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ABSTRACT

The payments of life insurance products depend on the evolution
of future survivor probabilities. The literature has devoted consid-
erable attention to the development of statistical models to forecast
future mortality improvements. However, using such statistical mod-
els to determine solvency requirements, can be highly time consuming.
This is the case in particular when the distribution of discounted cash
flows needs to be simulated for a future point in time, and conditional
on the information available at that time. The goal of the paper is
twofold. First, using an internal model which is in line with the Sol-
vency II proposal we derive a closed form approximation for the capital
requirements for different portfolios of life insurance products, in case
mortality rates are forecasted by means of the Lee and Carter (1992)
model. The approximated distribution reduces computer time. In case
of the Cost of Capital approach, where the number of simulations is
exponential in the number of years to maturity of the life insurance
contract, the approximated distribution allows us to calculate solvency
requirements for several life insurance products. Specifically, using a
market-to-model model, we calculate the market value of the liabilities
and the capital reserve that is needed in order to limit the probability
of shortfall within a year to 0.5%. We consider the case where the
market value of the liabilities is determined by means of the Cost of
Capital approach. Second, using the internal model we quantify the
effects of different simplifications made in the Solvency II proposal on
the capital requirements.
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1. Introduction

Over the last decades, significant improvements in the duration of life have
been observed in most countries. For example, over the past three decades,
the remaining life expectancy of a male Dutch retiree aged 65 has increased
by on average one year per decade. More importantly, there is considerable
uncertainty regarding the future development of life expectancy. Whereas
the focus of regulators has long been on the risk in financial investments,
there is now increasing awareness that accurate quantification and manage-
ment of the risk in pension and insurance liabilities is equally important. For
example, the goal of the Swiss Solvency Test and the Solvency II project
(Group Consultatif Actuariel Europeen, 2006) is to redesign financial reg-
ulation of insurance companies in Switzerland and the EU, respectively,
putting increased emphasis on the valuation and management of pension
and insurance liabilities. Specifically, the regulator requires that an insurer
holds a reserve in order to limit the probability of underfunding in a one
year horizon to 0.5%, where underfunding occurs if the value of the assets
is less than the value of the liabilities.

In this paper we develop a methodology in line with the Solvency II pro-
posal to determine reserve requirements for systematic longevity risk in life
insurance products. A complicating factor is case of reserve requirements
for systematic longevity risk is that there is no liquid market for longevity-
linked assets or liabilities, and so no market price is observed. Hence, the
value of the liabilities needs to be calculated using a market-to-model ap-
proach. Solvency II proposes to define the value of the liabilities as the sum
of the best estimate value of the liability (BEL), and a market value mar-

gin (MVM). The latter component can be interpreted as a risk premium,
and should be determined following the Cost of Capital (CoC) approach.
The idea is that the risk premium for a risky liability is determined by the
amount of capital the holder of the risk should hold in order to be able to
pay the liabilities with a high degree of certainty. Our goal in this paper is
twofold. First, it has been argued extensively (see, e.g., Ulm (2009)) that
determining capital requirements in line with the Solvency II proposal as
described above is technically complex. The main complication is that the
value of the liabilities in any given period depends on the required solvency
capital, which, in turn, depends on the value of the liabilities as well as the
probability distribution of the value of the liabilities in the next period, and
so on. This implies that backward induction is needed to determine the cur-
rent value of the liabilities. In addition, the value of the liabilities in a future
period t depends on the probability distribution of future death probabili-
ties, conditional on information available at time t. There is a wide variety
of mortality forecast models that can be used to simulate the probability
distribution of future survival rates, e.g., Lee and Carter (1992) Renshaw
and Haberman (2006), Cairns, Blake, and Dowd (2006), Currie, Durban,
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and Eilers (2004). However, the number of simulations needed in the back-
ward induction algorithm increases exponentially in the length of the run-off
period, which can typically be very long. This makes a simulation approach
computationally intractable. Therefore, we develop a closed form approxi-
mation for the probability distribution of future mortality rates, conditional
on information available at that time, starting from the Lee-Carter (1992)-
model.1 This closed form approximation enables us to determine capital
requirements within reasonable time. Second, the regulator allows to use a
simplified approach that does not require recursive evaluations, and in which
the value of the required solvency capital at future dates is approximated
by a current estimate. By comparing our results to those that follow from
this simplified approach, we quantify the impact of simplifying assumptions
on the capital requirements.

The paper is organized as follows. In Section 2 we discuss the Solvency II
proposal for minimum capital requirements. In Section 3 we discuss the pro-
posed simplifications to calculate the capital requirements in the Solvency II
proposal, as well as two alternative simplifying approaches. In Section 4 we
shortly discuss the Lee-Carter (1992)-model and we present the closed form
approximation of the distribution of the underlying quantities of interest
in life insurance products, i.e., the number of survivors, number of deaths,
one-year mortality probability, and one-year survivor probability. We then
use these approximations to obtain the a closed form approximation for the
distribution of the discounted present value of the liabilities. In Section 5
we calculate the capital requirements for different portfolios of life insur-
ance products, using both the internal model as well as the simplifications.
Section 6 concludes.

2. Direct approach in an internal model of Solvency

II

The goal of this paper is to calculate the value of liabilities with longevity
risk and the reserve requirement for these liabilities. In addition, we evaluate
different approximations to calculate the value and the reserve requirement
for these liabilities. In this section we describe the method to calculate the
value and reserve requirement for a liability in the Cost of Capital approach.
The Cost of Capital approach is based on a funding ratio approach, which is
described in Section 2.1. Using the funding ratio approach we determine the
value of the liabilities and the capital requirements for a one period liability
in Section 2.2. In Section 2.3 we generalize the results to a multi period
liability.

1We focus on the Lee-Carter model because it is widely used.

4



2.1. Funding ratio approach

The underlying idea of the Solvency II directive proposal is that insurers
should hold an amount of capital that enables them to absorb unexpected
losses and meet the obligations towards policy-holders at a high level of
equitableness. The calculation of this requirement is to be made on the
basis of the Value at Risk (VaR) calculation at the 1 − α percentile (in
Solvency II α is set at 0.5%) for the time period of one year. Specifically,
the regulator requires that the capital held by an insurer is such that the
probability that the funding ratio falls below 1 within a year is lower than
α, where the funding ratio is defined as the ratio of the value of the assets
over the value of the liabilities, i.e., the funding ratio in year t + 1 is given
by:

FRt+1 =
At+1

Lt+1
.

The funding ratio in year t + 1 is a random variable at time t, because both
the market value of the assets at time t + 1 and the market value of the
liabilities at time t + 1 are random variables at time t. The Solvency II
requirements imply that an insurer should hold at least initial assets with
value A⋆

t , defined as:

A⋆
t = min

{
At|Pt

(
At+1

Lt+1
< 1

)
≤ α

}
, (1)

where Pt (·) denote the time-t probability distribution which represents all
possible sources of risk. The required capital in excess of the value of the
liabilities is referred to as the Solvency Capital Requirement2 (SCR), i.e.,

SCRt ≡ A⋆
t − Lt. (2)

The minimum required capital A⋆
t and the buffer SCRt depend on the

evolution of the assets over time. Let rt be the (stochastic) return on the
assets between time t and t + 1 and L̃t be the (aggregate) payment of the
life insurance products3 at the end of year t, then the value of the assets

2In Solvency II the SCR for life underwriting risk is decomposed into seven different
risk factors, including longevity risk. The seven different risk factors are: revision risk,
mortality risk, longevity risk, disability risk, lapse risk, expense risk, and catastrophe risk.
In this paper we focus on the effect of longevity risk.

3In order to calculate the current SCRt an insurer should incorporate all risk, hence
also non-systematic longevity risk. The non-systematic longevity risk arises since the
number of deaths conditional on the mortality probabilities is still a random variable. In
this paper we focus on the effect of systematic longevity risk, i.e., the effect of uncertainty
in survival probabilities and neglige the effect of non-systematic longevity risk, since it
is well-known that non-systematic longevity risk becomes negligible in large pools (see,
e.g., Olivieri 2001; Olivieri and Pitacco 2003; and Haŕı et al. 2008), whereas systematic
longevity risk does not decrease with portfolio size.
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next year is defined by:

At+1 = At · (1 + rt) − L̃t,

which implies that:

Pt

(
At+1

Lt+1
< 1

)
= P

(
(1 + rt) · At − L̃t < Lt+1

)
. (3)

Now it follows immediately from (2) and (3) that the required solvency
capital is given by:

SCRt = Q1−α,t

[
L̃t + Lt+1

1 + rt

]
− Lt, (4)

where Q1−α,t [X] is the 1−α percentile of the random variable X, given the
information available at time t.

In order to be able to determine the required solvency capital, it remains
to specify how the value of the liabilities in year t, as well as the probability
distribution of the value of the liabilities in year t + 1, is determined. In
absence of a liquid market, there is no obvious unique way to determine
these market values. Solvency II proposes to determine liability values on
the basis of a mark-to-model approach, in which the value consists of the
Best Estimate of the Liabilities plus a Market Value Margin (MVM), where
the latter is seen as a risk premium, i.e.,

Lt ≡ BELt + MV Mt. (5)

The best estimate value is defined as the expected present value of all future
payments, i.e.,

BELt ≡
∑

s≥0

Et

[
L̃t+s

]
· P

(s)
t , (6)

where Et [·] is the expectation conditional on the information available at

time t, and P
(s)
t denotes the time t price of a zero coupon bond that matures

at time t + s.

The market value margin is intended to reflect the cost associated with
holding the required solvency capital in the current and any future period.4

The idea is that because the return on assets that need to be kept as a
reserve is generally lower than the return on “free assets”, the holder of a
risky liability requires a price of taking the risk as a compensation for not

4See QIS 4., TS.II.A.29.

6



being able to invest the reserve as a free asset.5 For the calculation of the
value of the liabilities with a non-tradeable risk, such as longevity risk, in
Solvency II the return on the assets are set to the risk-free return. Hence,
the stochastic return in equation (3) is replaced by the risk-free return.
Because the focus of this paper is on the effect of longevity risk on the price
and reserve of life insurance liabilities, in the remainder of the paper we
assume that the insurer invest only in a risk-free asset. When the insurer
invest (part of) his assets in a risky asset this will not affect the value of the
liabilities, but it will affect the reserve requirements. The intention of the
regulator is that the market value margin equals the cost CoC +rrf

t charged
to the present value of the current and all future values of SCRt, i.e.,

MV Mt =
∑

τ≥0

(
CoC + rrf

t+τ

)
· SCRt+τ · P

(τ)
t . (7)

This, however, is impossible since the value of the required solvency capital
in a current period is currently unknown.

