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Abstract

In this thesis, an investigation into foreign exchange rate option (commonly called

currency option) pricing models is described. Using the example of cash currency

options,the pricing of the options is sought as a more general case of other plain

vanilla options.

By setting up a high-dimensional stochastic environment, selection of an ap-

propriate mathematical implementation becomes crucial. In this thesis, advanced

Monte Carlo techniques are presented and used intensively. For early-exercise cur-

rency options, an enhanced version of the basic Longstaff and Schwartz (2001) tech-

nique as proposed by Duck et al. (2005) is employed, which enables an option pricing

speedup of 20 times. With this powerful tool, currency-option models can be eas-

ily extended to stochastic-interest-rates and stochastic-volatilities models. Having

addressed the practical issue of pricing and hedging difficulties of one of the most

heavy traded products in the foreign exchange market, discretely-monitored barrier

options, the focus of this thesis then moves on to exploring a new area of the foreign

exchange market to overcome the discontinuity of the Greeks of standard barrier

options, with a new class of options, which we term quantile Parisian and ParAsian

options. A number of other aspects, linked to currency exchange are also studied.
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Chapter 1

Option Pricing Theory

A theory is a good theory if it satisfies two requirements: it must

accurately describe a large class of observations on the basis of a model

that contains only a few arbitrary elements, and it must make definite

predictions about the results of future observations.

—— Stephen Hawking

A Brief History of Time

Modern quantitative finance sprang to life in the early 1970s with the development

of the Nobel-prize winning Black-Scholes (1973) theory on how to price an option,

a financial derivative security whose payoff is contingent on the behaviour of an un-

derlying asset. Over the past three decades, there has been explosive growth in the

trading of financial derivative securities and increasing sophistication in techniques

used to value financial products. Therefore, the development of the financial market

requires more accurate and more standard pricing models and more efficient tech-

niques to obtain the solutions to the models. In terms of improving the accuracy

is for the options with sophisticated features, such as high-dimensional American

options. Whereas in terms of improving the pricing model itself is for the options

lack of literature background, which implies that the instruments are not investi-

gated in previous literature, such as Parisian or ParAsian options with extra barrier.

Furthermore, more efficient numerical methods are always appealing in quantitative

15



CHAPTER 1. OPTION PRICING THEORY 16

finance. Hence, the motivation of this thesis.

The major themes of this chapter are to introduce the financial market structure

and the basic theories needed for option pricing generally. This chapter presents

a history of the derivative securities development, and then introduces a typical

instrument in derivative security markets, an option. Thereafter, the fundamentals

of option pricing theory are introduced, including the classic Black-Scholes (1973)

theory. Finally, the characteristics of several different implementations of option

pricing models are described.

1.1 History of Derivative Securities

A derivative security is a financial contract whose value is derived from the value(s)

of one or more underlying assets (such as a stock price) or quantities (such as

interest rate); it is also known as a contingent claim (see Jarrow and Turnbull, 2000).

The trading of financial derivatives on organised exchanges has exploded since the

early 1970s and, furthermore, trading in over-the-counter markets has become very

popular since the mid 1980s. According to the Bank for International Settlements

semi-annual report1 (hereafter, BIS), the global over-the-counter derivative market

value from beginning of January 2006 to the end of June 2006 was over 10 trillion

U.S. dollars.

In 1972, the Chicago Mercantile Exchange (hereafter, CME), responding to the

collapse of the Bretton Woods system, formed the International Monetary Market,

which hosted its first futures trades on foreign currencies (involving seven major

currencies). These were the first derivative contracts that were not based on phys-

ical commodities2. Surprisingly, the CME did not pioneer the trading of currency

options, rather the Philadelphia Stock Exchange (hereafter, PHLX) became the first

exchange that traded options on currencies in 1982.

1BIS is an international organisation which fosters international monetary and financial coop-
eration and serves as a bank for central banks.

2For more detailed timeline of CME, see the official website of CME at http://www.cme.com/
about/ins/caag/history2801.html.
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In 1973, members of the Chicago Board of Trade (hereafter, CBOT) started the

Chicago Board Options Exchange (hereafter, CBOE), the world’s first stock op-

tions exchange3; only call options on just 16 issues were traded. As a consequence,

the world class clearing organisation, the Options Clearing Corporation (hereafter,

OCC) was founded the same year. Then the CBOT launched the first interest-rate

futures contract in 1975, based on mortgages issued by the Government National

Mortgage Association (also known as Ginnie Mae). However, trading failed to de-

velop, even though the launch was initially successful.

1973 saw the publication of two seminal papers of Black and Scholes (1973) and

Merton (1973), which revolutionised the investment world. This set up a mathemat-

ical framework that accompanied an explosive revolution in the use of derivatives.

In 1976, the CME proposed trading on 90-day U.S. Treasury Bill futures. This

was the first successful pure interest-rate futures contract and over the next six years

it became the CME’s most actively traded product. In 1977, the CBOT launched

the U.S. Treasury Bond futures contract, which went on to become the highest

volume contract in the world for a time. In 1981, the CME created the Eurodollar

contract, which has now surpassed the CBOT’s Treasury Bond contract to become

the most actively traded of all futures contracts.

1982 is regarded as a year of innovation for the financial derivatives market.

On February 24th, the Kansas City Board of Trade launched the first stock index

futures, a contract on the Value Line Index4. On April 21st, the CME quickly

followed with their highly successful futures contract on the S&P 500 index, and

options on the S&P 500 index were born nine months later5. The CBOT launched

the first options on future contracts, namely options on U.S. Treasury Bond futures

on October 1st6.

3For more detailed timeline of CBOE, see the official website of CBOE at http://www.cboe.
com/AboutCBOE/History.aspx.

4The index represents 1,700 companies from the New York and American Stock Exchanges and
the over-the-counter market. The index is published by an independent investment research firm
called Value Line.

5For more detailed timeline of CME, see the official website of CME at http://www.cme.com/
about/ins/caag/history2801.html.

6For more detailed timeline of CBOT, see the official website of CBOT at http://www.cbot.
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The mid-1970s marked the beginning of the era of over-the-counter (hereafter,

OTC) derivatives. The OTC market is a non-regulated market, consisting mostly

of large banks and institutional clients, where trades are conducted privately (not

on the exchanges) and with the terms of the contract being customised to the spe-

cific needs of the parties. Although OTC options and forwards had previously ex-

isted, that generation of corporate financial managers of that decade was the first to

graduate from business schools with exposure to derivatives. Soon, virtually every

middle-large corporation was using derivatives to hedge, and in some cases, spec-

ulate on interest rates, exchange rates and commodity risks. New products were

rapidly created to hedge the now-recognised wide variety of risks. The instruments

became more complex and were sometimes even referred to as “exotic”. Two types

of derivative contracts were the most common: “swaps”7 and “hybrids”8.

In 1990, the CBOE introduced Long-term Equity AnticiPation Securities (LEAPS),

which are long-term dated options and give investors more flexibility in using options

in their portfolios (for more information, see Chance, 1995).

With the growth of the derivatives world, scandals appeared more and more

frequently. In 1994, the derivatives world was hit with a series of large losses on

derivatives trading announced by some well-known organisations, including Procter

and Gamble and Metallgesellschaft. One of America’s wealthiest localities, Orange

County, California, publicly announced the loss of 1.5 billion U.S. dollars on mu-

nicipal bonds, municipal bond funds, and bank stocks. England’s Barings Bank

declared bankruptcy due to speculative trading in futures contracts by 28-year-old

Nick Leeson in its Singapore office. These and other large losses led to a huge outcry,

sometimes against the instruments and sometimes against the firms that sold them.

While some minor changes occurred in the way in which derivatives were sold, most

firms simply instituted tighter controls and continued to use derivatives. These have

com/cbot/pub/page/0,3181,942,00.html.
7An agreement to exchange cashflows in the future according to a prearranged formula, see Hull

(2002).
8Derivatives which combine features and risks from different markets, such as interest rates,

equity and credit. See Graziano and Rogers (2006).
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not involved what might be called best practice, but they have certainly brought

derivatives into the public eye.

In the autumn of 1998 an American hedge fund, Long Term Capital Management,

including amongst its founders the two Nobel Prize-winning economists, Myron

Scholes and Robert Merton, was bailed out and then rescued by the Federal Reserve

Bank of New York at a cost of 3.65 billion U.S. dollars because of worries that its

total collapse would have severe repercussions for the world financial system.

In 1999, a group of traders calling themselves the Flaming Ferraris, including

the son of a well-known British politician, at Credit-Suisse First Boston were sacked

following allegations of illegal trades in an attempt to manipulate the Swedish stock

market index. In 2001, Enron, the “America’s Most Innovative Company”9 and the

world’s leading energy company made extensive use of energy and credit derivatives

but became the biggest bankruptcy in U.S. history after systematically attempting

to conceal huge losses. In 2002, Ireland’s biggest bank, Allied Irish Bank lost 750

million U.S. dollars. A currency trader John Rusnak had used fictitious options

contracts to cover losses on spot and forward foreign exchange contracts, and the

trading losses had gone unnoticed for over five years.

In January 2004, the National Australia Bank admitted losing 280 million U.S.

dollars. Four foreign currency traders at the bank had conducted unauthorised

trading in currency options. In August 2004, Citigroup traders led by Spiros Skordos

made 15 million Euro by suddenly selling 11 billion Euro worth of European bonds

and bond derivatives, and buying many of them back at a lower price. Citigroup’s

short sale cost the bank far more in reputation and legal headaches. Citigroup is

now 14th among advisers on European privatisations, down from third, according to

bloomberg.com. In December 2004, China Aviation Oil, which supplies almost all

of China’s jet fuel imports, lost about 550 million U.S. dollars in speculative trade.

This loss was the largest amount a company in Singapore had lost by betting on

derivatives since the case of Barings. Then in October 2005, Refco, one of the world’s

largest derivatives brokers was forced to freeze trades due to its chief executive officer

9Fortune Magazine awarded Enron this title for six consecutive years before its bankruptcy.
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and chairman, Phillip R. Bennett hiding 430 million U.S. dollars in bad debts from

the company’s auditors and investors. The Economist magazine addressed this affair

as “the latest scandal in America,”10 and the New York Times commented “If Refco

isn’t scary, what is?”11

In spite of the ever-growing scandals, the derivative market continues to grow

dramatically. By the end of last year, the year-end total volume exceeded 1.5 billion

contracts at OCC. Moreover, the annual volume of trading hit new highs every year

up to 200612. On 22nd December 2006, total options contract surpassed two billion

U.S. dollars contracts for the first time ever.

1.2 Introduction to Options

Derivatives markets are populated with a vast range of instruments, and amongst

these options features are perhaps the most interesting, mathematically and finan-

cially, in terms of complexity and scope. A comprehensive review of options features

is not given in this thesis (alternatively, see Hull, 2002); however a brief reminder of

a few fundamentals will be presented for completeness.

There are two basic types of options: call options and put options. A call option

gives its owner the right, but not the obligation, to buy the underlying asset(s)

at a specified price on, and in some cases before, the date the option expires. The

specified price is called the strike price (or exercise price) the date the option expires

is called the maturity (or expiration date), and the premium (i.e. option price) is

the price paid to acquire the option. A put option is similar, but with the right to

sell the underlying asset(s).

Call and put options are further categorised in different ways according to their

additional features (more detailed introduction, see Hull, 2002).

• Underlying asset

10The news was published on 14th October 2005 on http://www.economist.com/agenda/
displaystory.cfm?story_id=5039643.

11The news was published on 16th October 2005 by Grethchen Morgenson, New York Times.
12For more detailed timeline of OCC, see the official website of OCC at http://www.theocc.

com/about/timeline.jsp.
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With the rapid growth of financial markets, options are becoming increasingly

popular and are available on many assets. Currently, options are actively

traded on stocks, commodities, indices, foreign exchange rates (of particular

relevance to this thesis), futures, and even on weather and electricity.

• Exercise frequency

Options that can be exercised only at maturity are called European options.

Those that can be exercised at any time up to the maturity are called Ameri-

can options. Variants include Bermudan options, which can also be exercised

before maturity, but only on a fixed number of pre-determined dates during

the contract life.

• Payoff functions

New types of options may be devised by changing the payoff function for the

option. For example, binary options have payoffs of either a fixed amount

or zero, rather than being linearly related to underlying asset value at the

maturity. Whether the payoffs are achieved at all may be made to depend on

the path followed by the underlying asset. A barrier option, for instance, may

cause the payoff to be knocked out (alternatively, knocked in), dependent on

path. Some new classes of options based on time triggers to determine the

knock-in or knock-out are described in Chapter 7. The payoffs from lookback

options depend on the maximum or minimum asset price reached during their

contract life. For Asian options, the payoff depends on the average price of

the underlying asset during the life of the contract.

• Moneyness (i.e. Intrinsic value)

This classification is generally for the purpose of option price analysis. When

the strike price is equal to the spot price of the underlying asset, the option

is called an at-the-money option. When the strike price is greater than the

spot price of the underlying asset, the option is called an out-of-the-money call

option or an in-the-money put option. If the strike price is less than the spot
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price of the underlying asset, the option is called an in-the-money call option

or an out-of-the-money put option.

There are many more types of options traded in the financial markets, such as

compound options or basket options, or varieties of combinations (see Wilmott,

2001). In this thesis, two major classes will be studied in detail, that is American

options (Bermudian options included) and barrier options (including two sub-classes,

namely, Parisian and ParAsian options).

1.3 Option Pricing Fundamentals

Financial markets are driven by many complicated factors. A complete market

means that any derivative (i.e. contingent claim) can be synthesised from other

instruments (assets or quantities). Intuitively speaking, in such a circumstance,

whenever the number of different ways to obtain payoffs equals the number of states,

any payoff can be attained. According to the fundamental theorem of financial

economics, risk-neutral probabilities are unique if and only if the market is complete

(see Bailey, 2005). Whereas an incomplete market does not have this property.

Alternatively, in a complete financial market model, derivatives can be perfectly

hedged by a dynamic trading strategy, and can be priced by taking expectations

under a unique martingale measure (see Duffie, 1988).

Market completeness is one of the fundamental assumptions of the Black-Scholes

(1973) framework. It is also one of the assumptions embedded in this thesis, regard-

less of whether in reality the market is actually incomplete.

1.3.1 Arbitrage Pricing Method

The concept of arbitrage is the essence of derivative pricing theory. Assuming a

portfolio has value Zt(θ) at time t, where θ denotes the components in the portfolio

the formal definition of arbitrage is described as, during an investment time horizon
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[0, T ] as

Z0(θ) = 0, (1.1)

P(ZT (θ) ≥ 0) = 1, (1.2)

P(ZT (θ) > 0) > 0. (1.3)

The no-arbitrage assumption implies no risk-free profit, which in turn, implies that

a risk-less portfolio has no more than the risk-free rate of return. It also implies that

two portfolios have the same present value if they are exposed to the same sources

of risk; this is also known as the law of one price (see Björk, 2004).

No-arbitrage pricing requires that the market for the instruments in the repli-

cating portfolio be complete. Also, the assumption is that these instruments can

be traded continuously and without frictions (such as transaction costs or taxes).

No-arbitrage pricing can be used only where the markets for the underlying assets

are complete. Nevertheless, it is still possible to use no-arbitrage pricing for mar-

kets that are “nearly” complete, either by assuming away the incompleteness (useful

for developed markets with very small transaction costs, for example) or by use of

super-replicating portfolios13. No-arbitrage pricing has the benefit of not involving

the investor’s attitude towards risk (see Bailey, 2005).

1.3.2 Equilibrium Pricing Method

In the equilibrium pricing method, the lack of no-arbitrage pricing opportunities

is part of the general equilibrium condition. The method is built on assumptions

about how the economy works. It can be used to value an asset or derivative under

a wide range of circumstances. Unfortunately, it is necessary to know information

about the preferences of market participants (or agents), particularly their attitudes

towards risk. This is mainly used for derivative pricing under incomplete markets,

such as for cases where the market contains sources of untradeable risk or the assets

13A super-replicating portfolio is the portfolio consisting of units of underlying asset and risk-free
bond in such a way that at the end of the investment time horizon, the portfolio is worth at least
as much as the value of the derivative. See Duffie (1988).
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are illiquid. In the incomplete market, derivatives carry intrinsic risks, and there is

no canonical choice of a preference-free pricing mechanism. Thus, any reasonable

valuation and any efficient hedging procedure should be based on criteria which take

into account preferences towards risk. In terms of equilibrium, it can be seen that

a no-arbitrage price is a unique ultra-stable equilibrium price (see Duffie, 1988).

1.4 Black-Scholes-Merton Theory

As mentioned in Section 1.1, Black and Scholes (1973) and simultaneously Merton

(1973) presented a theory for option pricing. The influence of option pricing theory

on finance practice has not been limited to plain options, however, the “Black-

Scholes-Merton” methodology has played a fundamental role in supporting the de-

velopment of new financial instruments around the globe. The derivation of the

Black-Scholes-Merton pricing formula is based on the following assumptions:

i:) The market is perfect: there are no transaction costs or taxes. Trading takes

place continuously. Borrowing and short-selling are with no restriction.

ii:) The underlying asset follows a stochastic differential equation in the form of a

geometric Brownian motion,

dSt

St

= αdt + σdWt,

where α is the expected rate of return on the asset which is constant, σ is the

volatility which is a constant as well, and dWt is the increments of a standard

Brownian motion14.

iii:) The risk-free rate of interest is a constant over time, denoted as r.

iv:) The option is “European” (defined in Section 1.2).

v:) The option price is assumed to be a twice-continuously differentiable function

of underlying asset price St, and time t.

