 3.3552
10 0.2806 7.9600
12 0.2523 -14.098
15 0.2089 3.9119
20 0.2553 3.4828
25 0.2616 -1.9497

Figure 2.7 on the left describes the discount and forward rates obtained without
regularization, with a = 0.3655 and σ = 0.0037. On the right, figure 2.8 describes
the discount and forward rates obtained by minimizing the objective function in
equation (2.18), and using the parameters λ1 = 1e−08 and λ2 = 1e−05, a = 9.8891
and σ = 0.3957.

Fig. 2.7: Curve calibration without regular-
ization

Fig. 2.8: Curve calibration with regulariza-
tion

In order to pick λ1 and λ2, we make a grid search on couples (λ1, λ2). For each
(λ1, λ2), a minimization based on derivatives is applied, with multiple restarts of the
minimization algorithm. Multiple restarts avoid getting trapped into local minima.
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Tab. 2.2: Parameters obtained for unregularized and regularized CMN

Maturity unregularized bi regularized bi

0.5 0.0253 0.0281
1 0.1100 0.0363
1.5 -0.0078 0.0383
2 0.0929 0.0383
2.5 -0.0005 0.0380
3 -0.1360 0.0352
4 0.2901 0.0358
5 0.1975 0.0478
7 0.1654 0.0497
10 -0.0056 0.0515
12 0.1315 0.0533
15 0.1392 0.0554
20 0.0688 0.0553
30 0.039 0.0491

Table 2.2 contains both the unregularized and regularized bis. The unregularized
ones naturally exhibit a higher variance, because an exact fit to each swap rate in
the noisy dataset is required. The regularized bis exhibit a lower variance, at the
expense of a higher bias in the fitting of the data from [And07].

On a curve where all cubic methods produce negative forward rates, with
data from [HW06]

The dataset from this section is used in [HW06], and is described as a curve where all
cubic methods produce negative forward rates. It is reproduced in the appendices.

Figure 2.9 illustrates the discount rates (dashed line), and discrete forward rates
(plain coloured line) obtained with a linear interpolation of the bond yields. The
discrete forward remain positive on all maturities, but again exhibit a sawtooth
profile. As expected, the natural cubic spline on figure 2.10 produces negative
discrete forward rates on this dataset.

Figures 2.11 and 2.12 present the results obtained on data from [HW06]. Figure
2.12 presents the sign of discrete forward rates as a function of a and σ. We consider
that discrete forward rates’ sign is negative if a least one discrete forward rate is
negative. We observe on both figures 2.11 and 2.12 that a low value of a might
produce negative forward rates on maturities comprised between 15 and 20. But a
high value always produces positive forward rates.
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Fig. 2.9: Linear interpolation on a curve
where all cubic methods produce neg-
ative forward rates

Fig. 2.10: Natural cubic spline interpolation
on a curve where all cubic methods
produce negative forward rates

Fig. 2.11: CMN interpolation on a curve
where all cubic methods produce
negative forward rates

Fig. 2.12: Sign of discrete forwards for CMN
as function of a and σ, on a curve
where all cubic methods produce
negative forward rates

This is explained by what we saw in section 2.2.3: in the Hull and White extend
Vasicek case, a controls the speed of convergence of forward rates to the UFR: the
higher the a, the faster the convergence of forward rates to the UFR on long-term
maturities. The parameters obtained by CMN interpolation (for producing figure
2.11), with a = 0.71 and σ = 0.0062 are presented in table 2.3.
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Tab. 2.3: Parameters obtained CMN with a = 0.71 and σ = 0.0062 on [HW06] data

Maturity bi

0.1 0.0718
1 0.0351
4 0.0018
9 0.1162
20 0.0011
30 0.0114

2.4.2 Curve extrapolation on data from [AB13]

In this section, we use the extrapolation methods described in 2.2.3, on OIS and IRS
(with CRA adjustment equal to 10bps) data from [AB13].

With Solvency II technical specifications, on IRS + CRA

Extrapolation to a fixed UFR equal to 4.2% is tested, using CMN and the Smith-
Wilson method. For both methods, the Last Liquid Point (LLP) is equal to 20 years,
and convergence to the UFR is forced to 40 years after the LLP.

For the CMN method, the parameters are a = 0.174 and σ = 0.0026, and for the
Smith-Wilson method, a = 0.125. The resulting discount and forward curves are
presented in figures 2.13 and 2.14, and the parameters bis and ξis in table 2.4.

The discount and forward curves produced by both methods are similar, as seen
on figures 2.13 and 2.14. The convergence of the Smith-Wilson method to the
UFR seems to be slighty faster. This is caused by the fact that for CMN, we use
instantaneous forward rates to assess the convergence to the UFR, whereas for the
Smith-Wilson method, we use discrete forwards.

With OIS data, and a data driven UFR

For this example, we use OIS data from [AB13] presented in the appendices. A
training set containing 14 swap rates (90% of the dataset) with increasing maturities
starting at 1 and ending at 20 is made up.
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Tab. 2.4: Parameters for CMN (bi) and Smith-Wilson (ξi) extrapolation

Maturity bi ξi

1 0.0019 -2.5888
2 0.0112 0.7585
3 0.0266 0.1415
4 0.0352 1.3153
5 0.0438 0.4726
6 0.0378 -0.8809
7 0.0399 1.2010
8 0.0387 -0.8965
9 0.0338 -0.3536
10 0.0376 0.7268
11 0.0363 -0.1582
12 0.0353 1.2852
13 0.0312 -1.9866
14 0.0239 0.4161
15 0.0285 0.7056
16 0.0211 -0.7112
17 0.0208 -1.7105
18 0.0182 1.9922
19 0.0248 -1.5542
20 0.0172 0.5125
21 0.0272 1.0148
22 0.0189 -2.1158
23 0.0025 3.4051
24 0.0021 -3.7822
25 0.0020 2.7013
26 0.0239 -2.8668
27 0.0195 2.2513
28 0.0274 -0.8877
29 0.0202 -7.1463
30 0.0326 8.5322
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Fig. 2.13: Extrapolation to UFR = 4.2%
with CMN

Fig. 2.14: Extrapolation to UFR = 4.2%
with Smith-Wilson

This training set is used to construct the discount curve, which is then extrapolated to
30-year maturity and beyond, using different values for the UFR. The two remaining
swaps, with maturities equal to 25 and 30, are placed into the test set.

Fig. 2.15: Out-of-sample RMSE on swap val-
ues, as a function of UFR

Fig. 2.16: Extrapolation of OIS curve to a
data driven UFR = 0.0226
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Figure 2.15 presents the out-of-sample RMSE obtained on swaps values from the
test set, as a function of UFR. This error decreases until UFR = 0.0226 (notice
that this value would depend on the step chosen on the grid of UFRs), and then,
starts to increase again. Figure 2.16 displays the discount curve constructed on the
training set, extrapolated to a 80-year maturity with an UFR equal to 0.0226 (the
one minimizing the out-of-sample RMSE on the chosen grid of UFRs) is presented.

2.4.3 12-months ahead forecast on historical IRS + CRA

In this section, we apply ideas from section 2.3 to real world IRS data observed
monthly from december 2013 to april 2016, adjusted from a CRA equal to 10bps.

Figure 2.17 and table 2.5 are to be read together. They contain the informations
on the spot rates derived from the IRS data adjusted from a CRA, using CMN with
a = 0.3655 and σ = 0.0037 (other values than a = 0.3655 and σ = 0.0037 would
produce the same results as the fitting is exact for many different values of these
parameters).

The static curves are generally upward sloping, and as time passes, lower and lower
spot rates are encountered. In addition, negative rates are observed in table 2.5;
which is coherent with the current context.

Fig. 2.17: Spot rates observed from december 2013 to april 2016
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Tab. 2.5: Descriptive statistics for the spot rates observed from december 2013 to april 2016

Maturity Min. 1st Qrt Median Mean 3rd Qrt Max.

1 -0.0026 -0.0008 0.0000 0.0003 0.0019 0.0031
3 -0.0023 0.0002 0.0009 0.0013 0.0028 0.0065
5 -0.0008 0.0017 0.0030 0.0037 0.0056 0.0117
10 0.0046 0.0059 0.0090 0.0101 0.0132 0.0211
15 0.0063 0.0097 0.0127 0.0141 0.0179 0.0258
20 0.0069 0.0113 0.0144 0.0157 0.0199 0.0272
30 0.0071 0.0118 0.0155 0.0164 0.0208 0.0270

Tab. 2.6: Average out-of-sample error on real world IRS data + CRA

Method Parameters Avg. OOS error

CMN - auto.arima K = 5, a = 1, σ = 0.1555 0.0031
CMN - ets K = 5, a = 1, σ = 0.2 0.0037

NS - auto.arima λ = 1.8889 0.0031
NS - ets λ = 1.8889 0.0035

NSS - auto.arima λ1 = 21, λ2 = 21 0.0027
NSS - ets λ1 = 7, λ2 = 3 0.0035

Benchmarking the model

Benchmarks are subjective. The one presented in this section does not aim at
showing that one method is always superior to the other. It aims at showing that the
method presented in this paper produces forecasts which are (more than) reasonable,
and actually close to other well-known methods forecasts (on this given dataset).

Forecasts from the model presented in section 2.3 are hence compared to those of
two other models constructed in the spirit of by the [DL06]. The cross sections of
yields described by figure 2.17 and table 2.5 are fitted by the [NS87] model (NS),
and its extension by [Sve94] (NSS). The formulas for the spot rates from these
models are respectively:

RM (t, T ) = βt,1 + βt,2

[
1− e−T/λ

T/λ

]
+ βt,3

[
1− e−T/λ

T/λ
− e−T/λ

]
(2.31)

and
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RM (t, T ) = βt,1 + βt,2

[
1− e−T/λ1

T/λ1

]
+ βt,3

[
1− e−T/λ1

T/λ1
− e−T/λ1

]
(2.32)

+ βt,4

[
1− e−T/λ2

T/λ2
− e−T/λ2

]
(2.33)

Forecasts R̂M (t+h, T ) are obtained by fitting univariate time series to the parameters
βt,i, i = 1, . . . , 4 with automatic ARIMA (auto.arima) and exponential smoothing
(ets) models from [HK08]. This automatic selection is done only for the sake of
the benchmarking exercise, and in order to conduct the experience in fairly similar
conditions for all the methods. In practice, a visual inspection and an actual study of
the univariate time series would of course be required.

For all the methods the six methods, CMN, NS, NSS with auto.arima and ets, we
obtain 12-months ahead forecasts, from rolling estimation windows of a fixed 6
months length, starting in december 2013. That is, the models are trained on 6
months data, and predictions are made on 12 months data; successively. The average
out-of-sample RMSE are then calculated for each method, on the whole surface of
observed and forecasted yields.

The best parameters for CMN are obtained by cross-validation, withK ∈ {2, 3, 4, 5, 6},
5 values of a comprised between 0.9 and 1, and 10 values of σ comprised between 0
and 0.2. For NS and NSS, λ1 and λ2 are chosen by cross-validation, using the rolling
estimation/forecasting we have just described.

Bootstrap simulation of 12-months ahead spot rates

In this section, we use the last 12 months of the dataset to construct the functional
principal components. Using 12 months as the length of the fixed window for
estimation, we get an average out-of-sample RMSE of 0.0026 (on a smaller number
of testing samples than the 6 months estimation window, of course).

An AR(1) is fitted to the observed univariate time series (βt,i)t, i = 0, . . . ,K, with
a = 1, σ = 0.0089, and K = 3 chosen by cross-validation. The three functional
principal components’ characteristics are summarized in table 2.7. We notice that
the first functional principal component explains already 99.2415% of the changes in
bis, and the first three functional principal components selected by cross-validation
explain 99.9220%.
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Tab. 2.7: Importance of Principal components

Indicator PC1 PC2 PC3

Standard deviation 0.1286 0.2461 0.2246
Proportion of variance (in %) 99.2415 0.5489 0.1315
Cumulative Proportion (in %) 99.2415 99.7904 99.9220

Figure 2.18 presents the autocorrelation functions of the residuals of AR(1) fitted to
(βt,i), i = 0, . . . , 3 from april 2015 to april 2016. The residuals from AR(1) fitted to
(βt,i)t, i = 1, . . . , 3 could be considered as stationary, but those from the AR(1) fitted
to (βt,0)t seems to be closer to an AR(4).

We denote these residuals by (εt,i)t, i = 0, . . . , 3. In order to obtain simulations for
the (βt,i)t, i = 0, . . . , 3, it is possible to use a Gaussian hypothesis on the residuals.
We choose to create one thousand bootstrap resamples with replacement of the
(εt,i)t, i = 0, . . . , 3 2, denoted as (ε∗t,i)t, i = 0, . . . , 3, and create new pseudo values
for (βt,i), i = 0, . . . , 3:

β∗t,i = βt,i + ε∗t,i, i = 0, . . . , 3

Having done this, AR(1) forecasts β∗t+h|t,i can be obtained, in order to construct:

b̂a,σ,∗x (t+ h) = β̂∗t+h|t,0 +
K∑
k=1

β̂∗t+h|t,kξ
a,σ
k (x) (2.34)

The b̂a,σ,∗x (t+h) can then be plugged into formulae ?? and 2.13 to deduce simulations
of h-step ahead forecasts for the discount factors and discount rates.

The simulations (1000) of 12-months ahead discount rates are presented in figures
2.19 and 2.20.

2.4.4 6-months and 36-months ahead forecast on longer historical
data

In this second example, we use interest rate swaps data from the Federal Reserve
Bank of St Louis website 3 observed monthly, from july 2000 to september 2016,
with maturities equal to 1, 2, 3, 4, 5, 7, 10, 30, and a tenor equal to three months.

2Even if for εt,0, considering figure 2.18, this makes a strong stationarity assumption on the residuals.
3Available at https://fred.stlouisfed.org/categories/32299
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Fig. 2.18: Autocorrelation functions for the residuals of univariate time series(AR(1)) on
β0, β1, β2, β3

Fig. 2.19: Curves simulated with principal
components from april 2015 to
april 2016, and bootstrap ressam-
pling of the residuals

Fig. 2.20: Min., Max., and quartiles around
the median curve for the simula-
tions
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Tab. 2.8: Descriptive statistics for fitted parameters bis from april 2015 to april 2016

Maturity Min. 1st Qrt Median Mean 3rd Qrt Max.

1 -0.0026 -0.0021 -0.0010 -0.0013 -0.0004 -0.0003
3 0.0000 0.0026 0.0040 0.0035 0.0048 0.0058
5 0.0025 0.0076 0.0030 0.0092 0.0108 0.0143
10 0.0115 0.0174 0.0090 0.0188 0.0208 0.0230
15 0.0122 0.0168 0.0127 0.0192 0.0220 0.0228
20 0.0117 0.0148 0.0144 0.0171 0.0195 0.0211
30 0.0080 0.0116 0.0155 0.0134 0.0150 0.0178

In figure 2.21, we represent the eight time series of swap rates, observed for each
maturity 1, 2, 3, 4, 5, 7, 10, 30, between july 2000 and september 2016. The swap
rates for different maturities generally exhibit a decreasing trend, and are nearly
equal to 0 by the end of 2016 for the shortest maturities.

Starting in 2006, the spreads between swap rates with different maturities start to
narrow, until the end of 2007, and swap rates for short maturities are relatively
high. This is the period corresponding to the Liquidity and Credit Crunch 2007-2008.
Table 3.8 below presents the descriptive statistics for the data.

Fig. 2.21: Swap rates data (in %) from St Louis Federal Reserve Bank, at maturities
1, 2, 3, 4, 5, 7, 10, 30
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Tab. 2.9: Descriptive statistics for St Louis Federal Reserve data

Maturity Min. 1st Qrt Median Mean 3rd Qrt Max.

1 0.0026 0.0050 0.0134 0.0211 0.0336 0.0705
2 0.0037 0.0078 0.0182 0.0239 0.0390 0.0712
3 0.0046 0.0108 0.0236 0.0269 0.0422 0.0714
4 0.0060 0.0134 0.0280 0.0296 0.0439 0.0715
5 0.0078 0.0167 0.0316 0.0319 0.0456 0.0717
7 0.0119 0.0215 0.0368 0.0354 0.0483 0.0720
10 0.0139 0.0261 0.0419 0.0388 0.0502 0.0724
30 0.0175 0.0327 0.0465 0.0440 0.0537 0.0720

We transformed these swap rates into zero rates by using a single curve calibration
(that is, ignoring the counterparty credit risk) with linear interpolation between the
maturities; one of the methods used in section 2.4.1. Then, as in the previous section,
NS, NSS, CMN are used for fitting and forecasting the curves, with auto.arima
applied to the factors.

We obtain 6-months and 36-months ahead forecasts, from rolling training/testing
windows (as in the last section) with respectively, a fixed 6 and 36 months length.
The average out-of-sample RMSE are then calculated for each method, on the whole
set of observed and forecasted yields.

The best hyperparameters - associated with the lowest out-of-sample average RMSE -
for each model are obtained through a search on a grid of values. For a 6-months
horizon, they are (using the notations from section 2.4.3):

• NS: λ = 1.6042

• NSS: λ1 = 1.6250 λ2 = 1.6250

• CMN: a = 177.8279, σ = 3.9473e− 04, K = 6

and for a 36-months horizon:

• NS: λ = 1.4271

• NSS: λ1 = 1.575 λ2 = 1.575

• CMN: a = 14.6780, σ = 0.0011, K = 4

The following results are obtained for the out-of-sample average RMSE:
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Tab. 2.10: Descriptive statistics for out-of-sample RMSE, for training window = 6 months,
and testing window = 6 months

Method Min. 1st Qrt Median Mean 3rd Qrt Max. Std. Dev

NS 0.00101 0.00269 0.00409 0.00481 0.00595 0.01530 0.00296
NSS 0.00102 0.00269 0.00411 0.00481 0.00595 0.01537 0.00296
CMN 0.00115 0.00256 0.00396 0.00468 0.00580 0.01600 0.00302

Tab. 2.11: Descriptive statistics for out-of-sample RMSE, for training window = 36 months,
and testing window = 36 months

Method Min. 1st Qrt Median Mean 3rd Qrt Max. Std. Dev

NS 0.00356 0.00703 0.01044 0.01489 0.01609 0.21500 0.0213
NSS 0.00300 0.00690 0.01114 0.01484 0.01689 0.21570 0.0201
CMN 0.00402 0.00945 0.01279 0.01452 0.01917 0.03710 0.0070

Using tables 2.10, 3.9 and figures 2.22 and 2.23, we observe that CMN give results
which are close to those from NS and NSS, with a lower average out-of-sample RMSE
in both cases. For a training window equal to six months, and testing window of six
months, the results obtained by the three methods are pretty similar, and the same
performance is observed for the three during the financial crisis. For a training and
testing window of thirty six months length, CMN has a lower mean and standard
deviation for out-of-sample RMSE overall, but doesn’t perform the best in the period
of financial crisis 2007-2009.