2.2. One-period liabilities

For the sake of intuition, let us first describe the determination of the re-
quired solvency capital under the Cost of Capital approach in a given year
t, in a setting where the last payment occurs at the end of year t, so that
Lt+1 = 0. Then, the market value margin is defined as a cost of capital of
CoC% in excess of the risk-free rate charged on the required solvency capital
as given in equation (7). Given (4), (5), (6), and the fact that Lt+1 = 0 then
implies that:

Lt = BELt +
(
CoC + rrf

t

)
·
(
Q1−α,t

[
L̃t · P

(1)
t

]
− Lt

)

=

(
1

1 + CoC + rrf
t

)
· BELt +

(
CoC + rrf

t

1 + CoC + rrf
t

)
· Q1−α,t

[
L̃t · P

(1)
t

]
,(8)

so that the required solvency capital is given by:

SCRt =Q1−α,t

[
L̃t · P

(1)
t

]
− Lt,

=

(
1

1 + CoC + rrf
t

)
·
(

Q1−α,t

[
L̃t · P

(1)
t

]
− BELt

)
. (9)

Thus, in a one period setting, we obtain closed form expressions for the
value of the liabilities, and the required solvency capital.

5The non-systematic longevity risk is diversifiable and thus has price zero.
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2.3. Multi-period liabilities

In the previous section we determined the value of liabilities and the capital
reserve for liabilities in the Cost of Capital approach with a run-off time
of one period. However, the run-off time for the liabilities of life insurance
products is generally much longer than one year. The intention of the reg-
ulator is that the market value margin equals the cost CoC + rrf

t charged
to the present value of the current and all future values of SCRt as given
in equation (7). This, however, is impossible since the value of the required
solvency capital in a current period is currently unknown. To solve this
problem, the liabilities are treated as if the run-off period has length one,
and the value of the liabilities in this single period is given by L̃t + Lt+1.
The interpretation is that the insurer can sell the liabilities at the end of
the year at price equal to Lt+1. This effectively transforms the problem to a
one-period problem as described above. Specifically, let BEL1 period

t denote
the current best estimate value of the liabilities, given that at the end of the
year they will be sold at price Lt+1, i.e.,

BEL1 period
t = Et

[(
L̃t + Lt+1

)
· P

(1)
t

]
. (10)

Then it follows immediately from (4), (8), and BEL1 period
t as defined in

equation (10), that the current market value of the liabilities is given by:

Lt =BEL1 period
t +

(
CoC + rrf

t

)
· SCRt

=

(
1

1 + CoC + rrf
t

)
· Et

[(
L̃t + Lt+1

)
· P

(1)
t

]
+

(
CoC + rrf

t

1 + CoC + rrf
t

)
· Q1−α,t

[(
L̃t + Lt+1

)
· P

(1)
t

]

(11)

Note that even though only the capital charge for the first period appears
explicitly in the expression for the value of the liabilities, capital charges
for holding the risk in later years are included through their effect on the
distribution of the market value of the liabilities next year. Indeed, recursive
evaluation of (11) shows that:

Lt = BELt+MV Mt = BELt+
∑

τ≥0

(
CoC + rrf

t+τ

)
·Et [SCRt+τ ]·P

(τ)
t , (12)

where

SCRt+τ = Q1−α,t+τ

[(
L̃t+τ + Lt+τ+1

)
· P

(1)
t+τ

]
− Lt+τ . (13)

Thus, the value of the liabilities equals the current best estimate, plus a
market value margin that equals the present value of the expected cost of
capital, Et [SCRt+τ ], associated with holding the liability in future periods.
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Determination of the value of life insurance liabilities and the the re-
quired capital reserve using simulations would be very time consuming.
Therefore, in Section 3 we describe often used simplifications of the equa-
tions for the value of the liabilities, as given in equations (12) and (13).
Another approach to determine the value of the liabilities is to make sim-
plifications on the distribution of interest, such that these are closed form
distributions. This is described in Section 4. Then, also the quantiles and
expectation of the variables have a closed form distribution, which leads to
a closed form formula of equations (12) and (13). Hence, there is then no
need for the time consuming simulations.

3. Approximations of the calculation of capital re-

quirements in the CoC-approach

To simulate the value of MVM in the CoC approach might require many
simulations, since it requires the current expectation of future SCR. Recall
from (12) that we have to determine:

Et [SCRt+τ ] = Et

[
Q1−α,t+τ

[(
L̃t+τ + Lt+τ+1

)
· P

(1)
t+τ

]
− Lt+τ

]
,

which is computationally intensive. This is because, conditional on infor-
mation available at time t, one needs to determine the 1 − α quantile of
L̃t+τ +Lt+τ+1 for a large number of realizations of death rates at time t+ τ .
The future SCR itself depends on the conditional expectation of future SCR,
which requires many simulations to accurately estimate the value. Solvency
II allows to make simplification when not materially different from the result
which would result from a more accurate valuation process.6 In this section
we HIER propose some simplifications to calculate the capital requirements
in the internal model, based on simplification proposed in Solvency II which
might reduce the simulation time. In this paper we also investigate the ef-
fect of some simplifications to calculate the MVM. The simplifications of
the value of the liabilities in the CoC-approach are due to approximations
of the expected value of future values of the SCR:

S̃CRt+τ ≈ Et [SCRt+τ ] ,

where S̃CRt+τ represents a deterministic approximation of the required sol-
vency capital in period t + τ .

A1 Longevity shock approach. In order to calculate the capital requirements
for longevity risk in the Solvency II proposal, QIS 4 (sections TS.XI.C

6According to section TS.II.C.16 in QIS 4 the SCR can be calculated using either
a direct application of SCR formulae or using the proposed simplifications.(see QIS 4,
TS.II.A.35)
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and TS.XII.D.28) proposes a simplified approach. In the simplified
approach, the required solvency capital in any future period t + τ ,
SCRt+τ , is defined as the change in the net asset value at time t+τ +1
due to a (permanent) 25% decrease in mortality probabilities for each
age, compared to their current best estimates.78 The net asset value in
year t+ τ +1, i.e., the value of assets minus the value of the liabilities,
is given by:

At+τ+1 − Lt+τ+1 =
(
1 + rrf

t

)
· At+τ − (L̃t+τ + Lt+τ+1).

it follows that:

S̃CRt+τ = L̃BE
t+τ + LBE

t+τ+1 −
(
L̃SHOCK

t+τ + LSHOCK
t+τ+1

)
,

where L̃BE
t and LBE

t+1 represent the expected value of payments in the
current year and the market value of the liabilities in the next year,
respectively, in a scenario in which future one-year death probabili-
ties are equal to their current best estimate value, and L̃SHOCK

t and
LSHOCK

t+1 represent the expected value of payments in the current year
and the market value of the liabilities in the next year, respectively, in
a scenario in which future death probabilities are equal to 75% of their
current best estimate value. Because in both scenarios, future death
probabilities are taken as given (and are either equal to the current
best estimate value or 75% of the current best estimate value), the cor-
responding market values at date t+1 are equal to the present value of
all future payments, given the death probabilities in the corresponding
scenario. Therefore,

S̃CRt+τ = L̃shock
t+τ − L̃BE

t+τ +
∑

s≥0

L̃SHOCK
t+τ+1+s

(1 + r)s+1 −
∑

s≥0

L̃BE
t+τ+1+s

(1 + r)s+1

=
∑

s≥0

L̃SHOCK
t+τ+s − L̃BE

t+τ+s

(1 + r)s
. (14)

where L̃BE
t+τ represents the expected value of payment in period t + τ

in the best estimate scenario, and L̃SHOCK
t+τ represents the expected

value of payment in period t + τ in the shock scenario.

A2 Best estimate scenario. Equation (12) shows that the MVM in the
internal model is equal to the expected sum of the current and future

7See QIS 4, TS.II.A.10 and TS.II.B
8The permanent decrease of 25% is based on ICAS submission in the UK. The average

stress test for longevity risk an insurer in the UK used was 18% with a range of between
5% and 35% in 2004. More recent ICAS submissions in the UK are believed to have shown
an assumed decrease of around 25% in mortality probabilities.
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SCR multiplied with a constant, whereas in the MVM calculated with
the Solvency II simplifications, as given in approximation A1, only
depends on the best estimate scenario and a shock to this best estimate
scenario. Therefore, in Section 5 we also calculate MVM using the
internal model with the simplification that the current MVM equals
the sum of the discounted SCR in the best estimate scenario, i.e., using
equation (12) for MVM. As an alternative, we consider the case where
the current expectation of the future SCR’s is replaced by the value
of the future SCRt+τ in the best estimate scenario for death rates at
time t + τ , i.e.,

S̃CRt+τ = QBE
1−α,t+τ

[(
L̃t+τ + Lt+τ+1

)
· P

(τ+1)
t

]
− LBE

t+τ ,

where QBE
1−α,t+τ [X] is the 1 − α quantile of X in the best estimate

scenario at time t + τ . In Section 5 we calculate capital requirements
with the CoC approach for the MVL.

A3 Fraction of current SCR. Another approximation which is often used in
order to calculate the capital requirements with the CoC approach,
and also proposed in Solvency II, is to take

S̃CRt+τ

SCRt
=

Et [BELt+τ ]

BELt
, (15)

i.e., the SCRt+s relative to BELt+s equal to SCRt relative to BELt for
all s, as given in equation (16). The idea behind this simplification is
that the future SCR as fraction of the best estimate of the liabilities is
equal to the current SCR as a fraction of the current best estimate of
the liabilities. Then, the market value margin is given by: [CHECK]

MV Mt ≈
(
CoC + rrf

t

)
·
∑

τ≥0

Et

[∑
s≥0 L̃t+τ · P

(τ)
t

]

BELt
·

SCRt(
1 + rrf

t+τ

)τ

=
(
CoC + rrf

t

)
·

∑
τ≥0 (τ + 1)

(
Et

[
L̃t+τ

]
· P

(τ)
t

)

∑
τ≥0 Et

[
L̃t+τ

]
· P

(τ)
t

· SCRt

=
(
CoC + rrf

t

)
· Dur · SCRt, (16)

where Dur is the duration of the best estimate of the liabilities. This
simplification is often used see, for example, the Swiss Solvency Test
(SST) to calculate the MVM in the Cost of Capital approach.9

9QIS 4, in TS.II.C.26, also proposed a simplification which is close to equation (16).
However, in QIS 4 the modified duration, i.e. the duration divided by one plus the yield
to maturity, is used instead of the duration. Hence, the proposed MVM in QIS 4 is a
factor one plus the yield to maturity lower than the MVM using equation (16). Since the
interpretation of the MVM calculated with the duration has a clear interpretation we use
this one in the calculation.
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In this paper we investigate the effect of using this second approximation
to calculate the MVM using equation (16) in the internal model.