14The mathematical definition of volatility and Brownian motion will be introduced in Chapter
2.
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Black and Scholes (1973) considered a hedging strategy which satisfies a self-

financing condition, that is, there are no cashflows (in or out) during the investment

time horizon [0, T ] for the portfolio adjustments. Under the risk-neutral measure,

all assets yield the risk-free return. The Black-Scholes partial differential equation

(hereafter, PDE) is then

∂V

∂t
+

∂V

∂S
rS +

1

2

∂2V

∂S2
σ2S2 − rV = 0, (1.4)

where V (St, t) is the option price at time t for an underlying asset St (see also

Wilmott, 2000a). Except for a few special cases, there is no general analytical

solution to the Black-Scholes PDE, although prices for the European call option C

and European put P can be derived (see Wilmott, 2000a):

C = S0N(d1)−Ke−rT N(d2), (1.5)

P = Ke−rT N(−d2)− S0N(−d1), (1.6)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T
,

d2 = d1 − σ
√

T ,

N(·) is the standard normal cumulative distribution function, S0 is the underlying

asset price at time 0, and K is the strike price.

Subsequent research in the field has broadly proceeded along three directions:

applications of the methodology to other than financial options; empirical testing of

the formula; attempts to weaken the assumptions (see Merton, 1997).

1.5 Option Pricing Implementation

The aim of option pricing analysis may be regarded as determining the “fair” option

price. Depending on the assumptions of a model, different approaches can be chosen

to obtain the most accurate value within a reasonable computational time, although

there is no “perfect” algorithm suitable for all problems; the most efficient algorithm
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depends on the specific problem. For instance, some algorithms give very low accu-

racy but are readily implemented for high-dimensional problems. Some algorithms

might be computational expensive but give a highly accurate result. More in-depth

descriptions of algorithms will be given later in this section (see also Neftci, 2000).

1.5.1 Analytical Solutions

Analytical solutions of pricing problems may sometimes be obtained by applying

the equivalent martingale measure (hereafter, EMM) or by solving the PDEs, which

is, in general, based on the assumption of a continuous-time economy. An EMM is

the calculation of an expectation with respect to a given probability measure, which

is normally calibrated by a risk-free asset as numeraire. This way of pricing reflects

an absence of arbitrage: if an EMM exists, and so there is no arbitrage; if the EMM

is unique, then derivatives prices can be calculated, implying that the market is

complete. PDEs can be derived by hedging the risk of the underlying asset, for

example, the Black-Scholes PDE in Section 1.4. Also, using stochastic calculus,

most famously the Feynman-Kac formula, PDEs can be derived in the formulation

of the pricing problem, (see Wilmott, Dewynne and Howison, 1995; Kallianpur and

Karandikar, 2000). Strictly speaking, closed-form solutions are possible for some

simple cases of European options, but not for American options, as it is generally

very difficult to find the solution for the optimal early-exercise criterion because of

the inherent nonlinearity15. As a consequence, numerical methods often have to be

employed.

1.5.2 Numerical Techniques

Numerical techniques are practical methods that are used by both academic re-

searchers and market professionals. Depending on the problem at hand, one method

15However, there are analytic approximation applicable to simple American option prices by
MacMillan (1986) and extended by Barone-Adesi and Whaley (1987), and Peskir (2005a).
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may be more convenient or computationally cheaper to use than another. Some well-

known numerical procedures are finite-difference methods, binomial and trinomial

trees, quadrature methods, and Monte Carlo simulations (as used extensively in this

thesis).

Finite-difference

The finite-difference method is a direct and generally efficient approach to the so-

lution of PDEs and was introduced to finance problems by Brennan and Schwartz

(1978). Pricing different types of options often only leads to a change in bound-

ary conditions associated with the PDE (see Neftci, 2000). The method generally

provides reliable results for low-dimensional problems (generally up to three dimen-

sions). Higher-dimensional PDE for multi-factor models can be derived, however,

even for those claiming sophistication, it is difficult to implement four or more factor

models using these methods (the reason will be explained in detail in Section 4.5).

Also, Hull (2002) pointed out that finite-difference methods (as well as tree methods

— see below) are difficult to apply to non-Markovian driving processes (for example,

path-dependent processes).

Trees

The most easily understood approach for discrete-time models is the family of tree

methods (also known as lattice methods). Cox, Ross and Rubinstein (1979) proved

that as the lattice is refined, these methods converge to the correct option values

produced by a continuous-time model. Trees are convenient for more straightforward

situations where analytic solutions are not available. For example a simple and

effective but coarse approximation can delivered for one-factor American options

with few extra features. The rates of convergence of basic trees are relatively poor16.

The method also does not scale well to higher dimensions. One example is Amin

and Bodurtha (1995), in which the algorithm is a tree method for three dimensions,

16But some literature has shown that it can be considerably improved. See Figlewski and Gao
(1999), Widdicks et al. (2002).
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restrict to just 12 nodes. A more detailed explanation is given in Section 3.4.1.

Quadrature (QUAD)

In mathematics, methods of approximate integration based on quadrature are histor-

ically the oldest of the integration techniques (Evans and Swartz, 2000). In finance,

Andricopoulos et al. (2003, 2004) presented a quadrature method to evaluate option

prices. The idea behind the technique is to approximate the integrals representing

all possible future outcomes, in a manner which, in essence, involves approximating

areas under curves. The method yields excellent results for discrete-time options.

The insight is to recognise that boundary conditions such as the final payoff and in-

termediate early-exercise possibilities need to be dealt with, but that between these

significant events only straightforward integration is required; consequently, conver-

gence is exceptionally fast, and any standard mathematical technique for quadrature

can be applied. Evans and Swartz suggest that quadrature is an effective technique

in low-dimensional problems but not as effective in higher dimensions. Andricopou-

los et al. (2006) presented results using QUAD for high dimensions which has largely

resolved this problem.

Monte Carlo

The Monte Carlo method provides approximate solutions to a wide variety of math-

ematical problems, by performing statistical sampling experiments on a computer

(see Goodman, 2005). In applications of the Monte Carlo method, the process can

be simulated directly by random sampling. Many observations are then performed

to obtain a large enough sample space, and the desired result is taken as an average

over the number of observations. In order to obtain a reasonably accurate result,

the number of observations may need to be several millions. It is possible to predict

the statistical error (i.e. the “variance”) in this average result, and therefore an es-

timate of the number of Monte Carlo simulations that are needed to achieve a given

accuracy. To be more precise, Monte Carlo methods provide an algorithm which
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gives a numerical estimate of an integral together with an estimate of the error (see

Higham, 2004).

Monte Carlo methods are used extensively to deal with multiple random fac-

tors, for instance options on multiple assets, asset processes with jumps, stochastic

interest rates or stochastic volatilities. They are by far the most efficient numeri-

cal methods for high-dimensional problems (justified in Section 4.5). Furthermore,

in the past 15 years Monte Carlo methods have been developed to solve problems

with early exercise. These techniques are used extensively in this thesis. A detailed

introduction to Monte Carlo methods will be presented in chapter 4.

1.6 layout of the thesis

In this thesis, the main focus is to set up the models with more relaxed assumptions

and to apply these models to other financial instruments. Having given the financial

introduction to option pricing theory, some mathematical preliminaries are presented

in Chapter 2 in order to provide a better understanding of the mechanics of the op-

tion pricing models. This is followed in Chapter 3 by a comprehensive introduction to

foreign exchange market and a literature review of currency option modelling. Chap-

ter 4 is focused on the Monte Carlo techniques, discussing in depth the advantages of

Monte Carlo method as a numerical method for high-dimensional models. Chapter 5

applies an advanced Monte Carlo technique to American currency-option pricing and

investigates a more realistic framework for currency-option pricing models. Chapter

6 addresses a practical problem of pricing and hedging the discretely-monitored bar-

rier currency-option. In the real world, options are hedged discontinuously, which

makes the losses from mis-hedging substantial. To overcome the disadvantages of

standard barrier options as well as to introduce a new class of options, Chapter 7

explores the pricing models for so called quantile Parisian and ParAsian options.

And the difficulties of overcoming time-discretisation error leave us some scope for

future research. Chapter 8 concludes this thesis by providing a more realistic model
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for currency options as well as introducing a new class of options, namely quan-

tile Parisian and ParAsian options. Also future research in this area, such as data

calibrations, is suggested in Chapter 8.



Chapter 2

Mathematical Preliminaries

The most important questions of life are, for the most part, really

only problems of probability.

—— Pierre Simon Laplace (1749 - 1827)

Théorie Analytique des Probabilités, 1812

In this chapter, a brief summary of several concepts and theorems is given. An

understanding of these will provide a foundation to construct the financial models

employed in this thesis. Certain additional conditions applied for the completeness

of theorems, such as existence and uniqueness, will be taken as understood without

proof.

Sections 2.1 and Section 2.2 give very basic definitions in classic probability

theory. Section 2.3 introduces several stochastic processes which are of great impor-

tance in the field of financial mathematics. Section 2.4 presents the fundamental

convergence theory and Sections 2.5 to 2.8, give a more specific introduction to

stochastic calculus embedded in option pricing theory. Section 2.9 concludes this

chapter. A more advanced introduction to this area may be found in Peskir and

Shiryaev (2006).

31
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2.1 Probability Space

Suppose that Ω is a set. Then a collection of subsets of Ω, F , is called a σ-algebra

(or σ-field) if:

i:) ∅ ∈ F ;

ii:) if A ∈ F , then so is the complement of A (i.e. Ac ∈ F);

iii:) if Ai for i = 1, 2, . . . is a family of subsets such that Ai ∈ F , then

A =
∞⋃
i=1

Ai ∈ F .

A probability measure P is a real-valued function defined as:

i:) 0 ≤ P(A) ≤ 1, ∀A ∈ F ;

ii:) P(Ω) = 1, where Ω is a sample space;

iii:) if Ai for i = 1, 2, . . . is a family of subsets such that Ai ∈ F , and Ai ∩ Aj = ∅
for any i 6= j, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Then a probability space is a triplet (Ω,F ,P) such that

i:) Ω is a non-empty set (called sample space);

ii:) F is a family of subsets of Ω with the property of a σ–algebra (a set of “events”);

iii:) P is a probability measure such that P : F → R.

2.2 Random Variables

2.2.1 Measurability

A random variable X is F–measurable if the value of X is completely determined

by the information in F . Formally speaking:
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A random variable X : Ω → R defined on a probability space (Ω,F ,P) is called

F–measurable if

X−1(U) = {ω ∈ Ω : X(ω) ∈ U} ∈ F ,

for all open sets U ∈ R.

2.2.2 Conditional Expectation

The conditional expectation of X given σ–algebra G ⊂ F is a random variable

E[X|G] : Ω → R satisfying:

i:) E[X|G] is G–measurable;

ii:) E[E[X|G]1G] = E[X1G], where 1(·) is an indicator function1.

Conditional expectation is the essence of option price modelling, especially for the

options with early exercise features. Option prices are expectations conditioned on

the information given at the present time (see Goodman, 2004).

2.2.3 Stopping Time

One of the important notions in the analysis of stochastic processes is the concept

of stopping time. The theory of stopping times plays a key role in finance, notably

in the determination of the optimal time at which to exercise an option prior to

its maturity. The American option (to be introduced in Chapter 5) is a typical

example.

It is natural to introduce the concept of filtration. A family of σ–algebra

{Ft},Ft ⊆ F is called a filtration if each Ft is represents the information known at

time t. Formally, a filtration {Ft} is

F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . (2.1)

1Suppose Ω is a set with typical element ω, and let A be a subset of Ω. The indicator function
of A, denoted by 1A, is defined by

1A(ω) =

{
1 if ω ∈ A

0 if ω /∈ A ,

That is, 1A indicates the set A. See Murison (2000).
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A stopping time is a random variable τ : Ω → [0,∞] with respect to a filtration

{Ft}, such that

{ω : τ(ω) ≤ t} ∈ Ft, ∀t ≤ ∞.

A hitting time is a stochastic process defined on a set U as follows:

τA(ω) = inf{t > 0 : Xt(ω) ∈ U}.

Then, τ is called a hitting time of U for X.

Stopping times are only encountered in the context of hitting times. Given a

criterion for stopping, enough information is known to determine whether to stop

or not. Approximately speaking, the hitting time is the time that a process hits the

fixed level a, whereas a stopping time is the first hitting time at which the criterion

is satisfied (i.e. if the process is right-continuous at the hitting time, it is a stopping

time, see Peskir and Shiryaev, 2006).

2.3 Stochastic Processes

A stochastic process is a family of random variables {Xt(ω), t ∈ T} defined on a

probability space (Ω,F ,P), with a set T which is called the index set of the process.

Given any t ∈ T fixed, the possible values of Xt are called the states of the process

at t. Whereas, given ω ∈ F fixed, X(ω) is called its sample path of the stochastic

process, and the family of all sample paths is a path space. This path space is the

probability space (see Doob, 1996).

If T is discrete, then the stochastic process is referred to as a discrete-time pro-

cess, and it is sometimes called a “sequence”. If T is an interval of R, then the

stochastic process is a continuous-time process. Note that continuous-time stochas-

tic processes are more general than discrete-time stochastic processes. Therefore, in

theoretical finance, continuous-time stochastic processes are widely used, and these

processes are of practical importance. For instance, partial differential equations or

stochastic differential equations may be built up on a continuous-time platform. The

most well-known numerical approach which is applied on a discrete-time platform is
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tree method introduced in Section 1.5.2. Note that the properties presented in this

chapter are for continuous-time processes by default, which are then applicable to

discrete-time cases, in the limit of small time steps.

The stochastic processes are basic building blocks for financial models. Below,

four fundamental processes are considered: Brownian motions, Poisson processes,

Markov processes, and martingales.

2.3.1 Brownian Motions

A stochastic process (Wt)t≥0 defined on a probability space (Ω,F ,P) is called a

Brownian motion (i.e. a Wiener process) if:

i:) the random variables {(Wti − Wti−1
), i = 1, 2, . . . , n} are independent for any

given 0 ≤ t0 < t1 < . . . < tn (independent increment);

ii:) Wt −Ws ∼ Wt−s for any 0 ≤ s ≤ t (stationary increment);

iii:) Wt is continuous in t with P–a.s.2;

iv:) W0 = 0, P–a.s.

With the above four conditions satisfied, a useful result can be obtained:

Wt ∼ N(µt, σ2t), ∀t > 0, (2.2)

where µ ∈ R and σ > 0 are given and fixed constants. A standard Brownian motion

is defined as Wt ∼ N(0, t) (i.e. µ = 0, σ2 = 1) where N(·) is defined in Section 1.4.

Brownian motion is the simplest example of a stochastic process. Many proper-

ties of more general stochastic processes appear explicitly in Brownian motions. In

fact, most of the stochastic processes in financial models may be described in terms

of Brownian motions (moreover, standard Brownian motions). Also, the solutions

to many other mathematical problems, particularly various stochastic differential

2P–a.s. is abbreviation of P almost surely, which means with probability one.
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equations, may be expressed in terms of standard Brownian motions. For these rea-

sons, Brownian motions are the central object to study. Some very important and

fundamental properties of a standard Brownian motion are presented as follows:

Assume (Wt)t≥0 is a standard Brownian motion defined on (Ω,F ,P). Then,

• Wt is continuous in t, but it is nowhere differentiable with respect to t, P–a.s.

• The law of large numbers (see Section 2.4.2) implies:

lim
t→∞

Wt

t
= 0, P–a.s. (2.3)

• Assume tnk is a doubly infinite subdivision of [0, t], where 0 = tn0 < tn1 < . . . <

tnN−1 < tnN = t, such that:

δn := max
1≤k≤N

(
tnk − tnk−1

) −→ 0, as n →∞.

The quadratic variation of a standard Brownian motion is defined by means

of

Sn =
N∑

k=1

(
Wtnk

−Wtnk−1

)2

.

Then,

Sn −→ t, in P–probability.3

If the rate of convergence of δn is sufficiently fast to imply
∑∞

n=1 δn < ∞, then

Sn −→ t, P–a.s. (2.4)

Note that a standard Brownian motion is of unbounded variation, but it has

a bounded quadratic variation, which moreover is equal to t. The quadratic

variation is one of the most important concepts in stochastic calculus.

In a discrete-time version, a Brownian motion is also known as a simple symmet-

ric random walk, which is commonly used in financial models (see Peskir, 2005b).

3It is a weak convergence. The formal definition of P–probability is given in Section 2.4.1.
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2.3.2 Poisson Processes

A process (Nt)t≥0 with parameter λ > 0 defined on a probability space (Ω,F ,P) is

called a Poisson process if

i:) Nt is increasing in t and each jump is of unit size, P–a.s.;

ii:) {(Nti−Nti−1
), i = 1, 2, . . . , n} are independent for given any 0 ≤ t0 < t1 < · · · <

tn, (independent increment);

iii:) Nt −Ns ∼ Nt−s, for any 0 ≤ s ≤ t (stationary increment);

iv.) N0 = 0, P–a.s.

The Poisson process is a discrete-distribution process. It is popular for modelling

jump features in financial models, such as stock prices, firm values, company indices,

exchange rates and interest rates (see Glasserman, 2003).

2.3.3 Markov Processes

Intuitively speaking, a Markov process is a stochastic process for which the future

does not depend on the past, but only on the present. It is a general class into

which many stochastic processes fall, such as the path-dependent stochastic process

introduced in Chapter 7. A stochastic process (Xt)t≥0 defined on a probability space

(Ω,F ,P) is called Markov process if

P(Xt ≤ x | Xu) = P(Xt ≤ x | Xs), for 0 ≤ u ≤ s ≤ t. (2.5)

Markov processes form a simple class of stochastic processes, which seem to

represent a good level of abstraction and generality. For the discrete-time case, a

sequence which has Markov property is called a Markov chain.