2.5 Conclusion

In this paper, we introduced a method for swap discount curve construction and
extrapolation. This method relies on the closed form formulas for discount factors
available in exogenous short-rate models. We presented different ways to calibrate
and extrapolate the model on different data sets from the existing literature. More-
over, we showed that the model’s parameters contain a certain predictive power,
enabling to obtain swap curves’ forecasts, with predictive distribution.
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Fig. 2.22: log(out-of-sample RMSE) for training window = 6 months, and testing window
= 6 months

Fig. 2.23: log(out-of-sample RMSE) for training window = 36 months, and testing window
= 36 months

2.6 Appendix

2.6 Appendix 37



2.6.1 Data from [AP10]

Maturity Swap Par Rate

1 4.20%
2 4.30%
3 4.70%
5 5.40%
7 5.70%
10 6.00%
12 6.10%
15 5.90%
20 5.60%
25 5.55%

2.6.2 Data from [And07]

Maturity Swap Par Rate

0.5 2.75%
1 3.10%
1.5 3.30%
2 3.43%
2.5 3.53%
3 3.30%
4 3.78%
5 3.95%
7 4.25%
10 4.50%
12 4.65%
15 4.78%
20 4.88%
30 4.85%
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2.6.3 Data from [HW06]

Maturity Continuous yield

0.1 8.10%
1 7.00%
4 4.40%
9 7.00%
20 4.00%
30 3.00%
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2.6.4 Data from [AB13]

Maturity EUR6M IRS Eonia OIS

1 0.286% 0.000%
2 0.324% 0.036%
3 0.424% 0.127%
4 0.576% 0.274%
5 0.762% 0.456%
6 0.954% 0.647%
7 1.135% 0.827%
8 1.303% 0.996%
9 1.452% 1.147%
10 1.584% 1.280%
11 1.703% 1.404%
12 1.809% 1.516%
13 1.901% -
14 1.976% -
15 2.037% 1.764%
16 2.086% -
17 2.123% -
18 2.150% -
19 2.171% -
20 2.187% 1.939%
21 2.200% -
22 2.211% -
23 2.220% -
24 2.228% -
25 2.234% 2.003%
26 2.239% -
27 2.243% -
28 2.247% -
29 2.251% -
30 2.256% 2.038%
35 2.295% -
40 2.348% -
50 2.421% -
60 2.463% -
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3Multiple time series forecasting
using quasi-randomized
functional link neural networks

3.1 Introduction

In this chapter, we are interested in obtaining forecasts for multiple time series, by
taking into account the potential nonlinear relationships between their observations.
This type of problem has been tackled recently by [Ext+16], who applied kernel
regularized least squares to a set of macroeconomic time series. The Long Short-Term
Memory neural networks (LSTM) architectures (introduced by [HS97]) are another
family of models, which are currently widely used for this purpose. As a basis for our
model, we will use (quasi-)randomized neural networks known as Random Vector
Functional Link neural networks (RVFL networks hereafter)

The forecasting method described in this chapter, provides useful inputs for Insurance
quantitative Risk Management models; the interested reader can refer to [Bon+15]
for example.

To the best of our knowledge, randomized neural networks were introduced by
[Sch+92], and the RVFL networks were introduced by [Pao+94]. An early ap-
proach for multivariate time series forecasting using neural networks is described in
[Cha+92]. They applied a back propagation algorithm from [Rum+88] to trivariate
time series, and found that the combined training of the series gave better forecasts
than a separate training of each individual series. The novelty of the approach
described in this chapter is to derive an RVFL model for multiple time series, under
two separate regularization constraints on the parameters, as it will be described in
details in section 3.2.3.

RVFL networks are multilayer feedforward neural networks, in which there is a direct
link between the predictors and the output variable, aiming at capturing the linear
relationships. In addition to the direct link, there are new features: the hidden nodes
(the dataset is augmented), that help to capture the nonlinear relationships between
the time series. These new features are obtained by random simulation over a given
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interval. More details on the direct link and the hidden nodes will be provided in the
next section.

The RVFL networks have been successfully applied to solving different types of
classification and regression problems; see for example [DC10]. More specifically,
they have been applied to univariate time series forecasting by [Ren+16]. A compre-
hensive survey can be found in [ZS16]; where a large number of model specifications
are tested on classification problems, including changing the range of hidden layer’s
randomization.

Here, we will use RVFL networks with one hidden layer. And instead of relying on
fully randomized nodes, we will use sequences of deterministic quasi-random num-
bers. Indeed, with fully randomized nodes, the model fits obtained are dependent
on the choice of a simulation seed. Typically, a different fitting solution would be
obtained for each seed.

In our various numerical examples from section 5.4, we will apply the RVFL networks
to forecasting trivariate time series, notably (but not only) in a Dynamic Nelson
Siegel (DNS) framework (see [NS87], [DL06]). We will obtain point forecasts and
predictive distributions for the series, and see that in this RVFL framework, one
(or more) variable(s) can be stressed, and influence the others. More precisely,
about this last point, it means that it is possible, as in dynamic regression models
([Pan12]) to assign a specific future value to one regressor, and obtain forecasts
of the remaining variables. Another advantage of the model described here, is its
ability to integrate multiple other exogenous variables, without overfitting in-sample
data.

3.2 Description of the model

The general procedure for obtaining the model’s optimal parameters and predictions
is summarized in figure 3.1.

This procedure is described in details in the next sections, especially sections 3.2.3
and 3.2.4.
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Fig. 3.1
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3.2.1 On a single layer RVFL networks

We rely on single layer feed forward neural networks (SLFN). Considering that an
output variable y ∈ Rn is to be explained by a set of observed predictors Z(j) ∈ Rn,
j ∈ {1, . . . , p}, the RVFL networks we will use to explain y can be described for
i ∈ {1, . . . , n} as:

yi = β0 +
p∑
j=1

βjZ
(j)
i +

L∑
l=1

γl g

 p∑
j=1

W (j,l)Z
(j)
i

+ εi

g is called activation function, L is the number of nodes in the hidden layer, W (j,l)

are elements of the hidden layer, and the parameters βj and γl are to be learned
from the observed data Z(j), j ∈ {1, . . . , p}. The εi’s are the residual differences
between the output variable values and the RVFL model.

This type of model can be seen as a one explaining yi, by finding a compromise
between linear and potentially non-linear effects of the original predictors Z(j) and
transformed predictors

Φ(Z)(l) = g

 p∑
j=1

W (j,l)Z
(j)
i


{1, . . . , L} on the response. Common choices for function g in neural networks
regression are the sigmoïd activation function

g : x 7→ 1
1 + e−x

the hyperbolic tangent function,

g : x 7→ tanh(x) = ex − e−x

ex + e−x

or the Rectified Linear Units, known as ReLU

g : x 7→ max(x, 0)

The main differences between the RVFL framework and a classical SLFN framework
are:

• The inclusion of a linear dependence between the output variable and the
predictors: the direct link, β0 +

∑p
j=1 βjZ

(j)
i
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• The elements W (j,l) of the hidden layer are typically not trained, but randomly
and uniformly chosen on a given interval. Different ranges for these elements
of the hidden layer are tested in [ZS16]).

Solving for the optimal parameters βj ’s and γl’s can be done by applying directy
a least squares regression of y on the set of observed and transformed predictors.
But since these input predictors are likely to be highly correlated - especially in our
setting, with time series data - we do not search each of these parameters on the
entire line, but in restricted regions where we have:

p∑
j=1

β2
j ≤ u

and
L∑
l=1

γ2
l ≤ v

for u, v ∈ R∗. That is, applying some kind of Tikhonov regularization or ridge
regression model ([HK70]) of y on the set of observed and transformed predictors.
Having two constraints instead of one, allows for more flexibility in the covariance
structure between the predictors and the output, with βj ’s and γl’s moving in
separate balls. For these constraints to be applicable, the input variables will need to
be standardized, so as to be expressed on the same scales, and the response variable
will be centered.

Imposing these restrictions to the model’s parameters increases their interpretability
- by reducing their variance -, at the expense of a slight increase in in-sample bias. It
also prevents the model from overfitting the data as in ridge regression ([HK70]).
One of the advantages of RVFL networks is that they are relatively fast to train, due
to the availability of closed-form formulas for the model’s parameters, as it will be
presented in the next section.

On the other hand, RVFL networks incorporate some randomness in the hidden layer,
which makes each model relatively dependent on the choice of a simulation seed.
Each seed would indeed produce a different set of parameters βj ’s and γl’s for the
model. For that reason, we will also use sequences of deterministic quasi-random
numbers in the hidden layer. The elements W (j,l) of the hidden layer are taken from
a quasi-random (deterministic) sobol sequence on [0, 1], which is shifted in such a
way that they belong to [−1, 1].
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Sobol sequences are part of quasi-random numbers, which are also called low discrep-
ancy sequences. As described intuitively in [BT97], the discrepancy of a sequence of
N points in a subcube V ∈ [0, 1)d is defined as:

supV ∈[0,1)d |
number of points in V

N
− v(V )|

where v(V ) is the volume of V . It describes how well the points are dispersed within
V . The idea is to have points which are more or less equidispersed in V . [JK08]
describe the generation of the ith term, jth component (xi,j) of a Sobol sequence.
The generation starts with obtaining the binary representation of i. That is, obtaining
i as:

i =
∑
k

ik2k = (. . . i3 i2 i1)2

For example, 5 = 1 × 22 + 0 × 21 + 1 × 20 can be expressed as (101)2 in binary
representation. Then, by using the sequence of bits describing i in base 2, we can
obtain xi,j as:

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . (3.1)

Where ⊕ is a bitwise exclusive-or operation, and the numbers vi,j are called the
direction numbers, defined for k ≥ 1 as:

vk,j = mk,j

2k =
2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ . . .⊕ 2sj−1asj−1,jmk−sj+1,j ⊕ 2sjmk−sj ,j ⊕mk−sj ,j

2k
(3.2)

A few details on equation 3.2:

• The bitwise exclusive-or operation ⊕ applied to two integers p and q ∈ {0, 1}
returns 1 if and only if one of the two (but not both) inputs is equal to 1.
Otherwise, p⊕ q is equal to 0.

• The second term of the equation relies on primitive polynomials of degree sj ,
with coefficients ai,j taken in {0, 1}:

xsj + a1,jx
sj−1 + a2,jx

sj−2 + . . .+ asj−1,jx+ 1 (3.3)
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• The termsmk,j are obtained recursively, with the initial valuesm1,j ,m2,j , . . . ,mk−sj ,j

chosen freely, under the condition that mk,j , 1 ≤ k ≤ sj is odd and less than
2k.

A more complete treatment of low discrepancy sequences can be found in [Nie92].
And an example with sj = 3, a1,j = 0, a2,j = 1 is given in [JK08].

3.2.2 Applying RVFL networks to multivariate time series
forecasting

We consider p ∈ N∗ time series (X(j)
t )t≥0, j = 1, . . . , p, observed at n ∈ N∗ discrete

dates. We are interested in obtaining simultaneous forecasts of the p time series at
time n+h, h ∈ N∗, by allowing each of the p variables to be influenced by the others
(in the spirit of VAR models, see [Lüt05]).

For this purpose, we use k < n lags of each of the observed p time series. The output
variables to be explained are:

Y (j) =
(
X(j)
n , . . . , X

(j)
k+1

)T
(3.4)

for j ∈ {1, . . . , p}. Where X(j)
n is the most contemporaneous observed value of the

jth time series, and X(j)
k+1 was observed k dates earlier in time for (X(j)

t )t≥0. These
output variables are stored in a matrix:

Y ∈ R(n−k)×p

and the predictors are stored in a matrix:

X ∈ R(n−k)×(k×p)

where X consists in p blocks of k lags, for each one of the observed p time series.
For example, the jth0 block of X, for j0 ∈ {1, . . . , p} contains in columns:

(
X

(j0)
n−i , . . . , X

(j0)
k+1−i

)T
(3.5)

with i ∈ {1, . . . , k}. It is also possible to add other regressors, such as dummy
variables, indicators of special events, but for clarity, we consider only the inclusion
of lags.
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As described in the previous section, an additional layer of transformed predictors is
added to X, in order to capture the potentially non-linear interactions between the
predictors and the output variable. Adding the transformed predictors to the original
ones, leads to a new matrix of predictors with dimensions (n−k)×(k×p+L), where
L is the number of nodes in the hidden layer. We are then looking for simultaneous
predictions

X̂
(j)
n+h|n,...,1 =: X̂(j)

n+h

for h ∈ N∗, and j ∈ {1, . . . , p}. This, is a multi-task learning problem (see [Car98]),
in which the output variables will all share the same set of predictors.

For example, we have p = 2 time series (X(1)
t1 , . . . , X

(1)
t5 ) and (X(2)

t1 , . . . , X
(2)
t5 ) ob-

served at n = 5 dates t1 < . . . < t5, with k = 2 lags, and L = 3 nodes in the hidden
layer. In this case, the response variables are stored in:

Y =


X

(1)
t5 X

(2)
t5

X
(1)
t4 X

(2)
t4

X
(1)
t3 X

(2)
t3


The predictors are stored in:

X =


X

(1)
t4 X

(1)
t3 X

(2)
t4 X

(2)
t3

X
(1)
t3 X

(1)
t2 X

(2)
t3 X

(2)
t2

X
(1)
t2 X

(1)
t1 X

(2)
t2 X

(2)
t1


And the coefficients in the hidden layer are:

W =


W (1,1) W (1,2) W (1,3)

W (2,1) W (2,2) W (2,3)

W (3,1) W (3,2) W (3,3)

W (4,1) W (4,2) W (4,3)



3.2.3 Solving for β̂’s and γ̂’s

We let y be the jth0 column (out of p) of the response matrix Y, and Φ(X) be the
matrix of transformed predictors obtained from X by the hidden layer described
at the beginning of section 3.2.1. We also denote the set of regression parameters
associated with this jth0 time series, as:

β(j0)
m =: βm

and
γ

(j0)
l =: γl

48 Chapter 3 Multiple time series forecasting using quasi-randomized functional link neural

networks



for m ∈ {1, . . . , k}; l ∈ {1, . . . , L}. Solving for the regression parameters for the jth0
time series, under the constraints

k×p∑
m=1

β2
m ≤ u

and
L∑
l=1

γ2
l ≤ v

for u, v ∈ R∗, leads to minimizing a penalized residual sum of squares. Hence, for
vectors β ∈ R(k×p) and γ ∈ RL containing the regression parameters, we obtain the
Lagrangian:

L(X;β, γ) = (y −Xβ − Φ(X)γ)T (y −Xβ − Φ(X)γ) + λ1β
Tβ + λ2γ

Tγ

where λ1 and λ2 are Lagrange multipliers. Taking the first derivatives of L relative
to β and γ leads to:

∂L(X;β, γ)
∂β

= −yTX−XT y + 2(XTX)β + XTΦ(X)γ + (Φ(X)γ)T X + 2λ1β

= 2(XTX + λ1Ik×p)β − yTX−XT y + XTΦ(X)γ + (Φ(X)γ)T X

= 2(XTX + λ1Ik×p)β − 2XT y + 2XTΦ(X)γ

where Ik×p is the identity matrix with dimensions (k×p)×(k×p) and equivalently

∂L(X;β, γ)
∂γ

= 2(Φ(X)TΦ(X) + λ2IL)γ − 2Φ(X)T y + 2Φ(X)TXβ

where IL is the identity matrix with dimensions L × L. And setting these first
derivatives to 0 leads to:{

(XTX + λ1Ik×p)β + XTΦ(X)γ = XT y

(Φ(X)TΦ(X) + λ2IL)γ + Φ(X)TXβ = Φ(X)T y

That is:(
XTX + λ1Ik×p XTΦ(X)

Φ(X)TX Φ(X)TΦ(X) + λ2IL

)(
β

γ

)
=
(

XT y

Φ(X)T y

)
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Now, if we denote:

A =
(

XTX + λ1Ik×p XTΦ(X)
Φ(X)TX Φ(X)TΦ(X) + λ2IL

)
=:
(
B CT

C D

)

and S = D−CB+CT . Then, using the algorithm described in [Cor09] for blockwise
matrix inversion, we obtain:

A+ =
(
B+ +B+CTS+CB+ −B+CTS+

−S+CB+ S+

)
=:
(
A+

1 A+
2

A+
3 A+

4

)

where S+ and B+ are the Moore-Penrose pseudo-inverse ([Pen55]) of matrixes S
and B. Hence for each column y of Y, we have the solutions:

(
β̂

γ̂

)
=
(
A+

1 A+
2

A+
3 A+

4

)(
XT y

Φ(X)T y

)

And the whole set of parameters, for all the p observed time series is given by:

(
β̂

γ̂

)
:=
(
A+

1 A+
2

A+
3 A+

4

)(
XTY

Φ(X)TY

)

The objective function to be minimized (the least squares) is convex, and so is the set
of feasible solutions. The solutions β̂ and γ̂ found here, are hence global minima.

3.2.4 h-steps ahead forecasts and use of dynamic regression

Having obtained the optimal set of parameters β̂ and γ̂ as described in the previous
section, a new set of predictors is constructed by using the former output variables
contained in response matrix Y’s columns. The first k elements of each one of the p
columns of Y, which are the most contemporaneous values of the p series, constitute
the new predictors.

Hence, if we denote the new predictors as:

X∗n =
(
X(1)
n , . . . , X

(1)
n−k+1, . . . , . . . , X

(p)
n , . . . , X

(p)
n−k+1

)
(3.6)

The 1-step ahead forecasts are obtained as:
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(
X̂

(1)
n+1, . . . , X̂

(p)
n+1

)
= (X∗n Φ(X∗n))

(
β̂

γ̂

)

The h-step ahead forecasts are obtained in a similar fashion; with the new forecasts(
X̂

(1)
n+1, . . . , X̂

(p)
n+1

)
being added to the set of most contemporaneous values of the p

series, and used as part of the new predictors.

In order to obtain confidence intervals around the point forecasts, we fit an ARIMA
model to the in-sample residuals εi of each one of the p time series, as in dynamic
regression models (see [Pan12]). An illustration can be found in the next section.
Other models for the autocorrelated residuals could be envisaged, though.

3.3 Numerical examples

3.3.1 A Dynamic Nelson-Siegel example

The following examples are not exhaustive benchmarks, but aim at illustrating the
forecasting capabilities of the model described in this chapter. All the results on
RVFL use the ReLU activation function. We use calibrated discount rates data from
Deutsche Bundesbank website, observed on a monthly basis, from the beginning
of 2002 to the end 2015. There are 167 curves, observed at 50 maturities in the
dataset. We obtain curves’ forecasts in a Dynamic Nelson Siegel [NS87] framework
(DNS), in the spirit of [DL06] and other similar models 1.

In figure 5.2, we present the data that we use, and table 5.1 contains a summary
of these data; the minimum, maximum, median, first and third quartiles of the
discount rates observed at given maturities. There are alternate cycles of increases
and decreases of the discount rates, with generally a decreasing trend. Some of the
discount rates, at the most recent dates, and lower maturities, are negative.

In the DNS framework, the spot interest rates observed at time t, for time to maturity
τ are modeled as:

Rt(τ) = α1,t + α2,t

(
1− e−τ/λ

e−τ/λ

)
+ α3,t

(
1− e−τ/λ

e−τ/λ
− e−τ/λ

)
(3.7)

The factor loadings 1,
(

1−e−T/λ
e−T/λ

)
and

(
1−e−T/λ
e−T/λ

− e−T/λ
)

are used to represent
the level, slope, and curvature of the Yield Curve. We obtain estimations of

1[DR13]: "there are by now literally hundreds of DNS applications involving model fitting and forecasting"
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Fig. 3.2: Observed discount rates from Deutsche Bundesbank website, from 2002 to the
end 2015

αi,t, i = 1, . . . , 3 for each cross-section of yields by fixing λ, and doing a least
squares regression on the factor loadings. The three time series αi,t, i = 1, . . . , 3
associated to the loadings for each cross-section of yields, are those that we wish to
forecast simultaneously, by using an RVFL model.