4. Model for longevity risk in life insurance prod-

ucts

In this section we briefly describe the method to calculate the capital require-
ments and the life insurance products. To obtain the capital requirements
for longevity risk, we need to obtain the (joint) distribution of the future
value of the assets and the future market value of the liabilities. The capital
requirements using simulations might require lots of simulations in case of
the Cost of Capital approach in order to obtain the market value of the
liabilities. Therefore, in this section we consider a closed form expression
to approximate longevity risk in life insurance products. In Subsection 4.1
we describe the uncertainty in future forces of mortality, which influences
the reserve requirements for life insurance products. The uncertainty in fu-
ture survivor probabilities is quantified using the Lee-Carter (1992) model,
see Lee and Carter (1992). In Subsection 4.2 we describe the life insurance
products and the approximations in order to obtain a closed form expres-
sion of the sum of the discounted cash flows. In Subsection 4.3 we obtain
a closed form approximation for the value of the liabilities in the Cost of
Capital approach using the approximations made in Subsection 4.2.

4.1. Lee-Carter model

In this section we present a model for the uncertainty in the mortality rates.
To forecast the one-year mortality probabilities we will use the Lee-Carter
model with some additional assumptions. Let x ∈ {0, 1, ...,MA} be the age,
where MA is the maximum attainable age (set at 110), let g ∈ {M,F} be
the gender, where M is males and F is females, let t be the base year, and let
T ∈ {1, 2, 3, ...} be the number of years since the base year. The Lee-Carter
model assumes that the age and time dependent one-year force of mortality
with age dependent parameters ag

x and bg
x, and time dependent parameter

kg
T , is given by:

µg
x,t+T = exp

(
ag

x + bg
xkg

t+T + ǫg
x,t+T

)
, (17)

where the ǫg
x,t+T represent the measurement errors. Introduce ǫg

t+T =
(
ǫg
1,t+T , ..., , ǫg

MA,t+T

)′
,

g ∈ {M,F}, T ∈ {1, 2, 3, ...}. Then the Lee-Carter model assumes

ǫt+T =

(
ǫM
t+T

ǫF
t+T

)
i.i.d
∼ N

((
0
0

)
,

(
ΣMM

ǫ ΣMF
ǫ

ΣFM
ǫ ΣFF

ǫ

))
. (18)
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Following typical findings in the empirical literature, see, e.g. Lee and
Carter (1992), Renshaw and Haberman (2006), and Booth, Hyndman, Tickle,
and de Jong (2006) we postulate that the evolution over time of kg

t+T ,
g ∈ {M,F}, T ∈ {1, 2, 3, ...}, can be described by a random walk with
drift

kg
t+T = kg

t+T−1 + cg + eg
t+T , (19)

with kg
t given, and with

et+T =

(
eM
t+T

eF
t+T

)
i.i.d
∼ N

((
0
0

)
,

( (
σM

e

)2
ρeσ

M
e σF

e

ρeσ
M
e σF

e

(
σF

e

)2

))
, (20)

independent of ǫt+T . To avoid identifiability problems, we set
∑

x bg
x = 0,

and kg
t = 0. Combining this with equations (17) and (19) we have, for

T ≥ 1,

log
(
µg

x,t+T

)
= ag

x + Tbg
xcg + bg

x

T∑

s=1

eg
t+s + ǫg

x,t+T . (21)

We set10

log
(
µg

x,t

)
= ag

x + ǫg
x,t. (22)

To complete the model description, we assume uncertainty in the pa-
rameters cF and cM , i.e., we assume

c =

(
cM

cF

)
∼ N

((
µM

c

µF
c

)
,

( (
σM

c

)2
ρcσ

M
c σF

c

ρcσ
M
c σF

c

(
σM

c

)2

))
, (23)

independent of ǫt+T and et+T . We do not include parameter uncertainty
in ax since this represents uncertainty in the current mortality probabilities
and not the uncertainty in the changes in the future mortality probabilities.
The uncertainty in the parameter bx is small. Lee and Carter (1992) show
that for the forecast of the mortality rates of 75 years the fraction of variance
which is due to uncertainty in the parameter bx is less then 2%. Moreover, we
found that the fraction of the standard deviation of the survival probabilities
which is due to uncertainty in bx for an individual of 65 is less than 1%. So
we also do not include the uncertainty in bx.

10We set the last observation of the mortality force equal to its observation in order to
prevent jump-off bias, see Booth, Maindonald, and Smith (2002).
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4.2. Approximation of present value of liabilities

In this section we describe the life insurance products and the approxima-
tion in order to obtain the value of the payments of liabilities. Given the
uncertainty in the mortality rates, also the sum of the discounted future
payments of life insurance products is currently stochastic.

We will use the closed form expression of longevity risk in life insurance
products for the following two types of liabilities:

1. An old age pension consisting of a nominal yearly payment of 1 at
the beginning of a year in which the participant reaches the age of 65,
with a last payment in the year (s)he dies;

2. A partner pension consisting of a nominal yearly payment of 1 at the
beginning of a year in which the participant dies, with a last payment
in the year his (her) partner dies.

Let x, y represents the age class of respectively the insured and partner
of the insured if present, g, g′ the gender of respectively the insured and
partner of the insured if present, and p be the partner indicator, with p = 1
in case a partner is present, and p = 0 otherwise, ri = max{65 − x, 1},
the number of years until the first old-age retirement payment. Let τp

g
x,t

denote the probability that an individual aged x at time t with gender g will

survive at least τ years and let P
(τ)
t denote the current market value of one

unit to be paid at time t + τ , i.e., the market value of a zero coupon bond
maturing at time t + τ ≥ t. Define the vector L̃pp,τ with the payments of
each pension product in year t + τ and the vector L with the sum of the
discounted payments of each pension product, i.e., the expectation of L is
the best estimate of the liabilities. For our two products we have:

1. Old-age pension:

L̃oa,τ (x, g, t) = τp
g
x,t, Loa (x, g, t) =

MA−x∑

τ=ri

[
τp

g
x,t × P

(τ)
t

]
.

2. Partner pension:

L̃pp,τ (x, g, 1, y, g′, t) =
(
1 − τp

g
x,t

)
×τp

g′
y,t, Lpp (x, g, 1, y, g′, t) =

MA−y∑

τ=1

[(
1 − τp

g
x,t

)
× τp

g′
y,t × P

(τ)
t

]
.

In order to obtain a closed form approximation of longevity risk in the
discounted cash flows for a portfolio of life insurance products we make three
approximation steps. The first one is that we approximate the lognormal
distribution of the forces of mortality by a normal one, where the parameters
are set such that the first two moments of the two distributions match. As a
consequence of this approximation the distribution of the one-year survivor
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probabilities and the probabilities of surviving τ years are approximately
lognormal. The second approximation step considers the distribution of the
one-year probability of dying (which is equal to one minus the one-year prob-
ability of surviving) and for the distribution of dying within τ years (which
is equal to one minus the τ years probability of surviving). We assume that
these variables, which each are equal to one minus a lognormal distributed
variable, are approximately lognormally distributed. The parameters for
this approximation are also set such that the first two moments of these
distributions match. The third approximation step is that the sum of dis-
counted payments of the different life insurance products of the different
years (which are each by approximation lognormally distributed) is approx-
imated using the lognormal distribution. Asymptotically, when the variance
goes to zero, one can show that the sum of lognormal distributed variables
is indeed lognormal distributed, see e.g., Dufresne (2004). For a more de-
tailed description of the approximations and the closed form expression of
longevity risk in life insurance products we refer to Appendix 7.1.

Our approach to obtain the distribution of the discounted future cash
flows of life insurance products is different from the comonotonic quantile-
additivity approach developed in Denuit and Dhaene (2007) and Denuit
(2008), since it does not require the assumption of comonotonic random
variables (i.e., the mortality rates) and monotonic function of these variables.
In order to investigate hedging effects between two (or more) types of insured
(for example, males and females, high and low income insureds, or insureds
from different countries) we want to allow for some (positive) correlation,
but not perfectly. In order to investigate the hedging effects of different
products, such as partner pension liabilities or death benefits liabilities, we
also want to allow that the variable of interest may be a non-monotonic
function of the death rates. Moreover, in our model we do not need the
restriction that all the age specific parameters βx should have the same
sign, which may not be the case see e.g. Brouhns, Denuit, and Vermunt
(2002) where the sign of the βx switch sign at the age of 95 for males and
97 for females using Belgian mortality data.

For the two different life insurance products we compared the distri-
bution characteristics of the closed form expression with the distribution
characteristics of 100,000 simulations of the discounted cash flows without
the approximations. In the simulations the one-year survival probabilities
are given by:

pg
x,t+T = exp

(
−µg

x,t+T

)
,

τp
g
x,t+T =

τ−1∏

s=0

pg
x,t+T+s,

where the parameters as given in equations (17)–(23). In Appendix 7.1
the 95% confidence intervals for the simulation error for the 75%, 90%,
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and 99.5% percentile of the discounted cash flows are given. We observe
that the difference in characteristics of the distribution of discounted cash
flows for the different life insurance products are close to the results of the
simulations. The main difference in characteristics of the distribution using
the simulations and the closed form approximation is the skewness. This
leads to an increase in the difference between the simulations and the closed
form expression when approximating the tail of the distribution.

