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Abstract. We discuss the fair valuation of Guaranteed Annuity Options, i.e.

options providing the right to convert deferred survival benefits into annuities

at fixed conversion rates. The use of doubly stochastic stopping times and of

affine processes provides great computational and analytical tractability, while

enabling to set up a very general valuation framework. For example, the valu-

ation of options on traditional, unit-linked or indexed annuities is encompassed.

Moreover, security and reference fund prices may feature stochastic volatility or

discontinuous dynamics. The longevity risk is also taken into account, by letting

the evolution of mortality present stochastic dynamics subject not only to random

fluctuations but also to systematic deviations.
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1. Introduction

Recent mortality and interest rate trends have proved to be particularly dangerous
for the pricing of insurance contracts providing long term living benefits (pensions
and annuities), as well as for their reserving. On the mortality side, the increase of
life expectancy and the decline in mortality rates at adult-old ages have made clear
the importance of dealing explicitly with the so-called longevity risk, i.e. the risk of
systematic departures from expected levels of mortality. Due to its non-pooling char-
acter, the possibility of benefiting from offsetting effects by holding a large enough
portfolio of policies is precluded (see Olivieri (2001)). This problem has been ampli-
fied by a general decline in interest rates over the last years, affecting in particular
those contracts providing joint financial and demographic guarantees. Among these,
we focus on Guaranteed Annuity Options (GAOs), i.e. contracts providing the holder
the right to convert deferred survival benefits, possibly unit-linked or indexed, into an
annuity at a fixed conversion rate. The underpricing of such guarantees has caused
several solvency problems to insurers, for example in the UK, where Equitable Life
(the world’s oldest life insurer) had to close to new business in 2000.

The pricing of GAOs has been tackled by several authors, e.g. by Van Bezooyen,
Exley and Mehta (1998), Milevsky and Promislow (2001), Ballotta and Haberman
(2003b,a), Boyle and Hardy (2003), Olivieri and Pitacco (2003), Pelsser (2003) and
Wilkie, Waters and Yang (2003). Here, we provide a fairly general framework that
includes and extends most of the models appeared. The aim is to deal effectively
with several sources of risk, including asset, interest rate and mortality (systematic
and unsystematic) risk, all this by allowing for (insurance) security price dynamics
featuring stochastic volatility or jumps.
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We exploit a parallel between defaultable securities and insurance contracts first
suggested in Artzner and Delbaen (1995) and exploited in Milevsky and Promislow
(2001) and Biffis (2003, 2004). We may regard annuities, for example, as defaultable
coupon bonds (or consols) with zero recovery. Of course, the interpretation of the
default event is reverted: an annuity stops being paid because an insured (the receiver
of the benefits) dies, while coupons from a bond cease to be paid because the issuer
(the one who pays coupons and principal) defaults. The valuation framework of
intensity based models (relying on the exogenous specification of the conditional
probability of default, given that default has not yet occurred: see Duffie (2001,
Ch. 11)) can be extended to insurance securities in a sense to be made precise in the
following.

We treat explicitly the issue of the exercise boundary involved by GAOs. Indeed,
GAOs are exercised in a primary market environment, while triggering cash flows
that one may want to value from an internal or secondary market perspective. In
particular, the exercise decision made by the policyholder may not be rational from
the insurer’s point of view. We allow for such issue in the model, putting particular
emphasis on the market-oriented accounting standards proposed by the International
Accounting Standards Board (IASB).

In Sec. 2, we provide a formal description of GAOs and of the fair valuation setup
proposed by the IASB. In Sec. 3, we introduce affine processes and show why they
are appealing from the analytical and computational point of view. Sec. 4 and Sec. 5
describe the financial market and the mortality model. The latter exploits doubly sto-
chastic stopping times driven by affine jump-diffusions in order to obtain closed form
expressions (up to ordinary differential equations solutions) for survival probabili-
ties. For other proposals regarding the issue of stochastic mortality, see for example
Milevsky and Promislow (2001), Ballotta and Haberman (2003a) or Dahl (2003). In
Sec. 6, the stochastic valuation framework is described with indications regarding the
extent to which no-arbitrage type valuations can be used in the insurance market of
concern. Valuation expressions for GAOs are provided in Sec. 6.1. Sec. 6.2 extends
the setup to death benefits and indexed annuities. Concluding remarks are offered
in Sec. 7. In what follows, we refer the reader to: Bowers et al. (1997) for actuarial
terminology and notation; Duffie (2001) for no-arbitrage pricing; Brémaud (1981) for
point processes; Protter (1990) and Jacod and Shiryaev (2003) for background on
stochastic processes and integration.

2. Guaranteed Annuity Options

As introduced in the previous section, GAOs are contracts providing the policyholder
with the right to convert a deferred survival benefit into an annuity at a fixed con-
version rate. The option is exercised at maturity, conditional on survival, if the cash
benefit then available is greater than the value to the policyholder of the annuity
payable throughout his/her remaining life time, the annuity amounts being deter-
mined by the conversion rate specified at inception. Usually, the moneyness of such
option at maturity happens to depend not only on the price of annuities available in
the primary market at that time (determined by interest rates, mortality levels and
charges then prevailing), but also on policyholders’ preferences and expectations not
captured by market prices.

Formally, let us consider a policyholder entering the contract at time 0, then aged
x years, and denote its residual life time by τ . Moreover, suppose the amount of
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the cash benefit available at maturity, i.e. at time T > 0, is given by the value of a
reference fund with price process S and that a guaranteed conversion rate 0 < g < 1
is fixed at inception. Then, if we denote by at

.
= äx+T (t) the time-t ‘value’ process

of an annuity payable from time T to a policyholder then aged x + T , the ‘value’ of
the contract at time T , VT , is given by the following expression:

VT = I{τ>T} [ST IAc + gST aT IA]

= I{τ>T}ST + I{τ>T}∩A aT ST [g − 1/aT ]

= I{τ>T}ST + I{τ>T}∩A gST [aT − 1/g]

(1)

where A denotes the exercise set of the option, Ac its complement and IB the indicator
function of a set B. Note that in the second line the quantity 1/aT is the conversion
rate corresponding to the annuity ‘value’ aT , while the quantity 1/g is the ‘value’ of
the guaranteed unitary annuity implied by g. Thus, the analysis of VT can be tackled
equivalently in terms of conversion rates or annuity values.