This type of model (DNS) cannot be used for no-arbitrage pricing as is, but it could
be useful for example, for stressing the yield curve factors under the historical
probability. It can however be made arbitrage-free, if necessary (see [DR13]). We
will benchmark the RVFL model applied to the three time series αi,t, i = 1, . . . , 3,

Tab. 3.1: Summary of observed discount rates from Deutsche Bundesbank website, from
2002 to the end 2015

Maturity Min 1st Qrt Median 3rd Qrt Max

1 -0.116 0.858 2.045 3.072 5.356
5 0.170 1.327 2.863 3.807 5.146
15 0.711 2.616 3.954 4.702 5.758
30 0.805 2.594 3.962 4.814 5.784
50 0.749 2.647 3.630 4.590 5.467
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against ARIMA and VAR models. [DL06] applied an autoregressive AR(1) model
separately to each one of the parameters, αi,t, i = 1, . . . , 3.

We will apply to these parameters’ series: an ARIMA model ([HK08]), and a Vector
Autoregressive model (VAR, see [Pfa+08] and [Lüt05]); with the parameter λ of the
DNS factor loadings, used as an hyperparameter for the time series cross-validation.
In the RVFL and the VAR model, the number of lags is also used as an hyperparameter
for the cross-validation. For the RVFL, the most recent values of αi,t, i = 1, . . . , 3 are
stored in matrix Y, as described in section 3.2.3, ordered by date of arrival, whereas
matrix X contains the lags of the three series.

A rolling forecasting methodology (see [Ber+15]) is implemented in order to obtain
these benchmarks. A fixed 12 months-length window for training the model, and
the following 12 months for testing, the origin of the training set is then advanced of
1 month, and the training/testing procedure is repeated. The measure of forecasting
performance is the Root Mean Squared Error (RMSE).

Fig. 3.3: Distribution of out-of-sample log(RMSE), for ARIMA, VAR, and RVFL

Figure 3.3 presents boxplots for the distribution of out-of-sample errors obtained
in the cross-validation procedure, and figure 3.4 presents the 12 months-ahead
out-of-sample errors over time. ARIMA (separate ([HK08]) ARIMA models applied
to each series αi,t, i = 1, . . . , 3) gives good results, as already suggested by [DL06].
They are nearly comparable to results from RVFL, but a bit more volatile, with an
outlier point observed on the log(RMSE) box plot.

The unrestricted VAR model results include more volatility than the two other
methods on this specific example, especially in the period of financial crisis going
from 2007 to 2009, as seen on figure 3.4. Table 3.2 is to be read in conjuction
with the log(RMSE) box plot presented in figure 3.3. It summarises the results
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Fig. 3.4: Out-of-sample log(RMSE), for ARIMA, VAR, and RVFL over time

Tab. 3.2: Comparison of 12 months ahead out-of-sample RMSE, for the ARIMA, RVFL,
and VAR

Method Min 1st Qrt Median Mean 3rd Qrt Max

RVFL 0.1487 0.3092 0.4491 0.5041 0.6414 1.1535
ARIMA 0.2089 0.3470 0.5187 0.6358 0.7516 5.3798
VAR 0.1402 0.3493 0.5549 1.9522 0.8619 122.2214

obtained by the different methods on the out-of-sample RMSE. Table 3.3 contains
95% confidence intervals around the mean of the differences between the three
methods.

Another advantage of RVFL over ARIMA or AR(1) in this context is that, it would be
possible to add other variables to the RVFL regression, such as inflation, or dummy
variables for external events, and combine their effects. It is also possible to stress
one variable, and see the effects on the other variables, as presented in the appendix
section 3.5.1: the parameter α1,t is increased (from 0.75 to 1.25) and decreased

Tab. 3.3: 95% confidence interval around the difference of out-of-sample RMSE

Method Lower bound Upper bound Mean

RVFL - ARIMA -0.2116 -0.0518 -0.1317
RVFL - VAR -3.1888 0.2927 -1.4480
ARIMA - VAR -2.9937 0.3610 -1.3163
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Fig. 3.5: 12 months-ahead median curves, for stressed yield curve level α1,t

(from 0.75 to 0.25), and the other parameters α2,t and α3,t forecasts move slightly,
consecutively to these stresses. The corresponding median forecast curves for these
stresses, and some additional ones, are presented in figure 3.5.

3.3.2 Forecasting 1 year, 10 years and 20 years spot rates

For this second example, we forecast the 1-year, 10-years and 20-years spot rates
time series from the previous dataset, on a 12-months horizon. As described in the
previous section, we use a rolling forecasting methodology, with a training window
of 12 months length.

Figure 3.6 presents the three time series of data, and a summary of the data can be
found in tables 3.4 and 3.5.

Tab. 3.4: Summary of the data for 1 year, 10 years and 20 years spot rates time series (in
%)

Method Min 1st Qrt Median Mean 3rd Qrt Max

1y rate -0.116 0.858 2.045 2.062 3.072 5.356
10y rate 0.560 2.221 3.581 3.322 4.354 5.570
20y rate 0.790 2.685 4.050 3.782 4.830 5.850

The three time series globally exhibit a decreasing trend, and are highly positively
correlated. The spot rates for short-term maturities can also be negative, as it has
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Fig. 3.6: 1-year, 10-years and 20-years spot rates time series data

Tab. 3.5: Summary of data for 1 year, 10 years and 20 years spot rates time series

Correlations 1y rate 10y rate 20y rate

1y rate 1.0000 0.8729 0.8118
10y rate 0.8729 1.0000 0.9900
20y rate 0.8118 0.9900 1.0000

been observed recently in 2016. The spreads between the spot rates time series are
extremely narrow during the 2007-2009 crisis. The tables below contain the results
of a comparison between the RVFL model and an unrestricted VAR model (with one
lag, best parameter found) on the forecasting problem. The best RVFL model, with
the lowest out-of-sample RMSE, uses one lag, four hidden nodes, and λ1 = 5.80,
λ2 = 19.66.

Tab. 3.6: Comparison of 12 months ahead out-of-sample RMSE, for the RVFL, and VAR

Method Min 1st Qrt Median Mean 3rd Qrt Max

RVFL 0.1675 0.2906 0.4704 0.5452 0.6469 1.8410
VAR 0.1382 0.4025 0.6469 1.0310 1.0750 13.020
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Tab. 3.7: 95% confidence interval around the difference of out-of-sample RMSE

Method Lower bound Upper bound Mean

RVFL-VAR -0.2622 -0.7087 -0.4854

3.3.3 Forecasting on a longer horizon, with a longer training
window

In this third example, as in section 3.3.1, we apply the DNS framework to the
forecasting of spot rates. But with a longer training set (36 months), and a longer
horizon for the test set (36 months as well). We use interest rate swaps data from
the Federal Reserve Bank of St Louis website 2, observed on a monthly basis from
july 2000 to september 2016, with maturities equal to 1, 2, 3, 4, 5, 7, 10, 30, and a
tenor equal to three months.

On figure 3.7, we present three of the eight time series of swap rates, observed for
time to maturities equal to 3, 10 and 30. The swap rates for different maturities
generally exhibit a decreasing trend, and are nearly equal to 0 by the end of 2016,
for the shortest maturities.

Fig. 3.7: Swap rates data (in %) from St Louis Federal Reserve Bank, at maturities 1, 10, 30

We also observe that the spreads between swap rates with different maturities start
to narrow in 2006 until the end of 2007, and the swap rates for short term maturities
are relatively high during the same period. This is the period corresponding to the

2Available at https://fred.stlouisfed.org/categories/32299
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Tab. 3.8: Descriptive statistics of St Louis Federal Reserve data for 1y, 10y and 30y swap
rates (in %)

Maturity Min. 1st Qrt Median Mean 3rd Qrt Max.

1 0.260 0.500 1.340 2.108 3.360 7.050
10 1.390 2.610 4.190 3.881 5.020 7.240
30 1.750 3.270 4.650 4.404 5.375 7.200

Liquidity and Credit Crunch 2007-2008. Table 3.8 presents the descriptive statistics
for these three time series.

All the swap rates (for all the maturities available) were then transformed into
zero rates, by using a single curve calibration methodology (that is, ignoring the
counterparty credit risk) with linear interpolation between the swaps’ maturities.
Then, the Nelson & Siegel model was used for fitting and forecasting the curves
in a DNS framework, with both auto.arima and the RVFL model presented in this
chapter, applied to the three factors. In the fashion of section 3.3.1. But now, we
obtain 36-months ahead forecasts, from a rolling training windows with a fixed
36 months length. The average out-of-sample RMSE are then calculated for each
method.

The best hyperparameters - associated with the lowest out-of-sample average RMSE

- for each model are obtained through a search on a grid of values. We have:

• DNS with ARIMA (auto.arima): λ = 1.4271 (Nelson Siegel parameter)

• DNS with RVFL: number of lags for each series: 1, activation function: ReLU,
number of nodes in the hidden layer: 45, λ1 = 4.6416, λ2 = 774.2637 (RVFL
parameters) and λ = 24 (Nelson Siegel parameter)

With these parameters, the results detailed in table 3.9 are obtained, for the out-of-
sample RMSE. A 95% confidence interval around the difference of out-of-sample
RMSE between ARIMA (applied to each one of the three factors) and RVFL is
presented in table 3.10.

Tab. 3.9: Descriptive statistics for out-of-sample RMSE, with rolling training window =
36 months, and testing window = 36 months

Method Min. 1st Qrt Median Mean 3rd Qrt Max. Std. Dev

ARIMA 0.0036 0.0070 0.0104 0.0149 0.0161 0.2150 0.0213
RVFL 0.0032 0.0078 0.0115 0.0120 0.0148 0.0256 0.0055

58 Chapter 3 Multiple time series forecasting using quasi-randomized functional link neural

networks



Tab. 3.10: 95% confidence interval around the difference of out-of-sample RMSE

Method Lower bound Upper bound Mean

RVFL-ARIMA -0.0064 0.0007 -0.0028

Figure 3.8 presents the evolution of the out-of-sample log(RMSE) over the train-
ing/testing windows. The grey rectangle indicating the Liquidity and Credit crunch
is larger here, because in this example, a training set starting in 2004 has its test set
starting 36 months later, in 2007. Again, we observe that the results from the RVFL
model exhibit a low out-of-sample error, along with a low volatility.

Fig. 3.8: Out-of-sample log(RMSE), for ARIMA and RVFL over time

Figure 3.9, presents the convergence of the out-of-sample log(RMSE) for the DNS
+ RVFL model from this section, as a function of log(λ1) and log(λ2). λ1 and λ2 both
range from 10−2 to 104, with ten equally-spaced points each (hence, a grid of one
hundred points (log(λ1), log(λ2), log(RMSE)).

The number of nodes in the hidden layer is equal to 45, and the value of λ, parameter
from the [NS87] model presented in section 3.3.1, is fixed and equal to 24. The
one hundred points (log(λ1), log(λ2), log(RMSE)) that we use for figure 3.9 can be
found in appendix 3.6.3.

There is a rectangular region at the top, in the middle of the figure, where the
log(RMSE) is the lowest. In this region, the lowest value of the out-of-sample
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log(RMSE) is observed for λ1 = 4.6416 and λ2 = 464.1589 and the out-of-sample
RMSE is equal to 0.01206 (75th point in appendix 3.6.3).

Fig. 3.9: Out-of-sample log(RMSE), as a function of λ1 and λ2
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3.4 Conclusion

We present a model which could be used for multiple time series forecasting, based
on a single layer quasi-randomized neural network. In this model, the lags of the
different time series are used as in a dynamic regression model, and include the
response variable lags. An additional layer of variables is added to the regression,
whose nodes are not trained but obtained from a low discrepancy sequence. It is
possible to add new variables to the regression, as indicators of special events, or to
stress one variable, and observe the implied effect on the others’ forecast. The model
is tested on raw historical spot rates, and in a Dynamic Nelson Siegel framework.
It produces robust forecast results when compared to other usual (unpenalized)
models in the same framework.
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3.5 Appendix

3.5.1 Mean forecast and confidence intervals for αi,t, i = 1, . . . , 3
forecasts

α1,t:

alpha1 y_lo80 y_hi80 y_lo95 y_hi95
13 0.7432724 0.6852024 0.8013425 0.6544620 0.8320829
14 0.7357374 0.6776673 0.7938074 0.6469269 0.8245478
15 0.7378042 0.6797342 0.7958742 0.6489938 0.8266147
16 0.7408417 0.6827717 0.7989118 0.6520313 0.8296522
17 0.7407904 0.6827204 0.7988604 0.6519800 0.8296009
18 0.7404501 0.6823801 0.7985201 0.6516396 0.8292605
19 0.7403603 0.6822903 0.7984303 0.6515498 0.8291707
20 0.7403981 0.6823281 0.7984681 0.6515876 0.8292085
21 0.7404788 0.6824087 0.7985488 0.6516683 0.8292892
22 0.7404786 0.6824086 0.7985487 0.6516682 0.8292891
23 0.7404791 0.6824091 0.7985491 0.6516686 0.8292895
24 0.7404758 0.6824058 0.7985458 0.6516654 0.8292863

α2,t:

alpha2 y_lo80 y_hi80 y_lo95 y_hi95
13 -1.250640 -1.351785 -1.149495 -1.405328 -1.095952
14 -1.243294 -1.344439 -1.142149 -1.397982 -1.088606
15 -1.241429 -1.342574 -1.140284 -1.396117 -1.086741
16 -1.243868 -1.345014 -1.142723 -1.398557 -1.089180
17 -1.244483 -1.345628 -1.143338 -1.399171 -1.089795
18 -1.241865 -1.343010 -1.140719 -1.396553 -1.087177
19 -1.240814 -1.341959 -1.139669 -1.395502 -1.086126
20 -1.240371 -1.341516 -1.139226 -1.395059 -1.085683
21 -1.240237 -1.341382 -1.139092 -1.394925 -1.085549
22 -1.240276 -1.341421 -1.139131 -1.394964 -1.085588
23 -1.240329 -1.341474 -1.139184 -1.395017 -1.085641
24 -1.240308 -1.341453 -1.139163 -1.394996 -1.085620

α3,t:
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alpha3 y_lo80 y_hi80 y_lo95 y_hi95
13 4.584836 4.328843 4.757406 4.215410 4.870840
14 4.546167 4.307253 4.849862 4.163634 4.993482
15 4.527651 4.201991 4.803004 4.042913 4.962082
16 4.513810 4.216525 4.850160 4.048812 5.017874
17 4.517643 4.176214 4.828735 4.003502 5.001446
18 4.523109 4.203064 4.866713 4.027406 5.042371
19 4.522772 4.178489 4.848760 4.001079 5.026170
20 4.521846 4.191833 4.866066 4.013374 5.044524
21 4.521382 4.177560 4.854171 3.998472 5.033259
22 4.521451 4.186714 4.864755 4.007248 5.044222
23 4.521772 4.178995 4.857897 3.999300 5.037591
24 4.521862 4.184734 4.864155 4.004903 5.043987

3.5.2 Stressed forecast (α1,t + 0.5%) and confidence intervals for
αi,t, i = 1, . . . , 3 forecasts

α1,t:

alpha1 y_lo80 y_hi80 y_lo95 y_hi95
13 1.25 1.19193 1.30807 1.16119 1.33881
14 1.25 1.19193 1.30807 1.16119 1.33881
15 1.25 1.19193 1.30807 1.16119 1.33881
16 1.25 1.19193 1.30807 1.16119 1.33881
17 1.25 1.19193 1.30807 1.16119 1.33881
18 1.25 1.19193 1.30807 1.16119 1.33881
19 1.25 1.19193 1.30807 1.16119 1.33881
20 1.25 1.19193 1.30807 1.16119 1.33881
21 1.25 1.19193 1.30807 1.16119 1.33881
22 1.25 1.19193 1.30807 1.16119 1.33881
23 1.25 1.19193 1.30807 1.16119 1.33881
24 1.25 1.19193 1.30807 1.16119 1.33881

α2,t:

alpha2 y_lo80 y_hi80 y_lo95 y_hi95
13 -1.222568 -1.323713 -1.121423 -1.377256 -1.067880
14 -1.219401 -1.320546 -1.118256 -1.374089 -1.064713
15 -1.211361 -1.312506 -1.110216 -1.366049 -1.056673
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16 -1.216213 -1.317358 -1.115068 -1.370901 -1.061525
17 -1.215266 -1.316411 -1.114121 -1.369954 -1.060578
18 -1.211474 -1.312619 -1.110329 -1.366162 -1.056786
19 -1.210329 -1.311474 -1.109183 -1.365017 -1.055640
20 -1.209610 -1.310755 -1.108465 -1.364298 -1.054922
21 -1.209648 -1.310793 -1.108503 -1.364336 -1.054960
22 -1.209601 -1.310746 -1.108456 -1.364289 -1.054913
23 -1.209688 -1.310833 -1.108542 -1.364376 -1.055000
24 -1.209653 -1.310798 -1.108508 -1.364341 -1.054965

α3,t:

alpha3 y_lo80 y_hi80 y_lo95 y_hi95
13 4.500390 4.244398 4.672961 4.130964 4.786394
14 4.482948 4.244035 4.786643 4.100415 4.930263
15 4.441841 4.116182 4.717194 3.957103 4.876272
16 4.441744 4.144459 4.778094 3.976746 4.945808
17 4.439609 4.098181 4.750701 3.925469 4.923413
18 4.447151 4.127105 4.790755 3.951448 4.966412
19 4.446164 4.101881 4.772152 3.924471 4.949562
20 4.445421 4.115407 4.789641 3.936949 4.968099
21 4.445411 4.101589 4.778200 3.922501 4.957289
22 4.445491 4.110754 4.788795 3.931287 4.968262
23 4.445937 4.103160 4.782062 3.923465 4.961756
24 4.446012 4.108885 4.788306 3.929053 4.968137
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3.6 Appendix

3.6.1 Mean forecast and confidence intervals for αi,t, i = 1, . . . , 3
forecasts

α1,t:

alpha1 y_lo80 y_hi80 y_lo95 y_hi95
13 0.7432724 0.6852024 0.8013425 0.6544620 0.8320829
14 0.7357374 0.6776673 0.7938074 0.6469269 0.8245478
15 0.7378042 0.6797342 0.7958742 0.6489938 0.8266147
16 0.7408417 0.6827717 0.7989118 0.6520313 0.8296522
17 0.7407904 0.6827204 0.7988604 0.6519800 0.8296009
18 0.7404501 0.6823801 0.7985201 0.6516396 0.8292605
19 0.7403603 0.6822903 0.7984303 0.6515498 0.8291707
20 0.7403981 0.6823281 0.7984681 0.6515876 0.8292085
21 0.7404788 0.6824087 0.7985488 0.6516683 0.8292892
22 0.7404786 0.6824086 0.7985487 0.6516682 0.8292891
23 0.7404791 0.6824091 0.7985491 0.6516686 0.8292895
24 0.7404758 0.6824058 0.7985458 0.6516654 0.8292863