4.3. Approximation for the CoC approach

In this section we describe the approximation for the market value of the lia-
bilities in the Cost of Capital approach. In order to simulate the CoC capital
requirements one needs for each year until the last payment the MVL (and
the SCR) conditional on the information until that year. In addition, the
MVL in a given year depends on the distribution of MVL in the succeeding
years conditional on the available information in that year. It requires not
too much computer time is in the year before the last payments are made
to simulate the capital requirements in the Cost of Capital approach. This
can be done by simulating N times the forces of mortality at the time the
last payment is made. To simulate the CoC capital requirements one year
earlier, one should make N simulations of the forces of mortality at the time
the second last payment is made. In addition, to calculate the MVL in the
year before the last payment is made, for each of these N simulations we
need the MVL. In order to calculate the MVL, for each of the simulated
paths of the forces of mortality next year one needs the SCR next year, for
which one should do also N simulations for each path of the forces of mor-
tality next year. For pension liabilities, which are typically contracts with a
payments of possibly a long duration, this backward induction algorithm be-
comes too time consuming to simulate. The capital requirements in the Cost
of Capital approach depend on the joint distribution of the payments in a
year and the market value of the liabilities after the payment conditional on
the information in the previous year. Given this joint distribution one can
calculate the capital requirements using a backward induction algorithm.
For the joint distribution we additionally need to have the distribution of
the market value of the liabilities. Whereas the market price of the lia-
bilities are known at a given point in time, given the information at that
time, the market price of the liabilities in the next year in stochastic. In
the year before the last payment will be made, given the information upon
that year, the market value of the liabilities is deterministic and depends
on the distribution of the payments in the last year, which is approximately
lognormally distributed. In the year before, i.e., two years before the last
payment is made, the market value of the liabilities in the succeeding year,
i.e., the year before the last payment is made, is stochastic. Since the pay-
ments in the last year are lognormally distributed, the distribution of the
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market price of the liabilities in the succeeding year is also lognormally dis-
tributed. Using that the sum of two lognormal distributed random variables
is again lognormally distributed (see, e.g., Dufresne, 2004), the market value
of the liabilities next year plus the liability payments within a year is again
lognormally distributed. Using this backward induction algorithm we ob-
tain a closed form approximation for the capital requirements in the Cost
of Capital approach. For a more detailed description we refer to Appendix
7.2, where we derive the closed form approximated distribution of the mar-
ket value of a portfolio of life insurance products over time. In addition,
in Appendix 7.2 we compare the aggregated discounted differences in the
best estimate scenarios between the SCR using simulations of the mortality
probabilities and using the approximations. We find for different portfolios
of life insurance products that the aggregated discounted difference is small,
approximately 1%. The discounted sum of SCR multiplied with the cost of
capital rate gives the MVM hence, the results indicate that the error using
the model for calculating the MVL is small.

5. Solvency capital requirements

In this section we will use the closed form approximation to calculate capi-
tal requirements for a portfolio of life insurance products and compare the
results with the simplified approach in the Solvency II proposal. Let δ(j)
be the vector with portfolio weights for portfolio j. To calculate the capi-
tal requirements and to illustrate the effect of the assumptions made in the
simplified approach, we will use the following four portfolios:

δ(1): 100% male, aged 65, with old age pension;

δ(2): 100% female, aged 65, with old age pension;

δ(3): 50% male, aged 65, with old age pension and 50% female, aged 65,
with old age pension liabilities;

δ(4): 50% male ,aged 65, with old age pension and partner pension, and
50% female, aged 65, with old age pension and partner pension. The
partner is of the opposite gender with age 65, the partner pension
payments are 70% of the old-age pension payments.

In order to focus on the effect of longevity risk, we assume that the
return on assets within a year is deterministic and equal to 4%, and we let
the term structure of interest rates be constant and deterministic at 4%,

resulting in P
(τ)
t = 1

1.04τ for all t, and τ . To estimate the parameters of the
distribution of the future mortality rates we use US, UK, and Dutch age and
gender specific mortality data from 1970 to 2006. A detailed description
of the method to estimate the parameters in the Lee-Carter model and
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the parameter estimates are given in Appendix ??. In Subsection 5.1 we
first calculate the capital requirements using the Solvency II simplifications.
Then we calculate the capital requirements using the internal approach for
the Cost of Capital approach. In order to obtain the capital requirement we
need to set the parameters T , α, FRmin, and CoC. These parameters are
set following the Solvency II proposal, i.e., T is set at one year, α is set at
0.005, FRmin is set equal to one, and CoC is set equal to 6%. In Section 5.2
we use the simplifications, as described in Section 3, in order to give insight
to why these simplifications lead to different required capital reserves.

5.1. The capital requirements

In this section we will calculate the capital requirements using the Cost of
Capital approach to calculate the market value and the reserve of life insur-
ance products with longevity risk. In the recent versions of QIS it is proposed
to calculate the market value of liabilities for which there is no liquid market
using the Cost of Capital (CoC) approach. The MVM in the CoC approach
depends on the current SCR and all future SCR. The MVM is given by a
CoC-percentage times the sum of the current SCR and discounted future
SCR. To simulate the MVM and the SCR in the CoC approach requires
too many simulations. Therefore, in this section we quantify the effect of
the simplification as described in Section 3 and we determine the MVM and
SCR in an internal model using the approximated distribution. In QIS 411

the CoC-rate is set at 6% in excess of the riskfree interest rate. The reaction
of the industry to the Solvency proposal12, that the CoC-percentage was set
too high. Therefore, in our calculations we also use the CoC-percentage of
4% in addition of the proposed 6%. First, we determine the capital require-
ments for the four portfolios using the simplifications proposed in Solvency
II, i.e., using simplification A1. Table 1 displays the capital reserves in the
simplified approach for the four portfolios.

11See QIS 4, TS.II.C.14.
12See the FSA UK country report and CEA (the European insurance and reinsurance

federation)
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Table 1

Table with capital requirements using the Solvency II proposal.

A⋆
t - BELt

BELt

MVMt

BELt

SCRt

BELt

A⋆
t - BELt

BELt

MVMt

BELt

SCRt

BELt

CoC = 6% CoC = 4%

US

δ(1) 20.59% 10.66% 9.93% 17.04% 7.10% 9.93%
δ(2) 17.12% 9.28% 7.84% 14.03% 6.19% 7.84%
δ(3) 18.75% 9.93% 8.83% 15.44% 6.62% 8.83%
δ(4) 16.47% 9.33% 7.13% 13.36% 6.22% 7.13%

UK

δ(1) 20.83% 10.71% 10.13% 17.26% 7.14% 10.13%
δ(2) 17.13% 9.27% 7.86% 14.04% 6.18% 7.86%
δ(3) 18.86% 9.94% 8.92% 15.55% 6.63% 8.92%
δ(4) 16.84% 9.50% 7.33% 13.67% 6.34% 7.33%

NL

δ(1) 20.33% 10.25% 10.07% 16.91% 6.83% 10.07%
δ(2) 15.72% 8.57% 7.15% 12.86% 5.71% 7.15%
δ(3) 17.81% 9.33% 8.47% 14.70% 6.22% 8.47%
δ(4) 15.89% 8.94% 6.95% 12.91% 5.96% 6.95%

This table displays the capital reserve, as percentage of the best es-

timate of the liabilities, for four different portfolios of life insurance

products for the US, UK, and the Netherlands. The market value of

the liabilities is set according the simplifications proposed in Solvency

II, using a Cost of Capital rate of 6% and 4%.

We observe the following:

i) The capital requirements are significant. For an insured aged 65 years,
depending on the portfolio composition and the CoC percentage, an
insurer should hold between 13% and 21% of the best estimate of the
liabilities in order to fulfill the capital requirements in the Solvency II
proposal. This is due to the large decrease in mortality probabilities
of 25% for calculating the current and future SCR’s.

ii) The SCR is independent of the CoC-rate. This is due to the definition
of the SCR in Solvency II. The current SCR is only affected by a
change in the best estimate of the liabilities and not by the market
value of the liabilities.

iii) For a CoC percentage of 4% and 6%, the MVM is approximately of

the same order as the SCR. The MVM include a compensation for the
reserves hold at any time of the contract. Hence, this is due to the
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combination of a CoC percentage of 4% or 6% in combination with a
long runn-off period of the liabilities.

Next, we determine the capital requirements for the different portfo-
lios using the internal model and using simplifications made to the internal
model. The capital requirements for the four portfolio using the three dif-
ferent CoC-percentages and the MVM using the two simplifications to the
internal model are given in Table 2. The second till the fourth column rep-
resents the capital requirements using the internal model. The fifth column
represents the MVM relative to the BEL determined using A2 as given in
equation (15) and the sixth column represents the MVM relative to the BEL
determined using A3 as given in equation (16). Table 8 displays the capital
requirements using a CoC-percentage of 4%.
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Table 2

Table with capital requirements using the CoC-approach.

Internal model A2 A3
A⋆

t - BELt

BELt

MVMt

BELt

SCRt

BELt

MVMt

BELt

MVMt

BELt

US

δ(1) 2.77% 1.09% 1.69% 0.99% 1.08%
δ(2) 1.31% 0.83% 0.49% 0.76% 0.34%
δ(3) 1.85% 0.86% 1.00% 0.79% 0.66%
δ(4) 1.54% 0.77% 0.78% 0.71% 0.55%

UK

δ(1) 4.31% 1.65% 2.69% 1.50% 1.68%
δ(2) 2.97% 1.54% 1.46% 1.42% 0.99%
δ(3) 3.48% 1.52% 1.99% 1.40% 1.30%
δ(4) 2.96% 1.36% 1.62% 1.26% 1.13%

NL

δ(1) 2.06% 1.06% 1.02% 0.97% 0.61%
δ(2) 4.52% 1.97% 2.58% 1.84% 1.76%
δ(3) 2.69% 1.17% 1.53% 1.10% 0.99%
δ(4) 2.62% 1.16% 1.47% 1.11% 1.02%

This table displays the capital reserve in the internal model, as
percentage of the best estimate of the liabilities, for four different
portfolios of life insurance products for the US, UK, and the
Netherlands. The market value of the liabilities is set according
the internal model with a Cost of Capital rate of 6%. The last
two columns display the MVMt using the simplifications. The
column A2 refers to the second simplification as given in equation
(15), and the column A3 refers to the third simplification as given
in equation (16).

We observe the following:

i) The capital requirements are much smaller than in the Solvency II

proposal. This hold for all investigated portfolios and for all three
countries. This may indicates that the capital requirements set by the
simplified proposal in Solvency II are conservative.

ii) The SCR marginally decreases when the CoC-rate increases. The SCR
decreases when the CoC-rate increases because a higher CoC-rates lead
to a larger part of the one year risks which is covered in the market
value of the liabilities. Hence, a higher Cost of Capital-rate leads to
a higher expected return of the liabilities within a year, resulting in a
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lower SCR. However, the MVL increases more than the corresponding
decrease of SCR, resulting in a higher total capital requirement for
the life insurance products. Although the SCR decreases when the
COC-rate increases, the SCR is not strongly affected by the different
CoC-rates. This implies that the SCR is relatively robust to the use
of method for the calculation of the SCR.

iii) The MVM calculated using the simplifications A2 and A3 generally un-

derestimates the capital requirements using the internal model. There-
fore, these simplifications may not be a preferable way to determine
the capital requirements.