The setup outlined in expression (1) is quite general. First, we have not specified
what kind of ‘value’ VT represents, whether an internal (to the insurance company)
or external (in terms of financial statement) quantification of the payoff, or the result
of a primary or secondary market valuation. Second, in the valuation of the cash
flows of concern, we explicitly allow for the previously outlined mismatch between
the viewpoint of the issuer of the contract (short position) and that of the buyer
(long position), as is made clear by the reference to an exercise set not necessarily
coinciding with {aT ≥ 1/g}.

For example, when no distinction is made between primary and secondary markets,
when the exercise is assumed to be rational and to depend on interest rates and mor-
tality levels as seen equivalently by the insurer or the insureds, then A = {aT ≥ 1/g}.
This is the case of all papers related to GAOs of which we are aware, where the ma-
turity value of the contract is given by:

VT = I{τ>T} max {gST aT , ST }
= I{τ>T}ST + I{τ>T} äT ST max {g − 1/aT , 0}
= I{τ>T}ST + I{τ>T} gST max {aT − 1/g, 0}

(2)

The expressions appearing in (2) make clear the interpretation of GAOs in terms
of standard (vanilla) options: in the second line we have a put option written on the
conversion rate 1/aT with strike g, while in the third line we have a call option on the
annuity value aT with strike the guaranteed annuity value 1/g. In our framework,
for example, the valuation of the last term in (2) parallels that of a vulnerable option
on a defaultable coupon bearing bond with zero recovery. The results provided in
Sec. 6 include and generalize this particular case: specifically we will see GAOs as
vulnerable digital options providing random payoffs, as the expressions in (1) show.

In order to provide a concrete example of application of the setting described,
we make reference to the IASB’s proposals for market-value oriented accounting of
insurance liabilities, as described for example in IASB (2001). The IASB defines the
fair value of a book of contracts as the exchange price in a (hypothetical) secondary
market transaction. Since a deep wholesale market for books of contracts does not
exist at the moment, exchange prices cannot be easily observed. The IASB favours
the use of an expected discounted cash flow approach consistent with risk-neutral
valuation. Indeed, ‘no-arbitrage type’ arguments imply that the fair value of an
insurance liability should not be different from the market value of a portfolio of
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traded assets matching the liability cash flows with a sufficient degree of certainty.
According to IASB (2001), all sources of risk should be taken into account, including
non-financial risks, both diversifiable and non fully diversifiable (e.g. the longevity
risk); therefore, the computation of suitable margins for such risks, the so-called
market value margins, is needed. The guidance on the form of market-value margins
is fairly broad: our valuation framework expresses them in terms of adjustments to
the riskless short rate and/or to best-estimate assumptions.

In computing the ‘fair value’ of the payoff VT described by (1), aT would represent
the ‘fair value’ of an annuity payable from time T to a policyholder then aged x+ T ,
a value different in general from the price charged in the primary market. More-
over, exercise probabilities, which are of course crucial in fair valuation (see Sec. 6),
may be based on company/market statistical data and possibly incorporate suitable
adjustments for systematic risk. The setting allows explicitly for the fact that the
insurer’s risk-neutral probabilities are in general different from those of policyholders,
in particular when concerning the evolution of mortality. Moreover, adjustments for
‘irrational’ exercise of the GAOs can be made at a very detailed level, allowing for
more accurate sensitivity analysis for example.

3. Affine Processes

Affine processes are essentially Markov processes with conditional characteristic func-
tion of the exponential affine form. They are thoroughly treated in Duffie, Filipovič
and Schachermayer (2003) and Filipovič (2001). In this section, we adopt a narrower
but more intuitive perspective that is usually adopted in financial applications. Fol-
lowing closely (also for terminology and notation) Duffie and Kan (1996) and Duffie,
Pan and Singleton (2000), we define affine processes in terms of strong solutions to
specific stochastic differential equations (SDE) in a given filtered probability space.

Given a stochastic basis (Ω,F , F, P), an Rn-valued affine jump-diffusion process
X is an F-Markov process specified as the unique strong solution of the following
Stochastic Differential Equation (SDE):

dXt = δ(t,Xt)dt + σ(t,Xt)dWt +

m∑

h=1

dJh
t , (3)

where W is an F-standard Brownian motion in Rn and each Jh is a pure-jump process
in Rn with jump-arrival intensity {λh(t,Xt) : t ≥ 0} and jump distribution νh

t on Rn.
We require the drift δ, the instantaneous covariance matrix σσT and the jump-arrival
intensities (λh) to have all affine dependence on X. In more explicit terms, the affine
dependence requires that the coefficients appearing in the SDE (3) have the following
form:

δ(t, x) = d0(t) + d1(t)x (4)
(
σ(t, x)σ(t, x)T

)
i,j

= (V0(t))i,j + (V1(t))i,j · x i, j = 1, . . . , n (5)

λh(t, x) = lh0 (t) + lh1 (t) · x h = 1, . . . ,m (6)

where c · d =
∑n

j=1 cjdj for all c, d ∈ Cn. The functions d
.
= (d0, d1), V

.
= (V0, V1)

and lh
.
= (lh0 , lh1 ) are defined on [0,∞), take values respectively in Rn×Rn×n, Rn×n×

Rn×n×n and R × Rn, and are assumed to be bounded and continuous. Moreover,
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the jump-size distribution of the h-th jump process is determined by its Laplace
transform (called jump transform henceforth):

θh(t, c) =

∫

Rn

ec·zdνh
t (z),

defined for t ∈ [0,∞), c ∈ Cn and such that the integral is finite. The jump transform
θ

.
= (θh) and the functions d, V and l

.
= (lh) completely determine the distribution

of X, once an initial condition X0 is given.