In finance, the term “diffusion” is frequently used. A diffusion process is a

(strong) Markov process whose paths are continuous in time. It generalises Brownian

motion, allowing a much wider variety of phenomena to be modelled and studied.
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Note that Brownian motion is the quintessential example of a diffusion, and the

Poisson process is an example of a Markov process that is not a diffusion. However,

it is useful to clarify the term “jump-diffusion” process, since it is widely used in

the financial world. A jump-diffusion process is a hybrid of a diffusion process and

a jump process (see Rogers and Williams, 1994).

2.3.4 Martingales

Martingales are very important and useful in the study of stochastic processes. A

martingale is a stochastic process whose future movements are always unpredictable

— it is a model of a fair game. A formal definition is given below.

A process (Mt)t≥0 defined on a probability space (Ω,F ,P) is called a martingale

with respect to a filtration {Ft}t≥0, with Ft ⊂ F if the following conditions are

satisfied:

i:) Mt is adapted to {Ft}t≥0, (i.e. Mt is Ft-measurable for all t);

ii:) E[|Mt|] < ∞ for all t ≥ 0;

iii:) E[Mt|Fs] = Ms for all 0 ≤ s ≤ t, P–a.s.

Intuitively, a martingale implies no prediction on the outcomes of the future events.

Recall the definition of a Markov process, whereby history is irrelevant — a Markov

process implies no history of past. Brownian motion is the most trivial example of

both a martingale and a Markov process, and is one of the reasons that Brownian

motion performs a key role in stochastic calculus and mathematical finance.

Some useful extensions of martingales are described below (see Hunt and Kennedy,

2005):

• super- and sub- martingale

(Mt)t≥0 is called a supermartingale if the condition (iii) is changed to E[Mt|Fs] ≤
Ms (i.e. the future value given information up to the present is no greater than

the present value), whereas a submartingale if E[Mt|Fs] ≥ Ms. Most of the

properties held for martingales also hold for supermartingales.
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• local martingale

More generally, the class of local martingales Mloc is defined as an adapted

process M null at zero such that for an increasing sequence of stopping times

{τn}, the stopped process M τn is a martingale. Roughly speaking, a local

martingale is a martingale with a finite time horizon. It is very useful in

practical applications.

• semimartingale

Semimartingales form the largest class of integrators for which the stochastic

integral can be defined, which will be introduced later. A process X is called

a semimartingale if X is adapted and can be decomposed as

X = A + Mloc, (2.6)

where A is an adapted right-continuous process of finite variation, and Mloc is

a right-continuous local martingale.

2.4 Convergence and the Central Limit Theorem

Convergence theory is a core theory of stochastic simulation, and is the essence of

Monte Carlo methodology. Some important definitions and theorems are provided

below.

This section is reserved for the discrete-time case. It can be used likewise for the

continuous-time case (see Peskir and Shiryaev, 2006).

2.4.1 Convergence

Three major types of convergence are introduced as follows:

• Convergence P–a.s.

Suppose that X and {Xn, n = 1, 2, . . .} are real-valued random variables.

Then Xn converges to X P–a.s if

P( lim
n→∞

Xn = X) = 1.
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This is the most common convergence notion in probability theory. It is also

called strong convergence.

• Convergence P–probability

Suppose that X and {Xn, n = 1, 2, . . .} are real-valued random variables.

Then Xn converges to X in probability for every ε > 0 if

P(|Xn −X| > ε) → 0 as n →∞.

Convergence in probability is much weaker than convergence P–a.s. and thus,

it is also called weak convergence.

• Convergence in distribution (or convergence in law)

Suppose that X and {Xn, n = 1, 2, . . .} are real-valued random variables with

distribution functions F and Fn, n = 1, 2, . . . respectively. Then Xn converges

to X in distribution (denoted as →̃) if

Fn(x) → F (x) as n →∞,

for all x ∈ R at which F is continuous.

Note that convergence in distribution only involves the distributions of the

random variables. Thus, the random variables need not even be defined on

the same probability space. This is the weakest convergence so that it is not

often used as financial concepts (see Goodman, 2004).

2.4.2 The Law of Large Numbers

Suppose Xn, n = 1, 2, . . . is a sequence of independent and identically distributed

random variables with mean µ. Then

1

n

(
n∑

i=1

Xi

)
→ µ as n →∞, P–a.s. (2.7)

This is called the strong law of large numbers. It provides the theoretical basis

for stochastic simulations, such as the Monte Carlo method. There is also a weak

law of large numbers which is omitted from this thesis in the interests of brevity.
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2.4.3 Central Limit Theorem

Suppose Xn, n = 1, 2, . . . is a sequence of independent and identically distributed

random variables with mean µ and variance σ2. Then
∑n

i=1(Xi − µ)

σ
√

n
→̃N(0, 1) as n →∞, P–a.s. (2.8)

Central limit theorem implies that no matter what distribution Xi has, the sum of

Xi (properly normalised) has a normal distribution when n is large enough.

2.5 Stochastic Integration

A stochastic integral can be interpreted financially as the gain from trading which

is expressed as:

It =

∫ t

0

HsdXs, (2.9)

where X is the asset, and Hs is the quantity held at time s of this asset X. However

because the asset X is no longer a process of finite variation, the randomness makes

the classical integral fail. Itô’s integral is introduced in the section below to resolve

this difficulty.

2.5.1 Itô’s Integral

Since a more sophisticated stochastic process can be reduced to a study of Brownian

motion Wt, it is only necessary to discuss a stochastic integral with respect to Wt.

The process (ht)t≥0 is defined as a simple process, such that

ht =
∑
i≥0

bi1(ti,ti+1],

where bi is Fti–measurable and 1(·) is defined in Section 2.2.2. (ht)t≥0 is adapted to

Ft, where Ft is the filtration generated by the Brownian motion Ws, for 0 ≤ s ≤ t.

Itô’s integral (2.9) on (0, t] with respect to Wt is:
∫ t

0

HsdWs = lim
n→∞

∫ t

0

hn
s dWs

=
∑

tk+1≤t

bk

(
Wtk+1

−Wtk

)
, (2.10)
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where

lim
n→∞

(
E

[∫ t

0

|Hs − hn
s |2ds

])
= 0.

The idea of Itô’s integration is to sum up the values Hti(Wti+1
−Wti) with respect

to a subdivision (ti, ti+1]. If H is not a simple process, there always exists a family

of integrands (hn
t )t≥0 that are simple processes converging to H with P–a.s.

Some properties of the stochastic integral are presented here: Assume X and Y

are square-integrable processes on a probability space (Ω,F ,P) with respect to a

filtration {Ft}, Ft ⊂ F . Then

• Time additivity:

∫ t

0

XsdWs =

∫ u

0

XsdWs +

∫ t

u

XsdWs, where 0 < u < t. (2.11)

• Linearity: ∫ t

0

(aXs + bYs)dWs = a

∫ t

0

XsdWs + b

∫ t

0

YsdWs, (2.12)

where a and b are constant.

• Martingale property:

∫ t

0

XsdWs is a martingale.

2.5.2 Itô’s Isometry

Itô’s isometry is useful in practical calculations.

Assume that H is an adapted (measurable) process satisfying E[
∫ t

0
H2

s ds] < ∞,

defined on a probability space (Ω,F ,P) with respect to a filtration {Ft}, Ft ⊂ F .

Itô’s isometry is

E
∣∣∣∣
∫ t

0

HsdWs

∣∣∣∣
2

= E
[∫ t

0

H2
s ds

]
. (2.13)

Note that using Itô’s isometry, the stochastic integral can be calculated in terms of

the expectation.
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2.6 Stochastic Differential Equations

The theory of stochastic differential equations (hereafter, SDEs) is a framework for

expressing dynamical models that include both random and deterministic compo-

nents; the theory being based on the Itô integral. The solution to an SDE is a

stochastic process which is expressed in terms of a stochastic integral with respect

to Brownian motion.

Consider an SDE taking the form

dXt = µ(Xt, t)dt + σ(Xt, t)dWt. (2.14)

A solution to (2.14) is an adapted process that has the form

Xt = X0 +

∫ t

0

µ(Xs, s)ds +

∫ t

0

σ(Xs, s)dWs, (2.15)

where the first integral on the right-hand-side is a Riemann integral and the second

integral is an Itô integral.

The initial conditions X0 are often specified, where X0 may be a random variable.

In the general SDE, µ is called drift, and σ is a diffusion coefficient; in finance, σ is

called the volatility (introduced in Section 1.2).

Three extensively used SDEs in financial modelling will now be discussed.

2.6.1 Geometric Brownian Motion

A general Brownian motion is introduced in Section 2.3.1. Geometric Brownian

motion is a rather more special case whose logarithm follows a general Brownian

motion. A geometric Brownian motion is the most common process utilised in

financial market modelling, and can be used to model the uncertain return of an

asset, such as a stock. The SDE of a geometric Brownian motion is defined as (and

mentioned in Section 1.4):

dXt

Xt

= µdt + σdWt, (2.16)

with initial value X0 = x0 where µ ∈ R and σ > 0. The solution is,

Xt = x0e
(µ−σ2/2)t+σWt . (2.17)
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It is clear that Xt has a lognormal distribution with expectation and variance,

conditioned on X0 = x0 given by

E[Xt|x0] = x0e
µt, (2.18)

Var[Xt|x0] = x2
0e

2µt(1− eσ2t) (2.19)

respectively. The derivation of Equation (2.17) will be introduced in Section 2.7.1.

More importantly, Equation (2.16) is used to model the exchange-rate process in

this thesis.

2.6.2 Ornstein-Uhlenbeck Process

A stochastic process is called an Ornstein-Uhlenbeck process if the SDE has the

form

dXt = κ(θ −Xt)dt + σdWt, (2.20)

with initial value X0 = x0. The solution is

Xt = θ + (x0 − θ)e−κt + σ

∫ t

0

e−θ(t−s)dWs. (2.21)

Note that Xt has a normal distribution with expectation and variance, conditioned

on X0 = x0 given by

E[Xt|x0] = θ + (x0 − θ)e−κt, (2.22)

Var[Xt|x0] =
σ2

2κ

(
1− e−2κt

)
. (2.23)

The processes which have all (marginal) distributions normal distributed are

called Gaussian processes, which includes the Ornstein-Uhlenbeck process. In fi-

nance, the Ornstein-Uhlenbeck process is a widely used stochastic processes for the

term structure model of interest rates, including the Vasicek (1977) model (see Sec-

tion 3.3.3).

2.6.3 Square-root Process

A process

dXt = κ(θ −Xt)dt + σ
√

XtdWt, (2.24)
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with initial value X0 = x0 is classed as a square-root process.

The SDE has no explicit solution generally, although its transition density can

be characterised as

E[Xt|x0] = x0e
−κt + (1− e−κt)/κ, (2.25)

Var[Xt|x0] =
σ2

κ
(1− e−κt)

(
x0e

−κt +
1

2κ
(1− e−κt)

)
. (2.26)

This process is also known as a Cox, Ingersoll and Ross (1985) model in finance

which is often used for interest rate, volatility, and other financial models because it

has a non-negative mean-reverting feature which is introduced in Section 3.3.3, and

is used throughout this thesis.

2.7 Itô’s Lemma

Itô’s lemma is one of the most useful tools in stochastic calculus. It gives a repre-

sentation for functions with respect to SDEs.

Itô’s lemma is a formula for the Itô differential, which in turn is defined using

the Itô integral. It enables us to find the process followed by a known function of

another process.

2.7.1 One-dimensional Case

Assume f(X, t) is a twice continuously differentiable function and (Xt)t≥0 is a

stochastic process following the SDE

dXt = µ(Xt, t)dt + σ(Xt, t)dWt.

Then Itô’s lemma gives the SDE for f(X, t) as dt, dXt → 0,

df =
∂f

∂t
dt +

∂f

∂X
dXt +

1

2

∂f

∂X2
dX2

t + · · · . (2.27)

It is straightforward to substitute the expression for dXt into Equation (2.27) to

obtain the simplest version of Itô’s lemma using dW 2
t → dt, as dt → 0:

df =

(
∂f

∂t
+

∂f

∂X
µ +

1

2

∂2f

∂X2
σ2

)
dt + σ

∂f

∂X
dWt. (2.28)
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For instance, to derive Equation (2.17) from Equation (2.16), we can assume f =

ln Xt. Therefore

∂f

∂t
= 0, (2.29)

∂f

∂X
=

1

X
, (2.30)

∂2f

∂X2
= − 1

X2
. (2.31)

By applying Itô’s lemma (2.28), we have

df = (µ− σ2/2)dt + σdWt. (2.32)

Then, using Itô’s integral,

ft = f0 + (µ− σ2/2)t + σWt, (2.33)

and converting ft back to ln Xt, the equation above then becomes

Xt = x0e
(µ−σ2/2)t+σWt , (2.34)

corresponding to Equation (2.17).

2.7.2 Multi-dimensional Case

Itô’s lemma for multi-dimensional cases is very useful (and has implications for this

thesis). Assume that the process X = (X1, X2, . . . Xn) is a continuous semimartin-

gale, i.e. each process {Xi, i = 1, 2, . . . , n} is a continuous semimartingale. Then

for f(X, t),

df =
∂f

∂t
dt +

n∑
i=1

∂f

∂Xi

dXi +
1

2

n∑
i,j=1

∂2f

∂XiXj

dXidXj, (2.35)

where f = f(X, t) is twice continuously differentiable.

Consider the case when X = (X1, X2, . . . , Xn) is a diffusion, and each process

{Xi, i = 1, 2, . . . , n} is a diffusion solving the SDE

dXi = µidt + σidWi , i = 1, 2, . . . , n, (2.36)
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where Wi for i = 1, 2, . . . , n are correlated Brownian motions with

E[dWidWj] = ρijdt, ρii = 1.

Then Itô’s lemma with respect to the n–dimensional Brownian motion is

df =

(
∂f

∂t
+

n∑
i=1

∂f

∂Xi

µi +
1

2

n∑
i,j=1

∂2f

∂Xi∂Xj

ρijσiσj

)
dt +

n∑
i=1

∂f

∂Xi

σidWi. (2.37)

2.8 Change of Measure

The idea of changing probability measure is of central importance in derivative

pricing theory. As mentioned in Section 1.1, a derivative is contingent on one or

several underlying assets whose uncertainties do not affect the price of the deriva-

tive. Therefore, changing the probability measure makes derivative pricing easier.

These changes of measure have many other applications, for instance, “importance

sampling” in the Monte Carlo method introduced in Section 4.4.3.

2.8.1 Radon-Nikodým Derivative

Probability spaces (Ω,F ,P) and (Ω,F ,Q) are called equivalent if

P(A) = 0 ⇐⇒ Q(A) = 0, ∀A ∈ F .

This is often written as P ∼ Q.

Suppose P ∼ Q on space (Ω,F). The random variable R defined on (Ω,F) is

called the Radon-Nikodým derivative of P with respect to Q if

i:) R is strictly positive;

ii:) R is unique with P–a.s.;

iii:) Q(A) = EP[R1A], ∀A ∈ F .

It is customary to write R = dP
dQ |F , which is defined as the Radon-Nikodým

derivative of P with respect to Q; it is also called a numeraire in the financial world.
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This generalises the concept of numeraire, as mentioned in Section 1.5.1, the nu-

meraires are normally risk-free assets, however, when the model setup becomes more

sophisticated, the numeraire can also be a stochastic process, which is sometimes

called the stochastic discount factor (see Benninga, Björk and Wiener, 2002).

2.8.2 Girsanov’s Formula

Girsanov’s theorem establishes a link between two probability measures and can

be extended to (continuous) semimartingales. However, Girsanov’s formula, in the

context of a Brownian motion is sufficient for this thesis.

Assume (Wt)t≥0 is a Brownian motion on (Ω,F ,P) with respect to filtration

{Ft}, Ft ⊂ F . Then define

dW̃ = αdt + dWt, (2.38)

and

Rt = exp

(
−1

2

∫ t

0

α2du−
∫ t

0

αdWu

)
, (2.39)

where α = α(t) is adapted to {Ft}. Assume that a new probability measure is

defined by Q(F ) =
∫

A
RtdP for all A ∈ F , then under Q, the process (W̃t)t≥0 is a

Brownian motion. Basically, Girsanov’s theorem implies that a Brownian motion

process with any drift can be converted to another Brownian motion process with

the same variance but with different drift.

2.8.3 Equivalent Martingale Measure

Assume M is a continuous martingale defined on a probability space (Ω,F ,P) with

respect to a filtration {Ft}, Ft ⊂ F . The set of equivalent martingale measures for

M is the set of probability measures Q satisfying:

i:) P ∼ Q with respect to F ;

ii:) P and Q agree on F0;

iii:) M is a Ft–measurable martingale on the probability space (Ω,F ,Q).
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One of the most important concepts in finance is the risk-neutral measure (also

known as a martingale measure), which is any probability measure, equivalent to

the market measure (i.e. the real world measure), which makes all discounted asset

prices martingales. This property of the risk-neutral measure makes it more desirable

in option pricing, as the risk-neutral measure does not require investors’ preference

towards the risk which is very difficult to quantify (see Hunt and Kennedy, 2005),

and it is the essence of arbitrage pricing theory mentioned in Section 1.3.1.

2.9 Summary

This chapter can be summarised perfectly with a quote by one of the greatest prob-

abilists of the 20th century, William Feller (1906–1970), from “An Introduction to

Probability Theory and its Applications”:

All possible definitions of probability fall short of the actual practice.



Chapter 3

Introduction to Foreign Exchange

Markets

If I have been able to see further, it was only because I stood on the

shoulders of giants.

—— Isaac Newton (1642–1727)

This chapter focuses on foreign exchange markets and one of the most heavily

traded derivatives in the market, foreign exchange options (i.e. currency option).