In the next section we investigate the sources which results in the difference
between the capital requirements using the different approaches.

5.2. The effect of alternative definitions to calculate the cap-

ital requirements

In the previous section we observed that the approximations as described in
Section 3 leads to different capital requirements than in the internal model.
Therefore, in this section we investigate the sources which causes this dif-
ference and show their impact. The remainder of this section is organized
as follows. First, we will argue why a decrease of 25% in the mortality
probabilities may be too conservative. Second, we argue why the second
approximation A2 i.e., calculating the MVM using the discounted SCR in
the best estimate scenario, may preform well, but generally leads to an un-
derestimation of the capital requirement. Third, we will show why the third
approximation A3 i.e., calculating the MVM using a constant fraction of
SCR relative to BEL over the run-off period, may for some portfolios of life
insurance products preform well, but for others not.

Comparing (13) and (14) shows that the difference in the MVM of the
internal model and the Solvency II simplification is due to the method to
calculate the current and future SCR. In the internal model future mortal-
ity probabilities until time t + τ are stochastic at time t, which leads to
stochastic future SCR, whereas the future SCR in the Solvency II is deter-
ministic. A second difference between the MVM of the internal model and
the Solvency simplification is that in the internal model the current and
future SCR depend on the 99.5% of the discounted value of the payment
and the market value next year, whereas in the Solvency II simplification
it only depends on a scenario with a decrease in mortality probabilities.
Note that, although SCRt is equivalent to the sum of the present value of
the change in the asset value in all future years due to an immediate and
permanent shock in the survival probabilities, it cannot be interpreted as
the capital requirement in a ruin probability approach for the whole run-off
period. The reason is that SCRt only reflects capital requirements for the
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uncertainty in the survival probabilities due to changes within a year, but
not for uncertainty in the survival probabilities after one year. This can also
be seen from the MVM given in equation (14), which is the discounted sum
of the current and future SCR multiplied with a cost of capital charge. The
capital requirements using the simplified approach depend on the size of the
the longevityshock. In the document UNESPA longevity risk investigation

(2009) of the CEA13, the standard deviations of the annual mortality factor
for European mortality probabilities since 1956 are calculated. Using age
bands of 10 years and by 5 years ranges. The standard deviation was 1.32%,
1.18%, and 1.01% for the age bands [60–70], [70–80], and [80–90], respec-
tively. Table 3 displays the standard deviation of the annual improvement
factor for the time period 1970 till 2006 in US, UK, and the Netherlands.
The difference with the calculation of the standard deviation calculated in
the UNESPA longevity risk investigation (2009) is that we use age bands of
5 years and by 1 year ranges.

Table 3

Table with standard deviation of the annual mortality

improvement factor.

65–69 70–74 75–79 80–84 85–89 90–94 95–99

US Males 1.13% 1.38% 1.50% 1.54% 2.07% 2.74% 2.96%
US Females 1.70% 1.39% 1.78% 1.82% 2.22% 2.77% 2.91%

UK Males 2.08% 2.24% 2.69% 2.37% 3.33% 3.37% 4.50%
UK Females 2.29% 2.19% 2.71% 2.56% 3.21% 3.61% 3.42%

NL Males 2.38% 2.56% 2.80% 3.29% 3.53% 4.25% 5.88%
NL Females 2.38% 2.41% 2.68% 2.94% 3.22% 3.16% 3.74%

This table displays the standard deviation of the age and gender
specific mortality improvement factor from 1970 till 2006 for US,
UK, and the Netherlands. The standard deviation of the 5 years
age band is the average of the five annual age and gender specific
mortality improvement factors.

Assuming a normal distribution for the annual improvement factor, the
0.5% quantile of the distribution of the unexpected change in annual im-
provement factor is minus 2.58 times the standard deviation. From Table 3
we observe that a reduction of 25% in mortality probabilities seems unrea-
sonable high when using the uncertainty in the annual mortality improve-
ment factor from 1970 in all countries. According to historical data and
assuming a normal distribution, the shock scenario would have a decrease

13CEA is the European insurance and reinsurance federation.
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in the annual improvement of between 5% and 10%. The much lower cap-
ital reserve calculated in the internal model than using the simplification
in Solvency II can be explained by a much lower uncertainty in the future
mortality probabilities in the internal model than in the Solvency II shock
scenario.

The second approximation A2 is calculating the MVM using the dis-
counted SCR in the best estimate scenario instead of the currently expected
discounted SCR. This leads to a small, i.e., less than 10%, underestimation
of the MVM. This occurs because the SCR at time t + τ does not only
depends on the evolution in the survivor probabilities until time t, but also
on the evolution in the survivor probabilities between time t and t + τ . In
the best estimate scenario, the trend in the survivor probabilities between
time t and t + τ is the same as before time t, whereas in the whole distri-
bution of the possible occurred evolutions of the survivor probabilities the
trend in the survivor probabilities between time t and t + τ generally differs
from the trend before time t. A different trend between time t and t + τ
and before time t leads to more uncertainty in the forecasts after time t + τ
conditional on information until time t + τ than when the trend between
time t and t + τ equals the trend before time t. This implies that using the
best estimate scenario instead of the currently expected value values of the
SCR typically leads to an underestimation of the uncertainty in the future
survivor probabilities which leads to an underestimation of the MVM.

The third approximation A3 is calculating the MVM using a constant
fraction of SCR relative to BEL over the run-off period. This generally also
leads to an underestimation of the capital reserves. Especially for a portfolio
consisting of males in UK and US aged 65 years with old-age pension in-
surance the approximation seems to work well. For a portfolio with females
insureds the capital reserves calculated using approximation A3 lead to a
large underestimation of the capital reserves. A good approximation would
require that the SCR relative to BEL is indeed constant over the run-off
period. Figure 1 displays the size of the buffer in the internal model relative
to the best estimate of the liabilities over the run-off period. Note that the
lines are not smooth, since we have not smoothed the mortality rates and the
reduction factor, i.e., we did not smooth bx in the Lee-Carter model. One of
the effects of a change in the size of the buffer relative to the best estimate
of the liabilities is the value of bx. The values of bx is plotted in Figure 4. In
general, for males the value of bx decreases with age. For females the value
of bx stays more or less constant until the age of 85 and after the age of 85
it decreases with age. A decrease of bx with age leads to less uncertainty
in the annual mortality improvement factor. This leads to a lower buffer,
relative to the best estimate of the liabilities. Besides the effect of bx, there
are also two other important effects, namely:
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1) The time to future payments is decreasing. When time elapses there
is less parameter risk in a future payment. This leads to a decrease in
the uncertainty of the market value of the liabilities in the succeeding
year. Hence, this results in a lower size of the buffer relative to the
best estimate of the liabilities over time.

2) Mortality probabilities are increasing with age, leading to a higher size
of the buffer relative to the best estimate of the liabilities. Because
mortality probabilities for older are larger, a general change in mortal-
ity probabilities (i.e., a change in the parameter kt in the Lee-Carter
model) has more effect for mortality probabilities at higher ages.

From Figure 1 we observe that the buffer relative to the best estimate
of the liabilities in general first decreases when time elapses, which is due
to the first effect, and later increases, which is due to the second effect.
The relatively good approximation for males insured of the MVM is due
to the age of the insured. When the insureds are older the simplification
would underestimate the MVM more, whereas when the insureds would be
younger the MVM would overestimate the MVM. The size of the buffer
relative to the best estimate is not constant, not even monotonic increasing
or decreasing, in the run-off period, which makes it difficult to set a general
rule for the MVM using only one SCR. The large underestimation for females
is due to the shape of the value bx. After the age of 65 the value of bx is
increasing with age until the age of approximately 80. This implies that
the uncertainty in the mortality probabilities at age 65 is relatively low
and therefore the approximation of a constant buffer relative to the best
estimate of the liabilities leads to an underestimation of the value of the
required future buffers.

6. Conclusions

This paper investigates the capital requirements for a portfolio of life insur-
ance products. The capital requirements are set according to the funding
ratio approach. The funding ratio approach is in line with the QIS4 Tech-
nical Specification of the Solvency II proposal. In order to calculate the
capital requirements we derived a closed form approximation of the distri-
bution of the discounted cash flows and the market value of the liabilities
of a portfolio of life insurance products using the Cost of Capital approach.
The results from closed form approximation are close to the results ob-
tained from simulations, which indicates that the approximations does not
lead to large estimation error of the capital requirements. The closed form
approximation of the market value of the liabilities in the Cost of Capital
approach allows us to calculate the capital requirements, whereas this would
require too many simulations using simulations without making simplified
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Figure 1. Buffer as percentage of best estimate of the liabilities in the
run-off period
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The figure displays the SCR as percentage of the best estimate of

the liabilities over time for the run-off period for the US (solid curves),

UK (dashed curves), and the Netherlands (dashed-dotted curves). The

upper left panel displays the SCR as percentage of the best estimate

of the liabilities for the portfolio δ(1), the upper right panel for the

portfolio δ(2), the lower left panel displays for the portfolio δ(3), and

the lower right panel for the portfolio δ(4).
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assumptions to calculate the MVM of life insurance products. Using our ap-
proximation we calculated the capital requirements for different portfolios
of life insurance products and compared them with the capital requirements
using the Solvency II proposed standard formula. Our results suggest that
the capital requirements using the simplified approach in the Solvency II
proposal lead to an overestimation of the capital requirements, which oc-
curs because the shock in mortality probabilities is larger than past data
would suggest. Moreover, our results suggest that an one size fits all imme-
diate and permanent decrease in mortality probabilities, as proposed in the
Solvency II proposal, to calculate the capital requirements will lead to an
overestimation of capital requirements with a short coverage duration and
an underestimation of capital requirements with a long coverage duration.
In addition, we have show that using the best estimate scenario instead of
the expected value of future SCR to calculate the MVM leads to an under-
estimation of the MVM, but the underestimation of the MVM is not too
large. Finally, our results suggests that the SCR are robust to the method
used for calculating the market value of the life insurance products. The
SCR is not only robust to the percentile used in the percentile approach and
the Cost of Capital rate in the Cost of Capital approach, but also robust
to choice of the method. Let us finally indicate an interesting direction for
future research. In this paper we compared the capital requirements using
the funding ratio approach with the capital requirements in the simplified
approach of Solvency II. We have shown that using only an immediate and
permanent shock in mortality probabilities will not reflect the true uncer-
tainty in the future market value of the liabilities. We argued that a more
appropriate, but not complex, simplified approach would include not only
a immediate and persistent shock in mortality probabilities, but would also
include a change in the forecasted trend of the reduction of mortality prob-
abilities. It could be interesting to investigate the size of the both the shock
in mortality probabilities and the change in the trend of future decline in
mortality probabilities and it effects on capital requirements for different life
insurance products.
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[11] Group Consultatif Actuariel Europeen (2006), Solvency II: Risk Margin
Comparison.
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7. Appendix

7.1. Approximations for the Distribution of the Discounted

Cash Flows

In this section we derive the closed form approximation of the sum of the
discounted cash cash flows of a portfolio of life insurance products. Introduce
the index set

I = {(x, t, g) | x ∈ {1, ...,MA}, T ∈ R, t ∈ {1, ...,MA − x}, g ∈ {M,F}}

with x representing the age class, t the time period under consideration, and
g the gender. Define the vector ℓ, with components ℓ (i), for i = (x, T, t, g) ∈
I, by,

ℓ (i) = log
(
µg

x+t,T+t

)
− log

(
µg

x+t,T

)
. (24)

Using (21)—(22), we find for i = (x, T, t, g) ∈ I,

ℓ (i) =

(
ag

x+t + tbg
x+tc

g + bg
x+t

t∑

s=1

eg
T+s + ǫg

x+t,T+t

)
−
(
ag

x+t + ǫg
x+1,T

)

= tbg
x+tc

g + bg
x+t

t∑

s=1

eg
T+s =

(
ǫg
x+t,T+t − ǫg

x+t,T

)
.