An important result holds for analytical approaches based on the affine structure
described. For any a, b ∈ Cn, c ∈ C and for given T ≥ t and affine function R defined
by R(t, x) = ρ0(t) + ρ1(t) · x (for some bounded continuous R × Rn-valued function
ρ

.
= (ρ0, ρ1)), the transform φ, defined by:

φ(a, b, c,Xt, t, T ) = E
[
e−

∫
T

t
R(s,Xs)ds ea·XT (b · XT + c)

∣∣∣Ft

]
, (7)

admits the following representation, under technical conditions provided in Duffie,
Pan and Singleton (2000, Prop. 3):

φ(a, b, c,Xt, t, T ) = eα(t)+β(t)·Xt

(
α̂(t) + β̂(t) · Xt

)
, (8)

where α(·) .
= α(·; a, T ) and β(·) .

= β(·; a, T ), are functions solving uniquely the
following ordinary differential equations (ODEs):

β̇(t) = ρ1(t) − d1(t)
Tβ(t) − 1

2
β(t)TV1(t)β(t) −

m∑

h=1

lh1 (t)
[
θh(t, β(t)) − 1

]
(9)

α̇(t) = ρ0(t) − d0(t) · β(t) − 1

2
β(t)TV0(t)β(t) −

m∑

h=1

lh0 (t)
[
θh(t, β(t)) − 1

]
(10)

with boundary conditions α(T ) = 0 and β(T ) = a, while the functions α̂(·) .
=

α̂(·; a, b, c, T ) and β̂(·) .
= β̂(·; a, b, T ) solve the ODEs:

˙̂
β(t) = −d1(t)

Tβ̂(t) − β(t)TV1(t)β̂(t) −
m∑

h=1

lh1 (t)
[
Θh(t, β(t)) · β̂(t)

]
(11)

˙̂α(t) = −d0(t) · β̂(t) − β(t)TV0(t)β̂(t) −
m∑

h=1

lh0 (t)
[
Θh(t, β(t)) · β̂(t)

]
(12)

with boundary conditions α̂(T ) = c and β̂(T ) = b, where Θh(t, c) denotes the gradient
of θh(t, c) with respect to c ∈ Cn, i.e. Θh(t, c) =

∫
Rn c exp(c · z)νh

t (dz). We remind
that for all c, d ∈ Cn the vector in Cn with k-th element

∑
i,j ci(V1(t))ijkdj is denoted

by cTV1(t)d. Note that for b = 0 and c = 1 the transform φ has exponential affine
form.

The analytical tractability of affine processes is essentially linked to the ODEs
associated with the transform (7). These ODEs are generalized Riccati equations that
can be solved by using standard numerical methods. For some choice of (d, V, l, θ, ρ),
explicit solutions are available. They are derived, for example, in the simple case
of the Vasicek (1977) and Cox, Ingersoll and Ross (1985) models without jumps.
When including jumps, explicit solutions may be available when the jump-arrival
process is Poisson, depending on the specification of ν. In the Vasicek case (Poisson-
Gaussian jump-diffusion), the choice of the jump distribution can be very general.
In the Cox, Ingersoll and Ross case (square-root jump-diffusion), the choice is more
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restricted, due to the non-negativity requirement for X: closed-form solutions are
available with degenerate (fixed jump size), uniform, exponential and binomial jump-
size distributions (see Duffie and Kan (1996)).

In many applications, including empirical estimation, we are interested in the
valuation of a modified version of transform (7). For fixed T ∈ [0,∞) and for a, b, d ∈
Rn and c ∈ R, let G

.
= Ga,b,c,d,ρ(y;X0, T ) be the function defined by:

G(y) = E
[
e−

∫
T

0
R(s,Xs)dsea·XT (b · XT + c) I{d·XT ≤y}

]
(13)

The function G(·) is of finite variation on compacts (on the whole real line, provided
integrability conditions hold) and can be treated as the distribution function of a
signed measure on R. The Fourier-Stieltjes transform G(·) of G(·) is a special case of
(7), in that:

G(u)
.
=

∫ +∞

−∞
eiuydG(y) = φ(a + iud, b, c,X0, 0, T ),

and can be inverted by using the Lévy Inversion Formula. For example, in the case
b = 0 and c = 1, the following holds, under technical conditions provided in Duffie,
Pan and Singleton (2000, Prop. 2):

Ga,0,1,d,ρ(y;X0, T ) =
φ(a, 0, 1,X0 , 0, T )

2
− 1

π

∫ ∞

0

Im[φ(a + iud, 0, 1,X0 , 0, T )e−iuy ]

u
du

(14)
where Im(c) denotes the imaginary part of c ∈ Cn.

We now move on to the issue of changes of measure. In particular, we are interested
in whether a process X that is affine under a probability measure P remains affine

after a change to an equivalent probability measure P̃ and, if that is the case, in the
form of the new dynamics. For fixed T > 0, under technical conditions guaranteeing
that (8) holds for b = 0 and c = 1 (see Duffie, Pan and Singleton (2000, Prop. 1)),

the process ξt
.
= ξ

(a,T )
t defined by:

ξt = e−
∫

t

0
R(s,Xs)dseα(t;a,T )+β(t;a,T )·Xt (15)

is a positive martingale, and a probability measure P̃
.
= P

(a)
T equivalent to P can be

defined on (Ω,F) by setting its density equal to ξT/ξ0. The notation used underlines
the dependence of the measure change not only on a given time horizon T > 0, but
also on the final condition β(T ) = a of the ODEs (9) and (10). (Note, however,
that ξ depends also on (d, V, l, θ, ρ).) This will be important for valuation purposes,

since a convenient choice of the measure P̃ will enable to simplifies the payoffs under
conditional expectations in order to exploit (8).