α2,t:

alpha2 y_lo80 y_hi80 y_lo95 y_hi95
13 -1.250640 -1.351785 -1.149495 -1.405328 -1.095952
14 -1.243294 -1.344439 -1.142149 -1.397982 -1.088606
15 -1.241429 -1.342574 -1.140284 -1.396117 -1.086741
16 -1.243868 -1.345014 -1.142723 -1.398557 -1.089180
17 -1.244483 -1.345628 -1.143338 -1.399171 -1.089795
18 -1.241865 -1.343010 -1.140719 -1.396553 -1.087177
19 -1.240814 -1.341959 -1.139669 -1.395502 -1.086126
20 -1.240371 -1.341516 -1.139226 -1.395059 -1.085683
21 -1.240237 -1.341382 -1.139092 -1.394925 -1.085549
22 -1.240276 -1.341421 -1.139131 -1.394964 -1.085588
23 -1.240329 -1.341474 -1.139184 -1.395017 -1.085641
24 -1.240308 -1.341453 -1.139163 -1.394996 -1.085620

α3,t:
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alpha3 y_lo80 y_hi80 y_lo95 y_hi95
13 4.584836 4.328843 4.757406 4.215410 4.870840
14 4.546167 4.307253 4.849862 4.163634 4.993482
15 4.527651 4.201991 4.803004 4.042913 4.962082
16 4.513810 4.216525 4.850160 4.048812 5.017874
17 4.517643 4.176214 4.828735 4.003502 5.001446
18 4.523109 4.203064 4.866713 4.027406 5.042371
19 4.522772 4.178489 4.848760 4.001079 5.026170
20 4.521846 4.191833 4.866066 4.013374 5.044524
21 4.521382 4.177560 4.854171 3.998472 5.033259
22 4.521451 4.186714 4.864755 4.007248 5.044222
23 4.521772 4.178995 4.857897 3.999300 5.037591
24 4.521862 4.184734 4.864155 4.004903 5.043987

3.6.2 Stressed forecast (α1,t + 0.5%) and confidence intervals for
αi,t, i = 1, . . . , 3 forecasts

α1,t:

alpha1 y_lo80 y_hi80 y_lo95 y_hi95
13 1.25 1.19193 1.30807 1.16119 1.33881
14 1.25 1.19193 1.30807 1.16119 1.33881
15 1.25 1.19193 1.30807 1.16119 1.33881
16 1.25 1.19193 1.30807 1.16119 1.33881
17 1.25 1.19193 1.30807 1.16119 1.33881
18 1.25 1.19193 1.30807 1.16119 1.33881
19 1.25 1.19193 1.30807 1.16119 1.33881
20 1.25 1.19193 1.30807 1.16119 1.33881
21 1.25 1.19193 1.30807 1.16119 1.33881
22 1.25 1.19193 1.30807 1.16119 1.33881
23 1.25 1.19193 1.30807 1.16119 1.33881
24 1.25 1.19193 1.30807 1.16119 1.33881

α2,t:

alpha2 y_lo80 y_hi80 y_lo95 y_hi95
13 -1.222568 -1.323713 -1.121423 -1.377256 -1.067880
14 -1.219401 -1.320546 -1.118256 -1.374089 -1.064713
15 -1.211361 -1.312506 -1.110216 -1.366049 -1.056673
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16 -1.216213 -1.317358 -1.115068 -1.370901 -1.061525
17 -1.215266 -1.316411 -1.114121 -1.369954 -1.060578
18 -1.211474 -1.312619 -1.110329 -1.366162 -1.056786
19 -1.210329 -1.311474 -1.109183 -1.365017 -1.055640
20 -1.209610 -1.310755 -1.108465 -1.364298 -1.054922
21 -1.209648 -1.310793 -1.108503 -1.364336 -1.054960
22 -1.209601 -1.310746 -1.108456 -1.364289 -1.054913
23 -1.209688 -1.310833 -1.108542 -1.364376 -1.055000
24 -1.209653 -1.310798 -1.108508 -1.364341 -1.054965

α3,t:

alpha3 y_lo80 y_hi80 y_lo95 y_hi95
13 4.500390 4.244398 4.672961 4.130964 4.786394
14 4.482948 4.244035 4.786643 4.100415 4.930263
15 4.441841 4.116182 4.717194 3.957103 4.876272
16 4.441744 4.144459 4.778094 3.976746 4.945808
17 4.439609 4.098181 4.750701 3.925469 4.923413
18 4.447151 4.127105 4.790755 3.951448 4.966412
19 4.446164 4.101881 4.772152 3.924471 4.949562
20 4.445421 4.115407 4.789641 3.936949 4.968099
21 4.445411 4.101589 4.778200 3.922501 4.957289
22 4.445491 4.110754 4.788795 3.931287 4.968262
23 4.445937 4.103160 4.782062 3.923465 4.961756
24 4.446012 4.108885 4.788306 3.929053 4.968137

3.6.3 Out-of-sample log(RMSE) as a function of log(λ1) and
log(λ2)

log_lambda1 log_lambda2 log_error
1 -4.605170 -4.605170 13.5039336
2 -3.070113 -4.605170 14.3538621
3 -1.535057 -4.605170 14.7912525
4 0.000000 -4.605170 14.8749375
5 1.535057 -4.605170 14.8928025
6 3.070113 -4.605170 14.8962203
7 4.605170 -4.605170 14.8975776
8 6.140227 -4.605170 14.8976494
9 7.675284 -4.605170 14.8976630
10 9.210340 -4.605170 14.8976715
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11 -4.605170 -3.070113 3.9701229
12 -3.070113 -3.070113 4.9644144
13 -1.535057 -3.070113 5.2607788
14 0.000000 -3.070113 5.3208833
15 1.535057 -3.070113 5.3326856
16 3.070113 -3.070113 5.3351784
17 4.605170 -3.070113 5.3357136
18 6.140227 -3.070113 5.3358306
19 7.675284 -3.070113 5.3358557
20 9.210340 -3.070113 5.3358610
21 -4.605170 -1.535057 3.6692928
22 -3.070113 -1.535057 3.5643607
23 -1.535057 -1.535057 3.5063072
24 0.000000 -1.535057 3.4942438
25 1.535057 -1.535057 3.4904354
26 3.070113 -1.535057 3.4881352
27 4.605170 -1.535057 3.4888202
28 6.140227 -1.535057 3.4880668
29 7.675284 -1.535057 3.4886911
30 9.210340 -1.535057 3.4886383
31 -4.605170 0.000000 3.6224691
32 -3.070113 0.000000 3.8313407
33 -1.535057 0.000000 3.8518759
34 0.000000 0.000000 3.8163287
35 1.535057 0.000000 3.7993471
36 3.070113 0.000000 3.7948073
37 4.605170 0.000000 3.7937787
38 6.140227 0.000000 3.7935546
39 7.675284 0.000000 3.7935063
40 9.210340 0.000000 3.7934958
41 -4.605170 1.535057 -1.2115597
42 -3.070113 1.535057 -1.0130537
43 -1.535057 1.535057 -0.5841784
44 0.000000 1.535057 -0.3802817
45 1.535057 1.535057 -0.3109827
46 3.070113 1.535057 -0.2931830
47 4.605170 1.535057 -0.2891586
48 6.140227 1.535057 -0.2882824
49 7.675284 1.535057 -0.2880932
50 9.210340 1.535057 -0.2880524
51 -4.605170 3.070113 -2.0397856
52 -3.070113 3.070113 -3.1729003
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53 -1.535057 3.070113 -3.8655596
54 0.000000 3.070113 -3.9279840
55 1.535057 3.070113 -3.9508440
56 3.070113 3.070113 -4.0270316
57 4.605170 3.070113 -4.0831569
58 6.140227 3.070113 -4.0953167
59 7.675284 3.070113 -4.0979447
60 9.210340 3.070113 -4.0985113
61 -4.605170 4.605170 -2.6779260
62 -3.070113 4.605170 -3.4704808
63 -1.535057 4.605170 -4.0404935
64 0.000000 4.605170 -4.2441836
65 1.535057 4.605170 -4.3657802
66 3.070113 4.605170 -4.3923094
67 4.605170 4.605170 -4.3862826
68 6.140227 4.605170 -4.3830293
69 7.675284 4.605170 -4.3820703
70 9.210340 4.605170 -4.3818486
71 -4.605170 6.140227 -3.5007058
72 -3.070113 6.140227 -3.8389274
73 -1.535057 6.140227 -4.1969545
74 0.000000 6.140227 -4.3400025
75 1.535057 6.140227 -4.4179718
76 3.070113 6.140227 -4.3797034
77 4.605170 6.140227 -4.3073100
78 6.140227 6.140227 -4.2866647
79 7.675284 6.140227 -4.2820357
80 9.210340 6.140227 -4.2810151
81 -4.605170 7.675284 -3.7236774
82 -3.070113 7.675284 -4.0057353
83 -1.535057 7.675284 -4.2699684
84 0.000000 7.675284 -4.3569254
85 1.535057 7.675284 -4.4156364
86 3.070113 7.675284 -4.3842360
87 4.605170 7.675284 -4.2759516
88 6.140227 7.675284 -4.2425876
89 7.675284 7.675284 -4.2346514
90 9.210340 7.675284 -4.2328863
91 -4.605170 9.210340 -3.7706268
92 -3.070113 9.210340 -4.0406387
93 -1.535057 9.210340 -4.2776907
94 0.000000 9.210340 -4.3498230
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95 1.535057 9.210340 -4.4095778
96 3.070113 9.210340 -4.3860089
97 4.605170 9.210340 -4.2647179
98 6.140227 9.210340 -4.2273624
99 7.675284 9.210340 -4.2183911
100 9.210340 9.210340 -4.2163638
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4Multiple time series forecasting
using ensembles of
quasi-randomized functional link
neural networks

4.1 Introduction

The goal of ensemble learning is to combine two or more individual statistical/machine
learning models - the base models or base learners - into one, in order to obtain an
ensemble model, with an improved out-of-sample error over the base models.

Ensemble learning is widely used in the winning solutions of machine learning
competitions. It allows to achieve very good performances indeed, at the expense
of being relatively less interpretable than the base learners. As a consequence,
choosing to use ensemble models or a base model for solving a given problem, could
sometimes be seen as finding a trade-off between the desire for interpretability and
the desire for an highly increased performance. That said, some techniques such
as variable importance for ensemble of trees, can give a sense of which predictor
contributes the most to the perfomance of the model.

In this chapter, we apply three popular ensemble learning methods to multiple time
series forecasting: Bootstrap aggregating ([Bre96a]), known as bagging, Boosting
([Fri01], [BY03], [Hot+10]), and stacked generalization([Wol92]), known as stack-
ing. The base learners that we use for bagging and stacking, are the quasi-random
vector functional link neural networks introduced in [Mou+18]. For the boosting
algorithm, we use a slightly modified version of the model from [Mou+18], in which
the regression model parameters are not constrained in a ridge regression fashion
(more details in section 4.2).

In the next section, we give an overview of the base learners. Then, we describe
how we use these models as the basic components of our bagged/stacked ensembles.
To finish, we present some numerical examples of use of these new models for
forecasting multiple time series.
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4.2 Description of the base models

The base learner is described in details in [Mou+18]. It is a single layer feed
forward neural networks (SLFN). We have an output variable y ∈ Rn, which has to
be explained by a set of observed predictors X(j) ∈ Rn, j ∈ {1, . . . , p}. The RVFL
networks that we use to explain y is described for i ∈ {1, . . . , n} as:

yi = β0 +
p∑
j=1

βjX
(j)
i +

L∑
l=1

γl g

 p∑
j=1

W (j,l)X
(j)
i

+ εi (4.1)

Where g is the activation function, L the number of nodes in the hidden layer, W (j,l)

are elements of the hidden layer, and the parameters βj and γl are to be learned
from the observed data X(j), j ∈ {1, . . . , p}. The εi’s are the residual differences
between the output variable values and the RVFL model.

This type of model can be seen as a one explaining yi, by finding a compromise
between linear and potentially non-linear effects of the original predictors X(j) and
transformed predictors

Φ(X)(l) = g

 p∑
j=1

W (j,l)X
(j)
i


{1, . . . , L} on the response. In this paper, we use the Rectified Linear Units activation
function, known as ReLU

g : x 7→ max(x, 0)

But other choices of activation functions, such as the sigmoid function g : x 7→
1

1+exp(−x) or the hyperbolic tangent g : x 7→ tanh(x) (or others) can be envisaged.

The elements W (j,l) of the hidden layer are taken from a quasi-random (determin-
istic) sobol sequence on [0, 1], which is shifted in such a way that they belong to
[−1, 1]. In the case of bagged and stacked ensembles, solving for the optimal βj ’s
and γl’s in the base-learners is done by searching these parameters, in restricted
regions where we have:

p∑
j=1

β2
j ≤ u

and
L∑
l=1

γ2
l ≤ v
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for u, v ∈ R∗. That is, by applying a regularization to these unknown parameters.
In the case of boosting, we do not restrict the regression parameters’ norms to be
inferior to u and v. Instead, we rely on the boosting algorithm described in [Hot+10]
(details in section 4.3.2), with the base-learners being the unrestricted regression
models described by equation (4.1).

If we consider p ∈ N∗ time series (X(j)
t )t≥0, j = 1, . . . , p, observed at n ∈ N∗ discrete

dates, we are interested in obtaining simultaneous forecasts of the p time series at
time n+h, h ∈ N∗, by allowing each of the p variables to be influenced by the others.
We use k < n lags of each of the observed p time series. So that, the output variables
to be explained are:

Y (j) =
(
X(j)
n , . . . , X

(j)
k+1

)T
(4.2)

for j ∈ {1, . . . , p}. X(j)
n is the most contemporaneous observed value of the jth time

series, and X(j)
k+1 was observed k dates earlier in time for (X(j)

t )t≥0. These output
variables are stored in a matrix:

Y ∈ R(n−k)×p

and the predictors are stored in a matrix:

X ∈ R(n−k)×(k×p)

where X consists in p blocks of k lags, for each one of the observed p time series.

An additional layer of transformed predictors is added to X, in order to capture the
potentially non-linear interactions between the predictors and the output variable.
This also serve as a way to do achieve an automated feature engineering. Adding
the transformed predictors to the original ones, leads to a new matrix of predictors
with dimensions (n− k)× (k× p+L), where L is the number of nodes in the hidden
layer.

For example, we have p = 2 time series (X(1)
t1 , . . . , X

(1)
t5 ) and (X(2)

t1 , . . . , X
(2)
t5 ) ob-

served at n = 5 dates, t1 < . . . < t5, with k = 2 lags, and L = 3 nodes in the hidden
layer. In this case, the response variables are stored in:

Y =


X

(1)
t5 X

(2)
t5

X
(1)
t4 X

(2)
t4

X
(1)
t3 X

(2)
t3
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The predictors are stored in:

X =


X

(1)
t4 X

(1)
t3 X

(2)
t4 X

(2)
t3

X
(1)
t3 X

(1)
t2 X

(2)
t3 X

(2)
t2

X
(1)
t2 X

(1)
t1 X

(2)
t2 X

(2)
t1


And the coefficients in the hidden layer are:

W =


W (1,1) W (1,2) W (1,3)

W (2,1) W (2,2) W (2,3)

W (3,1) W (3,2) W (3,3)

W (4,1) W (4,2) W (4,3)



We let y be the jth0 column (out of p) of the response matrix Y, and Φ(X) be the
matrix of transformed predictors obtained from X by the hidden layer. We also
denote the set of regression parameters associated with this jth0 time series, as:

β(j0)
m =: βm

and
γ

(j0)
l =: γl

for m ∈ {1, . . . , k}; l ∈ {1, . . . , L}. Solving for the regression parameters for the jth0
time series, under the constraints

k×p∑
m=1

β2
m ≤ u

and
L∑
l=1

γ2
l ≤ v

for u, v ∈ R∗, leads to minimizing a penalized residual sum of squares:

L(X;β, γ) = (y −Xβ − Φ(X)γ)T (y −Xβ − Φ(X)γ) + λ1β
Tβ + λ2γ

Tγ

where λ1 and λ2 are Lagrange multipliers. Otherwise, without the constraints (in
the case of boosting, see section 4.3.2), the problem to be solved is simply a least
squares regression problem on the augmented dataset, as described in equation 4.2.
By denoting:
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A =
(

XTX + λ1Ik×p XTΦ(X)
Φ(X)TX Φ(X)TΦ(X) + λ2IL

)
=:
(
B CT

C D

)

and S = D − CB+CT . And:

A+ =
(
B+ +B+CTS+CB+ −B+CTS+

−S+CB+ S+

)
=:
(
A+

1 A+
2

A+
3 A+

4

)

where S+ and B+ are the Moore-Penrose pseudo-inverse of matrices S and B. The
whole set of parameters, for all the p observed time series is given by:

(
β̂

γ̂

)
:=
(
A+

1 A+
2

A+
3 A+

4

)(
XTY

Φ(X)TY

)

4.3 Ensembles of RVFL

As mentioned in the introduction, we will use bagging, boosting, and stacking to
construct ensemble models, consisting of the RVFL models from the previous section
4.2. A short description of these techniques will be made in next sections 4.3.1,
4.3.2 and 4.3.3.

4.3.1 Bagging

The Bootstrap ([ET86], [Efr92]) uses multiple random replications of a given data
set, to obtain standard errors of model parameters, for example. In the context of
ensemble learning, these replications of the original data set are used to produce
various predictions of the base models, which are then aggregated - in the case of
regression problems, they are averaged, and in the case of classification problems,
majority vote could be used - to obtain a single prediction with less out-of-sample
variance. This procedure is called bootstrap aggregating or bagging.

In order to illustrate the benefits of the bagging procedure, we consider n different
base learners, with out-of-sample prediction errors equal to ε1, . . . , εn, and assume
that the distribution of these errors are centered around 0:

E [εi] = 0
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for i = 1, . . . , n. In addition, we have:

E [εiεj ] = γ

for i 6= j; that is, the covariance between the errors is equal to γ. And:

V ar(εi) = σ2

for i = 1, . . . , n. The out-of-sample mean squared error (MSE) of the aggregated
(averaged) model including these n base models is equal to:

MSE = E

( 1
n

n∑
i=1

εi

)2
 = 1

n2E

( n∑
i=1

εi

)2


= 1
n2E

 n∑
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ε2i + 2
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εiεj


= 1

n2

 n∑
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E
[
ε2i

]
+ 2
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2 γ

)
= σ2

n
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n
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From this expression of the MSE, we can observe that if n is high (n→∞), that is,
if there are several base learners in the ensemble, and the out-of-sample expected
error is low, the out-of-sample MSE of the ensemble prediction will decrease, and
can eventually be reduced to γ. If, in addition, the model predictions are perfectly
uncorrelated, i.e γ = 0, then the out-of-sample MSE is further decreased.

Having a low value for γ, along with a low out-of-sample expected error, helps in
achieving a lower out-of-sample prediction error for the ensemble model. Decorrela-
tion in ensemble learning is hence important, and consists in increasing the diversity
in the base learners, in order to obtain a low value for γ.