Section 3.1 explores the structure of the foreign exchange market. Section 3.2 focuses

on an introduction to currency options, and Section 3.3 exams the characteristics

of currency options, from the modelling point of view. Section 3.4 reviews the

literatures on currency-option pricing models.

3.1 Overview of the Foreign Exchange Market

Currency is the creation of a circulating medium of exchange based on a store of

value. It evolved from two basic innovations: the use of counters to assure that

shipments arrived with the same goods that were sent, and the use of silver ingots

to represent value; both of these developments had occurred by 2000BC. Foreign

50
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exchange refers to money denominated in the currency of another nation. A foreign

exchange rate is therefore a price (see Cross, 1998).

3.1.1 Foreign Exchange Market Structure

The foreign exchange market is the oldest, largest and most extensive financial

market in the world. It can be roughly viewed as a global, largely OTC market.

The market is basically unregulated and is handled by banks in different locations

via telephones, faxes, and computer networks 24 hours a day. The OTC market

offers a vast range of foreign exchange products, from spot exchange rates to exotic

exchange-rate derivatives.

In the 1990s, when the trading of currency options was introduced to the in-

terbank foreign exchange market, option trading exploded in volume. Virtually

every large financial institution offers currency options trading. It is worth men-

tioning that there is still about 10 percent of foreign exchange market activity is

traded through the organised exchanges. Although, exchange-traded products are

limited to currency futures and certain currency options. The instruments that are

traded on established exchanges are generally more standardised and more liquid

than those traded on the OTC market. Activities on the exchange-traded instru-

ments are monitored by independent associations, such as clearing houses and the

financial integrity of futures and options markets has withstood some rigorous tests.

The rapid growth of the OTC market has been the subject of numerous studies by

central banks and regulatory authorities. Much of this work has critically examined

derivative transactions privately negotiated in the OTC market (see Henigan, 2006).

3.1.2 Participants in Foreign Exchange Market

The main participants in the foreign exchange market are dealers, brokers, central

banks, and customers. According to the 76th annual report (for the financial year

which began on 1st April, 2005 and ended on 31st March, 2006) of foreign exchange

and derivatives market from BIS, over half of daily foreign exchange transactions



CHAPTER 3. INTRODUCTION TO FOREIGN EXCHANGE MARKETS 52

take place between bank dealers1. A substantial percentage of reporting dealers

are commercial banks; others are investment banks and insurance firms. A market

maker is a dealer who makes a two-sided market regularly for customers, whereas

a broker is more an agent for one or both parties in the transaction. In principle,

the broker does not commit capital, but relies on commission for services provided.

Central banks play two roles in the foreign exchange market. They intervene in the

market by buying or selling foreign currencies, and they also may be in the market as

agents for other central banks. The range of customers includes small commercial

banks and investment banks, firms and corporations, managers of money funds,

mutual funds, hedge funds, and individuals (see Cross, 1998).

3.2 Introduction of Currency Options

It was not until 4000 years after the appearance of currency that options on foreign

exchange were devised. These can be used by corporations to hedge foreign-exchange

nature exposures or hedge against extreme events that threaten the business, and

are heavily traded in financial markets. The option gives the holder the right to buy

or sell one currency against another currency at a specified price on or before the

date the option expires.

The most far-reaching innovation in the development of financial derivative mar-

kets during the twentieth century was the start of trading of exchange traded cur-

rency options at the PHLX in 1982, as mentioned in Section 1.1. By 1988, currency

options were trading in volumes as high as four billion U.S. dollars per day in

underlying value. Currency options brought trading interest internationally, from

America, Europe, the Pacific Rim to the Far East. Furthermore, currency option

trading hours are far longer than other open outcry auction marketplaces. Currently,

many major stock exchanges offer trading options on seven major currencies: U.S.

dollars, Australian dollars, British pounds, Canadian dollars, Euros, Japanese yen,

and Swiss francs. Some customised currency options which are on any two currently

1The full article can be found at http://www.bis.org/publ/arpdf/ar2006e.pdf.
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approved currencies can be traded in some exchanges2.

Why are currency options so attractive? Currency options are widely used to

hedge foreign exchange risk for a future date. They provide foreign exchange risk

managers, investors and traders with a wide array of capabilities for controlling

the risks inherent in foreign exchange exposure, and for participating in market

movements and implementing investment research decisions related to exchange rate

fluctuations. In academic research, currency options are important in measuring the

value of other international financial instruments, such as currency option bonds

(also known as a quanto3), currency future options, currency option forwards and

so on. As international financial markets further develop, currency options will play

an increasingly important role as a major international financial instrument.

Among a vast range of instruments of exchange rate, American options and bar-

rier options are of great importance. If a European currency-option is a standard

cover for foreign exchange exposure, an American option can be viewed as a “pre-

mium” cover. As American options offer great freedom for the owners to exercise

anytime they think more appropriate. Whereas barrier options are the “cheap”

cover compared with European options, as they are normally customised for the

request of buyers, depending on the buyers’ view of the market. To avoid paying for

the unnecessary protection, barrier options generally offer protection in a narrower

bound, therefore making them less expensive for the cost. The existing disadvan-

tages of these two types of options in terms of implementation will be introduced

later in this chapter.

Recalling the definition of a currency option, there are four key terminologies

(mentioned in Section 1.4) that will be incorporated into the mathematical models

and will occur repeatedly in the following chapters:

i:) max{payoff, 0}, the payoff function is a right not an obligation;

2See PHLX official website for user’s guide to currency options: http://www.phlx.com/
products/currency/cug.pdf

3Quanto is an option which has a payoff defined with respect to an asset or an index or an
interest rate in one country, but the payoff is converted to another currency for payment with the
contractual exchange rate. See Wilmott (2000a).
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ii:) K, the specified price, is called the strike price;

iii:) T , the date the option expires is called the expiry date or maturity date;

iv:) V , the premium (i.e. option price) is the price paid to acquire the option.

3.3 The Structure of Currency Option Models

In addition to the key words which were introduced above, currency option pricing

models are dependent on the following key factors:

• Exchange rate;

• Interest rate;

• Expected volatility of the exchange rates and/or interest rates.

All these factors will directly affect the models’ performance. Therefore, this section

is focused on assessments of these three factors.

3.3.1 Exchange Rate Models

Many economic factors affect exchange rate movements, such as the merchandise

trade balance, the flow of funds, the interest rate differences and inflations4. Due

to the complicated nature of exchange rate dynamics, there is no widely accepted

explanation for exchange rate movements. Past theoretical research on exchange

rate models may be classified into three categories:

• Models relating exchange rates to macroeconomic fundamentals

Many models suggest that exchange rates should be jointly determined with

macroeconomic fundamentals such as target zones, purchasing power parities

(PPP), or uncovered interest parities (UIP). However, with these macroeco-

nomic fundamentals, the models for exchange rate processes can be too specific

for individual countries to be generalised for currency option pricing.

4For more detailed introduction, see “Economic Factors in Forex” at http://www.
cambridgefx.com/currency-exchange/exchange-rates-news.html.
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• Lognormal distribution models

Exchange rates are in close relation to bonds, and bond prices are lognor-

mally distributed (following general geometric Brownian motions, introduced

in Section 2.6.1), therefore lognormal distribution models for exchange rate

dynamics are very convenient and widely used in theoretical research. Most of

the literature mentioned in this thesis has been based on geometric Brownian

motion for exchange rate dynamics (see Section 3.4).

• Time-series models

Time-series models are the favourite of economists. These models are built up

with specified data. Empirical evidence shows that exchange rates fluctuate

around a moving average. Therefore, the most popular model for the exchange

rates is GARCH (Generalised Autoregressive Conditional Heteroscedasticity)

model, in which past observations of the variance and variance forecast are

used to forecast future variances (see Duan and Wei, 1999). However, time-

series models do not provide any information about the dynamics of the sys-

tem, which implies that the terms and variables chosen for the models do not

normally have financial interpretations.

3.3.2 Volatility Models

Volatility has always been both fundamental and problematic, because it can have

a substantial influence on the option price. Clark, Tamirisa and Wei (2004) pointed

out that the liberalisation of capital flows in the last two decades and the enormous

increase in the scale of cross-border financial transactions have increased exchange

rate movements. Currency crises in emerging market economies are particular ex-

amples of high exchange rate volatility. In addition, the transition to a market-based

system in Central and Eastern Europe has often involved major adjustments in the

international value of these economies’ currencies. Stochastic volatility models can

be useful in this respect, because they can help to explain why options with different

strike prices and maturities have different implied volatilities and volatility smiles.
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However, volatility is not directly observable for the future. To date, there is no

fully successful stochastic volatility model for foreign exchange dynamics. Empiri-

cally, volatility has similar characteristics to interest rates and so models originally

developed for interest rate models are applied to stochastic volatility models.

Melino and Turnbull (1990) considered the existence of stochastic volatility in

currency option pricing; they took the logarithm of the volatility to be an Ornstein-

Uhlenbeck process. The first analytic currency option pricing formula was devel-

oped by Heston (1993), in which he used a mean-reverting square-root process for

volatility of exchange rate; much other research extended Heston’s plausible model.

Recently, a large amount of literature has emerged using time-series models because

of the difficulties with estimating variables for the theoretical volatility models.

Duan and Wei (1999) obtained currency-option prices using GARCH model for the

volatility. For a more detailed survey on stochastic volatility, see Hobson (1998).

3.3.3 Interest Rate Models

Interest rates are intrinsic to the time value of money, which is one of the cru-

cial components in derivative pricing, in particular currency options. Thus, it is

necessary to explore the features of the term structure of interest rates.

Bonds are central to the theory of term structure of interest rates. A bond is

a fundamental instrument in financial markets, which may pay a regular stream of

coupons (typically every six months or annually) until its maturity, when it pays

its face value in addition to the final coupon. Bonds without coupon payments are

called zero-coupon bonds, also known as pure discount bonds. In modern finance

theory, the zero-coupon bond is used to calculate the time value of money, which

is one of the basic concepts in the analysis of many financial instruments. The

yield-to-maturity of a bond is the discount rate which relates the present value of its

payments to the price paid for the bond. Note that the yield-to-maturity is equal

to the spot rate (i.e. the discount rate) only for zero-coupon bonds (see Wilmott,

2000b).
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Term structure is a series of interest rates corresponding to the yields on compa-

rable instruments of different maturities, such as a set of zero-coupon government

bonds. It is also known as a yield curve which expresses the interest rate as a function

of time to maturity. These might be yields derived from the prices of zero-coupon

bonds, or the fixed leg of swaps, or any number of other rates of practical concern.

Term structure theory falls into three classes: short-rate term structure models,

forward-rate term structure models, and market term structure models (which are

tailored to fit specific interest rate products for practitioners).

Short-rate Models

The short rate is a crucial interest rate in all models. It is fundamental to pricing

theory and it is the key variable in the first generation of term-structure models. A

short-rate model is a model of term structure of spot interest rates, where the spot

rate is referred to as the (continuously compounded) yield of the discount bond. The

choice of short-rate model arises from a combination of mathematical convenience

and tractability, or numerical ease of implementation. The most widely used of these

models are generally one-factor models, in which the entire yield curve is specified

by a single stochastic state variable; popular examples of these include the models

of Vasicek (1977), and Cox, Ingersoll and Ross (1985).

Vasicek (1977) proposed the first no-arbitrage model for the term structure of

interest rates. Vasicek assumed that the instantaneous rate of interest, r(t), is

described by an SDE

dr = µ(r, t)dt + σ(r, t)dWt, (3.1)

where µ(r, t) is the instantaneous drift, σ(r, t) is the instantaneous volatility, and

dWt is the increments of a standard Brownian motion. Vasicek replicated a portfolio

to obtain the corresponding PDE. The derivation procedure is similar to Black-

Scholes-Merton methodology (mentioned in Section 1.4). Let P (t, T ) denote the

price of a zero-coupon bond with maturity T at time t, where 0 ≤ t ≤ T . The bond
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is normalised to have unit face value, i.e. P (T, T ) = 1. The PDE is then:

∂P

∂t
+ (µ− σλ)

∂P

∂r
+

σ2

2

∂2P

∂r2
− rP = 0, (3.2)

where λ = λ(t, r) denotes the market price of interest-rate risk. Vasicek restricted

his general model by assuming that the market price of interest rate risk, λ, is

constant, and that the spot rate follows an Ornstein-Uhlenbeck process (introduced

in Section 2.6.2):

dr = κ(θ − r)dt + σdWt; (3.3)

where

r ≡ the short term interest rate;

κ ≡ the mean reversion parameter;

θ ≡ the long-run mean spot interest rate;

σ ≡ the instantaneous volatility of the process;

dWt ≡ the increments of a standard Brownian motion.

Vasicek obtained a closed-form solution for the zero-coupon bond price, namely

P (t, T ) = A(t, T )e−B(t,T )r(t); (3.4)

where

B(t, T ) =
1− e−κ(T−t)

κ
; (3.5)

A(t, T ) = exp

(
(B(t, T )− (T − t))(κ2θ − σ2/2)

κ2
− σ2B(t, T )2

4κ

)
. (3.6)

One serious shortcoming of Vasicek’s model, however, is that it admits negative

interest rates.

The model introduced by Cox, Ingersoll and Ross (1985) (hereafter,CIR) may

preclude negative interest rates by assuming the volatility σ is proportional to the

square root of the spot rate. The characteristics of interest rate movements offered

by the CIR model include mean reversion toward a long-term rate, and non-negative
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interest rates (mentioned in Section 2.6.3). The CIR process is expressed as

dr = κ(θ − r)dt + σ
√

rdWt; (3.7)

where

r ≡ the short term interest rate;

κ ≡ the mean reversion parameter;

θ ≡ the long-run mean spot interest rate;

σ ≡ the instantaneous volatility of the process;

dWt ≡ the increments of a standard Brownian motion.

Feller (1951) presented the result that the square-root diffusion (i.e. CIR process)

will remain positive in a continuous time if

2κθ

σ2
> 1 with r(0) ≥ 0;

this is sometimes called the “Feller condition”. However, in discrete time case (i.e.

with finite ∆t), even with the Feller condition satisfied, the CIR process can still go

negative (see Higham and Mao, 2005; Johnson, 2006).

Again, let P (r, t) denote the price of a zero-coupon bond at time t with maturity

T , with 0 ≤ t ≤ T , and normalise the bond to have unit face value, i.e. P (T, T ) = 1.

Cox, Ingersoll and Ross (1985) obtained the PDE

∂P

∂t
+ (κ(θ − r)− σλ)

∂P

∂r
+

rσ2

2

∂2P

∂r2
− rP = 0, (3.8)

where λ = λ0

√
r, which denotes the market price of interest rate risk. They derived

in closed form the zero-coupon bond price, as well as providing formulae for Eu-

ropean options on zero-coupon bonds. In their model, bond prices have the same

general form as in Vasicek’s (1977) model, that is,

P (t, T ) = A(t, T )e−B(t,T )r(t), (3.9)
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where A(t, T ) and B(t, T ) are as follows:

B(t, T ) =
2(eγ(T−t) − 1)

(γ + κ)(eγ(T−t) − 1) + 2γ
; (3.10)

A(t, T ) =

(
2γe(γ+κ)(T−t)/2

(γ + κ)(eγ(T−t) − 1) + 2γ

)2κθ/σ2

; (3.11)

where

γ =
√

κ2 + 2σ2.

There are a number of other short-rate models that have been very popular with

practitioners, such as the Hull and White (1994a) model, the Black and Karasinski

(1991) model and the Black, Derman and Toy (1990) model (which is a special case

of Black and Karasinski model). Also, a number of other short-rate models involve

multi-factors such as the Brennan and Schwartz (1982) model, the Longstaff and

Schwartz (1992) model, and the Hull and White (1994b) model, but these are rarely

used for derivative pricing in practice due to high computational demand (see Hunt

and Kennedy, 2005), and consequently are not discussed in this thesis.

Short-rate models can be tractable and amendable to numerical methods. In

practice, short-rate models are often used as a complement to more sophisticated

models. Even though they are not as “broad” as forward-rate models which are

introduced below nor as “fit” as market models, they can be useful for pricing

derivatives quickly and flexibly.

Forward-rate Models

Forward-rate models are also referred to as whole yield curve models, and are spec-

ified generally in terms of the instantaneous forward rate process. The forward rate

is the implied rate of return between two future dates, derived from the rates cur-

rently available via two bonds already issued and maturing at the future dates. The

forward rates can be viewed as expectations of future spot rates, and therefore there

is an explicit relation to transform a forward-rate model into a short-rate model.

Ho and Lee (1986) originally presented a discrete-time forward-rate model. Using

a binomial model, they allowed the model parameters to be deterministic functions
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of time, calibrated to fit today’s forward-rate curve. Models that incorporate the

idea of starting with the prices of zero-coupon bonds of various maturities and

proceeding to build a model that admits no arbitrage possibilities, then modelling

how bond prices and interest rates evolve through time are sometimes referred to as

no-arbitrage models. However, the time-varying drift in the Ho and Lee model makes

the long-term rate unbounded (see James and Webber, 2004). Note that Ho and

Lee’s model assumes that interest rates are normally distributed with instantaneous

volatility constant; it also falls into the category of a short-rate model (see Wilmott,

2000b; Hull, 2002).

Heath, Jarrow and Morton (1992) (hereafter, HJM) generalised the Ho and Lee

(1986) model to a continuous-time economy with multiple factors. The key concept

in the HJM model is that the entire yield curve is modelled as a state variable, not

just the short end or only two factors. The HJM methodology uses the instantaneous

forward rate as the driving stochastic variable. Given the initial forward curve, HJM

describes the evolution of the forward curve by a family of SDEs that are gener-

ally path-dependent; this family of processes is under the no-arbitrage condition.