Duffie, Pan and Singleton (2000, Prop. 5) show that X remains affine under the

new measure P̃ with new dynamics (d̃, Ṽ , l̃, θ̃) defined by:

d̃0(t) = d0(t) + V0(t)β(t) d̃1(t) = d1(t) + V1(t)β(t) (16)

l̃h0 (t) = lh0 (t) θh(t, β(t)) l̃h1 (t) = lh1 (t) θh(t, β(t)) (17)

Ṽ (t) = V (t) θ̃h(t, c) =
θh(t, c + β(t))

θh(t, β(t))
(18)

where h = 1, . . . ,m, c ∈ Cn, t ∈ [0, T ], β(t)
.
= β(t; a, T ) and Ṽ1(t)w denotes the n×n

matrix with k-th column Ṽ1(t)
kw for w ∈ Rn.
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4. Financial Market

We fix a filtered probability space (Ω,F , F, P) and take as given an adapted short-

rate process r (such that
∫ t

0 |rs|ds < ∞ for every t ≥ 0, P-a.s.) representing the
continuously compounded rate of interest on riskless securities. This can be formal-
ized by assuming the presence in the market of a money-market account, a security

with price process B defined by Bt = exp(
∫ t

0 rsds) and representing the amount of
money available at time t from investing one unit at time 0 in risk-free deposits and
‘rolling over’ the proceeds until t.

Moreover, we assume that at least a security is traded continuously in the mar-
ket, with a nonnegative semimartingale S representing its (ex-dividend) price. The
absence of arbitrage is essentially equivalent to the existence of an equivalent mar-
tingale measure Q (see Harrison and Kreps (1979) and Delbaen and Schachermayer
(1994)) under which the gain (from holding the security) process is a martingale
after deflation by the money-market account. Specifically, let D be a nonnegative
semimartingale representing the security cumulated dividend process. Then, the dis-

counted gain process is given by (B−1
t St +

∫ t

0 B−1
s dDs) and the following convenient

formula applies:

St = EQ

[
e−

∫
T

t
rsdsST +

∫ T

t

e−
∫

u

t
rsdsdDu

∣∣∣∣∣Ft

]
. (19)

In what follows, we will assume that the price of any security is zero after a given
time t > 0 if the securities pays no dividends thereafter. If the security has dividend
yield process ζ, i.e. the instantaneous yield from holding the security is ζtStdt, then
Dt =

∫ t

0 ζuSudu and the martingale property implies that S has drift r − ζ under Q,
justifying the appellation ‘risk-neutral’ for this measure. When considering several
securities, including zero-coupon bonds, the no-arbitrage restriction imposed by (19)
must apply simultaneously to each security price process. From now on, we assume
that the dynamics of all security processes are specified under Q unless otherwise
stated.

We then postulate that all security prices are driven by a Markov state vector X
following an affine (jump-)diffusion in Rk. Specifically, we assume that r is expressed
as rt

.
= r(t,Xt), where Xt satisfies (3) and the conditions there given and r is an

affine function defined by r(t, x) = p0(t)+p1(t) ·x, with p
.
= (p0, p1) an R×Rk-valued

bounded continuous function on [0,∞). For fixed T ≥ t > 0, the time t-price B(t, T )
of a zero coupon bond with maturity T (i.e. a security paying a single dividend equal
to 1 at time T ), has the following expression by (19) and (8):

B(t, T ) = EQ
[
e−

∫
T

t
r(s,Xs)ds

∣∣∣Ft

]
= eα(t;0,T )+β(t;0,T )·Xt (20)

Moreover, we consider a risky security and assume that its log-price is also affine, in
the sense that log(S) = Xi, where Xi denotes the i-th component of X. Moreover, let
S have an affine dividend-yield process ζ(t,Xt) = q0(t)+q1(t)·Xt, with q

.
= (q0, q1) an

R × Rk-valued bounded continuous function on [0,∞). In the absence of arbitrage,
the dynamics of S must obey the restrictions implied by (19). By applying Itô’s
formula to S and forcing the drift to be equal to r − ζ under Q, we get the following
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conditions, on the lines of Duffie, Pan and Singleton (2000, Sec. 3.1):

(d0(t))i = p0(t) − q0(t) −
1

2
(V0(t))i,i −

m∑

h=1

lh0 (t)
[
θh(t, ε(i)) − 1

]
(21)

(d1(t))i = p1(t) − q1(t) −
1

2
(V1(t))i,i −

m∑

h=1

lh1 (t)
[
θh(t, ε(i)) − 1

]
(22)

where ε(i) indicates the vector in Rk with all null components but the i-th, which is
equal to 1. Similar restrictions must be imposed for any additional risky security of
this type considered in the market.

The setup outlined is fairly general: security price processes featuring stochas-
tic volatility or discontinuous dynamics are naturally included. For example, the
financial market models used by Heston (1993), Bates (1997), Scott (1997), Bakshi,
Cao and Chen (1997) and Bakshi and Madan (2000) are all encompassed by the
framework described.

5. Stochastic Mortality Modeling

We fix a stochastic basis (Ω,F , F, P) and focus on a generic individual aged x at
time 0, whose random residual lifetime is modeled as an F-stopping time τx. If the
individual belongs to a homogeneous group of persons (in particular, of the same age
and with the same health status) whose random residual life times can be considered
independent and identically distributed, the results obtained extend to all individuals
belonging to the homogeneous population.