This decorrelation among the base learners is achieved for example in Random
Forest models [Bre01], by growing each tree in the forest, with only a subset of
the predictors available. Also, an example of use of decorrelation, specifically for
ensembles of neural networks is demonstrated in [Ros96]. The author presents
three approaches for achieving disagreement between the networks: one in which
they are trained independently and aggregated with the hope that their predictions
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are somewhat different; a second one, in which different activation functions or
achitecture (typically, more or less hidden layers or nodes in the hidden layers etc.)
for each base learner. A third approach consists in training the individual networks
on different subsamples of the original training set. The case of decorrelation
learning for RVFL is treated in [AW14].

In both papers, [Ros96] and [AW14], the procedure implemented in order to obtain
a decorrelation of the base learners is denoted as Negative Correlation Learning
(NCL). The general idea is to minimize the penalized Root Mean Squared Error:

n∑
i=1

[
(yi − fk(xi))2 + λpk(xi)

]

where xi ∈ Rp is the ith observation of the training data set, with p features. fk is
a base learner with k ∈ {1 . . . B}, and B is the number of bootstrap resamples. pk
is a penalty term decorrelating the current network’s error with the errors of the
networks previously trained. λ is a Lagrange multiplier, a regularization parameter,
preventing the correlation between the successive base learners in-sample errors
from being high. For example, pk could be defined as:

pk(xi) = (yi − fk(xi))
∑
j<k

(yi − fj(xi))

In this chapter, we use the third approach described in [Ros96] (although many
other approaches can be envisaged), which is actually more subsampling than
bootstrapping. Multiple samples (training) data sets are constructed by randomly
picking a fraction col sample coeff of the covariates, and a subset (using the
fraction row sample coeff) of the lines, as described in figure 4.1 (using notations
from section 4.2).

Taking a subset of the lines is done by respecting the serial dependence of the series
and taking consecutive observations (that is, without skipping any observation) for
each bootstrap resample.

The predictions associated to each training set resample are then averaged, in
order to obtain a single prediction, with an uncertainty around it. Some numerical
examples on the application of bagging to RVFL base learners can be found in section
5.4
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Fig. 4.1: Construction of B bootstrap resamples by using the initial data

4.3.2 Boosting

The boosting approach adopted here, is described in [Hot+10] and implemented
in R package mboost. The general idea of the algorithm is to fit the in-sample
residuals with base-learners, iteratively and slowly, but to stop learning before the
out-of-sample error starts to worsen. With the response being y and the covariates
stored in x, we are interested in constructing a regression function f̂ , so that:

f̂(x) =
B∑
j=1

νf̂j(x)

B is the number of boosting iterations, ν is a learning rate parameter preventing the
base learners from fitting the residuals too quickly, and f̂j , j ∈ {1, . . . , B} are the
base learners, which are obtained as:

(
f̂1, . . . , f̂B

)
= argminf1,...,fBρ

y,∑
j

νfj (x)



In this expression, ρ is a loss function to be minimized (for example x 7→ x2, or
x 7→ |x|). And in the case of multivariate time series, we are doing multitask
learning. Each series (their most contemporaneous observations) share the same set
of predictors (their lagged observations) as in the RVFL model described in section
4.2, but without regularization of the regression models’ parameters.

The same number of boosting iterations and the same learning rate are used for
all the observed time series. It would be possible to consider different numbers of
iterations and different learning rates for each time series, but in this situation there
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would be as much as parameters as time series, and the regularization parameters
would be trickier to optimize.

4.3.3 Stacking

Stacked generalization or stacking, was introduced in [Wol92]. It is also presented in
[Bre96b] for regression models. The idea behind this procedure is to construct new
predictors for the training data set, by using diverse predictions of multiple models,
which are combined by a meta-learner model. A simple example of 2-fold stacking
applied to regression is described hereafter. It is possible to imagine examples with
more stacked layers:

• Divide the original training data set X ∈ Rn×p, into two parts: part1 and
part2, each with n/2 rows

• Train a base learner model on part1 and obtain n/2 predictions on part2.

• Train the same base learner model on part2 and obtain n/2 predictions on
part1.

• Train a meta-learner model on the new data set part3, consisting in the original
predictors, plus the predictors constructed by applying the base learner model
on part1 and part2.

Typically, in this procedure, various types of base learners are used, to increate
the diversity of new predictors. Since we are using time series data here, which
inherently exhibit a serial dependence between the observations, we have to adapt
the procedure described previously. In the case of a 2-fold stacking again, we divide
the original training data set X ∈ Rn×p (with p time series observed at n dates) into
two parts: part1 and part2; each consisting of n/2 rows. part1 contains the most
ancient observations and part2, the most recent observations of the time series
contained in X. Also, we use multiple resamples of the base learner, as follows (this
procedure is also described in figure 4.2):

• Train B resampled RVFL models on part1, using a random subset of part1 in
each resampling iteration. Obtain B sets of predictions (B × p new predictors)
with these models, over the whole horizon of part2.

• Create a new enriched data set part3, containing the observed time series
from part2, and the B × p additional series predicted from part1 on part2.
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• Use a meta-learning model to obtain predictions on the new, enriched dataset,
part3.

For the latter point, we consider a few meta-learner models that have been used in
the past in the literature ([Bre96b]). In general, the idea is that a relatively simple
meta-learner will achieve a good performance. We use the following models for this
purpose:

• Linear least squares regression model.

• Linear least squares regression model with positive coefficients ([LH74],
[LH95]), as used in [Bre96b].

• Ridge regression ([HK70]).

These selected meta-learners are trained on part3, with the most contemporaneous
observations of the series as responses, and their respective lags as predictors. Some
numerical examples on the application of stacking to RVFL base learners can be
found in section 5.4

Fig. 4.2: Construction of the enriched/stacked dataset

4.4 Numerical examples

For the numerical examples, we obtain forecast of the Treasury Bill rates among
other macroeconomic variables, in a data-rich environment. We use data from
[Gre00] (available at http://pages.stern.nyu.edu/~wgreene/Text/Edition7/
tablelist8new.htm with a description). Four of the time series are considered: the
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Treasury Bill rates, the real consumption, the consumer price index, and the real
expenditure. They are all observed on a quaterly basis.

We annualize the last three time series, but keep the Treasury Bill rates unchanged.
So that, the four time series are nearly on the same scale.

The out-of-sample Root Mean Squared Error (RMSE) is used as a measure of perfor-
mance of the different implemented models.

The procedure for choosing the hyperparameters (number of boosting iterations,
number of subsamples, etc.) is described in section , and the best hyperparameters
can be found in table 4.4.2

4.4.1 Descriptive statistics

Figure 4.3 presents the resulting time series’ data obtained after the few transforma-
tions described in the previous paragraph. Table 4.1 contains a summary of these
data, where we can see that the four time series are now nearly expressed in the
same scale.

Fig. 4.3: Treasury Bills rates and transformed Real consumption, Real disposable income,
and Inflation data from [Gre03] in a data-rich environment
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Tab. 4.1: Summary statistics for the four transformed time series: Treasury Bills and
transformed Real consumption, Real disposable income, and Inflation data from
[Gre03]

Series Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev.

Real consumption -11.990 1.814 3.637 3.513 5.414 19.978 3.546
Real disposable income -7.275 1.613 3.390 3.423 5.518 18.358 3.486
Inflation -2.530 1.755 3.135 3.936 5.593 16.864 3.407
Treasury Bills rates 0.810 3.138 5.050 5.270 6.715 15.090 2.829

Tab. 4.2: Box-Pierce test for the independence in the time series observations

Series X-squared p-value

Real consumption 0.0133 0.9082
Real disposable income 1.3912 0.2382
Inflation 86.428 2.2e-16
Treasury Bills rates 186.35 2.2e-16

Fig. 4.4: Autocorrelation function for the four times series: Treasury Bills rates, Real con-
sumption, Real disposable income, Inflation
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The Box-Pierce tests ([BP70], [LB78], [HH93]) results presented in table 4.2, and
the autocorrelation functions presented in 4.4, show that the two time series for Real
consumption and Real disposable income could be considered as stationary after the
transformations. Whereas for the Treasury Bills rates and Inflation, there is still a
non-negligible autocorrelation within the series.

Another interesting information is given by figure 4.5. We observe that the distribu-
tion of the data for inflation and Treasury Bills rates is skewed, when compared to
the data for Real consumption and Real disposable income.

Also, based on the correlations displayed in figure 4.5, the Real consumption is
globally decreasing when the Treasury Bills rates and the inflation are increasing.
But when the Real disposable income increases, the Real consumption increases as
well.

Fig. 4.5: Correlation plot for the four times series: Treasury Bills rates, Real consumption,
Real disposable income, Inflation
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In section 4.4.2, we apply the bagging and stacking procedures described in sections
4.3.1 and 4.3.3 to the dataset we have just described.

A rolling forecasting cross-validation method (see [Ber+15] and figure 5.3). At the
beginning of the procedure, the training set contains 24 points (6 years), and the
test set contains 4 points (1 year) and 8 points (2 years). The training set is then
advanced of one point forward (rolled), and the procedure is repeated until no more
data for the training set are found.

Fig. 4.6: Training and testing sets in rolling forecasting cross-validation

As we said at the beginning of section 5.4, we use the Root Mean Squared Error
(RMSE) as a measure of the out-of-sample error. All the benchmarks are made on
what is defined as part3 in section 4.3.3, in order to have a similar perimeter for
bagging and stacking. The results obtained by the ensemble learners are compared
to those obtained by the base RVFL model, which are presented here:

For the bagging example, we use B = 100 resamples of the data, and calculate the
average out-of-sample RMSE obtained by the ensemble model on all the testing sets
(see figure 5.3). The dataset used, is the one defined as part3 in section 4.3.3.

For the boosting example, we use B = 10 boosting iterations of the least squares
regression model from formula 4.1. The tuning parameters are the learning rate
of the boosting algorithm denoted as ν, the number of nodes in the hidden layer
for the base-learner nb hidden, the fraction of the initial time series considered as
predictors col sample, the number of lags.

For the stacking example, The dataset used, is also the one defined as part3 in
section 4.3.3. The tuning parameters are the number of boostrap resamples, B, and
the hyperparameter of the ridge regression model is the regularization parameter.
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4.4.2 Summary of results

A summary of the out-of-sample RMSE is presented in figure 4.7 in a logarithmic
scale, for all the methods that we described and tested in the previous sections. The
numerical values corresponding to these boxplots can be found in appendix 4.5.1, in
their original scale.

The base RVFL model is denoted as ridge2. bagging, stack ridge, stack lm,
stack nnls, and glmboost respectively denote the bootstrap aggregating method
from section 4.3.1, stacking with ridge regression, with ordinary least squares, least
squares regression with positive coefficients from section 4.3.3, and boosting from
section 4.3.2. We also added an unrestricted Vector AutoRegression (VAR) model
to the benchmarks, denoted as VAR, which mostly helps us in assessing if the other
models’ implementation/predictions are not off track.

Fig. 4.7: Out-of-sample RMSE distribution for the different tested models

Bagging is performing the best on average (cf. appendix 4.7 for details) on both
horizons, 4-steps ahead and 8-steps ahead, and is followed by boosting. The stacking
algorithm works best with the ridge regression model taken as a meta-learner, but
is failing with the other meta learners (ordinary least squares and least squares
regression with positive coefficients). Overall, the boosting algorithm is also very
robust, and displays the lowest standard deviation of all the models tested.

The best hyperparameters obtained for each algorithm are presented below, for the
different horizons of projection. The best hyperparameter found for stacking with
ordinary least squares, with a constraint on the regression parameters or not, is the
number of lags equal to 1 and B = 1.
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For horizon = 4

Tab. 4.3: Best hyperparameters for the base RVFL

Method lags nodes λ1 λ2

RVFL 3 100 10000 100

Tab. 4.4: Best hyperparameters for the bagging of RVFLs

Method lags nodes λ1 λ2 B col. sample row. sample

Bagging 1 1 21.54435 21.54435 100 0.9 0.9

Tab. 4.5: Best hyperparameters for the stacking with ridge regression

Method lags λ B col. sample row. sample

Stacking (ridge) 3 21.54435 1 0.9 0.8

Tab. 4.6: Best hyperparameters for the boosting algorithm

Method lags nodes ν B col. sample

Boosting 3 1 0.2020798 10 1

Tab. 4.7: Best hyperparameters for the VAR

Method lags type of regressor

VAR 1 const

For horizon = 8

Tab. 4.8: Best hyperparameters for the base RVFL

Method lags nodes λ1 λ2

RVFL 3 2 21.54435 10000

Tab. 4.9: Best hyperparameters for the bagging of RVFLs

Method lags nodes λ1 λ2 B col. sample row. sample

Bagging 1 1 21.54435 21.54435 100 0.9 0.9
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Tab. 4.10: Best hyperparameters for the stacking with ridge regression

Method lags λ B col. sample row. sample

Stacking (ridge) 3 21.54435 1 0.9 0.9

Tab. 4.11: Best hyperparameters for the boosting algorithm

Method lags nodes ν B col. sample

Boosting 3 1 0.175 10 1

Tab. 4.12: Best hyperparameters for the VAR

Method lags type of regressor

VAR 1 none

Below, in figure 4.8, we can observe how the different methods perform through
time. We observe that the models’ errors are highly correlated, which is reassuring
concerning their implementation.

Fig. 4.8: Out-of-sample RMSE over time for the different tested models + VAR
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The details of the correlations between these errors can be found in appendix 4.5.2.
The VAR model generally exhibits a higher variance than the other models (excluding
stacking with stack lm and stack nnls), but is still able to perform better than
them at times (due to the high variance).
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4.5 Appendix

4.5.1 Out-of-sample errors summary

horizon = 4

• Min., 1st Qu., Median, Mean, 3rd Qu., Max

ridge2 bagging stack_ridge stack_lm
Min. :0.9995 Min. :0.8746 Min. :0.9291 Min. :0.9784
1st Qu.:1.5529 1st Qu.:1.5908 1st Qu.:1.6426 1st Qu.:1.7379
Median :2.3605 Median :2.1484 Median :2.2407 Median :2.1715
Mean :2.3763 Mean :2.3034 Mean :2.3676 Mean :2.5058
3rd Qu.:3.0261 3rd Qu.:2.8957 3rd Qu.:3.0690 3rd Qu.:3.0031
Max. :4.2952 Max. :4.6781 Max. :4.5133 Max. :5.7641

stack_nnls glmboost VAR
Min. :0.9874 Min. :0.8996 Min. :1.041
1st Qu.:1.7273 1st Qu.:1.6477 1st Qu.:1.680
Median :2.2839 Median :2.2443 Median :2.146
Mean :2.5115 Mean :2.3261 Mean :2.498
3rd Qu.:3.0494 3rd Qu.:3.0648 3rd Qu.:3.070
Max. :6.0210 Max. :4.3121 Max. :6.068

• Standard deviation

ridge2 bagging stack_ridge stack_lm stack_nnls glmboost VAR
0.8804324 0.8881329 0.8870853 1.0549136 1.0889430 0.8238531 1.0511201

horizon = 8

• Min., 1st Qu., Median, Mean, 3rd Qu., Max

ridge2 bagging stack_ridge stack_lm
Min. :1.192 Min. :1.066 Min. :1.143 Min. :1.253
1st Qu.:1.740 1st Qu.:1.717 1st Qu.:1.754 1st Qu.:1.813
Median :2.663 Median :2.467 Median :2.656 Median :2.694
Mean :2.529 Mean :2.440 Mean :2.509 Mean :2.676
3rd Qu.:3.154 3rd Qu.:2.868 3rd Qu.:3.041 3rd Qu.:3.065
Max. :5.394 Max. :4.800 Max. :5.243 Max. :6.032
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stack_nnls glmboost VAR
Min. : 1.164 Min. :1.203 Min. :1.289
1st Qu.: 2.056 1st Qu.:1.718 1st Qu.:1.920
Median : 2.775 Median :2.683 Median :2.648
Mean : 3.331 Mean :2.478 Mean :2.696
3rd Qu.: 4.069 3rd Qu.:3.024 3rd Qu.:2.964
Max. :10.935 Max. :5.387 Max. :7.711

• Standard deviation

ridge2 bagging stack_ridge stack_lm stack_nnls glmboost VAR
0.8955453 0.8883188 0.9093582 1.0406195 1.8865643 0.8547240 1.1482777

4.5.2 Correlation of out-of-sample errors

horizon = 4

ridge2 bagging stack_ridge glmboost VAR
ridge2 1.0000000 0.9350414 0.9658978 0.9627834 0.8422500
bagging 0.9350414 1.0000000 0.9796091 0.9388819 0.8746823
stack_ridge 0.9658978 0.9796091 1.0000000 0.9731609 0.8758017
glmboost 0.9627834 0.9388819 0.9731609 1.0000000 0.8840573
VAR 0.8422500 0.8746823 0.8758017 0.8840573 1.0000000

horizon = 8

ridge2 bagging stack_ridge glmboost VAR
ridge2 1.0000000 0.9280983 0.9693424 0.9909838 0.8185879
bagging 0.9280983 1.0000000 0.9855720 0.9481774 0.8522099
stack_ridge 0.9693424 0.9855720 1.0000000 0.9804522 0.8561227
glmboost 0.9909838 0.9481774 0.9804522 1.0000000 0.8622763
VAR 0.8185879 0.8522099 0.8561227 0.8622763 1.0000000
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5Forecasting discount curves with
Kernel Regularized Least
Squares

5.1 Introduction

In this chapter, we apply Kernel Regularized Least Squares (KRLS) learning methods
([JC14], [Ext+16], [Fer+17]) to Yield Curve forecasting. By Yield Curve, we actually
mean discount curves. That is, we consider that the curves used in the examples do
not include any counterparty credit risk, and focus on the forecasting problem. Two
types of formulations of the spot rates’ forecasting problem are tested here. One
relying on the popular Dynamic Nelson-Siegel (DNS) framework from [DL06], and
another one, in which we apply the KRLS directly to the discount curves’ observation
dates and time to maturities, to model the spot rates.

In the DNS framework [DL06], each cross-section of yields observed over time is
fitted by using the Nelson-Siegel [NS87] model. The fitting of each cross-section
observed over time, produces three time series of parameters (more details in the
next section) representing the evolution of the level, slope, and curvature of the
Yield Curve. A KRLS model is applied to forecasting the time series of parameters,
using a technique which is similar to the one described in [Ext+16]. And to finish,
the forecast obtained for the trivariate time series are plugged into the Nelson-Siegel
model formula, to deduce forecast for the cross-sections of yields.

The second approach based on KRLS is a machine learning/data-driven one, in
which we put no specific constraint on the model to reproduce the specific Yield
Curve stylized facts. The regularization parameters inherent to the KRLS models will
act as implicit constraints, that cause the model to converge as close as possible to
reproducing these stylized facts. In this latter approach, we are mostly interested in
the model with the best out-of-sample error. As a consequence, the technique as is, is
probably less adapted than the former framework based on DNS (in its arbitrage-free
version) to no-arbitrage pricing (if no-arbitrage pricing is required).
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To introduce KRLS, we start by describing the ridge regression [HK70] and the kernel
trick applied to ridge regression. Then, we make a link between the ridge regression
and KRLS.