Accordingly, it can (in principle) price many derivatives whose values are particu-

larly sensitive to the term structure of interest rates, such as currency warrants and

cross-rate swaps.

It is assumed that there is a zero-coupon bond P (t, T ) maturing at time T , with

P (T, T ) = 1. The instantaneous forward rate at time t, f(t, T ) is then defined by

f(t, T ) = −∂ ln P (t, T )

∂T
, for all 0 ≤ t ≤ T. (3.12)

Solving Equation (3.12) yields

P (t, T ) = exp

(
−

∫ T

t

f(t, s)ds

)
, for all 0 ≤ t ≤ T. (3.13)

Since the curve is closely associated with bond prices, bond price dynamics can be

inferred from it, and it is easy to deduce the spot rate with respect to the forward

rate, namely r(t) = f(t, t), which shows that any short-rate model is also included

within a sub-set of the HJM model. In fact, any interest rate model that satisfies
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the principles of arbitrage-free bond dynamics must be within the HJM framework

(see Lee, 2000).

The advantage of the forward-rate models over the short-rate models is that they

achieve an automatic fit to the yield curve, whereas the short-rate models require

some extra computation. However, the HJM model is path-dependent, in general,

and consequently the PDE approach can be difficult to implement. As an extra di-

mension is required to accommodate the path-dependent feature. Non-recombining

(“bushy”) trees should also be abandoned in favour of Monte Carlo methods, for

the computation reasons. Moreover, the calibration of the model presents a serious

problem, as HJM model allows high dimensional diffusion coefficients, every sin-

gle diffusion variable in the HJM model has to be calibrated to data, which is not

realistic in practice.

Market Models

Market models were only introduced to the interest rate market in the late 1990s to

overcome calibration problems. They form a class of models within the HJM frame-

work that describe variables directly observed in the market, such as LIBOR and

swap rates. Models in this latest generation create an environment to make calibra-

tion of market data relatively straightforward. Brace, Gatarek and Musiela (1997)

as well as Miltersen, Sandmann and Sondermann (1997) presented a no-arbitrage in-

terest rate model using specific parts of the forward curve from LIBOR market rate.

Due to the feature of lognormal distribution, they produced Black’s (1976) formula

for caps/floors (also known as LIBOR Market Models). A similar model for swap

rates and swap rate derivatives was developed by Jamshidian (1997), and so-called

Swap Market Model leads to the Black formula for swaptions. However, these mod-

els are not compatible. The market models are tailor-made for the specific products.

For instance, LIBOR market models cannot be applied to swap market models, and

quarterly LIBOR models cannot be applied to semiannual LIBOR models, and so

on.
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The motivation for the development of market models arose from the fact that

although the HJM framework is appealing theoretically, its standard formulation is

based on a continuous spectrum of rates and is therefore fundamentally different

from actual forward LIBOR and swap rates as traded in the market (see Lee, 2000).

The lognormal HJM model was also well known to exhibit unbounded behaviour

(producing infinite values) in contrast with the use of lognormal LIBOR distribution

in Black’s (1976) formula for caplets.

Given the building blocks of currency-option pricing model, the following chap-

ters will be extensively using these concepts to establish more sophisticated pricing

models.

3.4 Literature Review

This section will present a timeline of the development of currency option pricing

theory from two perspectives: on the modelling of currency options and on numerical

methods for different types of option implementation.

3.4.1 Review of Currency Option Modelling

Early Work

An unsurprising early treatment of currency options was to convert earlier work for

options on dividend-paying stocks of Merton (1973) formula, preserving the essential

mathematics. This was undertaken by Garman and Kohlhagen (1983), who applied

Merton’s formula to European currency option pricing. Mathematically, the Garman

and Kohlhagen formula is identical to Merton’s formula with dividend payments,

and consequently relies on the same modelling assumptions, in particular, constant

risk-free interest rates and constant volatilities. The term f , which represents a

stock’s dividend yield in Merton’s model, is translated into the foreign currency’s

continuously compounded risk-free rate in the Garman and Kohlhagen formula, in

order to derive the formula. Garman and Kohlhagen assumed the domestic interest
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rate, the foreign interest rate and the implied volatility are constants, furthermore

the underlying exchange rate price follows a geometric Brownian motion introduced

in Section 2.6.1.

The value for a European call price C at time t is then:

C = Ste
−f(T−t)N(d1)−Ke−r(T−t)N(d2), (3.14)

where

d1 =
ln(St/K) + (r − f + σ2/2)(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t,

St ≡ the spot exchange rate;

K ≡ the strike exchange rate;

r ≡ the continuously compounded domestic risk free interest rate;

f ≡ the continuously compounded foreign risk free interest rate;

T ≡ the time in years of the expiration of the option;

σ ≡ the implied volatility for the underlying exchange rate;

N(·) ≡ the standard normal cumulative distribution function.

As with the Black-Scholes (1973) model, the Garman and Kohlhagen formula has

been a popular practical choice for currency option pricing over the years, despite

the fact that interest rate and volatility are not constant in practice.

Biger and Hull (1983) again used the “Black-Scholes (1973) methodology” in-

cluding dividends, and obtained comparable results based on the same assumptions

as employed by Garman and Kohlhagen (1983). In the same year, Grabbe (1983)

presented a model for European options, which relaxes the assumption of constant

interest rates. He assumed that the processes of interest rates in the domestic

currency and the foreign currency are deterministic functions of time, using an

arbitrage-free approach to obtain a PDE and consequently the European call price.
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However, the model is not supported by the empirical evidence of Adams and Wy-

att(1987a), who showed that the interest rate risk is an important element in the

valuation of currency options.

Although currency option pricing has become a very topical subject in academic

research more recently, American-style currency-option pricing remained unstudied

until the end of the 1980s.

A currency option is closely related to cashflows in the domestic and the foreign

economy. Adams and Wyatt (1987b) assumed that in a risk-neutral world, the

relationship between the prices of domestic and foreign bonds is:

E
[
e−rT

]
= E

[
e−fT ST

S0

]
, (3.15)

where E[·] is the expectation operator; r is the domestic interest rate; f is the foreign

interest rate; S0 is the spot exchange rate at time t = 0; ST is the forward exchange

rate. Again, it is assumed that both interest rates are non-stochastic, consequently,

for an American put, the option value is obtained by rearranging Equation (3.15)

to the following:

S0 = e(f−r)TE[ST ]. (3.16)

A quadratic approximation was used to develop a method of estimating the early

exercise premium, and of determining when early exercise is optimal.

Shastri and Tandon (1987) presented an analytical approximation for the val-

uation of American options on foreign currencies. The pricing formula uses the

techniques developed in the influential paper by Geske and Johnson (1984) to price

American options on foreign currencies as a sequence of compound options, which

has been mentioned in Section 1.5.1. Unfortunately, the assumptions in Shastri and

Tandon’s model are also restricted to constant interest rates and constant volatility

of the exchange rate process.

Bodurtha and Courtadon (1987) considered the limitation of constant volatility.

They presented empirical tests on the ability of the American option pricing model to

explain the pricing of foreign currency options traded on the PHLX from February
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28, 1983 to March 26, 1985. The results show that the model underprices out-

of-the-money options relative to at-the-money options and in-the-money options.

However, Bodurtha and Courtadon’s basic assumptions of this empirical testing

model are identical to the assumptions made by Garman and Kohlhagen (1983),

which implies that the conclusion they drew in the paper was based on somewhat

unrealistic assumptions.

Stochastic Environments for Currency Options

Melino and Turnbull (1990) investigated the consequences of stochastic volatility for

currency option pricing. They assumed the spot exchange rate satisfies a general

form process

dSt = (a + bSt)dt + υS
β
2
t dWt, where β = 0, 1, 2. (3.17)

Note that different values of β give different probability distributions of the under-

lying asset. These are normal distributions for β = 0, chi-square distributions for

β = 1 and lognormal distributions for β = 2. According to their empirical work

on the market data, Melino and Turnbull also assumed the stochastic volatility was

described by the following SDE:

d ln υ = (α + θ ln υ)dt + γdZt. (3.18)

However, they held both the domestic interest rate and foreign interest rate con-

stant. They argued that neither the lognormal probability distribution for exchange

rates nor constant volatility fit empirical data. By simply setting the interest rates

as constant, Melino and Turnbull used Equation (3.18) with historical data, then

used this SDE for the volatility of the exchange rate process. They did find that

making volatility stochastic gave a much better fit to the Canada-U.S. exchange rate

distribution and more accurate predictions of observed option prices.

Hilliard, Madura and Tucker (1991) proposed a simple approach to price Euro-

pean currency options under stochastic interest rates, assuming that domestic and

foreign bond prices have local variances depending only on time and not on other
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state variables. By constructing a delta-hedging strategy following Grabbe (1983),

invoking the risk-neutrality argument of Cox and Ross (1976), and by identifying Va-

sicek’s (1977) term structure model as the appropriate bond pricing model, Hilliard,

Madura and Tucker derived a closed-form European currency-option pricing model

under stochastic interest rates. Unfortunately, as noted in Section 3.3.3, the Va-

sicek model allows the occurrence of negative interest rates, which is unreasonable,

and moreover, these models cannot be extended to American option pricing analyti-

cally. Hilliard, Madura and Tucker’s model is competitive for currencies with highly

volatile interest rates and for long-lived options. Hilliard, Madura and Tucker, and

Amin and Bodurtha (1995) indicated that allowing for stochastic interest rates leads

to a more accurate valuation of currency options with longer maturities than the

constant interest rates alternative.

Tucker (1991) suggested that foreign exchange rates follow a jump-diffusion pro-

cess, and that an option pricing model, that takes this process into account, is likely

to be more accurate. Many other authors also demonstrate that these large jumps

exist in foreign exchange price movements, which are responsible for the leptokurtic

distribution on price returns (i.e. the inflation of peak and tails as the result of the

occurrence of more frequent small and large price changes than normal). Unfortu-

nately, Tucker also assumed interest rates are non-stochastic.

Amin and Jarrow (1991) introduced a general framework for valuing a European

option on a foreign currency with stochastic interest rates. Their model allows do-

mestic and foreign term structures of interest rates to follow the stochastic processes

of the HJM (1992) structure. Amin and Jarrow also obtained closed-form solutions

for European options by assuming the market is complete and the volatility func-

tions governing the term structure are deterministic. The Amin and Jarrow model is

a multi-factor model in which there are at least three different sources of uncertainty,

those associated with the domestic interest rate, the foreign interest rate, and the

exchange rate. To find a risk-free equivalent martingale measure, they choose the

domestic current account (i.e. the cash account) as the numeraire and calibrated
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the domestic bond, the foreign bond and the exchange rate into the new equivalent

martingale measure, and obtained an analytic solution for European-style options.

However, the complexity of the assumptions of the Amin and Jarrow model make

it applicable only to European-type options. Even using numerical approaches, it is

difficult to implement the HJM framework (mentioned in Section 3.3.3).

It has been widely documented in the literature that the price volatility of many

financial assets follows a stochastic process. Heston (1993) pioneered the develop-

ment of stochastic volatility in currency option models. As volatility is an unob-

servable yet very important parameter, Heston applied a mean-reverting feature to

the volatility process. Thus the model is composed of a stochastic domestic zero-

coupon bond, a foreign zero-coupon bond, an exchange rate, and the volatility of

the exchange rate process. Heston obtained a PDE by delta-hedging two different

maturity portfolios in the model, and then obtained an analytic solution by invoking

the Black-Scholes (1973) formula. Although Heston’s model has been influential, he

assumed interest rates are non-stochastic, which is somewhat inconsistent with the

stochastic bond prices in the model. Also it is heuristic since he separated Garmen

and Kohlhagen’s formula (3.14) into two probability parts and assumed these satisfy

the PDE independently in order to obtain the option price.

Amin and Bodurtha (1995) produced the first highly stochastic currency-option

model allowing American-style (i.e. early exercise) feature. They considered an

arbitrage-free discrete time implementation of the Amin and Jarrow (1991) frame-

work, using a multinomial version of the lattice technique of Cox, Ross and Ru-

binstein (1979). They derived a path-dependent model with specific interest-rate

functions. A property of path dependence is that the outcome of a process depends

on its past history, which implies the tree cannot recombine. Therefore it is diffi-

cult to obtain an accurate result due to the vast computational cost. In Amin and

Bodurtha’s model, a simplified HJM model is adopted. They assumed the volatil-

ities of both the domestic and the foreign forward rates are constant (i.e. the Ho

and Lee, 1986 model). Moreover, they only managed to obtain up to 12 time steps
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for a five-year American put option value. The multinomial tree with only 12 time

steps applied to a three-factor model is rather unsatisfactory, although it is stated in

their paper: “... for option maturities up to five years, path-dependent models with

fewer than 12 steps can still yield option values that are accurate to within one or

two percent of their continuous-time limiting values.” Since there is no benchmark

for the American option price with stochastic interest rates, they adopted a path-

independent model in their paper, with a recombining tree. However, the accuracy

of the recombine tree is rather poor, there remains much scope for improvement in

early-exercise currency option pricing which subsequent work has not adequately

addressed.

Bakshi, Cao and Chen (1997) stated that many assumptions can be made con-

cerning the distribution of the underlying asset, the interest rates components and

the market price of risk. They used a generalised least-squares technique to esti-

mate the parameters, essentially minimising an error term each day of the sample.

This approach, although straightforward to implement, is somewhat contrary to the

assumptions of the model, as it allows the parameters to take on a different value

every day. Moreover, obtaining parameters using cross-sectional information may

result in an excellent fit at the current date, but does not provide any information

about the dynamics of the system (disadvantages of time series models have already

been mentioned in Section 3.3.1).

Chang (2001) extended Geske and Johnson’s (1984) approach to a stochastic

interest-rate economy. He used only the values of once and twice exercisable options

and described how stochastic interest rates affect the option value. He built a tree

of forward exchange rate process
StBf

Bd
, where St is the spot exchange rate at time t,

Bf is a foreign bond and Bd is a domestic bond. However, Chang’s paper suffers the

disadvantage of tree methods, as mentioned for Amin and Bodurtha’s (1995) model,

which is computationally inefficient and is difficult to apply to American options.

Choi and Marcozzi (2001) enhanced Amin and Bodurtha’s (1995) model numer-

ically. They used a radial basis function (RBF) methodology to approximate the
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PDE for currency options5. Choi and Marcozzi transformed the HJM framework

into a short-rate version to obtain a PDE and established a risk-neutral measure by

using the domestic interest rate as a risk-free numeraire. However, they presented

numerical results for a one-year option with merely five steps for both the foreign

interest rate and the domestic interest rate processes, 31 steps for the exchange rate

and 360 time steps for a one-year option.

Choi and Marcozzi (2003) managed to obtain an analytic solution for European

currency-options. They considered the state variables to be the short rates of in-

terest and the exchange rate, as opposed to the forward rates as proposed in Amin

and Jarrow (1991) and utilised in Amin and Bodurtha (1995), in which case the

associative diffusion representing the global economy possesses a coercive diffusion

matrix.

Chesney and Jeanblanc (2004) focused on the exchange-rate process with jump

diffusion. They obtained a PDE for a European option, then claimed on page 216:

“If the American and European option values satisfied the same linear PDE (in

the continuation region), their difference ∆C, the American premium, must also

satisfy this PDE in the same region.” Unfortunately, the sign of the jump size

significantly affects the pricing model. Only negative-jump processes can be priced

and furthermore, PDEs describing American options are inherently nonlinear and,

as a consequence, the quantity ∆C cannot satisfy the same PDE.

Substantial evidence has been cited in the literature that volatility in the cur-

rency market is stochastic; Low and Zhang’s (2005) paper contributed in this area.

They used a large database of daily volatility quotes on at-the-money delta-neutral

straddles in the OTC currency option market. Some significant observations were

found. First, risk premium was found to be negative, which means the buyers pay

the premium to compensate for bearing the risk. Secondly, the short-term volatility

has higher variability than long-term volatility, implying that the volatility of the

5The RBF method is originally an approximate solution to different types of interpolation
problem. As distinct from the finite-difference method, the PBF method is meshless, which means
it is not difficult for high-dimensional problems as its most important geometrical property is the
pairwise distance between points.
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short-term volatility is higher than the long-term volatility.

Dupoyet (2006) undertook an empirical investigation into Japanese Yen/U.S.

Dollar currency-options traded on the Philadelphia stock exchange during March

29th, 1996 to December 31st, 1999, with the aim of determining the information

content of European option prices (for which analytic solutions are available). The

models tested were Black-Scholes (1973) and three others, using stochastic volatility,

stochastic interest rates and stochastic volatility with jumps. In order to increase

the sample size, both European calls and American calls were studied, in a stochastic

interest-rate environment where American call values could be safely approximated

by corresponding European call values (with the Japanese interest rate much lower

than U.S. interest rate). The greatest improvement over Black-Scholes in pricing and

hedging was found by using stochastic volatility. Stochastic interest rates improved

pricing only for in-the-money long-term options, with insignificant effect on hedging;

including jumps improved pricing and the volatility smile, but again contributed

little to hedging. Dupoyet’s empirical work provides useful parameters for this

thesis.

The number of option pricing models that can be derived is virtually unlimited

because of the many combinations of assumptions that are possible. A number of

models have attempted to capture many processes simultaneously (see Nawalkha and

Chambers, 1995). Such as, models include the stochastic volatility and stochastic

interest rate models of Amin and Ng (1993), Bakshi and Chen (1997), the stochastic

volatility and jump models of Bates (1996), and the stochastic interest rates and

jump-diffusion models of Doffou and Hilliard (2001).