We look at τx as at the first jump-time of a non-explosive F-counting process N
with random intensity µx, and say that τx has intensity µx. One may regard N
as recording at each time t ≥ 0 whether the individual has died (Nt 6= 0) or not
(Nt = 0). The idea behind the specification of a random intensity of mortality µx is
that, at any time t ≥ 0 and state ω ∈ Ω such that τx(ω) > t, we have:

P(τx ≤ t + ∆|Ft)(ω) ∼= µx(t, ω)∆ (23)

This is the stochastic analogous of the expression for the ‘instantaneous death prob-
ability’, which is familiar to actuaries and usually emerges when defining the deter-
ministic intensity itself. However, here the setup is both dynamic and stochastic: at
time t ≥ 0, the random intensity is expressed as µx(t, ω), where ω ∈ Ω is the ‘state of
the world’ determining the particular trajectory of µx, while t is the continuous-time
counterpart of the calendar year of reference used in longitudinal tables. As a con-
sequence, we remark that we are naturally adopting a ‘diagonal’ (or cohort-based)
approach.

From now on, we drop reference to the age x and set τ = τx and µt(ω) = µx(t, ω).
For analytical tractability, we assume that N is a doubly stochastic process driven
by a subfiltration G of F and with G-predictable intensity µ. The intuitive meaning
of such assumption is that, conditional on any given trajectory µ(·, ω) of µ (for fixed
ω ∈ Ω), the counting process N associated with τ becomes Poisson-inhomogeneous
with parameter

∫ ·
0 µ(s, ω)ds. In other words, for all T ≥ t ≥ 0 and nonegative integer

k, we have:

P (NT − Nt = k|Ft ∨ GT ) =

(∫ T

t
µsds

)k

k!
e−

∫
T

t
µsds. (24)
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We note that the time of death τ is an F-stopping time, but not necessarily a
G-stopping time: the idea behind the specification of a G-predictable intensity µ is
that G carries enough information about the likelihood of death happening, but not
about the actual occurrence of death, which in turn is carried by the larger filtration
F. Note that assuming the time of death has an intensity implies that τ is a ‘totally
inaccessible stopping time’. Intuitively, that means the individual’s death comes as
a total surprise, in an informational sense.

Within this framework, we can use the law of iterated expectations and (24) to
express the time-t survival probabilities over the time horizon (t, T ] (for fixed T ≥
t ≥ 0), and on the event {τ > t}, as follows:

P(τ > T |Ft) = E
[
e−

∫
T

t
µsds

∣∣∣Ft

]
. (25)

This can be compared with its deterministic analogous, T−tpx+t, that can be found
in standard actuarial texts, e.g. in Bowers et al. (1997). When computing expecta-
tions of some functionals of τ , its density may be needed. In the doubly stochastic
framework, under technical conditions provided in Grandell (1976, pp. 105-107), the
Ft-conditional density ft(·) is given, on the set {τ > t}, by the expression:

ft(s) =
∂

∂s
P (τ ≤ s|Ft) = E

[
µs e−

∫
s

t
µudu

∣∣∣Ft

]
(26)

It is clear that both (25) and (26) are particular cases covered by the transform
(7), so that working in an affine framework would be very convenient from the com-
putational point of view. We therefore take an affine jump-diffusion Y in Rd, i.e. a
process solving the SDE (3) and satisfying the conditions there given. We then set
G = GY (with GY denoting the natural filtration of Y ) and consider µt = µ(t, Yt−)
for some function µ(t, y) = η0(t) + η1(t) · y, where η

.
= (η0, η1) is an R × Rd-valued

bounded continuous function on [0,∞) such that the intensity µt is nonnegative.

The computational advantages offered by this setup are remarkable. For example,
survival probabilities as those defined by (25) have the following convenient expres-
sion, on the event {τ > t}:

P(τ > T |Ft) = eα(t)+β(t)·Yt (27)

where the functions α(·) .
= α(·; 0, T ) and β(·) .

= β(·; 0, T ), respectively R and Rd-
valued, solve the ODEs (9) and (10) with boundary conditions α(T ) = 0 and β(T ) =
0.

We note that the process Y may include observable as well as unobservable vari-
ables driving the evolution of the intensity. In the former case, we could include
suitable ‘markers’, such as life expectancy, death rates referring to particular ages
or the ‘entropy’ measure (see Keyfitz (1982, 1985), for example). In the latter case,
we may think of generic unobservable factors, whose dynamics may be estimated by
calibration to ‘target’ marker values. We refer the reader to Piazzesi (2003, Sec. 6)
and references therein for an overview of the most common methods used for the
estimation of affine jump-diffusions.

In actuarial analysis and computations, it appears very convenient to make ex-
plicit reference to suitable deterministic ‘demographical bases’, such as available
mortality tables, or ‘best-estimate’ and ‘prudential’ assumptions about the evolu-
tion of mortality. Best-estimate assumptions are realistic (sometimes called ‘true’)
hypotheses representing unbiased expectations about the future based on the best
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available company/industry/market information. Prudential assumptions are con-
servative expectations, often used for reserving or pricing purposes. The choice of
which demographic basis to use depends on the purpose of analysis. To this regard,
we note that we have been very general so far about the nature of the probability
measure P, which will be meant as a ‘risk-neutral’ measure when performing market
valuations, as a prudential or ‘on the safe-side’ demographical basis when carrying
out conservative reserving or pricing. In any case, the doubly stochastic property
of τ and the affine dynamics of µ are assumed to be specified under the probability
measure of concern.