In a ridge regression setting, we want to explain an observed variable y ∈ Rn, as a
linear function of p predictors stored in a matrix X ∈ Rn×p. For i ∈ {1, . . . , n} and
j ∈ {1, . . . , p} we have:

Xij =: x(j)
i

We will denote the ith row of X as xi, and its jth column as x(j). Hence, we are
searching for the parameters β = (β1, . . . , βp)T verifying:

ArgMinβ∈Rp
n∑
i=1

(
yi − xTi β

)2

under the constraint
||β||22 ≤ s

The solution to this problem is given directly by the formula:

β̂ =
(
XTX + λIp×p

)−1
XT y

where λ is a Lagrange multiplier having a unique correspondance with s, and a
regularization parameter preventing the model from overfitting the observed data
contained in y. In the case where we want to explain y as a function Φ of the
predictors, we have a similar expression:

β̂ =
(
Φ(X)TΦ(X) + λIp×p

)−1
Φ(X)T y

where:

Φ(X)ij = Φ(x(j)
i )

Now, by using the Woodbury identity ([GVL12] and [Wel10]) for P and R positive
definite (

P−1 + BTR−1B
)−1

BTR−1 = PBT
(
BPBT + R

)−1

The solution to the ridge regression problem can be re-written as:

β̂ = Φ(X)T
(
Φ(X)Φ(X)T + λIn×n

)−1
y
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This relationship can be useful in the case where n << p. That is, when there is
a high number of predictors compared to the number of observations ([Ext+16]).
Indeed, with this new relationship, we are no longer calculating/inverting a p× p
matrix, but a n × n matrix. That’s the kernel trick. And if some new observations
arrive, and are stored in X∗, the new values predicted by the model will be given
by:

y∗ = Φ(X∗)β̂ = Φ(X∗)Φ(X)T
(
Φ(X)Φ(X)T + λIn×n

)−1
y

Which we re-write as:

y∗ = K∗ (K + λIn×n)−1 y

K is a kernel; the empirical covariance matrix of Φ(X)T (modulo a 1/p factor), in the
case where the rows of Φ(X) are centered. Now, in the case of KRLS, the problem
we are trying to solve is:

ArgMinc∈Rn
n∑
i=1

(
yi −KT

i c
)2

where Ki is the ith row of K, with:

Kij =: K(xi, xj) = f(||xi − xj ||1) or f(||xi − xj ||2)

The cost of computing the whole kernel K, for any i and j is a quadratic function of
the number of observations, n. Meaning that, the most interesting cases for using
the KRLS method would be those in which n is not too high.

As described in [JC14], two approaches can be used to interpret/motivate the KRLS
learning method: a similarity-based view and the superposition of Gaussians view.
Here, we refer only to the first one, which is the most intuitive to us, and is also the
one described in [Fer+17]. Indeed here, the ith observation of the response, yi is
explained as a linear combination of functions measuring the similarity/dissimilarity
between its characteristics gathered in xi, and the other observations from the
training set, xj , j 6= i:

yi =
n∑
j=1

cjK(xi, xj) (5.1)
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But again, to prevent the model from overfitting the observed data and not being
able to generalize well, we need to constrain the parameters c under a certain norm
defined by the matrix K [Hof+08]:

||c||2K = cTKc ≤ s

So that the solution to this new (constrained) problem is:

ĉ = (K + λIn×n)−1 y

λ is a Lagrange multiplier having a unique correspondance with s, and a regulariza-
tion parameter. And for new observations arriving for the model, we have a solution
which is identical to the one that we had for kernel ridge regression:

y∗ = K∗ (K + λIn×n)−1 y

Many other types of kernels could be envisaged for K, allowing to take into account
nonlinearities and the various complexities of the covariance structure. One of the
most popular kernels is the Gaussian kernel, also called squared exponential kernel,
defined for i < j by:

KGauss(xi, xj) = σ2exp

(
−||xi − xj ||22

2l2

)

where l is a characteristic length-scale controlling the distance between peaks of the
covariance function and σ2 is the marginal variance, obtained when xi = xj . Both l,
σ2 are used as the learning model’s hyperparameters, along with the regularization
parameter λ.

This kernel is however often judged as being too smooth for most typical optimization
problems [RW06]. Some other kernels that could be interesting for machine learning
(see [RW06]) belong to the Matérn class of covariance functions. If we define
r := ||xi − xj ||2, the most used for machine learning problems (see [RW06]) are:

Kij = K3/2(r) = σ2
(

1 +
√

3r
l

)
exp

(
−
√

3r
l

)

and
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Kij = K5/2(r) = σ2
(

1 +
√

5r
l

+ 5r2

3l2

)
exp

(
−
√

5r
l

)

Figure 5.1 below, provides more insights on the kernels we have just defined; KGauss,
KMatérn3/2 and KMatérn5/2, for σ2 = 1 and l = 1.

Fig. 5.1: Left: covariance functions; Right: random simulations from a multivariate Gaus-
sian distribution N (0,K) , with σ2 = 1 and l = 1. The sample functions on the
right were obtained using a discretization of the x-axis of 1000 equally-spaced
points

We observe in figure 5.1 (left) that: the smoother the kernel, the higher the covari-
ance associated to observations that are close to each other (that are similar). This
relationship is inverted as the distance between the observations grows, but with
a lower magnitude. The Gaussian kernel is the more flexible of the three kernels.
Then, comes the kernel Matérn 5/2, and to finish, the kernel Matérn 3/2 (cf. figure
5.1, right).

An interesting feature of KRLS learning, is the possibility to derive estimators for
the marginal effects of the covariates x(j) on the response. For example, (and
like in [Fer+17]), since we have the relationship (5.1), we can write for a fixed
j0 ∈ {1, . . . , p} and for any k ∈ {1, . . . , n}, :

∂yi

∂x(j0)
k

=
n∑
j=1

cj
dK(xi, xj)
dx(j0)

k

= ck
∂K(xi, xk)
∂x(j0)

k

(5.2)
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That’s an approximation of how much of an increase (at the first order) we obtain in
yi, for a slight change in x(j0)

k . An average marginal effect of the jth0 covariate on the
ith observation of the response y can thus be obtained as:

1
n

n∑
k=1

∂yi

∂x
(j0)
k

= 1
n

n∑
k=1

ck
∂K(xi, xk)
∂x(j0)

k

(5.3)

Two types of KRLS’ model formulations will be described in sections 5.2 and 5.3.
One relying on the famous Dynamic Nelson-Siegel (DNS) framework ([DL06]), and
another one explaining the spot rates as a function of the time to maturity and date
of observation.

More specifically in sections 5.2.2 and 5.3.2, we derive formulas for the sensitivities
of the response variable yi to a change in the covariates x(j), in each one of the
two frameworks. We do this for Gaussian, Matérn 3/2 and Matérn 5/2 kernels.
These sensitivities can then be plugged into formula 5.3, in order to obtain average
marginal effects of the covariates on the response.

5.2 Description of the DNS-KRLS model and model’s
sensitivity

5.2.1 The DNS-KRLS model

In the DNS framework ([DL06]), the spot interest rates observed at time t, for time
to maturity τ are modeled as:

Rt(τ) = α1,t + α2,t

(
1− e−τ/η

e−τ/η

)
+ α3,t

(
1− e−τ/η

e−τ/η
− e−τ/η

)
(5.4)

If these spot interest rates Rt(τ) are observed at increasing dates t = t1 < . . . < tn,
for increasing time to maturities τ = τ1 < . . . < τp, the factor loadings in the DNS
framework are the vectors (of length p):

(1, . . . , 1)T

and (
1− e−τ1/η

e−τ1/η
, . . . ,

1− e−τp/η

e−τp/η

)T
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and (
1− e−τ1/η

e−τ1/η
− e−τ1/η, . . . ,

1− e−τp/η

e−τp/η
− e−τp/η

)T

These vectors are used to represent respectively the level, slope, and curvature of
the Yield Curve. Estimations of αi,t, i = 1, . . . , 3 are obtained for each cross-section
of yields (that is, for each fixed date t) by taking a fixed η, and doing a least squares
regression of the spot rates observed at time t on these factor loadings.

The three time series (αi,t)t, i = 1, . . . , 3 associated to the loadings for each cross-
section of yields, are those that we wish to forecast simultaneously, by using KRLS
learning. For doing this, we store the most contemporaneous values of the three
time series (αi,t)t, i = 1, . . . , 3 in a response matrix Y, and their lags in a matrix of
predictors X.

Considering the p ∈ N∗ time series (α(j)
t )t≥0, j = 1, . . . , p (with p = 3), observed

at n ∈ N∗ discrete dates. We are interested in obtaining simultaneous forecasts of
the p time series at time n + h, h ∈ N∗, by allowing each of the p variables to be
influenced by the others (in the spirit of VAR models, see [Lüt05]). We use k < n

lags of each of the observed p time series. Hence, the output variables (columns of
Y) to be explained are:

Y (j) =
(
α(j)
n , . . . , α

(j)
k+1

)T
(5.5)

for j ∈ {1, . . . , p}. Where α(j)
n is the most contemporaneously observed value of the

jth time series, and α(j)
k+1 was observed k dates earlier in time for (α(j)

t )t≥0. These
output variables are stored in:

Y ∈ R(n−k)×p

and the predictors are stored in:

X ∈ R(n−k)×(k×p)

where X consists in p blocks of k lags, for each one of the observed p time series.
For example, the jth0 block of X, for j0 ∈ {1, . . . , p} contains in columns:

(
α

(j0)
n−i, . . . , α

(j0)
k+1−i

)T
(5.6)
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with i ∈ {1, . . . , k}. If we consider the p = 3 time series (α(1)
t1 , . . . , α

(1)
t5 ), (α(2)

t1 , . . . , α
(2)
t5 )

and (α(3)
t1 , . . . , α

(3)
t5 ) observed at n = 5 dates t1 < . . . < t5, with k = 2 lags, the re-

sponse variables are stored in:

Y =


α

(1)
t5 α

(2)
t5 α

(3)
t5

α
(1)
t4 α

(2)
t4 α

(3)
t4

α
(1)
t3 α

(2)
t3 α

(3)
t3


The predictors are stored in:

X =


α

(1)
t4 α

(1)
t3 α

(2)
t4 α

(2)
t3 α

(3)
t4 α

(3)
t3

α
(1)
t3 α

(1)
t2 α

(2)
t3 α

(2)
t2 α

(3)
t3 α

(3)
t2

α
(1)
t2 α

(1)
t1 α

(2)
t2 α

(2)
t1 α

(1)
t2 α

(1)
t1



It is also possible to add other regressors to X, such as dummy variables, or indicators
of special events. In this situation, and as discussed in [Ext+16], we can avoid the
constraining of these dummy variables, in a Kernel ridge regression with unpenalized
terms. Here, we consider only the inclusion of the observed time series’ lags in the
model.

5.2.2 Sensitivity of the response to a change in the covariates

Here, the response is the matrix Y described in the previous section. Thus, we
are deriving the sensitivity of level, slope, and curvature, to the changes in their
associated lags.

We let r2 be:

r2 := ||xi − xk||22 = (xi − xk)T (xi − xk)

Where xi is the i−th line of matrix X. Hence:

∂r2

∂x(j0)
k

= −2
(
x(j0)
i − x(j0)

k

)

And:
∂r

∂x(j0)
k

= 1
2r

∂r2

∂x(j0)
k

= −1
r

(
x(j0)
i − x(j0)

k

)

As a consequence:
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• For the Gaussian kernel

(xi, xk) 7→ σ2exp

(
− r

2

2l2

)

We have:

∂KGauss(xi, xk)
∂x(j0)

k

= − σ
2

2l2 exp
(
− r

2

2l2

)
∂r2

∂x(j0)
k

= − σ
2

2l2 exp
(
− r

2

2l2

)[
−2
(
x(j0)
i − x(j0)

k

)]
= σ2

l2
exp

(
− r

2

2l2

)(
x(j0)
i − x(j0)

k

)

=

(
x(j0)
i − x(j0)

k

)
l2

KGauss(xi, xk)

• For the Matérn 3/2 kernel

(xi, xk) 7→ σ2
(

1 +
√

3r
l

)
exp

(
−
√

3r
l

)

We have:

∂K3/2(xi, xk)
∂x(j0)

k

= σ2
√

3
l
exp

(
−
√

3
l
r

)[
∂r

∂x(j0)
k

− ∂r

∂x(j0)
k

(
1 +
√

3
l
r

)]

= σ2
√

3
l

∂r

∂x(j0)
k

exp

(
−
√

3
l
r

)[
1−

(
1 +
√

3
l
r

)]

= σ2
√

3
l
exp

(
−
√

3
l
r

) √3
(
x(j0)
i − x(j0)

k

)
l

• For the Matérn 5/2 kernel

(xi, xk) 7→ σ2
(

1 +
√

5r
l

+ 5r2

3l2

)
exp

(
−
√

5r
l

)

We have:
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∂K5/2(xi, xk)
∂x(j0)

k

= σ2exp

(
−
√

5
l
r

)[(√
5
l

∂r

∂x(j0)
k

+ 5
3l2

∂r2

∂x(j0)
k

)
−
√

5
l

∂r

∂x(j0)
k

(
1 +
√

5r
l

+ 5r2

3l2

)]

= σ2exp

(
−
√

5
l
r

)[
5

3l2
∂r2

∂x(j0)
k

−
√

5
l

∂r

∂x(j0)
k

(√
5r
l

+ 5r2

3l2

)]

= σ2exp

(
−
√

5
l
r

)(
x(j0)
i − x(j0)

k

) [
−2 5

3l2 + 1
r

√
5
l

(√
5r
l

+ 5r2

3l2

)]

= σ2exp

(
−
√

5
l
r

)
5

3l2

(
1 +
√

5r
l

)(
x(j0)
i − x(j0)

k

)

From these expressions of the sensitivities, we can derive the average marginal effect
of a covariate on the response, as demonstrated in equation 5.3. These formulas will
be valid in the DNS framework described in section 5.2, where only one length-scale
l parameter is required. Similar types of formulas could be derived in the KRLS
framework from section , but they would include two length-scale parameters.

5.3 Description of the KRLS model applied to observed
dates and time to maturities

5.3.1 Description of the model

In this other framework, we consider that the response variable is the spot interest
rate observed at time t, for time to maturity τ , R(t, τ). The predictors are the
observation date, and the time to maturity.

In this setting, we use the following weighted distance between the vectors (t, τ) in
the Gaussian, Matérn 3/2 and Matérn 5/2 kernels:

r =
√

(ti − tj)2

l21
+ (τi − τj)2

l22

So that here, the spot rates values are explained as linear combination of distances
between vectors of time to maturities and observation dates (ti, τi) and (tj , τj). In
this setting, if we consider 10 spot rates observed at 2 dates t1 < t2 and 5 time to
maturities τ1, . . . , τ5, the response variable is:
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Y = (R(t1, τ1), . . . , R(t1, τ5), R(t2, τ1), . . . , R(t2, τ5))T

and the predictors are

X =



τ1 t1
...

...
τ5 t1

τ1 t2
...

...
τ5 t2



If some new observations arrive at time t3 in the model, these new observations will
be stored in:

X∗ =


τ1 t3
...

...
τ5 t3



In this other setting, it is also possible to add other regressors such as dummy
variables, or indicators of special events. Again, and as suggested in the previous
section and in [Ext+16], we can avoid the constraining of these dummy variables,
in a Kernel ridge regression with unpenalized terms.

For example, if we wanted to add another indicator (It)t observed at times t1 < t2,
we would have to consider the following matrix of predictors:

X =



τ1 t1 It1
...

...
...

τ5 t1 It1
τ1 t2 It2
...

...
...

τ5 t2 It2


And another weighted distance in the Gaussian, Matérn 3/2 and Matérn 5/2 kernels,
taking into account the new indicator (It)t:

r =
√

(ti − tj)2

l21
+ (τi − τj)2

l22
+

(Iti − Itj )2

l23
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5.3.2 Sensitivity of the spot rates to a change in observation date
and time to maturity

In this framework, and as mentioned in the previous section, we consider the follow-
ing measure of similarity/dissimilarity between xi = (ti, τi) and xk = (tk, τk):

r2 = (ti − tk)2

l21
+ (τi − τk)2

l22

The associated kernels are the following ones:

(xi, xk) 7→ KGauss(r) = σ2exp

(
−r

2

2

)

(xi, xk) 7→ KMatérn3/2(r) = σ2
(
1 +
√

3r
)
exp

(
−
√

3r
)

and

(xi, xk) 7→ KMatérn5/2(r) = σ2
(

1 +
√

5r + 5
3r

2
)
exp

(
−
√

5r
)

It is possible to obtain the sensitivity of the spot rates to a change in the observation
date, ∂R(tk,τ)

∂tk
for any τ . Even if it is actually very difficult to predict in which direction

the spot rates will move, this type of indicators could still serve as decision-assistance
tools for risk management. We have:

∂r2

∂tk
= −2(ti − tk)

l21

and

∂r

∂tk
= −1

r

(ti − tk)
l21

Thus, we have:
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∂KGauss(r)
∂tk

= −σ
2

2 exp
(
−r

2

2

)
∂r2

∂tk

= σ2exp

(
−r

2

2

)
(ti − tk)

l21

∂Matérn3/2
∂tk

= σ2√3 ∂r
∂tk

exp
(
−
√

3r
) [

1− (1 +
√

3r)
]

= −3σ2rexp
(
−
√

3r
) ∂r

∂tk

= 3σ2exp
(
−
√

3r
) (ti − tk)

l21

and

∂Matérn5/2
∂tk

= σ2exp
(
−
√

5r
) [(√

5 ∂r
∂tk

+ 5
3
∂r2

∂tk

)
−
√

5 ∂r
∂tk

(
1 +
√

5r + 5
3r

2
)]

= σ2exp
(
−
√

5r
) [5

3
∂r2

∂tk
−
√

5 ∂r
∂tk

(√
5r + 5

3r
2
)]

= σ2exp
(
−
√

5r
) [
−10

3
(ti − tk)

l21
+
√

5
r

(ti − tk)
l21

(√
5r + 5

3r
2
)]

= σ2exp
(
−
√

5r
) 5

3
[
1 +
√

5r
] (ti − tk)

l21

In the next section, 5.4, we present the results obtained by the DNS-KRLS model from
section 5.2 and the KRLS model from section 5.3 on a training/testing dataset1.

5.4 Numerical examples

In this section, we present the results obtained by the DNS-KRLS model from
section 5.2 and the KRLS model from section 5.3. The examples are not exhaustive
benchmarks, but aim at illustrating the forecasting capabilities of the models.

1for a more complete treatment, a validation set would be added, in order to verify that the models
are not ’overtrained’ on this training/testing set
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We use calibrated discount rates data from Deutsche Bundesbank website, observed
on a monthly basis, from the beginning of 2002 to the end 2015. There are 167
curves, observed at 50 maturities in the dataset. Only 15 time to maturities are used
in these examples (in years): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30.

In figure 5.2, we present the data that we use, and table 5.1 contains a summary
of these data; the minimum, maximum, median, first and third quartiles of the
discount rates observed at given maturities. There are alternate cycles of increases
and decreases of the discount rates, with generally a decreasing trend. Some of the
discount rates, at the most recent dates, and lower maturities, are negative.

Fig. 5.2: Observed discount rates from Deutsche Bundesbank website, from 2002 to the
end 2015

Tab. 5.1: Summary of observed discount rates from Deutsche Bundesbank website, from
2002 to the end 2015

Maturity Min 1st Qrt Median 3rd Qrt Max

1 -0.116 0.858 2.045 3.072 5.356
5 0.170 1.327 2.863 3.807 5.146
15 0.711 2.616 3.954 4.702 5.758
30 0.805 2.594 3.962 4.814 5.784
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A rolling forecasting methodology (see [Ber+15]) is implemented in order to obtain
the benchmarks between the models. It is described in figure 5.3. A fixed 12
months/36 months-length window for training the model, and the following 12
months/36 months for testing, the origin of the training set is then advanced of 1
month, and the training/testing procedure is repeated. The measure of forecasting
performance is the Root Mean Squared Error (RMSE).