Straightforward calculations result in the following lemma.

Lemma 1

ℓ ∼ N (µℓ,Σℓ) (25)

with µℓ the mean vector with components

µℓ (i) = tbg
x+tµ

g
c ,

for i = (x, T, t, g) ∈ I, and with Σℓ the covariance matrix, with components

Σℓ (i, j) = bg
x+tb

h
y+τf (i, j) + 2Σg,h

ǫ (x + t, y + τ),

for i = (x, T, t, g) , j = (y, T, τ, h) ∈ I, where

f (i, j) =
(
1(g=h) + 1(g 6=h)ρe

)
×σg

eσ
h
e min(t, τ)+

(
1(g=h) + 1(g 6=h)ρc

)
×σg

cσ
h
c tτ.

Next, we introduce the vector of Reduction Factors rf , with components
rf (i), for i ∈ I, as follows

rf (i) = exp (ℓ (i)) . (26)
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Let X ∼ N (µ,Σ), and Y = exp (X). Then Y ∼ log N (µ,Σ). Using Lemma
1, we have mf ∼ log N (µℓ,Σℓ). We define the vector µ̃, with components
µ̃ (i), for i = (x, t, g) ∈ I, by

µ̃ (i) = rf (i) × µ̂g
x+t,T , (27)

with µ̂g
x+t,T the actually observed µg

x+t,T , used as “starting value.” We
define the vector ℓT , with components ℓT (i), for i = (x, T, t, g) ∈ I, by

ℓT (i) = log
(
µ̂g

x+t,T

)
. Then we have µ̃ ∼ log N (ℓT + µℓ,Σℓ)

First Approximation. We use as first approximation µ̃ ∼ N (µµ,Σµ),
with the vector µµ, with components µµ (i), for i ∈ I, given by

µµ (i) ≡ exp

(
ℓT (i) + µℓ (i) +

1

2
Σℓ (i, i)

)
,

and with the matrix Σµ, with components Σµ (i, j) for i, j ∈ I, given by

Σµ (i, j) ≡ (exp (Σℓ (i, j)) − 1)

× exp

(
ℓT (i) + µℓ(i) + ℓT (j) + µℓ(j) +

1

2
Σℓ (i, i) +

1

2
Σℓ (j, j)

)
.

�

The parameters in the first approximation are chosen just that the first
two moments of the distributions match. In Figure 2 and Table 4 the ac-
curacy of the approximation is displayed. The upper left panel of Figure 2
corresponds with the parameters of the distribution of the one-year prob-
ability of surviving of a male individual age 100 in 35 years from now in
the Netherlands. The upper right panel corresponds with the parameters of
the distribution of the one-year probability of surviving of a male individual
individual age 100 in 75 years from now. The lower left panel displays the
the effect of an increase in µX for the parameters of the upper right panel.
The lower right panel displays the the effect of an increase in σX for the
parameters of the upper right panel.

We define the vector p̃, with components p̃ (i), for i ∈ I by

p̃ (i) ≡ 1p
g
x+t,T+t = exp (−µ̃ (i)) , (28)

and we define the vector S̃, with components S̃ (i), for i = (x, T, t, g) ∈ I,
by

S̃ (i) ≡ tp
g
x,T+t =

t∏

s=1

p̃ (x, s, g) . (29)

The vector p̃ represents the one-year survivor probabilities of an x + t year
old individual in year T +t with gender g (1p

g
x,s), and the vector S̃ represents
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Figure 2. Comparison Log Normal - Normal
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This figure displays the probability density function of X ∼
log N

(
µX , σ2

X

)
and probability density function of the approx-

imation Y ∼ N
(
µY , σ2

Y

)
for different values of µ ≡ µX and

σ ≡ σX . The parameters µY and σ2
Y are set such that they match

the first two moments of those of X: µY = exp
(
µX + 1

2σ2
X

)
and

σ2
Y =

(
exp

(
σ2

X

)
− 1
)
exp

(
2µX + σ2

X

)
.
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Table 4

Comparison Log Normal-Normal

µX = -3.9553; µX = -1.9579; µX = -4.3077; µX = -2.0208;
σX = 0.14693 σX = 0.054624 σX = 0.23096 σX = 0.063193

Q X Y X Y X Y X Y

0.01 0.014 0.013 0.124 0.123 0.008 0.006 0.114 0.113
0.025 0.014 0.014 0.127 0.126 0.009 0.007 0.117 0.116
0.05 0.015 0.015 0.129 0.129 0.009 0.009 0.119 0.119
0.1 0.016 0.016 0.132 0.131 0.010 0.001 0.122 0.122
0.25 0.017 0.017 0.136 0.136 0.012 0.012 0.127 0.127
0.5 0.019 0.019 0.141 0.141 0.013 0.014 0.133 0.133
0.75 0.021 0.021 0.146 0.147 0.016 0.016 0.138 0.138
0.9 0.023 0.023 0.151 0.151 0.018 0.018 0.144 0.144
0.95 0.024 0.024 0.154 0.154 0.020 0.019 0.147 0.147
0.975 0.026 0.025 0.157 0.157 0.021 0.020 0.150 0.149
0.99 0.027 0.026 0.160 0.159 0.023 0.021 0.154 0.152

This table displays the quantiles of the function X ∼
log N

(
µX , σ2

X

)
and the corresponding quantiles of the approx-

imating distribution Y ∼ N
(
µY , σ2

Y

)
. The parameters of

Y are set such that the first two moments of Y match the
first two moments of X: µY = exp

(
µX + 1

2σ2
X

)
and σ2

Y =(
exp

(
σ2

X

)
− 1
)
exp

(
2µX + σ2

X

)
. The column with heading Q

displays the quantiles. The other columns show the quantiles
of X and Y for different values of µX and σX , where the sub-
columns with heading X present the quantiles of the distribution
of X, and the subcolumns with heading Y the quantiles of the
corresponding distribution of Y .
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the probability that an individual with age x and gender g in year T will
survive another t years (τp

g
x,s). Straightforward calculations result in the

following lemma.

Lemma 2 Given the approximation µ̃ ∼ N (µµ,Σµ), we have

(
p̃

S̃

)
∼ log N

((
µℓp

µℓS

)
,

(
Σℓp ΣℓpS

ΣℓSp ΣℓS

))
,

with µℓp = −µµ, Σℓp = Σµ, and where, for i = (x, T, t, g) ∈ I,

µℓS (i) =

t∑

s=1

(−µµ (x, T, s, g)) ,

and for i = (x, T, t, g) , j = (y, T, τ, h) ∈ I,

ΣℓS (i, j) =

t∑

s1=1

τ∑

s2=1

Σµ ((x, T, s1, g) , (y, T, s2, h))),

and

ΣℓSp (j, i) = ΣℓpS (i, j) =
τ∑

s=1

Σµ ((x, T, t, g) , (y, T, s, h))).

Let X ∼ log N (µℓX ,ΣℓX), with X = p̃ or X = S̃. Then for i ∈ I,

µX (i) ≡ E (X (i)) = exp

(
µℓX (i) +

1

2
ΣℓX (i, i)

)
, (30)

and for i, j ∈ I,

ΣX (i, j) ≡ Cov (X (i) ,X (j)) = (exp (ΣℓX (i, j)) − 1)

× exp

(
µℓX (i) + µℓX (j) +

1

2
ΣℓX (i, i) +

1

2
ΣℓX (j, j)

)
. (31)

Introduce q̃ = 1 − p̃ and D̃ = 1 − S̃. The vector q̃ represents the one-
year mortality probabilities of an x + t year old individual in year T + t
with gender g, the vector D̃ denotes the probability that an x year old in
year T with gender g will not survive another t years. Next, we define H,
with components H (k, i), for k ∈ {1, 2, 3, 4} and i ∈ I, by H (1, i) = p̃ (i),
H (2, i) = q̃ (i), H (3, i) = S̃ (i), and H (4, i) = D̃ (i). Note that the vectors
of the matrix H corresponds to the four different probabilities which reflects
survivor probabilities (i.e., one-year survivor probabilities, τ years survivor
probabilities, one-year death probabilities, and the probabilities of dying
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within τ years). Using lemma 2, we can easily calculate µH ≡ E (H) and
ΣH ≡ Cov (H).

Second Approximation. As our second approximation, we take H ∼
log N (µℓH ,ΣℓH), with for u = (k, i), k ∈ {1, 2, 3, 4}, and i ∈ I,

µℓH(u) = log (µH (u)) −
1

2
ΣH (u, u) ,

and for u1 = (k1, i1), u2 = (k2, i2), with k1, k2 ∈ {1, 2, 3, 4}, and i1, i2 ∈ I,,

ΣℓH (u1, u2) = log

(
1 +

ΣH (u1, u2)

µH (u1) µH (u2)

)
.

�

The parameters in the second approximation are chosen such that the
first two moments of the distributions match. Figure 3 and Table 5 display
the accuracy of the approach. The upper left panel of Figure 3 corresponds
with the parameters of the distribution of the probability of dying for a
Dutch male individual currently aged 65 in 1 year from now. The upper right
panel corresponds with the parameters of the distribution of the probability
of dying for a Dutch male individual currently aged 65 in 32 year from now.
The lower left panel corresponds with the parameters of the distribution of
the probability of dying for a Dutch male individual currently aged 25 in
41 year from now. The lower right panel corresponds with the parameters
of the distribution of the probability of dying for a Dutch male individual
currently aged 25 in 72 year from now.