We can implement what just described in different ways. We provide two examples
of affine intensity, one including suitable deterministic assumptions directly into the
parameterization of µ, the other focusing on random departures from an initially
chosen demographic basis or mortality table. As a first example, we consider a two-
dimensional square-root diffusion Y = (µ, µ̄) with the first component representing
the random intensity of mortality, the second component entering its stochastic drift.
The dynamics of Y are described by the following SDE:





dµt = k1(µ̄t − µt)dt + σ1(t)
√

µt dW
(1)
t

dµ̄t = k2(m(t) − µ̄t)dt + σ2(t)
√

µ̄t − m∗(t) dW
(2)
t

(28)

where: W = (W (1),W (2)) is a standard brownian motion in R2; k1, k2 > 0 are
parameters representing the ‘speed of mean reversion’ of µ to µ̄ and of µ̄ to m;
σ1, σ2, m and m∗ are bounded continuous nonnegative functions. The function m
may for example represent an intensity of mortality derived from an available life
table (from which we want to project mortality improvements) or a best-estimate
assumption. The function m∗ may instead represent an optimistic enough level of
mortality bounding the intensity µ̄ from below. The process µ̄ is well-defined (i.e.
µ̄ > m∗ a.s.) provided m(t) > m∗(t) + σ2(t)

2/2k2 for all t ≥ 0. By taking m∗(t) =
σ1(t)

2/2k1 for all t ≥ 0 we ensure that µ̄t > σ1(t)
2/2k1 a.s. and thus that Y is

well-defined: see Duffie and Kan (1996, p. 387). We note that the model takes into
account the risk of random fluctuations around µ and around the drift target m.
This is important when dealing with the risk of deviations from expected mortality
levels, as explained in Sec. 1 and Sec. 2. See Biffis (2004) for more details and some
numerical examples relative to pensionable ages.

A second interpretative example of affine intensity of mortality is provided by the
specification:

µt = m(t) + Λ(t, Yt−), (29)

where m is a real-valued bounded continuous function on [0,∞) and where Λ(t, x) =
η1(t) · x (η1 being bounded continuous and Rd-valued) is specified so as to ensure
that µ is non-negative. Note that µ is of the affine form (in Y−) with time-dependent
‘intersect’ m. The deterministic component m represents a suitable assumption about
the intensity of mortality, as discussed above. The random component Λ represents in
turn departures from the initially chosen basis, capturing random fluctuations as well
as systematic deviations, depending on the specification of the drift, volatility and
jump parameters of the affine jump-diffusion. In particular, the extent to which m is
‘binding’ for the evolution of the random intensity µ will depend on the degree of mean
reversion (if any) presented by the diffusive element of Y and on the frequency and
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amplitude of any jumps occurring. In Biffis (2003, 2004) some numerical examples
concerning a one-dimensional Poisson-Gaussian process are provided.

The intensity specification (29) presents some simple features that can be helpful
in a number of respects. For example, we can see that survival probabilities are
expressed as multiplicative adjustments to the survival probabilities derived from m,
the chosen demographic basis. Since Λ(t, x) is affine, on the set {τ > t} we have:

P(τ > T |Ft) = e−
∫

T

t
m(s)ds E

[
e−

∫
T

t
Λ(s,Ys)ds

∣∣∣Ft

]

= T−tpx+t eα(t)+β(t)·Yt

(30)

where T−tpx+t is the survival probability implied by the demographic basis m, while
the functions α(·) and β(·) solve the ODEs (9) and (10) (associated with the trans-
form of Λ appearing in (30)) with boundary conditions α(T ) = 0 and β(T ) = 0. We
see therefore that, as is customary in actuarial practice, the computation of survival
probabilities can be based on adjustments to a reference mortality table. In our
framework, however, adjustment factors derive from a stochastic model for the evo-
lution of mortality. The adjustment mechanism provided by (30) is not too different
from the UK projection model based on ‘reduction factors’ for death probabilities
(e.g. CMI (1999)). Here, we would interpret the adjustments as ‘increase factors’ for
survival probabilities at old ages. Expression (30) can be very useful in the context
of market valuations as well, when the underlying probability measure is risk-neutral
and one calibrates the fair-value of insurance contracts to proxies for secondary mar-
ket prices (e.g. assets backing a book of contracts minus the value of in-force business,
provided prudential reserves are considered and no allowance for cost of capital or
deferred tax liabilities is made; see Abbink and Saker (2002), Biffis (2003, 2004)).

6. Valuation Results

We are now ready to introduce the insurance market in which the valuation of GAOs
takes place. We take a probability space (Ω,F , F, P) supporting a process X in Rk,
representing the evolution of financial variables, and a process Y in Rd, representing
the evolution of mortality. We assume quite naturally that X and Y are independent
under any probability measure of concern. Moreover, we focus on a policyholder aged
x at time 0, with random residual lifetime described as in Sec. 5 by an F-stopping time
τ . The flow of information available at time t ≥ 0 is assumed to be represented by
the filtration F = (Ft)t≥0 including knowledge of the evolution of all state variables
up to time t and of whether the policyholder has died by time t. Formally, we set
F = G∨H, where G = GX ∨GY and H = (Ht)t≥0, with Ht = σ(I{τ≤s}, s ≤ t). Thus
H is the minimal filtration with respect to which τ is a stopping time.

In the absence of arbitrage, an equivalent martingale measure Q exists, under
which all financial security prices are martingales after deflation by the money market
account (see Sec. 4). Under Q, the F-stopping time τ is assumed to be doubly
stochastic driven by GY ⊂ F with random intensity µ. It is worth emphasizing that
the doubly stochastic property does not need to preserve under measure changes.
However, an intensity is guaranteed to exist under Q if τ admits an intensity under,
say, the ‘physical’ measure P (Artzner and Delbaen (1995)). In the setup specified,
the standard risk-neutral machinery can be used, as shown for example in Lando
(1998) and Duffie, Schröder and Skiadas (1996), provided we use a fictitious short
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rate process r+µ accounting for the risk of mortality. This will become clearer below,
when a mortality-risk-adjusted money-market account will show up.

The financial market described in Sec. 4 may not be complete, that is, some con-
tingent claims may not be spanned by the securities available in the market. Even
if we assume it to be so, the ‘insurance market’ considered is not, unless ad hoc
assumptions are made. For internal or fair (in the sense proposed by the IASB: see
Sec. 2) valuation purposes, we will refer to secondary markets where (re)insurers can
exchange books of policies, so that both long and short positions can be taken on
insurance contracts. Depending on the type of contracts under valuation, suitable
basic insurance contracts will be assumed to be continuously traded in the market
and represent the primitive securities used for arbitrage pricing. For example, when
valuing annuities, pure endowments of (possibly) every maturity will be implicitly
taken as primitive securities. Prices obtained in this context will be called fair values,
consistently with the terminology proposed by the IASB. When valuations are aimed
at reserving or (primary market) pricing, the situation is more delicate, since one
typically makes reference to a market where insurers take short positions in insur-
ance contracts, while insureds take only long positions. The trading constraints on
the insurer side can be weakened by assuming that unlimited reinsurance is available,
corresponding to a long position on the contracts sold.