This literature review provides a background to the development of the currency

option pricing models. New models will be developed in later chapters.
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3.4.2 Review of Numerical Techniques

American-style Options

As mentioned in Section 1.5.2, the Monte Carlo method is the most effective method

for pricing high-dimensional problems with forward time trajectories but intractable

when applied to backward time dynamic programs until quite recently. The first

researcher who introduced Monte Carlo methods to American options was Tilley

(1993). His approach attempted to record every possible early-exercise time for

every sample path, then determine the optimal stopping time. However, it requires

a huge storage, and consequently it is computationally inefficient.

Carriere (1996) proposed a non-parametric regression technique for pricing op-

tions with early-exercise feature and it can be seen as the precursor to the Longstaff

and Schwartz (2001) approach. Tsitsiklis and Van Roy (1999, 2001) also proposed

the use of regression to estimate continuation values from simulated paths and to

price American-style options. They introduced a variant of value iteration, adapted

to the parametric setting. Tsitsiklis and Van Roy (2001) focused on high-dimensional

American-style option pricing.

Longstaff and Schwartz (2001) used least-squares regression to approximate the

conditional expectations for the American-style option payoff at each point in time

if not exercised. This approach will be introduced in detail in Section 4.6 and form

the basis for the techniques used in this thesis for American currency-option pricing

in Chapter 5.

Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999,

2001) are categorised as regression-based methods6.

There are two typical examples of a state-space partitioning approach to evaluate

American-style options. Barraquand and Martineau (1995) considered the problem

of pricing an American option with several sources of uncertainty. They partitioned

the space of underlying assets (the state space) into a tractable number of cells,

6For more detailed reviews on early-exercise feature pricing by simulation, see Kind (2005) or
Glasserman (2003).
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and then computed an approximate early exercise strategy that is constant over

these cells. This can be viewed as a version of approximate value iteration involving

piecewise constant approximations, which tend to be somewhat restrictive. Bally,

Pages and Printems (2005) presented a quantisation method which is adapted for

the pricing and hedging of American options on a basket of assets. Numerical tests

were performed up to 10 dimensions with American-style exchange options.

The random tree method of Broadie and Glasserman (1997) is an alternative

to option pricing with early-exercise feature. The concept of a random tree is a

generalisation of the traditional tree concept; the random tree is non-recombining

and in addition has some inbuilt random irregularity that comes from the use of

the Monte Carlo simulation to generate the states. The stochastic mesh method

by Broadie and Glasserman (2004) can be regarded as a recombining random tree,

which is best suited for high-dimensional cases. General building procedures based

on moment fitting are developed, which are applicable to most commonly used

multi-dimensional models.

The duality approach provides option pricing modelling from a new perspective.

Since it is rather difficult to obtain an accurate option value based on simulated

paths, the duality approach obtains a range of values for option prices. Rogers

(2002), and Haugh and Kogan (2004) , and also Jamshidian (2006) sought for an

option with an American feature a band of value, arguing that the option price is

within the band and converging to the upper bound. However, the complexity of

multi-dimensional cases makes the probability theorems proof very difficult.

Barrier Options

For what was then an exotic option, barrier option pricing was first introduced by

Merton (1973), using the same basic assumptions as for pricing plain European-

style options. By modifying the boundary conditions, closed-form solutions may

be obtained. However, these solutions are limited to some very special cases, as

mentioned in Section 1.5.1. More relaxed assumptions or more complicated barrier
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options do not admit analytical solutions.

Numerical techniques generally involve discretisation7, and therefore in practice,

the continuous barrier options are normally transformed into discretely monitored

barrier options. Broadie, Glasserman and Kou (1997) demonstrated the quantitative

difference between continuous barrier options and discretely monitored barrier op-

tions. Under the Black-Scholes (1973) assumptions, they proposed using the Merton

(1973) formula as an approximation to the discretely monitored barrier option price.

The barrier must be replaced by a factor of exp(βσ
√

T/m) for an up-and-in or up-

and-out option (by a factor of exp(−βσ
√

∆t) for an down-and-in or down-and-out

option), where β = −ζ(0.5)/
√

2π ≈ 0.5826 with ζ the Riemann zeta function, σ is

the volatility and
√

∆t is the interval between two monitoring time. The correction

term, β can be seen as a barrier adjustment term. As when the discrete-time process

of the underlying asset hits the barrier, it overshoots it. βσ
√

∆t is an approximation

to the overshoot in the logarithm of the underlying asset price.

Parisian-style Options

In 1994, an important innovation in option markets was the idea of options with

the number of time units as a variable in valuation of barrier options (see Rich,

1994); in this way, Parisian options were first introduced to the financial market.

The definition of Parisian options is similar to the barrier option. However, the

options are not knocked out (or knocked in) unless the consecutive time that the

underlying asset price spends beyond the barrier reaches the predetermined time

in the option contract. Chesney, Jeanblanc-Picque and Yor (1997) presented an

analytical solution for the simple Parisian option price based on Brownian excursions

theory (see also Cornwall et al., 1997). Avellaneda and Wu (1999) developed a

lattice approach for the PDE of Parisian option models. Costabile (2002) provided

a random tree approach to evaluate Parisian options with either a constant barrier or

with an exponential boundary. Schröder (2003) addressed the extensions to Chesney,

7Discretisation is an approximation of a continuous dimension with a finite set of points. As a
computer can not represent a continuous function, nor can it represent infinity.
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Jeanblanc and Yor model for the case that the excursion has not yet lasted long

enough for action to be taken. Bernard, Le Courtois and Quittard-Pinon (2005)

also applied an inverse Laplace transform to evaluate Parisian options and their

Greeks.

ParAsian options are an extension of Parisian options (referred to as “cumulative

Parisian options” in Chesney, Jeanblanc-Picque and Yor, 1997; “delayed barrier

options” in Linetsky, 1999; and “cumulative barrier options” in Hugonnier, 1999).

ParAsian options are not knocked out (or knocked in) unless the total time that the

underlying asset price spends beyond the barrier reaches the predetermined time in

the option contract. The terminology used in this thesis is based on that of Haber,

Schonbucher and Wilmott (1999).

In previous literature on this class of options, the ParAsian option pricing model

was introduced by Chesney, Jeanblanc-Picque and Yor (1997), who provided the an-

alytical expression to ParAsian options as well as Parisian options mentioned before.

Hugonnier (1999) obtained a closed-form formula for ParAsian options evaluated by

means of quadratures, whilst Haber, Schonbucher and Wilmott (1999) used PDEs to

derive formulations of both Parisian and ParAsian option prices, which were solved

with a finite-difference method. Kwok and Lau (2001) used so-called forward shoot-

ing grid approach to obtain the similar numerical results for a class of exotic barrier

options8. Moraux (2002) corrected one of the Hugonnier (1999) propositions, then

provided a closed-form solutions for the ParAsian option values. Note that these

option models are all within the usual Black-Scholes (1973) framework.

As for Parisian and ParAsian options, although the Black-Scholes (1973) anal-

ysis remains relevant in all cases, the more complicated models, such as stochastic

interest rate or stochastic volatility features, do not admit analytical expressions for

the value (same as for standard barrier options). Therefore, accurate and numerical

solutions are desirable. Linetsky (1999) stated on page 79: “Effective numerical

8The forward shooting grid methodology is characterised by the augmentation of an auxiliary
state vector at each grid node on a lattice tree that simulates the discrete underlying asset price
process.
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schemes need to be developed to price discrete occupation time derivatives with

time-dependent interest rates, discrete dividends, and time- and state-dependent

volatility.” Amongst all the numerical methods, the Monte Carlo method can be

a very productive tool for this class of options, allowing modifications of standard

Parisian and ParAsian options to accommodate more exotic features. This will be

undertaken in the following chapters of this thesis.



Chapter 4

Advanced Monte Carlo Methods

Anyone who considers arithmetical methods of producing random dig-

its is, of course, in a state of sin.

—— John Von Neumann (1903–1957)

Various Techniques Used in Connection with Random Digits

A comprehensive introduction to the Monte Carlo method will be given in this

chapter. And a more detailed justification for choosing Monte Carlo methods as the

numerical implementation will be given. Later in this chapter, the focus will move

on to the least-squares Monte Carlo method, which is one of the central techniques

employed in this thesis, utilised to treat options allowing early exercise.

4.1 Introduction

The Monte Carlo method is a statistical simulation method, which is defined in

quite general terms, using random numbers to perform simulation calculations. In

finance, very often the basic problem is to calculate an expectation of a function

given a distribution density, which can be regarded as the probability weighted

average. In particular, the Monte Carlo method is commonly used in estimating

multi-dimensional integrations because of its advantage when dealing with high-

dimensional problems, including options on multiple assets, asset processes with

77



CHAPTER 4. ADVANCED MONTE CARLO METHODS 78

jumps, stochastic interest rates or stochastic volatilities. In many applications of

the method, simulations are straightforward. However the desired result is taken as

an average over a large number of observations. This highlights a weakness of the

Monte Carlo method, namely the low convergence rate, though different variance

reduction techniques can help mitigate the problem, although considerably increases

computational cost.

This chapter is organised as follows: in Section 4.2, the basic Monte Carlo inte-

gration method is introduced. Section 4.3 describes basic Monte Carlo simulation

for simple option pricing. In Section 4.4, several variance reduction techniques are

discussed, whilst Section 4.5 introduces the high-dimensional problems for numerical

calculus, and finally Section 4.6 is devoted to the least-squares Monte Carlo method,

which is a tool used for pricing options with early-exercise features.

4.2 Monte Carlo Integration

For integrations which cannot be performed analytically, approximations take on

great importance. In chapter 2, the probability theory of stochastic integration was

briefly introduced; now the approximation of integration using the Monte Carlo

method is developed.

Let I denote an integral of a function f(X) over a domain Ω,

I =

∫

Ω

f(X)DX, (4.1)

where f(X) is assumed square integrable1.

The Monte Carlo estimate for the integral is given as:

IN =
1

N

N∑
i=1

f(Xi), (4.2)

1A function f(x) is said to be square integrable if
∫
|f(x)|2dx

is finite.
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where Xi are independent samples distributed in the domain Ω. Here, it is useful to

point out that the domain Ω may be multi-dimensional without affecting the basic

procedure. The expectation of IN is therefore

E[IN ] = E

[
1

N

N∑
i=1

f(Xi)

]
. (4.3)

The law of large numbers (see Section 2.4.2) ensures that the Monte Carlo estimate

converges to the true value of the integral:

lim
N→∞

IN = I. (4.4)

For finite N , the estimate error can be expressed as the variance of the estimator

IN , that is

Var[IN ] = E[(IN − E[IN ])2]

= E

[(
1

N

N∑
i=1

f(Xi)

)
− I2

]

=
σ2(I)

N
, (4.5)

where σ(I) is the standard deviation of I, and N is the number of the samples.

Equation (4.5) implies that the standard error of IN is σ(I)/
√

N .

By the central limit theorem introduced in Section 2.4.3, the set of all possible

sums over different {Xi, i = 1, 2, . . .} has a normal distribution. The standard

deviation σ(I) of the different values of I is therefore a measure of the uncertainty

in the value of the integral.

Monte Carlo integration offers a tool for numerical evaluation of integrals in-

cluding those involving high dimensions, since the integration error scales as 1/
√

N ,

independent of the number of dimensions. This implies that Monte Carlo methods

provide the opportunity to price financial instruments with sophisticated process

dynamics, as well as complex payoff functions. Furthermore, Monte Carlo integra-

tion is applicable to both smooth integrands and integrands with discontinuities,

thus allowing an easy application to problems with complex integration boundaries

(see Higham, 2004).
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4.3 Basic Monte Carlo Simulation

As a first illustration of a Monte Carlo method, the computation for the price of a

European vanilla option is demonstrated. To clarify the algorithm, the notation has

to be modified slightly from that previously introduced (notably in chapter 2); thus

S(t) = St(ω), where ω will be interpreted as a large number of sample observations.

Let S(t) denote the price of the underlying asset at time t, whose process under

risk-neutral probability measure is a generalised Brownian motion:

dS(t) = r(S(t), t)dt + σ(S(t), t)dWt, (4.6)

where r(S(t), t) is the risk-free interest rate and σ(S(t), t) is the volatility, without

lose of generality, both of these quantities may be dependent on both S and t, and

dWt denotes the increments of a standard Brownian motion.

Consider a call option with the strike price K at expiry time T in the future; the

current time is t = 0. The payoff of a call option at time T is thus2

V (S(T )) = max{S(T )−K, 0}. (4.7)

The discounted payoff (i.e. the option value) V (S(0)) is V (S(T )) multiplied by a

discount factor, namely

e
∫ T
0 r(S(u),u)du

with r(S(t), t) the dynamics of the interest rate.

To obtain S(t) from current time 0 up to expiry date T , an Euler approximation

to the SDE (4.6) is applied. A sample path can be found by generating a sequence

dW1, dW2, . . . of independent normal random variables distributed with mean 0 and

variance 1. The simulation must be repeated a large number of times to reflect

accurately the distribution of the payoff V (S(T )).

This (general) algorithm is presented with the following stages:

2For a put option, the payoff function is expressed as

V (S(T )) = max{K − S(T ), 0}.
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1. Divide the time period [0, T ] into M steps. Set ∆t = T/M , and therefore

ti = i∆t, for i = 0, 1, 2, . . . , M . This is called discretisation of time. This dis-

cretisation is the basis of many numerical procedures, as explained in Section

3.4.2. Note that a divided time step is not necessary for European options

with constant interest rates, the underlying asset processes can be simulated

directly, since there is no need to consider the intermediate states by the defi-

nition of European option prices. Furthermore, variable time steps ∆t can be

used if more appropriate. This is another advantage of Monte Carlo methods.

2. Sample N independent paths of underlying asset Sk(ti) for k = 1, 2, . . . , N .

Set the current value Sk(t0) = S0. At each time step Sk(ti+1) is determined

from:

Sk(ti+1) = Sk(ti) + r(Sk(ti), ti)∆t + σ(Sk(ti), ti)εi

√
∆t, (4.8)

where εi ∼ N(0, 1), is a sequence of independent standard normal variables.

Note that the increment of a standard Brownian motion dWti = εi

√
∆t.

3. Obtain the value of payoff V (Sk(T )) at expiry date T = tM , for k = 1, 2, . . . , N .

4. Discount V (Sk(T )), k = 1, 2 . . . , N back to time t = 0 with a discount factor,

that is

V (Sk(0)) = e
∫ T
0 r(Sk(u),u)duV (Sk(T )), k = 1, 2 . . . , N. (4.9)

5. Compute the average result of V (S(0)),

V̄ =
1

N

N∑

k=1

V (Sk(0)). (4.10)

Here, V̄ is consistent due to the law of large numbers (see Section 2.4.2)

V̄ → V (S(0)), (4.11)

V̄ is unbiased as

E[V̄ ] = V (S(0)). (4.12)

Therefore, we may say V̄ is a good estimator.
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Note that if the processes of both r and σ are stochastic, the value for them can

be obtained by invoking steps 2 for the simulation. More stochastic factors can be

added into the model, such as jumps. The concept of Scholes factorisation will be

introduced when the stochastic factors are correlated (see Section 4.5). Therefore,

high-dimensional models can be easily dealt with (see James and Webber, 2004).

4.4 Variance Reduction Techniques

Variance reduction techniques can be very helpful to improve the efficiency for the

Monte Carlo computations (see Hammerless and Handsome, 1964). Clearly simula-

tions can be as accurate as required by increasing the number of samples, however

more samples require more computation time. As mentioned in Section 4.2, the

error in the estimator is proportional to 1/
√

N , implying that it is computational

expensive to improve the efficiency of the estimator simply by increasing the num-

ber of samples. An alternative approach to improve efficiency is to use variance

reduction techniques, including classical variance reduction techniques and several

combinations of methods.

There are four classical variance reduction techniques which are widely used

in Monte Carlo applications, as described by Hammerless and Handsome (1964):

control variates, antithetic variates, importance sampling, and stratified sampling.

Also Bramley, Fox and Sciage (1987) and Law and Keaton (1991) give a detailed

introduction on variance reduction techniques. These techniques can be effective in

financial applications and are described briefly below.

4.4.1 Control Variates

The control variates technique is based on the idea of using a correlated random vari-

able whose expectation is known to minimise the variance. The paper of Lavenders

and Welch (1981) provided a complete and rigorous exposition of control variates.
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For instance, we wish to calculate the expectation of X, i.e. E[X]. There is a cor-

related random variable Y with a known expectation E[Y ]. Then the new random

variable Z = X + β(E[Y ]− Y ) satisfies

E[Z] = E[X + β(E[Y ]− Y )]

= E[X], (4.13)

Var[Z] = Var[X + β(E[Y ]− Y )]

= Var[X]− 2βCov[X, Y ] + β2Var[Y ], (4.14)

where Y is called control variate, and β is a scale to adjust the variance.

Consider the optimal case when

β̂ =
Cov[X,Y ]

Var[Y ]
, (4.15)

it can be shown that (see Glasserman, 2003)

Var[Z] < Var[X] ⇐⇒ 0 ≤ |β| ≤ |β̂|. (4.16)

Note that for the financial applications, the control variate Y may not be a true

financial instrument; however, to increase the efficiency substantially, the control

variate Y must be a function of the same underlying process with a known expec-

tation and be highly correlated with the instrument that is to be evaluated.

4.4.2 Antithetic Variates

The intuition of antithetic variates is rather simple. As the estimator works better

when the simulated variables are distributed as closely as possible to the true dis-

tribution, then mirroring the samples will give a better spread in sample space, and

most importantly, antithetic variates guarantee the simulated variables symmetri-

cally distributed about their means. A simple example is given as an illustration.