Introduce the index set

J = {(a, T, x, g, p = 0) | a ∈ A, T ∈ R, x ∈ {1, ...,MA}, g ∈ {M,F}}
⋃

{(a, T, x, g, p = 1, y, g′) | a ∈ A, T ∈ R, x, y ∈ {1, ...,MA}, g, g′ ∈ {M,F}}

with a representing the pension product from the product class A, T rep-
resenting the base year, x, y representing the age class of respectively the
insured and partner of the insured if present, g, g′ the gender of respectively
the insured and partner of the insured if present, and p be the partner in-
dicator, with p = 1 in case a partner is present, and p = 0 otherwise. For
j = (a, T, x, g), let rj = max{65 − x, 1}, the number of years until the first

old-age retirement payment. Let P
(t)
T denote the current market value of

one unit to be paid at time T + t, i.e., the market value of a zero coupon
bond maturing at time T + t ≥ T . For j = (a, T, x, g) ∈ J , define the vector
L with the sum of the discounted payments of each pension product:

1. Old-age pension:

L (OA,T, x, g) =

MA−x∑

t=ri

[
S̃ (x, T, t, g) × P

(t)
T

]
.
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Figure 3. Comparison 1 − Log Normal - Log Normal
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This figure displays the probability density function of Y =
1 − X, with X ∼ log N(µX , σ2

X) and the probability density
function of the approximation Z ∼ log N(µZ , σ2

Z) for different
values of µ ≡ µX and σ ≡ σX . The parameters of Z are
set such that the first two moments of Z match the first two
moments of X: µZ = log

(
1 − exp

(
µX + σ2

X/2
))

− σ2
Z/2 and

σ2
Z = log

(
1 +

(exp(σ2
X)−1) exp(2µX+σ2

X)

(1−exp(µX+σ2
X

/2))
2

)
.

36



Table 5

Comparison 1 − Log Normal- Log Normal

µX = -0.052786; µX = -0.31694; µX = -0.38612; µX = -3.5138;
σX = 0.0048811 σX = 0.022088 σX = 0.023094 σX = 0.064043

Q X Z X Z X Z X Z

0.01 0.041 0.042 0.233 0.236 0.283 0.285 0.965 0.966
0.025 0.042 0.043 0.239 0.241 0.289 0.290 0.966 0.966
0.05 0.044 0.044 0.245 0.246 0.294 0.295 0.967 0.967
0.1 0.045 0.046 0.251 0.251 0.300 0.300 0.968 0.968
0.25 0.048 0.048 0.261 0.260 0.310 0.309 0.969 0.969
0.5 0.051 0.051 0.272 0.271 0.320 0.320 0.970 0.970
0.75 0.055 0.054 0.282 0.282 0.331 0.330 0.971 0.971
0.9 0.057 0.057 0.292 0.292 0.340 0.340 0.973 0.973
0.95 0.059 0.059 0.298 0.299 0.346 0.347 0.973 0.973
0.975 0.060 0.061 0.302 0.304 0.350 0.352 0.974 0.974
0.99 0.062 0.063 0.308 0.311 0.356 0.358 0.974 0.975

This table displays the quantiles of the distribution Y = 1 − X,
with X ∼ log N(µX , σ2

x) and the quantiles of the approximat-
ing distribution Z ∼ log N(µZ , σ2

Z). The parameters of Z are
set such that the first two moments of Z match the first two
moments of X: µZ = log

(
1 − exp

(
µX + σ2

X/2
))

− σ2
Z/2 and

σ2
Z = log

(
1 +

(exp(σ2
X)−1) exp(2µX+σ2

X)

(1−exp(µX+σ2
X

/2))
2

)
. The first column with

heading Q displays the quantiles. The other columns show the
quantiles of X and Z for different values of µX and σX , where
the subcolumns with heading X present the quantiles of the dis-
tribution of X, and the subcolumns with heading Z the quantiles
of the corresponding distribution of Z.
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2. Partner pension:

L (PP, T, x, g, 1, y, g′) =

MA−y∑

t=1

[
D̃ (x, T, t, g)× S̃ (y, T, t, g′)×P

(t)
T

]
.

Notice that each component L (j), j ∈ J , is of the form

L (j) =
∑

v∈Vj




∏

u∈U(v,j)

H (u)


 c(v,j), (32)

with constants c(v,j) of the form P
(t)
T for appropriate t.

Introduce the vector L̃ with components L̃ (w), for w = (v, j), with v ∈
Vj and j ∈ J , defined by L̃ (w) ≡

∏
u∈U(w)

H (u). Given H ∼ log N (µℓH ,ΣℓH),

we have L̃ ∼ log N
(
µ

ℓL̃
,Σ

ℓL̃

)
, with for w = (v, j), v ∈ Vj, and j ∈ J ,

µ
ℓL̃

(w) =
∑

u∈Uw

µℓH (u) , (33)

and for w1 = (v1, j1), w2 = (v2, j2), with v1 ∈ V1, v2 ∈ V2, and j1, j2 ∈ J ,

Σ
ℓL̃

(w1, w2) =
∑

u1∈Uw1

∑

u2∈Uw2

ΣℓH (u1, u2) . (34)

Define for w = (v, j), v ∈ Vj , and j ∈ J ,

µL̃ (w) ≡ E
(
L̃ (w)

)
= exp

(
µℓL̃ (w) +

1

2
ΣℓL̃ (w,w)

)
, (35)

and for w1 = (v1, j1), w2 = (v2, j2), with v1 ∈ V1, v2 ∈ V2, and j1, j2 ∈ J ,

Σ
L̃

(w1, w2) ≡ Cov
(
L̃ (w1) , L̃ (w2)

)

=
(
exp

(
ΣℓL̃ (w1, w2)

)
− 1
)

× exp

(
µ

ℓL̃
(w1) + µ

ℓL̃
(w2) +

1

2
Σ

ℓL̃
(w1, w1) +

1

2
Σ

ℓL̃
(w2, w2)

)
.

(36)

Notice that L is just a linear transformation of L̃, i.e., we can write L =
BL̃, with B a matrix with components B (j, w), for j ∈ J and w = (v, j),
v ∈ Vj, and j ∈ J , given by B (j, w) = cw in case w = (v, j) is such that
v ∈ Vj , and B (j, w) = 0 otherwise. Then we define µL by µL ≡ Bµ

L̃
, and

ΣL by ΣL ≡ BΣ
L̃
B′. Next, let δ, with components δ (j), j ∈ J , represent

a portfolio of pension liabilities, where δ (j) denotes the weight of liability
L (j). More generally, let δ′ ≡ (δ1, ..., δK) denote a matrix with portfolios
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of pension liabilities δ1, ..., δK . Then δL is the K-dimensional vector with
as components δ′1L, ..., δ′KL, the liabilities of the corresponding portfolios.
Define µδ by µδ ≡ δµL, and Σδ by Σδ ≡ δΣLδ′.

Third Approximation. As our third approximation, we take δL ∼ log N (µℓδ,Σℓδ),
with for j ∈ J ,

µℓδ(j) = log (µδ (j)) −
1

2
Σδ (j, j) ,

and for j1, j2 ∈ I,,

Σℓδ (j1, j2) = log

(
1 +

Σδ (j1, j2)

µδ (j1)µδ (j2)

)
.

�

In Table 6 the 95% confidence intervals of the simulation uncertainty for
three quantiles of the distribution of the discounted cash flows are given.
The three quantiles are the 75%, 90%, and the 99.5% quantile, the number
of simulations are 10,000 and 100,000. From table 6 we observe that that
the closed form approximation is quite accurate.

Table 6

95 percent confidence intervals of quantiles of the distributions

N 10,000 100,000 Model

Q(0.75)

oa m [ 11.6048 - 11.6126 ] [ 11.6066 - 11.6093 ] 11.6059
oa f [ 13.2760 - 13.2872 ] [ 13.2826 - 13.2865 ] 13.2824
pp m [ 3.3288 - 3.3373 ] [ 3.3293 - 3.3317 ] 3.3313
pp f [ 1.6605 - 1.6658 ] [ 1.6642 - 1.6658 ] 1.6666

Q(0.90)

oa m [ 11.6959 - 11.7068 ] [ 11.7007 - 11.7039 ] 11.7038
oa f [ 13.4047 - 13.4171 ] [ 13.4166 - 13.4212 ] 13.4256
pp m [ 3.4154 - 3.4245 ] [ 3.4182 - 3.4216 ] 3.4245
pp f [ 1.7197 - 1.7257 ] [ 1.7221 - 1.7241 ] 1.7254

Q(0.995)

oa m [ 11.8873 - 11.9240 ] [ 11.8918 - 11.9018 ] 11.9152
oa f [ 13.6767 - 13.7078 ] [ 13.6861 - 13.6982 ] 13.7361
pp m [ 3.5967 - 3.6266 ] [ 3.6084 - 3.6175 ] 3.6319
pp f [ 1.8451 - 1.8636 ] [ 1.8543 - 1.8593 ] 1.8577

7.2. Approximations for the Cost of Capital approach

Denote L̃(t + T ) ≡ L̃(w) for w = (v, j), v = s, and j ∈ J for the pension
payment in year t + T . Using the third approximation with B(j, w) = 1
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in case w = (v, j) is such that v ∈ Vj , j = t, and B(j, w) = 0 otherwise,
we obtain that the distribution of the pension payments of a portfolio of
pension liabilities in year t + T i.e., δL̃(t + T ) is LogNormally distributed.
Hence, we denote:

δL̃(t + T ) ∼ log N
(
µ

δL̃t+T
,Σ

δL̃t+T

)
.

The Cost of Capital is given by a percentage in the excess of the risk-free
rate, i.e., we define CoCt+T = CoC + 1

P
(t+T+1)
t+T

− 1. And in order to prevent

overnotation, let S(t + T ) ≡ S̃(x, T, t, g), recall that we have:

(
S(t + T )

S(t + T − 1)

)
∼ log N

((
µSt+T

µSt+T−1

)
,

(
ΣSt+T,t+T

ΣSt+T,t+T−1

ΣSt+T−1,t+T
ΣSt+T−1,t+T−1

))
.