Fig. 5.3: rolling forecasting cross-validation sets

We use similar grids for all the models, in order to ease the comparability of the re-
sults, and avoid too much manual tweaking of the hyperparameters and overtraining
the available data.

Hence for both models, DNS-KRLS (from section 5.2) and KRLS (from section 5.3),
we consider 5 values of σ (variance parameter), l, l1, l2 (length-scale parameters for
Gaussian, Matérn 3/2 and Matérn 5/2 kernels) and λ (the regularization parameter
for all the kernels) regularly spaced between

[
10−2, 102]: 0.01, 0.1, 1, 10, 100.

For the additional parameter η in the DNS-KRLS model, we use 5 values comprised
(regularly spaced) between the minimum of the observed time to maturities and the
maximum of the observed time to maturities (on [1, 30]): 1, 8.25, 15.5, 22.75, 30.

5.4.1 Cross-validation results

The results obtained after the cross-validation procedure are reported in table 5.2 and
5.3. The results obtained by considering an automatic ARIMA modeling ([HK08]) of
the three time series are also indicated, to serve as a benchmark.

For the DNS model and all the types of kernels (Gaussian, Matérn 3/2 and Matérn
5/2), the optimal number of lags is respectively equal to 5 and 6 for the 12-months
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Tab. 5.2: Average out-of-sample RMSE for training set length = 12 months and test set
length = 12 months

Model σ l l1 l2 λ η RMSE

Gaussian 10 - 0.01 10 10 - 0.5839150
Matérn 3/2 100 - 1 100 0.01 - 0.5136373
Matérn 5/2 1 - 0.01 10 0.1 - 0.5781184

DNS-Gaussian 0.1 10 - - 0.01 15.5 0.6041652
DNS-Matérn 3/2 100 1 - - 0.01 22.75 0.6038667
DNS-Matérn 5/2 100 1 - - 0.01 15.5 0.6041580
DNS-ARIMA - - - - - 1 0.6751660

Tab. 5.3: Average out-of-sample RMSE for training set length = 36 months and test set
length = 36 months

Model σ l l1 l2 λ η RMSE

Gaussian 10 - 0.1 10 100 - 1.170690
Matérn 3/2 100 - 1 10 0.01 - 1.003246
Matérn 5/2 10 - 10 100 10 - 1.134833

DNS-Gaussian 0.01 0.01 - - 0.01 30 1.264533
DNS-Matérn 3/2 0.01 0.01 - - 0.01 30 1.264533
DNS-Matérn 5/2 0.01 0.01 - - 0.01 30 1.264533
DNS-ARIMA - - - - - 1 1.281937

and 36-months horizons. The last 12 months and 36 months of the data are respec-
tively considered as training sets for obtaining these graphs.

We observe that no matter the length of the training/testing window (either 12
months or 36 months), or the method employed (either DNS-KRLS or KRLS), the
Matérn 3/2 kernel performs better than the other models. It is even performing
better on this specific problem with a KRLS model, considering the similarities
between vectors of time to maturities and observation dates. The other kernels are
probably too flexible for the purpose, so that they are both overfitting the data a
bit.

In the next sections 5.4.2 and 5.4.3, we examine these results further, by looking
at the out-of-sample root mean squared error (RMSE) obtained over time, and
the projected discount/discount factors’/discrete forward curves obtained with the
optimal parameters.
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5.4.2 Out-of-sample RMSE over time

The following figures, 5.4 and 5.5, present the out-of-sample RMSE obtained over
time by all the KRLS models, for horizons equal to 12 and 36. On figure 5.4 (on the
right), we observe that despite being the best model on average, the Matérn 3/2 is
not necessarily the best during the liquidity/credit crunch (especially in 2008) for
an horizon of 36 months. On figure 5.5, we observe that all the kernels lead to very
similar results, with only slight differences. During the crisis, and for an horizon of
36 months, despite displaying more volatile and less accurate results elsewhere, the
DNS-ARIMA is performing better than the other models.

Fig. 5.4: Out-of-sample RMSE over time for KRLS models, with horizon = 12 and horizon
= 36

Fig. 5.5: Out-of-sample RMSE over time for DNS-KRLS, with horizon = 12 and horizon =
36

The following boxplots provide a more detailed description of the distribution of the
out-of-sample error, and serves as a complement for tables 5.2 and 5.3 (one can also
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report to appendix 5.6.1 for the details on these boxplots). Notably, it confirms the
high variance and low median results observed for Matérn 3/2 and DNS-ARIMA for
an horizon equal to 36 months. All the other results are otherwise pretty close to
each other.

Fig. 5.6: Boxplots of Out-of-sample RMSE over time, for KRLS models

Fig. 5.7: Boxplots of Out-of-sample RMSE over time, for DNS-KRLS models
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5.4.3 Implied forecast term-structure of discrete forward rates

The following figure, 5.8, presents the 12-months ahead and 36-months ahead
(h = 12 and h = 36) forecasts obtained in the KRLS framework, by considering
a Matérn 3/2 kernel. Similarly, figure 5.9, presents the 12-months ahead and 36-
months ahead (h = 12 and h = 36) forecasts obtained in the DNS-KRLS framework,
by considering a Matérn 3/2 kernel for forecasting the factors.

Fig. 5.8: Forecasts of discount rates, discount factors and discrete forward rates for Matérn
3/2 for horizon = 12 and horizon = 36

Fig. 5.9: Forecasts of discount rates, discount factors and discrete forward rates for DNS-
Matérn 3/2 for horizon = 12 and horizon = 36

5.4 Numerical examples 109



These (figures 5.8 and 5.9) can be compared to a more familiar model, the one in
which the level, slope, and curvature are modelled separately with an ARIMA model
in a DNS framework (see figure 5.10).

Fig. 5.10: discount rates, discount factors and discrete forward rates for DNS-ARIMA

We observe that the discount (rates and factors) and forward curves obtained by
each model do, indeed, exhibit the same patterns as actual market discount and
discrete forward curves. In particular, for the projected negative rates, we observe
projected discount factors that are greater than 1.

5.5 Conclusion

In this chapter, we discussed the forecasting of discount curves, by using Kernel
Regularized Least Squares (KRLS). The KRLS techniques are capable of learning
nonlinear response variables, by taking into account various and complex types of
covariance structures between the predictors. The response must have a relatively
low number of examples, though, because of the quadratic cost of computing the
kernels.

The model is highly interpretable, as it explains the responses as linear combinations
of similarities/dissimilarities between the examples. Some sentivity indicators of the
response as a function of the predictors are derived, and they could consitute useful
decision-assistance tools.
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Two types of KRLS models are considered here, specifically for the discount curves.
One relying on the famous Dynamic Nelson-Siegel (DNS) framework, and another
one explaining the spot rates as a function of the time to maturity and date of
observation. Both types of KRLS models deliver some robust forecasts of the discount
curves, as the kernels hyperparameters implicitly constrain the model to reproduce
the Yield Curve’s stylized facts.
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5.6 Appendix

5.6.1 Summary of out-of-sample errors for all the models (in %)

KRLS, h = 12 (cf. figure 5.6)

gaussian matern32 matern52
Min. :0.2114 Min. :0.1726 Min. :0.2012
1st Qu.:0.3582 1st Qu.:0.3009 1st Qu.:0.3669
Median :0.4828 Median :0.4498 Median :0.4777
Mean :0.5839 Mean :0.5136 Mean :0.5781
3rd Qu.:0.7216 3rd Qu.:0.6158 3rd Qu.:0.6914
Max. :1.7562 Max. :1.6886 Max. :1.7795

KRLS, h = 36 (cf. figure 5.6)

gaussian matern32 matern52
Min. :0.7343 Min. :0.4130 Min. :0.4953
1st Qu.:0.9193 1st Qu.:0.6775 1st Qu.:0.8860
Median :1.0727 Median :0.8422 Median :1.0529
Mean :1.1707 Mean :1.0032 Mean :1.1348
3rd Qu.:1.2824 3rd Qu.:1.3548 3rd Qu.:1.2639
Max. :1.9723 Max. :2.4080 Max. :2.0797

DNS-KRLS, h = 12 (cf. figure 5.7)

gaussian matern32 matern52 arima
Min. :0.2048 Min. :0.2103 Min. :0.2048 Min. :0.2077
1st Qu.:0.4016 1st Qu.:0.3934 1st Qu.:0.3997 1st Qu.:0.3779
Median :0.5366 Median :0.5368 Median :0.5366 Median :0.5649
Mean :0.6042 Mean :0.6039 Mean :0.6042 Mean :0.6752
3rd Qu.:0.7281 3rd Qu.:0.7277 3rd Qu.:0.7281 3rd Qu.:0.8190
Max. :1.6884 Max. :1.6870 Max. :1.6884 Max. :1.9544

DNS-KRLS, h = 36 (cf. figure 5.7)

gaussian matern32 matern52 arima
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Min. :0.7900 Min. :0.7900 Min. :0.7900 Min. :0.4698
1st Qu.:0.9294 1st Qu.:0.9294 1st Qu.:0.9294 1st Qu.:0.8527
Median :1.3005 Median :1.3005 Median :1.3005 Median :1.1545
Mean :1.2645 Mean :1.2645 Mean :1.2645 Mean :1.2819
3rd Qu.:1.5158 3rd Qu.:1.5158 3rd Qu.:1.5158 3rd Qu.:1.6033
Max. :1.7549 Max. :1.7549 Max. :1.7549 Max. :3.2024

5.6.2 Summary of KRLS Matérn 3/2 and DNS-ARIMA forecasts (in
%) for horizon = 12 and horizon = 36

KRLS Matérn 3/2

horizon = 12 (cf. figure 5.8)

1y 5y 10y 30y
Min. :-0.1135 Min. :0.1538 Min. :0.8424 Min. :1.509
1st Qu.:-0.1105 1st Qu.:0.1588 1st Qu.:0.8441 1st Qu.:1.514
Median :-0.1091 Median :0.1636 Median :0.8456 Median :1.520
Mean :-0.1097 Mean :0.1632 Mean :0.8453 Mean :1.520
3rd Qu.:-0.1084 3rd Qu.:0.1680 3rd Qu.:0.8468 3rd Qu.:1.526
Max. :-0.1078 Max. :0.1708 Max. :0.8471 Max. :1.533

horizon = 36 (cf. figure 5.8)

1y 5y 10y 30y
Min. :-0.11114 Min. :0.1066 Min. :0.6661 Min. :1.449
1st Qu.:-0.08006 1st Qu.:0.1120 1st Qu.:0.6823 1st Qu.:1.472
Median :-0.02946 Median :0.1273 Median :0.7121 Median :1.495
Mean :-0.02263 Mean :0.1324 Mean :0.7262 Mean :1.494
3rd Qu.: 0.03020 3rd Qu.:0.1490 3rd Qu.:0.7619 3rd Qu.:1.517
Max. : 0.09165 Max. :0.1804 Max. :0.8374 Max. :1.535

DNS-ARIMA

horizon = 12 (cf. figure 5.10)

1y 5y 10y 30y
Min. :-0.15142 Min. :0.2295 Min. :0.9237 Min. :1.429
1st Qu.:-0.14819 1st Qu.:0.2305 1st Qu.:0.9242 1st Qu.:1.429
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Median :-0.13914 Median :0.2333 Median :0.9256 Median :1.429
Mean :-0.12468 Mean :0.2379 Mean :0.9279 Mean :1.430
3rd Qu.:-0.11405 3rd Qu.:0.2412 3rd Qu.:0.9296 3rd Qu.:1.431
Max. :-0.04527 Max. :0.2628 Max. :0.9405 Max. :1.434

horizon = 36 (cf. figure 5.10)

1y 5y 10y 30y
Min. :0.003647 Min. :0.2782 Min. :0.9482 Min. :1.437
1st Qu.:0.003647 1st Qu.:0.2782 1st Qu.:0.9482 1st Qu.:1.437
Median :0.003647 Median :0.2782 Median :0.9482 Median :1.437
Mean :0.003647 Mean :0.2782 Mean :0.9482 Mean :1.437
3rd Qu.:0.003647 3rd Qu.:0.2782 3rd Qu.:0.9482 3rd Qu.:1.437
Max. :0.003647 Max. :0.2782 Max. :0.9482 Max. :1.437
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6A Bayesian Quasi-Randomized
neural network, and its
application to the optimization of
black box functions

6.1 Introduction

In this chapter, we present a Bayesian Quasi-Random Vector Functional Link (BQRVFL)
neural network model, with one hidden layer. It is a hybrid penalized regres-
sion/neural networks model on an augmented data set. In this hybrid regression
model, we assume that the regression parameters are governed by a prior dis-
tribution, and that the hidden layer’s nodes are (quasi-)randomized. As a prior
distribution for the regression parameters, we use a multivariate Gaussian distri-
bution, and for the simulation of the nodes in the hidden layer, we use a Sobol
sequence.

To the best of our knowledge, randomized neural networks were introduced by
[Sch+92], and the Random Vector Functional Link neural networks (RVFL) were
introduced by [Pao+94]. RVFL networks are multilayer feedforward neural networks,
in which there is a direct link between the predictors and the output variable, aiming
at capturing the linear relationships. And in addition to the direct link, there are new
features, the hidden nodes (the dataset is augmented).

The RVFL networks have been successfully applied to solving different types of
classification and regression problems; see for example [DC10]. Here, we will use
RVFL networks with only one hidden layer.

With the BQRVFL model presented here, it is possible to obtain predictions from
a nonlinear model (actually, a combination of a linear and a nonlinear model),
along with confidence intervals around the model’s predictions. The choice of this
relatively simple Gaussian prior should not, however, prevent the user from checking
the confidence intervals around the predictions.
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There are other types of models, which are also capable of achieving this purpose - ob-
tain predictions from a nonlinear model, along with confidence intervals around the
model’s predictions - like Gaussian process regression models [RW06] and random
forests models with confidence intervals ([Wag+14]). Depending on the problem at
hand, and the desire from the user for a higher accuracy and/or interpretability, one
of these alternative models could also be considered.

In section 6.2, we present the BQRFVL model, with one hidden layer. Formulas for
the estimation of its parameters are given, along with formulas for the calculation of
confidence intervals around the predictions. The model’s predictions on a validation
set, and on simulated data from [Sap+14] are also presented.

In section 6.3, the model is used as a workhorse for Bayesian optimization [Moc+78].
This type of optimization methods are useful for finding minima or maxima of black
box functions, whose evaluations are expensive, and gradients are not necessarily
available in a closed form. It has been shown to be very effective on challenging
optimization functions ([Jon01] and [Sno+12]).

The idea of Bayesian optimization is to optimize an alternative, cheaper function
called the acquisition function, rather than the main, expensive objective function.
For doing this, the uncertainty around the predictions of an alternative machine
learning model - called the surrogate model - is used in a way that will be described
in more details in section 6.3.

The surrogate model’s posterior distribution tries to approximate the objective
function in the best way. And this posterior distribution is enhanced, as more points
of the objective function are evaluated. Gaussian process regression models are often
used are surrogate models ([Sno+12] for example). Here, the surrogate model will
be the BQRVFL model presented in 6.2.

We apply Bayesian optimization using the BQRVFL as a surrogate model, to the
minimization of the cross-validation error (produced on discount curve forecasting)
of four machine learning models. One of these models is based on an RVFL applied
to multivariate time series forecast ([Mou+18]). The second one applies Kernel
Regularized Least Squares (see chapter 5) (KRLS hereafter) directly to the curves’
observation dates and time to maturities. The two remaining models are based on
the popular DNS framework ([DL06]), and are a DNS-KRLS and a DNS-RVFL (more
details here or refer to another section).
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6.2 Description of the model

6.2.1 Estimation of the parameters and confidence intervals

We consider a response variable y ∈ Rn that has to be explained as a function of p
predictors stored in a matrix X ∈ Rn×p. The data set X is augmented by a set of new
predictors:

g (XW )

where g is an activation function, as in of neural networks models, and W ∈ Rp×L

are the nodes in the hidden layer, obtained from a deterministic sobol sequence
of quasi-random numbers ([Nie92] and [BT97]). L is the number of nodes in the
hidden layer.

The parameters W are used to combine the p columns of X into L new variables,
hence taking into account the potential nonlinear relationships between the response
y and the predictors X when passed through the activation function g. Having
obtained a new set of predictors stored in columns in a matrix Z = [X g (XW )], we
apply a Bayesian linear regression model, to explain y as a function Zβ of the new
p+ L predictors. We assume that y could be explained as:

y = Zβ + ε

where β ∼ N (0Rp+L , Ip+L) are the parameters of the model that have to be estimated,
and ε ∼ N (0Rn , σ2In) is the error term. It is possible to show, in a Bayesian linear
regression setting (see [RW06] for example, for details) that for new observations
arriving in the model and stored in matrix Z∗ , we have the following properties for
the associated predictions:

y∗ ∼ N (Z∗µβ|y,Z, Z∗Σβ|y,ZZT∗ + σ2In)

with
µβ|y,Z = ZT

(
ZZT + σ2In

)−1
y

and
Σβ|y,Z = In − ZT

(
ZZT + σ2In

)−1
Z

By using the Woodbury identity ([GVL12] and [Wel10]) for P and R positive
definite (

P−1 + BTR−1B
)−1

BTR−1 = PBT
(
BPBT + R

)−1
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and by noting σ2 = λ, this is equivalent to having the same result for y∗, but with:

µβ|y,Z =
(
ZTZ + λIp

)−1
ZT y

and
Σβ|y,Z = Ip −

(
ZTZ + λIp

)−1
ZTZ

And depending on the situations in which n << p, or p << n, we can use one of the
two previous expressions; the one resulting in the lowest number operations. In the
sequel of the chapter, we will use a ReLU activation function, which is:

g : x 7→ max(x, 0)

In the case where g is derivable (for example when g : x 7→ x or g : x 7→
sigmoid(x) = 1

1+exp(−x) or g : x 7→ tanh(x)), it is possible to obtain a sensitiv-
ity (at the first order) of the response to a change in the covariates. Indeed, in this
case, we have for a fixed (tied to the observations) i ∈ {1, . . . , n}:

yi =
p∑
j=1

αjX
(j)
i +

L∑
k=1

γkg(XT
i W

(k))

Where W (k) is the kth column of W among L. And for a fixed (tied to the covariates)
integer j0 ∈ {1, . . . , p}, and u := XT

i W
(k), we have the following sensitivity of yi:

∂yi

∂X
(j0)
i

= αj0 +
L∑
k=1

γk
∂g

∂u
(u) ∂u

∂X
(j0)
i

(u)

= αj0 +
L∑
k=1

γkW
(k)
j0

∂g

∂u
(u)

For g : x 7→ x for example, this leads to:

∂yi

∂X
(j0)
i

= αj0 +
L∑
k=1

γkW
(k)
j0
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6.2.2 Examples on data from [Sap+14]

In order to present the performances of the model described in section 6.2.2, we use
four simulated randomized data sets, from [Sap+14], SLC141 and SLC142 with 2
different seeds each. These datasets are available in R package caret.