Assume the expectation of X, i.e. E[X] is unknown. Unlike the control variate

method, we seek another estimator Y with the same expectation as X, but with

a negative correlation with X. It is easy to see that the new random variable
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Z = 1
2
(X + Y ) has

E[Z] = E[1
2
(X + Y )]

= E[X], (4.17)

Var[Z] = Var[1
2
(X + Y )]

< 1
2
Var[X] if Cov[X, Y ] < 0. (4.18)

This idea of antithetic variates was first presented by Hammerless and Morton

(1956), and is straightforward to implement into a Monte Carlo algorithm.

Some results are shown in Table 4.1. The values are the errors of a European

put option comparing with the results given by the Black-Scholes (1973) formula

(in Section 1.4) with parameters S0 = 36, K = 40, r = 0.06, σ = 0.20 and T = 1.

Table 4.1 shows the efficiency of antithetic variates. Generally, antithetic variates

Path Basic MC Antithetic MC

10,000 -0.0354 0.0057
100,000 -0.0032 -0.0013

1,000,000 -0.0025 -0.0007

Table 4.1: Comparison of Basic Monte Carlo method and Antithetic Monte Carlo
method.

improve the estimate, however increasing the number of sample paths does not

always improve the efficiency significantly compared with the basic Monte Carlo

method. It is very clear shown that when the sample space is large enough, the

errors of both Monte Carlo methods become reasonably small, and the antithetic

technique loses its “shine”.

4.4.3 Importance Sampling

The concept of importance sampling is to reduce variance by changing the prob-

ability measure, focusing on the distribution of the samples in the regions that

are numerically most significant. Importance sampling works particularly well in
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estimating probabilities of rare events, for instance deep out-of-the-money or deep-

in-the-money options (see Glynn and Iglehart, 1989).

Suppose the random variable X has the probability density function p(x), then

the integral (4.1) can be written as

I =

∫

Ω

f(x)p(x)dx =

∫

Ω

f(y)p(y)

g(y)
dy, where X =

∫ x

0

g(y)dy. (4.19)

Here p(x)/g(x) can be viewed as a new Monte Carlo estimator, written as Z. By

restricting g to be positive such that

X(Ω) =

∫

Ω

g(y)dy, (4.20)

it is clear that

E[f(Z)] = E[f(X)], (4.21)

Var[f(Z)]− Var[f(X)] =

∫

Ω

f 2(y)(1− Z)dy. (4.22)

It is clear that Var[Z] can be small if Z is as close to one as possible. It is clear that

a choice of g(x) that follows most closely the shape of p(x) is a good importance

sampling function. However, it should be pointed out that while g(x) might be

approximately the same shape as p(x), serious difficulties arise if g(x) decreases

much faster than p(x) in the tails in distribution (see Anderson, 1999). Note that

the g(x) is called the score function in Monte Carlo methods, the likelihood ratio in

statistics, and the Radon-Nikodým derivative in financial mathematics.

4.4.4 Stratified Sampling

In stratified sampling, the sampling domain is subdivided into smaller areas so that

the estimate can be carried out with smaller domains, then spread out in sample

space to yield a better approximation.

The concept of stratified sampling is similar to adapted lattice methods. The

sampling can be more focused in certain sub-domains which are highly variant.

However, it is rather computationally expensive, especially in the case of high-

dimensional integrations, since partitioning each coordinate into N strata produces
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Nd strata for a d–dimensional integrations. For more details on this technique, see

Glasserman (2003).

4.5 The Multi-dimensional Simulation

Contingent claims on multiple state variables are common in most financial in-

stitutions as well as academia, for instance, options with stochastic interest rates

or stochastic volatilities, or options on multi-assets (i.e. basket options). Multi-

dimensional models are commonly used by both practitioners and academics alike.

Analytic solutions for such problems are available only in a few special cases, there-

fore numerical methods are of great advantage (see Jäckel, 2002), especially when

the interdependence between the various factors (or underlying assets) is taken into

account. The problem of how to specify a correlation matrix occurs in several im-

portant areas of finance.

Usually, numerical techniques in finance suffer from the “curse of dimensional-

ity”3. The classical integration rules are considered as an iteration of one-dimensional

integrals, so that there is a dependence on the dimension. The error bound is es-

tablished as O(N−1/d). This means that increasing the dimension d, the required

computational effort increases exponentially. Therefore, in the numerical techniques

described in Section 1.5.2, the inefficiency of multi-dimensional integrals has always

been a disadvantage. However Monte Carlo integration has an error scaling as 1/
√

N

(as explained in Section 4.2), independent of the number of dimensions, which means

it does not suffer from the “curse of dimensionality”. This has made Monte Carlo

integration the preferred method for integrals in high dimensions. In finance, the

technique was first employed by Boyle (1977).

Evans and Swartz (2000) argue that multiple quadrature methods cannot replace

the need for Monte Carlo methods, but a pure Monte Carlo method that fails to

recognise and take advantage of the efficiency improvements available with multiple

3It is the minimal cost of computing an approximation using deterministic algorithms depends
exponentially on the dimension. See Traub and Werschulz (1998).
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quadrature is not appropriate either. For low-dimensional problems (fewer than

four dimensions) well-known classical discretisation techniques can be an obvious

choice for solving the partial differential equations with methods from numerical

mathematics, methods which are relatively fast and accurate. For higher dimensions,

Monte Carlo simulations are in principle adequate, although relatively slow and may

be very inefficient. There is currently no numerical method that copes well with

such a problem. Notice that, without advanced numerical techniques, an option on

five state variables, for example, with 32 points in each dimension may give rise

to 33 million computational points at each time step (see Oosterlee, 2003). The

computational work is therefore extremely large for higher-dimensional problems.

The Monte Carlo method is relatively straightforward for high-dimensional mod-

els with correlation. We will demonstrate the case of generating correlated stochastic

processes, in terms of the standard Brownian motions, for models which require more

than one stochastic factor.

As mentioned in Section 4.3, when we sample the independent paths of under-

lying asset, εi ∼ N(0, 1), is a sequence of independent standard normal variables.

The problem of generating correlated stochastic processes can therefore be simpli-

fied to generate correlated random variables. Suppose we wish to generate random

variables {Zi, i = 1, . . . , n} with a correlation matrix C, given correlation coefficients

cij = cji and cii = 1.

As C is a positive symmetric matrix, there always exists a lower triangular matrix

A with AAT = C, where AT is the transpose of A, and choose independent random

variables {εi, i = 1, . . . , n} take Aε. It is easy to show that Z = Aε. The procedure

used to obtain the A is called Cholesky factorisation (see Van Loan, 2000) .

Cholesky factorisation basically decomposes a symmetric and positive definite

matrix into a lower and an upper triangular matrix i.e. C = AAT, A is a lower

triangular matrix with positive diagonal elements. A is also called the Cholesky

triangle.
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To derive C = AAT, we simply equate coefficients on both sides of the equation:




c11 c12 · · · c1n

c21 c12 · · · c1n

...
...

. . .
...

cn1 cn2 · · · cnn




=




a11 0 · · · 0

a21 a12 · · · 0

...
...

. . .
...

an1 an2 · · · ann







a11 a21 · · · an1

0 a12 · · · an2

...
...

. . .
...

0 0 · · · ann




(4.23)

Solving for the unknowns (the nonzero aij’s), for j = 1, . . . , n and i = j+1, . . . , n,

we obtain:

ajj =

√√√√
(

cjj −
j−1∑

k=1

a2
jk

)
, (4.24)

aij =

(
cij −

j−1∑

k=1

aikajk

)
/ajj. (4.25)

For example, the interest rate can be stochastic as well as the underlying asset,

and its process is obtained by invoking steps 2 in Section 4.3 for the simulation of

an interest rate process. Assume interest rate dynamics

dr(t) = µ(t, r(t))dt + σ(t, r(t))dZt. (4.26)

with dZt the increments of a standard Brownian Motion. µ(t, r(t)) and σ(t, r(t)) are

functions of r(t). Whereas the underlying asset SDE,

dS(t) = a(S(t), t)dt + σ(S(t), t)AdWt, (4.27)

with the dWt being the increments standard Brownian motions and Wt and Zt are

correlated with E[dWtdZt] = ρdt. Using Cholesky factorisation, Equation (4.26) can

be written as

rk(ti+1) = rk(ti) + µ(rk(ti), t)∆t + σ(rk(ti), t)
√

∆t(ρεi +
√

1− ρ2ε′i), (4.28)

where εi and ε′i are independent standard normal variables. More stochastic factors

can be added into the model, such as stochastic volatilities. The concept of Cholesky

factorisation will be extensively used when multiple stochastic factors are correlated,
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and more sophisticated models can be quite easily dealt with. It is the flexibility

that gives the Monte Carlo technique its appeal.

For more detailed introductions on the pricing of multi-dimensional option mod-

els, see Stulz (1982) , Johnson (1987), Boyle, Evnine and Gibbs (1989), Boyle and

Tse (1990) and Wilmott (2000a).

4.6 Least-squares Monte Carlo Method

The difficulty in option pricing involving early exercise used to be one of the draw-

backs of Monte Carlo methods, which has been addressed in Section 3.4.2. The

procedure of necessity runs simulations forwards in time, whilst, for an American

option, valuation includes some pattern of early-exercise to predict when it is optimal

for the option holder to exercise the option, which is typically performed backwards.

The history of using Monte Carlo methods to solve American options has been quite

short. It was a common belief that Monte Carlo methods could not be applied to

American-style options, until Tilley (1993) tackled this problem. Since then, Monte

Carlo methods for early exercise feature have been developed from several different

perspectives. A more detailed literature review on those approaches to American-

style option pricing has been introduced in Section 3.4.2. Here, we only focus on

one of the most commonly used methods: least-squares Monte Carlo method.

4.6.1 Least-squares Fitting

The exercise boundary in the case of American-style option pricing is not fixed,

which means an American option has the value function VA at current time t = 0,

that satisfies the equation under the risk-neutral measure Q,

VA = sup
τ∈T

EQ
[
e−rτV (S(τ), τ)

]
, (4.29)

where V (·) is the payoff function, r is the risk-free interest rate, T is the expiry date,

and T is the set of all possible stopping times with respect to the underlying asset

S.
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Since any stopping time can be expressed as a set of discrete stopping times, the

optimal stopping time is therefore the object to achieve the supremum in Equation

(4.29), denoted as τ ∗, satisfying

τ ∗ = inf{t ≥ 0 : S(t) = S∗}, (4.30)

where S∗ is the optimal exercise boundary. The option price can therefore be evalu-

ated numerically as the maximum of the immediate payoff if the option is exercised,

which implies that to compare the intrinsic value

VA(S(ti−1), ti−1)

and continuation value

EQ [VA(S(ti), ti)|S(ti−1) = S∗]

at every exercisable time.

Therefore, (4.29) can be rewritten as:

VA(S(T ), T ) = V (S(T ), T ), (4.31)

VA(S(ti−1), ti−1) = max{V (S(ti−1), ti−1),EQ [V (S(ti), ti)|S(ti−1) = S∗]},

(4.32)

where 0 ≤ . . . ≤ ti−1 < ti ≤ . . . ≤ T . Here, Equations (4.31) and (4.32) represent the

essence of the dynamic programming recursion. It is also called Bellman equation.

In Monte Carlo methods, the continuation value is not tractable. Thus, regression-

based models have been developed to estimate continuation values from simulated

paths and to price the option values. Least-squares fitting provides a simple yet

accurate approximation to the conditional expectation of continuation value.

The term “least-squares” comes from the idea of squared deviation. Given a

set of data, the aim is to find numerical values for the parameters that minimise

the sum of the squared deviations between the data and the functional portion

of the model (see Daniel and Woods, 1980). It can be shown that the estimates
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based on least-squares are the maximum likelihood estimates, and they are also the

minimum-variance unbiased estimates (see Draper and Smith, 1998).

Suppose N sample data {(xk, yk), k = 1, 2, . . . , N} need to be fitted to the linear

(or nonlinear) function of exercise boundary. Choose J linear independent basis

functions Li(X), i = 1, 2, . . . , J . Then a linear combination of L(X) is defined as

f(X) =
J∑

i=1

aiLi(X), (4.33)

where X = (X1, X2, . . . , XN)ai are adjustable coefficients, which are not yet known.

The least-squares fitting is to evaluate the function f(X) at each of the N sample

data and to minimise the error

N∑

k=1

(yk − f(xk))
2 .

Note that this minimisation treats all the xk equally, and that it penalises large

deviations dramatically.

With least-squares fitting, the continuation value with respect to the given infor-

mation at time t can be well approximated. This is the key to Monte Carlo method

overcoming the early exercise problem. An illustration of implementation is given

next.

4.6.2 LSM Approach for American/Bermudan Options

The least-squares Monte Carlo (LSM) approach was proposed by Longstaff and

Schwartz (2001). The core to this approach is to use least-squares fitting to estimate

the conditional expected payoff to the option holder from continuation. In this

section, a brief illustration of the LSM approach is presented.

The algorithm starts with an American put option on an underlying asset, S(t),

which expires at time T , and which the option holder can exercise at any time up

to T . Numerically, it can be implemented by choosing an M so that the time inter-

val [0, T ] is divided into M sub-intervals whose length is ∆t = T/M . As mentioned

before, this is actually the same as a Bermudan option, which approaches the Amer-

ican value in the limit of an infinite number of exercise times. An approximate value
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Vk(S(0), 0) of the kth sample path is performed by rolling-back on the underlying

asset paths.

The objective of the LSM algorithm is to find the optimal exercise time with

respect to the underlying asset S. Under the risk-neutral probability measure, re-

calling the American put option pricing problem is to find

VA = sup
τ∈T

EQ
[
e−rτV (S(τ), τ)

]
, (4.34)

over all stopping times T . Here S(τ) is the underlying asset price at time τ , V is

the payoff function, and r is the risk-free interest rate. Note that, theoretically a

European call option always has the same value as an American call if no dividends

are paid.

Given the valuation problem in the previous section, for an American put on S(t)

expiring at T , an approximation of the value is obtained by generating N sample

paths of the stochastic process S(t). To avoid confusion, we re-denote Sk(t) as the

value of the process at time t along the kth path and τk the stopping time with

respect to the information generated by Sk(t) in the discrete set of dates where the

state variables dynamics are generated.

The algorithm is to find the optimal exercise time restricted to the set of dates

t0 = 0, t1 = ∆t, t2 = 2∆t, . . . , tM = M∆t = T . The determination of continuation

value works backwards, and so if at time ti, along the kth path, the option has not

been exercised (i.e. the stopping time along the kth path, as determined in previous

time steps of the algorithm, is greater than ti), the optimal decision is made by

comparing the payoff Vk(ti) with Fk(ti), where Fk(ti) is the conditional expected

value with respect to the time ti. If Fk(ti) ≤ Vk(ti), then τk = ti, for the kth path.

The intuition behind this procedure is that the stopping time satisfies the following

condition:

τ = inf{t ≥ 0 : Fk(t) = Vk(t)}, (4.35)

which is the first time the value of the option is equal to the payoff from exercise.

Unfortunately, Fk(ti) is not available at this step of the procedure. A resolution

of this is offered by the Bellman equation (see Equation (4.31) and (4.32)) of the
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optimal stopping problem in discrete time:

Fk(ti) = max{Vk(ti), e
−r(ti)∆tEti [Fk(ti+1)]}. (4.36)

Using this equation, the optimal policy can be determined, restricted to the given

dates, by comparing the continuation values,

Πk(ti) = e−r(ti)∆tE[Fk(ti+1)|Fti ], (4.37)

with the payoff Vk(ti). So the decision rule at time step ti along the kth path is:

if Πk(ti) ≤ Vk(ti) then τk = ti. (4.38)

At ti = T , since the option expires, Πk(ti) = 0, and the rule is to exercise the option

if the payoff is positive. At any ti the optimal stopping time is found by applying the

decision rule in (4.38), from ti = T back to ti. If one of the optimal stopping times

has been determined, at some previous step of this procedure, τk > ti for the kth

path, and condition (4.38) holds at the current step, then the stopping time along

the kth path is updated to τk = ti. The optimal stopping times along all paths are

determined at ti = 0. Consequently the value of the American/Bermudan put is

estimated by averaging all the sample path values.

The key problem is to find the continuation value at ti, in order to apply the

decision rule. The intuition behind LSM is that if at ti the option is still available,

the continuation value is the expectation conditional on the information available at

that date, of future optimal payoffs from the option. Denote V ′
k(t) as the cashflow

from the option optimally exercised at time τ ∗ with respect to the stopping time τk,

conditional on not being exercised at t < s, along the kth path. Therefore,

V ′
k(t) =





Vk(t) if τ ∗ = τk,

0 if τ ∗ 6= τk.

(4.39)

The dependence of this cashflow on ti is due to the fact that when the decision rule

is applied in Equation (4.38), the stopping time along the kth path can change step

by step. The continuation value at ti is the present value with respect to the risk
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neutral probability of all future expected cashflows from the option Πk(ti). Then

the continuation value can be interpreted as

Πk =
∞∑

j=1

aj(t)Lj, (4.40)

where Lj is the jth element in the basis function. Following Longstaff and Schwartz

(2001), the estimated continuation value πj(ti) can be determined by applying

ΠJ
k (t) =

J∑
j=1

aj(t)Lj(t). (4.41)

Now, πj(t) can be estimated by a linear least squares regression of ΠJ
k (t) onto the

basis Lkj
. The estimated continuation value is then used to apply recursively the

decision rule in (4.38).

The accuracy of the estimates of the value of the American option can be im-

proved by increasing the number of time steps M , the number of simulated paths N ,

and (up to a point) the degree of basis function J . Since the regression will become

a simulation of the data curve if J is increased infinitely. For finite N , an optimal

J exists (see Glasserman, 2003).

The building blocks of the least-squares Monte Carlo method have been intro-

duced. In the following chapter, an American-style option pricing model is devel-

oped, using an enhanced least-squares Monte Carlo method (i.e. Duck et al., 2005,

which will be formally introduced in Chapter 5), and also incorporating Cholesky

factorisation for the co-movement between the stochastic factors in the model.