(37)

Define st,T ≡ log(S(t + T )), then st,T |Ft+T−1 ∼ N(µst+T
,Σst+T

), where

µst+T
≡µSt+T

+ ΣSt+T,t+T−1
Σ−1

St+T−1,t+T−1
· (st,T−1 − µSt+T

),

Σst+T
≡ΣSt+T,t+T

− ΣSt+T,t+T−1
· Σ−1

St+T−1,t+T−1
· ΣSt+T−1,t+T

.

Using the distribution of st,T and δL̃(t + T ) given information at time
t + T i.e., given Ft+T , we can derive the fourth approximation.

Fourth approximation. The market value of life insurance liabilities

using the CoC-approach.

Given the approximation δL̃(t + T ) ∼ log N
(
µ

δL̃t+T
,Σ

δL̃t+T

)
and assume

that the market value of the liabilities given Ft+T−1 is LogNormally dis-
tributed δL(t + T ) ∼ log N(µt+T ,Σt+T ), we approximately have:

δL(t + T − 1)|Ft+T−2 = exp(dt,T−1 + at,T−1 + bt,T−1st,T−1)

∼ log N
(
dt,T−1 + at,T−1 + bt,T−1µst+T−1

, bT
t,T−1Σst+T−1

b′t,T−1

)

where

at,T−1 =at,T + bt,T · (µSt+T
+ ΣSt+T,t+T−1

· Σ−1
St+T−1,t+T−1

· µSt+T−1
)

bt,T−1 =bt,T · (ΣSt+T,t+T−1
· Σ−1

St+T,t+T−1
)

dt,T−1 = log[(1 − CoCt+T ) · P
(t+T )
t+T−1 · exp(ΣFW (t, T )/2) + CoCt+T · P

(t+T )
t+T−1

· exp(Φ−1(α)
√

ΣFW (t, T ))]

Derivation of fourth approximation:

Notice that the liabilities in year t + T are given by the liabilities in year
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t+T +1 and the payments between year t+T and t+T +1. Let us denote
δL̂(t + T ) ≡ δL(t + T ) + δL̃(t + T ) for the value of the liabilities just before
the payment of the life insurance contracts is made. Given that the market
value of the liabilities in year t + T + 1 is LogNormally distributed we have:

δL(t + T − 1|Ft+T−1) =(1 − CoCt+T ) · E[L̂(t + T ) · P
(t+T )
t+T−1|Ft+T−1]

+ CoCt+T · Q1−α[L̂(t + T ) · P
(t+T )
t+T−1|Ft+T−1]

= exp(at,T + bt,T · (µSt+T
+ ΣSt+T,t+T−1

Σ−1
St+T−1,t+T−1

(st−1,T − µSt+T−1
))

+ ΣFW (T, t)/2) · (1 − CoC) · P
(T+t)
T+t−1 + CoCT+t · P

(T+t)
T+t−1

(38)

exp(at,T + bt,T · (µSt+T
+ ΣSt+T,t+T−1

Σ−1
St+T−1,t+T−1

(st,T−1 − µSt+T−1
))

+ Φ−1(1 − α)
√

ΣFW (t, T ))

= exp(dt,T−1 + at,T−1 + bt,T−1 · st,T−1) (39)

Using the Fenton and Wilkonson approximation for the sum of LogNor-
mally distributed variables, we obtain:

δL̂(t + T )|Ft+T−1 ∼ log N(µ̂t,T , Σ̂t,T ) (40)

Hence, approximately the value of the parameters are:

µ̂t,T−1 = log(exp(µt+T−1 + Σt+T−1/2) + exp(µδL̃t+T−1
+ ΣδL̃t+T−1

/2)) − Σ̂t+T−1/2

(41)

Σ̂t,T−1 =ΣFW (t − 1, T ) (42)

=
exp

(
2 · µt+T−1 + 2 · Σt+T−1 + 2 · µδL̃t+T−1

+ 2 · ΣδL̃t+T−1

)

(
exp

(
2 · µt+T−1 + Σt+T−1/2

)
+ exp

(
2 · µ

δL̃t+T−1
+ Σ

δL̃t+T−1
/2
))2

+

2 · exp

(
µt+T−1 + ·Σt+T−1/2 + µ

δL̃t+T−1
+ Σ

δL̃t+T−1
/2 + 2 · ρ ·

√
Σt+T−1 ·

√
Σ

δL̃t+T−1

)

(
exp

(
2 · µt+T−1 + Σt+T−1/2

)
+ exp

(
2 · µ

δL̃t+T−1
+ Σ

δL̃t+T−1
/2
))2

Fifth approximation. Taylor expansion:
The Taylor expansion of a function is given by:

f(sM
t−1 − µM

t−1, s
F
t−1 − µF

t−1) =

∞∑

n=0

(
1

n!

n∑

k=0

∂nf

∂(sM
t−1)

n−k∂(sF
t−1)

k
|µM

t−1,µF
t−1

· (sM
t−1 − µM

t−1)
n−k · (sF

t−1 − µ

Hence, using the first two terms of the Taylor expansion we can rewrite
equation (41) to:

µ̂t,T = at,T + bt,T · st,T ,

41



where

at,T =f(µSt+T−1
) − f ′(µSt+T−1

) · µSt+T−1
,

bt,T =f ′(µSt+T−1
),

and using equation (42) and the first term of the Taylor expansion we obtain
ΣFW (t, T ).

Notice that the market value of the liabilities after the last payment is
made is equal to zero. Hence, let t+τ be the time the last payment is made,
then the market value of the liabilities at time t + τ is given by:

δL(t + τ) =0

hence, we have that

δL(t + τ)|Ft+τ−1 =0

δL(t + τ − 1)|Ft+τ−2 =(1 − CoCt+τ−1) · exp(µδL̃t+τ
+ ΣδL̃t+τ

/2)

+ CoCt+τ−1 · exp(µδL̃t+τ
+ Φ−1(1 − α) ·

√
ΣδL̃t+τ

)

which is indeed LogNormally distributed when µt+τ−1 = µδL̃t+τ
given the

information Ft+τ−2 is normally distributed and Σt+τ−1 = ΣδL̃t+τ
given the

information Ft+τ−2 is constant. Hence the assumption made in the fourth
approximation holds for t = t + τ, t + τ − 1.

�

In order to quantify the effect of the approximations to calculate the
MVL ideally one would compare the MVL using simulations and using the
approximations. However, it requires too many simulations to calculate the
MVL for life insurance products. Therefore, Table 7 displays the difference
in the discounted sum of the SCR multiplied with the cost of capital rate,
i.e., the MVM, in the best estimate scenario, using the approximation and
using simulations. The difference in between the approximations and the
simulations in year t + τ is obtained by the following steps:

i) Given the best estimate of the survival probabilities until time t +
τ , using equation (37) we simulate the distribution of the survival
probabilities at time t+ τ +1 and the corresponding payments at time
t + τ + 1.

ii) Using the simulated distribution of the survival probabilities, the mar-
ket value of the liabilities at time t + τ + 1 is obtained using the ap-
proximations, i.e. using equation (39).

iii) The current MVL in the simulations is obtained by the mean and the
99.5% percentile of the distribution of the payments (obtained in i))
plus the market value of the labilities in the succeeding year (obtained
in ii)), discounted.
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iv) The difference between the simulation and the approximations in year
t + τ is obtained by the MVL in the best estimate scenario in year
t + τ using the approximations, as given in equation (39), minus the
MVL using the simulations as obtained in iii).

Table 7 displays the aggregated sum of the differences, i.e. repeating steps
i)–iv) for τ = 0, · · · , T and taking the discounted sum for the four different
portfolios as described in Section 5.

Table 7

Table with approximation error.

Difference δ(1) δ(2) δ(3) δ(4)

US

CoC = 0.06 1.25% 0.51% 0.81% 0.86%
CoC = 0.04 1.31% 0.60% 0.68% 0.80%

UK

CoC = 0.06 1.25% 0.51% 0.81% 0.86%
CoC = 0.04 1.31% 0.60% 0.68% 0.80%

NL

CoC = 0.06 1.25% 0.51% 0.81% 0.86%
CoC = 0.04 1.31% 0.60% 0.68% 0.80%

This table displays the aggregated discounted difference between
simulations and model relative to MV Mt.
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7.3. Tables and figures

Table 8

Table with capital requirements using the CoC-approach.

Internal model A2 A3
A⋆

t - BELt

BELt

MVMt

BELt

SCRt

BELt

MVMt

BELt

MVMt

BELt

US

δ(1) 2.47% 0.87% 1.61% 0.81% 0.84%
δ(2) 1.17% 0.67% 0.51% 0.63% 0.29%
δ(3) 1.63% 0.68% 0.96% 0.65% 0.52%
δ(4) 1.35% 0.61% 0.74% 0.58% 0.35%

UK

δ(1) 4.25% 1.36% 2.91% 1.26% 1.48%
δ(2) 2.73% 1.25% 1.49% 1.18% 0.82%
δ(3) 3.34% 1.25% 2.11% 1.17% 1.12%
δ(4) 2.82% 1.11% 1.72% 1.06% 0.98%

NL

δ(1) 1.86% 0.86% 1.03% 0.80% 0.51%
δ(2) 4.18% 1.59% 2.53% 1.52% 1.45%
δ(3) 2.47% 0.93% 1.55% 0.90% 0.81%
δ(4) 2.41% 0.93% 1.49% 0.91% 0.84%

This table displays the capital reserve in the internal model, as
percentage of the best estimate of the liabilities, for four different
portfolios of life insurance products for the US, UK, and the
Netherlands. The market value of the liabilities is set according
the internal model with a Cost of Capital rate of 4%. The last
two columns display the MVMt using the simplifications. The
column A2 refers to the second simplification as given in equation
(15), and the column A3 refers to the third simplification as given
in equation (16).
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Figure 4. Parameter bx
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The figure displays the estimate of bx in the US (solid curve), UK

(dashed curve), and NL (dashed-dotted curve). The left panel is for

males, the right panel is for females. The parameter is estimated using

the mortality probabilities from 1970 till 2006.

Table 9

Parameter estimates of the Lee-Carter model

parameter US M US F UK M UK F NL M NL F

cg -1.5875 -1.3652 -1.6429 -1.5975 -1.8741 -1.5525
σg

c 0.2097 0.2320 0.2357 0.3568 0.3753 0.5344
σg

e 1.2583 1.3920 1.4141 2.1406 2.2520 3.2063
ρc 0.7991 0.7661 0.3448

The table displays the estimate of the Lee-Carter model in the US,

UK, and the Netherlands. The parameters are estimated using the

mortality probabilities from 1970 till 2006.
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