However, a delicate caveat must be kept in mind whatever the market (primary or
secondary) of reference is. Namely, each single policy refers to a specific policyholder,
so that arbitrage pricing results referring to single contracts can only approximately
be scaled back to portfolio levels. Indeed, standard arguments involving perfect
hedging and replicating strategies only apply to policies considered in their own.
Extensions of results to policy portfolios must be meant as approximations, their
precision level depending on the degree of homogeneity (from the risk selection point
of view) of the policyholders considered and on the dimension of the portfolio in
case of pooling risks (e.g. the risk of mortality random fluctuations around expected
values).

6.1. GAOs Results. In this section we provide the valuation results relative to a
single premium unit-linked pure endowment contract embedding a GAO. The inclu-
sion of a benefit payable in case of death during the deferment period and of indexed
annuity amounts is discussed in Sec. 6.2. We start by assuming that the value of the
benefits is linked to the market price of a reference fund during the deferment period.
On the lines of Sec. 2 and Sec. 4, we let S and (at)

.
= (äx+T (t)) denote the F-adapted

processes respectively of the reference fund price and of the time-t fair value of the
annuity payable from time T ≥ 0 to an individual then aged x + T . Such annuity
pays unitary amounts (conditional on survival) at times T0 ≤ T1 ≤ . . . ≤ Th ≤ . . .,
with T0 ≥ T . We assume that under Q the state variables processes X and Y are
affine with respect to F and set Z

.
= (X,Y ). (The process Z in Rk+d is also affine.)

We then denote by r the riskless short rate, by B the money-market account price
process and assume that r and B are defined as in Sec. 4 and satisfy the conditions
stated therein. Similarly, we assume that the reference fund price process is expo-

nential affine. In particular, we let St = eXi
t and rt = r(t,Xt) = p0(t) + p1(t) · Xt.

The intensity of mortality is assumed to be affine as in the framework described in
Sec. 5, that is µt = µ(t, Yt−) = η0(t) + η1(t) · Yt−.
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Consistently with the fair valuation framework described above, the time-t fair
value at is given by:

at = Bt

∞∑

h=0

EQ
[
I{τ>Th}B

−1
Th

|Ft

]
, (31)

where the sum above may be stopped at h = h∗−1, provided x+Th∗ is the minimum
age to which no one is assumed to survive. The following proposition provides the
time-t fair value expression for the payoff VT described by (1), in which we make
reference to the third line.

Proposition 6.1. For fixed T ≥ t ≥ 0, the time-t fair value Vt of the payoff VT

described by expression (1), on the event {τ > t}, is given by:

Vt =eα(t;ε(i),T )+β(t;ε(i),T )·Zt + g

∞∑

h=0

eα(T ;0,Th)+α(t;γh,T )+β(t;γh,T )·ZtQ
(γh)
T (A|Ft)

−eα(t;ε(i),T )+β(t;ε(i),T )·ZtQ
(ε(i))
T (A|Ft)

(32)

where: ε(i) denotes the vector in Rk+d with all null components except the i-th, equal

to 1; γh is the vector in Rk+d defined by γh
.
= ε(i)+β(T ; 0, Th); Q

(v)
T is the probability

defined by means of (15) for v ∈ Rk+d; the functions α(·; b, u) and β(·; b, u) solve
uniquely the ODEs (9) and (10), relative to the affine function R(s, z) = r(s, x) +
µ(s, y) (where z = (x, y) ∈ Rk+d), with boundary conditions α(u; b, u) = 0 and
β(u; b, u) = b (for b ∈ Rk+d and u ≥ 0).

Proof. First, we note that, by using the tower property, the doubly stochastic as-
sumption and the transform formula (8), the time-t value of the survival benefit is
given by:

BtE
Q

[
B−1

T I{τ>T}ST

∣∣∣Ft

]
= EQ

[
e−

∫
T

t
(r(s,Xs)+µ(s,Ys))dseε(i)·ZT

∣∣∣Ft

]

= eα(t;ε(i),T )+β(t;ε(i),T )·Zt .

Similar arguments applied to (31) yield immediately that the following holds:

at =

∞∑

h=0

eα(t;0,Th)+β(t;0,Th)·Zt (33)

This can be used into the (digital) option component of (1) to get the following
expression for its time-t fair value, on the event {τ > t}:

gBtE
Q
[
IAB−1

T ST (aT − 1/g)I{τ>T}

∣∣∣Ft

]
=

=g

∞∑

h=0

eα(T ;0,Th)EQ
[
e−

∫ Th
t

(r(s,Xs)+µ(s,Ys))dseγh·ZT IA

∣∣∣Ft

]

− EQ
[
e−

∫
T

t
(r(s,Xs)+µ(s,Ys))dseε(i)·ZT IA

∣∣∣Ft

]
,

(34)

Finally, repeated application of the change of measure described at the end of Sec. 3
completes the proof. �

The result provided by Prop. 6.1 can be employed in several ways. First, it can
be used directly, provided the insurer is able or willing to specify the exercise prob-

abilities Q
(·)
T , possibly relying on available internal/market data regarding historical
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rates of exercise. However, we must stress that the exercise probabilities appearing
in (32) are ‘generalized forward risk-adjusted’ probabilities and thus their specifica-

tion/estimation is quite difficult, although the dynamics of Z under Q
(·)
T are easily

recovered by formulae (16) to (18). In order to overcome such problem, we offer some
other approaches.