SLC141 consists of n rows, where n is a function parameter, and 20 columns. Its
construction starts with the simulation of a n× 20 matrix dat, containing random
Gaussian numbers, with mean equal to zero and variance equal to 9. Each row of
dat contains:

x = (x1, x2, . . . , x20)

The following transformation is applied to obtain each column of SLC141

x 7→ x1 + sin(x2) + log(|x3|) + x2
4 + x5 × x6 + I(x7 × x8 × x9 < 0) + I(x10 > 0)

+ x11 × I(x11 > 0) +
√

(|x12|) + cos(x13) + 2× x14 + |x15|

+ I(x16 < −1) + x17 × I(x17 < −1)− 2× x18 − x19 × x20 + ε

where ε ∼ N (0, 9). The same type of idea is applied for obtaining the dataset
SLC142. The construction of SLC142 begins with a matrix dat having n rows and
200 columns. The distribution of the random numbers within dat is a Gaussian
distribution with mean equal to 0, and variance equal to 16, and the transformation
applied to the columns of dat is:

x 7→ −1 + log(|x1|) + . . .+ log(|x200|) + ε

where ε ∼ N (0, 25).

For each seed, 123 and 456, and n = 250, we separate the datasets SLC141 and
SLC142 into a training/testing test, and a validation set. The training/testing set
contains 70% of the whole data (175 observations), and the test set contains the
remaining 30% of the data (75 observations).

A 5-fold cross-validation repeated 10 times is applied to the training/testing set, in
order to choose some optimal hyperparameters for the BQRVL model (the number of
nodes in the hidden layer and the regularization parameter λ).

The BQRVFL model with these optimal hyperparameters is applied to predict values
on the validation set. In figures 6.1, 6.2, 6.3, and 6.4 we present the validation sets’
observations (in black), along with the out-of-sample predictions on the validation
set (in blue), and the 80%, 95% confidence intervals around the predictions (gray
shaded regions).
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Fig. 6.1: Out-of-sample predictions and
80%, 95% confidence intervals for
SLC14.1 (with seed = 123)

Fig. 6.2: Out-of-sample predictions and
80%, 95% confidence intervals for
SLC14.2 (with seed = 123)

Fig. 6.3: Out-of-sample predictions and
80%, 95% confidence intervals for
SLC14.1 (with seed = 456)

Fig. 6.4: Out-of-sample predictions and
80%, 95% confidence intervals for
SLC14.2 (with seed = 456)

We observe that the confidence intervals often contain the validation set value, with
a few exceptions. The following table 6.1 contain the optimal (based on a grid
search) parameters found for each dataset, with a ReLU activation function for the
BQRVFL, and the proportions of points of the validation set contained into the 80%,
95% confidence intervals:
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Tab. 6.1: optimal hyperparameters found for the BQRVFL on SLC141 and SLC142

Dataset Number of nodes λ Prop at 95% Prop at 80%

SLC141 - seed = 123 975 1.53 86.11% 77.77%
SLC141 - seed = 456 700 132.19 100.00% 97.22%
SLC142 - seed = 123 825 20 97.22% 94.44%
SLC142 - seed = 456 650 1788.65 100.00% 100.00%

In the next section, 6.3, we are going to use this model as a workhorse for Bayesian
optimization.

6.3 Bayesian optimization of black box functions

6.3.1 Description of the method

The optimization problem is about finding x∗ ∈ C ⊆ Rk, so that:

x∗ = ArgMinx∈Cf(x)

f is the objective function, whose evaluations are expensive to calculate, and gradi-
ents are not necessarily available in closed-form. Methods based on gradient descent,
or requiring to evaluate f several times will hence be inefficient for carrying out this
task.

Bayesian optimization ([Moc+78] and [Jon01]) will minimize an alternative, cheaper
function called the acquisition function, instead of minimizing f directly. The ac-
quisition function is based on the uncertainty around the predictions of a surrogate
machine learning model, trying to approximate f . Here, we consider only two
types of acquisition functions. If we denote by f̃(x, θ), the prediction obtained with
the surrogate model (whose distribution depends on θ) on a point x ∈ C, they are
defined as:

• The Upper Confidence Bound (UCB) acquisition function, (actually a Lower
Confidence Bound in the case of minimization). The idea is to minimize:

aUCB(x;µ, σ) = µ(x)− κσ(x)

κ is a tuning parameter, designed to balance between exploration and exploita-
tion (more details on this). With κ = 1.96 for example, this looks like the
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lower confidence bound of f̃(x, θ), at a risk level of 5%, when the surrogate
model is N (µ(x), σ(x)).

• The Expected Improvement (EI) acquisition function. If f∗ is the current
minimum value found after a few evaluations of f , we would like to maximize
the expected improvement of the surrogate model’s predictions over f∗ :

aEI(x; θ) = E
[
max(f̃(x, θ)− f∗, 0)

]

In the case where the posterior distribution of the surrogate model is Gaussian,
N (µ(x), σ(x)), the acquisition function with Expected Improvement can be
re-written as:

aEI(x) = σ(x)
(
µ(x)Φ (γ(x)) + Φ′ (γ(x))

)

Where Φ is the probability distribution function of a N (0, 1), Φ′ is density
function, and

γ(x) = f∗ − µ(x)
σ(x)

We assume in the sequel of the chapter that the predictions of all the surrogate
models are drawn from a multivariate Gaussian distribution.

The whole optimization process that we use is iterative and is described below, with
the total number of iterations denoted as nbiter:

1. We start with nbinit points randomly sampled in C, for which some evaluations
of f have been obtained. With these points, we construct a training data set
for the surrogate model:

D = {(x1, f (x1)) , . . . , (xnbinit , f(xnbinit))}

2. We train the surrogate model on D, with a fixed, estimated parameter θ̂ on
which its distribution depends, and search for the next point to be evaluated
for f , as:

xnext = ArgMaxx∈C aEI(x; θ̂)

or
xnext = ArgMinx∈C aUCB(x; θ̂)

If (xnext, f(xnext)) is already found in D, then xnext is picked randomly in C.
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3. D is enriched with (xnext, f(xnext)) and we return to point 2., until the budget
of iterations, nbiter, is reached.

For the BQRVFL (or any other machine learning model considered as a surrogate
model for this purpose), an important point to consider in step 2. is the choice of θ,
which is also a problem of hyperparameters’ selection.

In the specific case of the BQRVFL, there are two hyperparameters for the surrogate
model: the number of nodes in the hidden layer, and the regularization parameter
σ2. The choice of the activation function or the type of simulation for the nodes
in the hidden layer is limited here to the ReLU activation function, and a Sobol
sequence.

Since it is fast to compute for these type of models and we would like to avoid a
costly hyperparameters’ search at this point, we choose to minimize the Generalized
Cross Validation (GCV) error (see [Gol+79]) on the dataset D constructed at step
1. (in order to obtain θ̂). The GCV error is a convenient approximation to the
Leave-One-Out cross validation error, and is defined as:

GCV = 1
nbinit

nbinit∑
i=1

 yi − ŷi
1− tr(S)

nbinit

2

(6.1)

where nbinit is the number of observations in the response variable

y = (f(x1), . . . , f(xnbinit))
T

S is a smoother matrix verifying ŷ = Sy, and tr(S) is the trace of matrix S. In the case

of BQRVFL, y contains the observed values of the response y, S =
(
ZTZ + λIp

)−1
ZT ,

and ŷ contains the model’s fitted values.

Having obtained θ̂, the optimal θ in point 2., searching for the next point to be
evaluated is done with a gradient based optimization ([Gay90]) of x 7→ aEI

(
x; θ̂

)
and x 7→ aUCB

(
x; θ̂

)
.

6.3.2 Use of the BQRVFL for Bayesian optimization

We now illustrate the BQRFL model’s behaviour on a simple example of Bayesian
optimization. The objective function to be minimized is the rescaled Branin function,
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which is widely used for testing Bayesian optimization frameworks, and notably in
[Pic+13]. This function is defined for x = (x1, x2) ∈ [0, 1]2 as:

x 7→ 1
51.95

[(
x̄2 −

5.1x̄2
4π2 + 5x̄1

π
− 6

)2
+
(

10− 10
8π

)
cos(x̄1)− 44.81

]
(6.2)

where x̄1 = 15x1 − 5 x̄2 = 15x2. The rescaled Branin function is presented below, in
figures 6.5 and 6.6.

Fig. 6.5: Rescaled Branin function perspec-
tive plot

Fig. 6.6: Rescaled Branin function level plot

The global minimum value of the function is found (by using a multi-start gradient-
based optimization) at x = (0.5427728, 0.1516667), and is equal to −1.047394.

Below, in figures 6.7 and 6.8 (and tables 6.2 and 6.3), we present the results obtained
by using the BQRVFL model, and the Random Forest model as workhorses for the
Bayesian optimization of the rescaled Branin function. In appendix 6.5.1, we also
present the evolution of the algorithm for the BQRVFL, as more xnext points (chosen
by maximizing aEI(., θ̂)) are added to D.

For figures 6.7 and 6.8 (and tables 6.2 and 6.3), we use nbinit = 10 and a total
budget of 100 iterations. The algorithm is stochastic, because the nbinit points are
picked randomly in C for each choice of seed (each restart of the algorithm).
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Fig. 6.7: Minimum value for the rescaled Branin function, as a function of the number
of iterations with BQRVFL. Left: With Expected Improvement (EI) Right: With
Upper Confidence Bound (UCB) - BQRVFL

Fig. 6.8: Minimum value for the rescaled Branin function, as a function of the number of
iterations. Left: With Expected Improvement (EI) Right: With Upper Confidence
Bound (UCB) - Random Forest

Tab. 6.2: Summary of minimum values found for the rescaled Branin function, as a function
of the number of iterations (with Expected Improvement) with BQRVFL

Nb. of iterations Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev

5 -1.047 -1.024 -0.986 -0.986 -0.963 -0.812 0.046
50 -1.047 -1.027 -1.027 -1.027 -1.027 -1.010 0.008
100 -1.047 -1.027 -1.027 -1.029 -1.027 -1.025 0.006
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Tab. 6.3: Summary of minimum values found for the rescaled Branin function, as a function
of the number of iterations (with Upper Confidence Bound) with BQRVFL

Nb. of iterations Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev

5 -1.047 -1.024 -0.984 -0.963 -0.932 -0.702 0.079
50 -1.047 -1.029 -1.025 -1.020 -1.012 -0.958 0.017
100 -1.047 -1.032 -1.027 -1.028 -1.025 -1.012 0.008

Tab. 6.4: Summary of minimum values found for the rescaled Branin function, as a function
of the number of iterations (with Expected Improvement) with Random Forest

Nb. of iterations Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev

5 -1.047 -1.027 -1.003 -0.999 -0.973 -0.912 0.033
50 -1.047 -1.044 -1.036 -1.033 -1.027 -0.984 0.012
100 -1.047 -1.045 -1.039 -1.038 -1.033 -1.015 0.008

Tab. 6.5: Summary of minimum values found for the rescaled Branin function, as a function
of the number of iterations (with Upper Confidence Bound) with Random Forest

Nb. of iterations Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev

5 -1.047 -1.029 -0.996 -0.989 -0.973 -0.786 0.055
50 -1.047 -1.032 -1.022 -1.015 -0.998 -0.949 0.023
100 -1.047 -1.034 -1.025 -1.022 -1.014 -0.959 0.019

For 100 seeds, and a fixed number of iterations nbiter, we rerun the procedure
described before in section 6.3.1, 100 times. For the BQRVFL, nbiter goes from
5 to 100 with steps of 5, and for the Random Forest with confidence intervals,
nbiter ∈ {5, 50, 100}. A further tuning of the Random Forest hyperparameters, or
of the parameter κ, or a different choice for nbinit, or activation function for the
BQRVFL, would of course lead to different results.

We observe that pretty good results are obtained with the Random Forest for the
mean and the median value. But generally with a higher variance on the minimum
value obtained than BQRVFL. Another interesting information obtained through
these simulations is the number of times (over nbiter = 100 iterations) xnext has
been picked randomly in C at Step 2. (when xnext is already in D).
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Fig. 6.9: Distribution of the number of times a simulation of xnext ∈ C has been required at
step 2.

Tab. 6.6: Distribution of the number of times a simulation of xnext ∈ C has been required
at step 2.

Method Min 1st Qrt Median Mean 3rd Qrt Max Std. Dev

BQRVFL with EI 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BQRVFL with UCB 0.00 0.00 1.00 1.96 3.00 13.00 2.22
RF with EI 0.00 2.00 3.00 3.66 5.00 9.00 1.98
RF with UCB 1.00 6.00 10.00 9.98 13.00 22.00 4.54

In table 6.6 and figure 6.9, we observe that on choosing good next points at step
2., BQRVFL generally performs better than the other models. Indeed with BQRVFL
and Expected Improvement acquisition function for example, the next point to be
evaluated is never obtained by simulation of xnext ∈ C.

A good place to apply Bayesian optimization, is to the choice of hyperparameters of
machine learning algorithms. The cross-validation function, which is the objective
function of the hyperparameters, is indeed expensive to train/predict over the
cross-validation resamples.

6.3.3 Example of models based on Dynamic Nelson Siegel and
Kernel Regularized Least Squares

Description of the models

In the previous chapters, we introduced the RVFL, the KRLS, and the DNS-RVFL,
DNS-KRLS models. Here, we compare all these models by using the Bayesian
optimization algorithm described in this chapter. The model mentioned only as RVFL
(without NS-) denotes a one obtained by forecasting directly the spot rates for each
maturity as multivariate time series.
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Examples of minimization of the out out-of-sample RMSE

Tab. 6.7: out-of-sample RMSE for models based on the DNS framework

Horizon NS-Gaussian NS-Matérn 3/2 NS-Matérn 5/2 NS-RVFL

12 0.6584 0.6590 0.6652 0.5483
18 0.8356 0.8356 0.8356 0.7078
24 1.0130 1.0130 1.0130 0.8564
30 1.1607 1.1607 1.1607 1.0289
36 1.2863 1.2863 1.2863 1.1405

Fig. 6.10: out-of-sample RMSE for models based on the DNS framework

Tab. 6.8: average out-of-sample RMSE for data-driven KRLS models

Horizon Gaussian Matérn 3/2 Matérn 5/2 RVFL

12 0.6392 0.5168 0.5798 0.5540
18 0.7466 0.6591 0.7394 0.7032
24 0.8885 0.7716 0.8965 0.8191
30 1.0095 0.8844 1.0083 0.9535
36 1.1544 1.0099 1.1396 1.0646
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Fig. 6.11: average out-of-sample RMSE for data-driven models

Details of the distribution of errors are provided in the appendix 6.5.2 (boxplots and
summaries).

6.4 Conclusion

In this chapter, we presented a quasi-randomized functional link neural networks
(BQRVFL) model, by linking it to a Bayesian linear regression framework, and
obtained formulas for the confidence intervals around its predictions. The BQRVFL
model that we constructed is then used as a workhorse for Bayesian optimization,
and notably to find optimal hyperparameters for all the forecasting models described
in the previous chapters.

In general, we observe that the best results are obtained in the DNS-KRLS framework
by the RVFL (applied to the level, slope and curvature). And in the KRLS framework,
the kernel Matérn 3/2 performs the best. This kernel also performs the best overall,
in terms of average out-of-sample RMSE. However, it is worth mentioning, as in
previous chapters, that the cost of computing the kernel is a quadratic function of
the number of input spot rates.

Figure (6.12) illustrates this fact very well, with 100 repeats at each time to maturity
(see appendix 6.5.2 for details on the timings). It compares the KRLS and RVFL
models timings on training and forecasting horizons equal to 12 months and 36
months, and respectively 15, 22 and 30 observed time to maturities. The RVFL
timings remain relatively stable as the number of time to maturities increase, whereas
the KRLS timings increase at a fast pace in the same situation.
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Fig. 6.12: timings of KRLS vs timings of RVFL

6.5 Appendix

6.5.1 Evolution of the algorithm (choices of xnext)

Fig. 6.13: Points found by the algorithm after
10 iterations

Fig. 6.14: Points found by the algorithm after
50 iterations
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Fig. 6.15: Points found by the algorithm after
100 iterations

Fig. 6.16: Points found by the algorithm after
250 iterations

6.5.2 Timings in log(ms)

matern 3/2 - horizon = 12

15 22 30
Min. :17.33 Min. :18.21 Min. :19.08
1st Qu.:17.45 1st Qu.:18.26 1st Qu.:19.13
Median :17.52 Median :18.28 Median :19.16
Mean :17.60 Mean :18.30 Mean :19.23
3rd Qu.:17.60 3rd Qu.:18.34 3rd Qu.:19.37
Max. :18.74 Max. :18.90 Max. :19.72

rvfl - horizon = 12

15 22 30
Min. :15.37 Min. :15.44 Min. :15.51
1st Qu.:15.43 1st Qu.:15.47 1st Qu.:15.55
Median :15.48 Median :15.51 Median :15.61
Mean :15.53 Mean :15.58 Mean :15.66
3rd Qu.:15.56 3rd Qu.:15.61 3rd Qu.:15.70
Max. :16.75 Max. :16.18 Max. :16.36

matern 3/2 - horizon = 36
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15 22 30
Min. :20.38 Min. :21.43 Min. :22.36
1st Qu.:20.47 1st Qu.:21.45 1st Qu.:22.39
Median :20.49 Median :21.46 Median :22.40
Mean :20.50 Mean :21.47 Mean :22.40
3rd Qu.:20.52 3rd Qu.:21.47 3rd Qu.:22.42
Max. :20.71 Max. :21.73 Max. :22.52

rvfl - horizon = 36

15 22 30
Min. :15.18 Min. :15.31 Min. :15.45
1st Qu.:15.22 1st Qu.:15.37 1st Qu.:15.50
Median :15.26 Median :15.42 Median :15.57
Mean :15.35 Mean :15.51 Mean :15.65
3rd Qu.:15.38 3rd Qu.:15.58 3rd Qu.:15.70
Max. :16.39 Max. :16.21 Max. :16.42
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7Conclusion

In this thesis, in chapter 2, we derived a class of discount curve construction and
extrapolation methods, based on a class of interest rate models called exogenous
short-rate models. Then, in chapter 3 we dealt with the obtainment of forecasts for
multiple time series, by taking into account the potential nonlinear relationships
between their observations. We presented a specific type of neural networks learning
technique to forecast the Yield Curve, and obtain stressed versions of the forecasts.
Chapter 4 was about combining multiple forecasting techniques, in search for an
improved out-of-sample performance. The basis for these ensemble models were
the individual models presented in chapter 3, and we indeed obtained a better
performance with the ensembles. Chapter 5 was about forecasting techniques
based on kernels. The idea of learning with kernels is to assign a high covariance
to observations that are close to each other, and conversely a low covariance to
observations that are far from each other. The response variable can be explained
as a linear combination of similiarities/dissimilarities between the observations.
In the final chapter, we compared the out-of-sample performances of the models
derived in chapter 3 and 5, by using bayesian optimization. The methods based
on kernels are extremely competitive, at the expense of being more demanding
in resources. It would be interesting in the future to try out alternative activation
functions/simulation for the hidden nodes/feature scaling in models from chapter 3,
and see how these choices affect their performances. The model from chapter 3 also
scales well, so it would be interesting to see how it performs on thousands of time
series.
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