We can for example specify the dynamics of the (primary market) annuity price
ã (alternatively, of the conversion rate 1/ã) in terms of the affine state process Z.
We keep on reasoning under Q, so that the dynamics of ã should be adjusted for
the risk of adverse (to the insurer) exercise. We assume that ã is specified as ã =
f(b · Z) for some b ∈ Rk+d and some positive strictly increasing function f on R

(for example, ã = k + exp(b · Z)). Both f and b can allow for the correlation of ã
with a, interest rates and mortality, as well as with any additional factors of concern
(charges, insurance market trends), provided they are included in the state variables.
The exercise probabilities appearing in (32) are then expressed as follows:

Q
(v)
T (A|Ft) = Q

(v)
T (−b · ZT ≤ f−1(1/g)|Ft)

= G
(v,T )
0,0,1,−b,(0,0)(f

−1(1/g), Zt, T )

= Gv,0,1,−b,(p,η)(f
−1(1/g), Zt, T ) e−α(t;v,T )−β(t;v,T )·Zt ,

(35)

where G
(v,T )
· and G· are functions defined by (13), respectively under Q

(v)
T and Q,

and can be computed as in (14).

In case no distinction is made between primary and secondary market, as exem-
plified by (2), we can consider A = {aT ≥ 1/g} and the valuation of GAOs is similar
to the pricing of vulnerable options on defaultable coupon-bonds (consols) with zero
recovery. The exercise boundary is in this case a concave surface and the transform
inversion methods examined in Sec. 3 cannot be used directly. However, an approx-
imating hyperplane can be found, as explained in Munk (1999) and Singleton and
Umantsev (2002), and the usual formula (14) used. The particular case in which
the underlying of the option is a pure endowment instead of an annuity poses no
problem, since we are then back to a linear exercise boundary.

6.2. Death Benefits and Indexed Annuities. We now briefly discuss the inclu-
sion of a death benefit process C payable in case death occurs before maturity. We
let C be a bounded G-adapted F-predictable process. Intuitively, that means the
death benefit is known an instant before death happens. The same arguments used
in previous section yield that the time-t fair value V d

t of the amount Cτ I{t<τ≤T}, for
T ≥ t ≥ 0, is given by:

V d
t = EQ

[
e−

∫
τ

t
r(s,Xs)dsCτ I{t<τ≤T}

∣∣∣Ft

]

= EQ
[
EQ

[
e−

∫
τ

t
r(s,Xs)dsI{t<τ≤T}Cτ

∣∣∣Ft ∨ GT

] ∣∣∣Ft

]

= I{τ>t}

∫ T

t

EQ
[
e−

∫
s

t
(r(u,Xu)+µ(u,Yu))duµ(s, Ys)Cs

∣∣∣Ft

]
ds,

(36)

where we have used the fact that on the set {τ > t} the Ft ∨ GT -conditional density
of τ is given by µs exp

(
−

∫ s

t
µudu

)
for t ≤ s ≤ T . We can let C = k exp(b · Z) for

b ∈ Rk+d and k > 0. (In particular, the death benefit could be linked to the reference
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fund by setting b = ε(i).) Then (36) can be developed further to obtain:

V d
t =

∫ T

t

EQ
[
e−

∫
s

t
(r(u,Xu)+µ(u,Yu))du (η0(s) + η1(s) · Ys) keb·Zs

∣∣∣Ft

]
ds

= k

∫ T

t

eα(t;b,s)+β(t;b,s)·Zt

(
α̂(t; b, η̂1(s), η0(s), s) + β̂(t; b, η̂1(s), s) · Zt

)
ds

on the set {τ > t}, where α, β, α̂ and β̂ solve, for fixed s ∈ [t, T ], the ODEs (9) to

(12) with boundary conditions α(s) = 0, β(s) = b, α̂(s) = η0(s) and β̂(s) = η̂1(s),
where we set η̂1(s) = (0, η1(s)).

The framework proposed can easily handle indexed annuities. Specifically, suppose
that the annuity underlying the GAO provides an annuity amount w0(u)+w1(u) ·Zu

at the generic payment date u ≥ T . For example, the indexation could relate to the
only state variables process X and be defined through the policy w0(u) = 1+s p0(u),
w1(u) = s (p1(u), 0), for some s > 0, yielding an annuity amount of the form 1+s ru.
Similar reasoning can be used to link the benefits to a reference fund price or to index
them on other quantities of concern (e.g. inflation), provided the latter are included
in the state variables. The results of Prop. 6.1 can be adjusted to take indexation
into account by replacing expressions (31) and (33) with:

at = Bt

∞∑

h=0

EQ
[
I{τ>Th}B

−1
Th

(w0(Th) + w1(Th) · ZTh
) |Ft

]

=

∞∑

h=0

eα(t;0,Th)+β(t;0,Th)·Zt

(
α̂(t; 0, w1(Th), w0(Th), Th) + β̂(t; 0, w1(Th), Th) · Zt

)

where, for all h, α, β, α̂ and β̂ solve the ODEs (9) to (12) with boundary conditions

α(Th) = 0, β(Th) = a, α̂(Th) = w0(Th) and β̂(Th) = w1(Th). The expectations
appearing in (34) would then be solved by using transform inversion methods, on the
lines of expression (14).

7. Conclusion

In this work we have demonstrated how the jointly affine and doubly stochastic
setup enables to deal effectively with several sources of risk that simultaneously affect
insurance contracts embedding GAOs. In particular, the risk of mortality (system-
atic and unsystematic) has been taken into account, by exploiting a parallel with the
pricing of credit-risky securities in intensity-based models. Moreover, we have ex-
plicitly allowed for the mismatch between the insurer’s viewpoint in valuing the cash
flows triggered by the exercise of such options and the policyholder’s exercise deci-
sion. Special emphasis has been put on the fair valuation framework proposed by the
IASB and aimed at market-oriented accounting principles for insurance liabilities.
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