Chapter 5

American Currency-Options

In mathematics you don’t understand things. You just get used to

them.

—— John Von Neumann (1903–1957)

5.1 Introduction

A currency option can be viewed as an option to exchange a domestic bond with a

foreign bond. Several variables may be included in a currency-option pricing model

(as mentioned in Section 3.3): the exchange rate, two interest rates (domestic and

foreign) and the volatilities of these quantities, all of which are open to modelling

as stochastic processes. It is quite straightforward to implement a European-style

option, where closed-form solution may be available, whereas for an American-style

option which accommodates early exercise features, numerical procedures are nec-

essary. However, American options with more than three stochastic factors are

challenging for numerical methods, since most suffer “the curse of dimensionality”,

mentioned in Section 4.5. The Monte Carlo method is computationally advanta-

geous since it can be implemented easily for dimensions as high as ten or even more.

However, the early exercise feature does significantly complicate matters. Longstaff

and Schwartz’s (2001) least-squares technique allows Monte Carlo to be used in such

cases.

95
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American options can be priced numerically using lattice and grid methods (bi-

nomial and trinomial trees, finite-difference techniques), which work backwards in

time and allow naturally for early exercise. The convergence/accuracy of these has

been improved by various modifications of technique, though ultimately they suffer

from the curse of dimensionality (addressed in Section 4.5). Of course, as avail-

able computing power has increased the practical cut-off point for number of factors

has risen and it is dangerous to take textual quotes from older (even recent) liter-

ature concerning the difficulties of computation (also mentioned in Section 1.5.2).

Monte Carlo simulation has obvious appeal, being intuitive, simple to implement

and, though initially computationally intensive, possessing the feature that compu-

tational effort increases only linearly with the number of stochastic factors.

It was formerly the case that the Monte Carlo method could not readily handle

early exercise, but this difficulty has been overcome in several alternative ways, as

mentioned in Section 3.4.2, the one with the greatest impact in the literature being

that of Longstaff and Schwartz (2001), which itself has been the subject of several

enhancements, including that of Duck et al. (2005), which is adopted in this thesis,

giving speed improvements, in general, of around twenty times the basic Longstaff

and Schwartz original.

Given the clear importance of volatility (stated in Section 3.3.2), it will ultimately

be considered in this model, but first a perfect market is constructed, having no

transaction costs, no differential taxes, no long or short restrictions, and trading is

continuous.

The remainder of this chapter is organised as follows. Section 5.2 considers

the basic Amin and Bodurtha (1995) currency-option pricing models (based on

Ho and Lee, 1986), which are treated using a Monte Carlo method, based on the

enhanced Longstaff and Schwartz (2001) method as proposed by Duck et al. (2005).

Section 5.3 extends the forward-rate model of Section 5.2 to a short-rate model

(a mean-reverting diffusion process introduced by Cox, Ingersoll and Ross, 1985).

Section 5.4 further refines the work, when stochastic mean-reverting volatilities are
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taken into account, assuming that the exchange rate, domestic interest rate and

foreign interest rate all have stochastic volatilities. To aid sensible analysis of the

numerical results, the chapter employs Treepongkaruna and Gray’s (2003) empirical

parameters for both interest rates, and Dupoyet’s (2006) empirical parameters for

stochastic exchange rate and the corresponding volatility. Section 5.5 presents some

concluding remarks.

5.2 The Amin and Bodurtha Model

5.2.1 Assumptions

In order to develop a new model step by step and for later comparison, we begin

with the basic Amin and Bodurtha (1995) three-factor model. To this we will apply

Monte Carlo methods in place of the (limited 12-time step) multinomial tree. This

will then form the basis for treating the enhanced models.

The exchange rates are assumed to follow a geometric Brownian motion process

which is consistent with a bond price process, in line with the Amin and Bodurtha

(1995) model. The HJM framework is adopted for both domestic and foreign interest

rates. To be consistent with the Amin and Bodurtha model, the assumptions are

based on real world data (without changing measure), the volatilities of interest

rates are kept constant, and the diffusion is one dimensional, i.e. the interest-rate

model is described by the Ho and Lee (1986) model. The volatility of the exchange

rate is kept constant. For a practical investigation of foreign exchange rate volatility,

see Chowdhury and Sarno (2004).

Consider now the assumptions in the model: the stochastic processes take the
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form

dxt

xt

= (rd − rf )dt + σxdWx, (5.1)

dfd(t, T ) = αd(t, T )dt + σd(t, T )dWd, (5.2)

dff (t, T ) = αf (t, T )dt + σf (t, T )dWf , (5.3)

where

xt ≡ the exchange rate,

fd ≡ the domestic forward interest rate,

ff ≡ the foreign forward interest rate,

rd ≡ the domestic short rate,

rf ≡ the foreign short rate.

In the above, the exchange-rate process has a drift with a component of rd − rf

which is justified in Appendix B. αd and αf are the drift of fd and ff respectively,

the σx, σd, and σf are the volatilities of xt, fd and ff respectively, dWx, dWd and

dWf are the increments of one-dimensional standard Brownian motions; these three

random processes are correlated as

E[dWidWj] = ρijdt, where i, j = d, f, x; ρij = ρji, ρii = 1.

The parameters αd, αf , σx, σr, σf and ρij are all assumed constant in the first

instance.

Since the general HJM model is non-Markovian, the SDEs describe only in-

stantaneous forward rates, which are not appropriate for the exchange-rate process.

Implementation is therefore not so straightforward as simply using Euler discretisa-

tion to simulate the instantaneous short rate of interest. Therefore, it is necessary

to transform the forward rate processes into short rate processes by following Duffie

(1996), to obtain short-rate values at each time step using the simulated forward

rates as follows:

rd(t) = fd(0, t) +

∫ t

0

σd(υ, t)

∫ t

υ

σd(υ, u)′dudυ +

∫ t

0

σd(υ, t)dWd, (5.4)

rf (t) = ff (0, t) +

∫ t

0

σf (υ, t)

∫ t

υ

σf (υ, u)′dudυ +

∫ t

0

σf (υ, t)dWf . (5.5)
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The equations above are general form of the conversion. Consequently Equations

(5.2) and (5.3) can be transformed into the Ho and Lee (1986) model. Namely,

rd(t) = fd(0, t) +
1

2
σdt

2 + σdWd, (5.6)

rf (t) = ff (0, t) +
1

2
σf t

2 + σfWf , (5.7)

where fd(0, t) and ff (0, t) are the instantaneous forward rates of domestic and foreign

interest respectively, at t = 0 for time horizon [0, t]. Note that fd(0, t) and ff (0, t)

are required in order to obtain rd(t) and rf (t). Referring to Wilmott (2001),

fd(0, T )T = fd(0, t)t + fd(t, T )(T − t), (5.8)

ff (0, T )T = ff (0, t)t + ff (t, T )(T − t). (5.9)

fd(0, t) and ff (0, t) can be easily obtained.

5.2.2 Numerical Scheme

The least-squares Monte Carlo approach of Longstaff and Schwartz (2001) (as mod-

ified by Duck et al., 2005) for the evaluation of American options is applied. The

Longstaff and Schwartz approach appealed to academics and practitioners alike,

since it set about solving the problem of early exercise in Monte Carlo simulations

by combining financial intuition (an expected value) with a least-squares fitting

technique, using the latter to estimate the conditional expected payoff to the option

holder from continuation.

The algorithm adopted for American/Bermudan1 put options is as follows (again

the notations are changed, namely x(t) = xt(ω), where ω will be interpreted as a

large number of sample observations):

1. Divide the time period [0, T ] into M steps (i.e. M the exercise dates). Set

∆t = T/M , and therefore ti = i∆t, for i = 0, 1, 2, . . . , M .

2. Sample N independent paths of exchange rate xk(ti), the domestic forward rate

fdk(ti) and the foreign forward rate ffk(ti) (for k = 1, 2, . . . , N) using Euler

1As mentioned in Section 4.3, due to the unavoidable discretisation of numerical solution, an
American option can only be exercised in a discrete time, which is actually a Bermudan option.
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discretisation. As mentioned before, these three processes are correlated; the

correlation matrix is a 3× 3 symmetric matrix

Σ =




1 ρxd ρxf

ρdx 1 ρdf

ρfx ρfd 1


 .

It is necessary to transform the correlation matrix above into a modified form

which gives the independent standard normal variables the equivalent corre-

lation coefficients. Take W = Aε so that the correlated Brownian motions W

can be replaced by Aε, where A is the Cholesky factorisation of Σ (described

in Section 4.5).

Set xk(0) = x0, the current value of x(t). xk(ti+1) is determined by:

xk(ti+1) = xk(ti) exp

([
rdk(ti)− rfk(ti)− 1

2
σ2

x

]
∆t + A1,1σxεxi

√
∆t

)
. (5.10)

The instantaneous forward interest rates are:

fdk(ti+1, T ) = fdk(ti, T ) + αd∆t

+ (A2,1εxi + A2,2εri)σd

√
∆t, (5.11)

ffk(ti+1, T ) = ffk(ti, T ) + αf∆t

+ (A3,1εxi + A3,2εri + A3,3εfi)σf

√
∆t, (5.12)

where εxi, εri and εfi ∼ N(0, 1) are the sequences of independent standard

normal variables at the ith time step.

3. Obtain the initial forward rates up to every time step ti using Equations (5.8)

and (5.9):

fd(0, ti) =
fd(0, T )T − fd(ti, T )(T − i∆t)

i∆t
, (5.13)

ff (0, ti) =
ff (0, T )T − ff (ti, T )(T − i∆t)

i∆t
. (5.14)
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Consequently the following SDEs can be obtained from Equations (5.6) and

(5.7):

rd(ti) = fd(0, ti) +
1

2
σd(i∆t)2

+

(
A2,1

i∑
n=1

εxn + A2,2

i∑
n=1

εrn

)
σd

√
∆t, (5.15)

rf (ti) = ff (0, ti) +
1

2
σf (i∆t)2

+

(
A3,1

i∑
n=1

εxn + A3,2

i∑
n=1

εrn + A3,3

i∑
n=1

εfn

)
σf

√
∆t. (5.16)

4. The value of the payoff function Vk(x(T )) = max{K − xk(T ), 0} is obtained.

5. From the expiry date T to the current time t = 0, at each time step ti, the

option holder optimally compares the intrinsic value with the continuation

value, which can be expressed as the conditional expectation of discounted

payoff. The conditional expectation function can be estimated by invoking

the least-squares basis representation

min = ‖Yj −
J∑

`=0

a`L`(xj)‖, (5.17)

where L(·) is a set of basis functions, J is the number of basis functions, Xj

is the value of the underlying asset, Yj is the discounted payoff

Yj = exp

(
−

∫ T

ti

rdk(t)dt

)
Vk(xk(T )), (5.18)

j is the index of in-the-money paths at time ti, and a` are the estimated

coefficients (obtained from the least-squares fit).

6. Given the a`, it is straightforward to compute the value of continuation. De-

noted as Y ′
j , it is obtained by simply re-invoking Equation (5.17) as

Y ′
j =

J∑

`=0

a`L`(xj). (5.19)

Compare the intrinsic value K − xj with Y ′
j ; if the intrinsic value is greater

than continuation value, the option is exercised and the optimal stopping time

τk = ti along the kth sample path is set.
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7. Repeat Step 6 to obtain the set of optimal stopping time τ for all sample

paths.

8. Discount the payoff with optimal stopping time to find VA. That is

VA =
N∑

k=1

[
exp

(
−

∫ τk

0

rdk(t)dt

)
max{K − xk(T ), 0}

]
. (5.20)

9. The entire procedure is replicated over a (large) number of runs, with values

for the option thus obtained by averaging over all previous (and the current)

runs.

Recall that different choices and numbers of the basis functions used in the least-

squares fitting will influence the option price. The accuracy of the estimates of the

value of the American contingent claim can be increased by increasing the number of

time steps, M , the number of simulated paths, N , and the number of basis functions,

J , in all cases. Note that only sample paths which are in-the-money are considered

for the least-squares fit, in order to reduce the necessary number of basis functions,

and consequently reduce the computational cost2. Simply increasing the number of

basis functions is not necessarily advantageous. Glasserman and Yu (2004) showed

that the minimum number of paths required for convergence on a worst-case basis

grows exponentially with the number of basis functions; therefore for finite N , an

optimal J exists (mentioned in Section 4.6.2). Having experimented with different

choices of J for the case of the present model, the value seven was selected for J . In

the Longstaff and Schwartz (2001) paper, the basis functions L· are suggested to be

either Hermite, Chebyshev, or Laguerre polynomials or also powers of polynomial.

Atkinson (1989) suggested Chebyshev polynomials are the best choice for polynomial

fits (see also Caporale and Cerrato, 2005), and these were consequently the choice

of polynomials employed in the present study.

Considerable literature on the bias of least-squares Monte Carlo methods has

been published. The obvious importance of understanding the sources of bias affect

2Longstaff and Schwartz (2001) investigated the least-squares fit using all the sample paths.
However it only returns the same results with much higher computational cost.
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the methods for pricing American-style options by simulations. Prior to the publi-

cation of Longstaff and Schwartz (2001), Carriere (1996) addressed the problem of

bias in the estimators for the American option prices. The bias is caused by two

main streams, low bias and high bias. The low bias results from the approximation

of the optimal stopping strategy. Recalling the valuation formula for American-style

options, a supremum of the upper bound for the boundary makes the valuation al-

ways underestimated. The high bias is caused by the so called “foresight effect”,

meaning the use of knowledge about the entire life of the option. Mathematically,

the simulated sample paths are used for both option valuation and optimal strategy,

therefore the estimator a gives higher values than the true option price. With a stan-

dard LSM method, it can be observed that the dominant bias is the high bias(see

Glasserman, 2003 and Fries, 2005). To overcome the “foresight effect”, using a sep-

arate set of simulated sample paths for the optimal strategy can somewhat reduce

the high bias. However, it can be computational expensive. Duck et al. (2005)

exploited the interesting observation of bias to find the relation between the sample

paths and the convergence to the true option value.

It has been mentioned in Section 4.2 that the convergence rate of standard Monte

Carlo methods is proportional to 1/
√

sample paths. Very usefully, as will be seen

later, as the number of independent sample paths N (and the number of runs)

increases, the option value is always found to tend monotonically towards the exact

value from above (as with Duck et al., 2005). Consequently, Duck et al. proposed

the following form to describe this convergence (by analogy with the standard Monte

Carlo rate of convergence)

VN = Vext +
α1√
N

+
α2

N
+ O(N− 3

2 ), (5.21)

where Vext is a more accurate (extrapolated) value of the option price, V . Therefore,

by choosing three values of sample paths N , we can obtain estimates for the values

of α1 and α2, and especially Vext. The resultant technique is simple and easy to

comprehend and implement, yet efficiently reduces the computational time and cost.

Invoking Equation (5.21), with the values from three different sample paths
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yields, a better estimate of the value of the option. Later, results with N =

4000, 8000, 16000, 32000 are shown. For each choice of N , up to 10,000 runs

are performed and results averaged over all previous runs.

5.2.3 Numerical Results

Amin and Bodurtha (1995) provided most of the parameters that this model requires

and so to show an accurate comparison with Amin and Bodurtha’s model, the

same parameter choices are used wherever they are applicable. However Amin and

Bodurtha (1995) did not give explicit values of initial interest rates, the initial

forward rate in U.S. dollar used here is given by historical statistics at the U.S.

Federal Reserve Board3, whereas the initial forward rate in Japanese Yen is provided

by historical statistics released at the Bank of Japan website4. The other parameters

in Table 5.1 correspond to those of Amin and Bodurtha. Seven basis functions and

50 exercise opportunities (i.e. time steps) are chosen as recommended by Duck et

al. (2005).

Table 5.1: American/Bermudan currency-option valuation parameters I

Expiry date T 1 year
Initial value of exchange rate x(0) 0.0079101
Initial value of domestic forward rate fd(0) 0.0856
Initial value of foreign forward rate ff (0) 0.024
Strike price K x(0), 0.95x(0)
Drift of domestic interest µd 0.01
Drift of foreign interest µf 0.005
Volatility of domestic interest σd 0.01481
Volatility of foreign interest σf 0.01525
Exchange rate volatility σx 0.1236
Correlation between x(t) and fd(t) ρxd -0.013
Correlation between x(t) and ff (t) ρxf 0.0628
Correlation between fd(t) and ff (t) ρdf - 0.0821
Contract size 10,000
Time step M 50
Number of basis functions J 7

3U.S. Federal Reserve Board: http://www.federalreserve.gov/releases/h15/data.htm.
4Bank of Japan: http://www.boj.or.jp/en/type/stat/dlong/index.htm.
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For European options, two sets of comparisons are shown in Table 5.2. The

accurate values are from Amin and Jarrow’s (1991) closed-form solution, whereas

the column of option price (MC) is the corresponding option price using Monte

Carlo simulations were performed with 10 million observations. From Table 5.2, the

Table 5.2: European put prices (comparison with the analytical solution)

Option price (MC) Accurate value
In-the-money 3.7364 3.73
At-the-money 2.0811 2.08

numerical solutions by Monte Carlo simulations converged to these values (quoted

to two decimal places by Amin and Bodurtha, 1995). Thus, we can have some

confidence that the parameters we collected from the government websites are com-

parable to those used in Amin and Bodurtha.
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Figure 5.1: Amin and Bodurtha model for an at-the-money American put (K =
x(0)) with 4000, 8000, 16000, 32000 sample paths

In order to compare the accuracy of our numerical method with the results of

Amin and Bodurtha (1995), two sets of parameters are shown. Figure 5.1 corre-

sponds to an at-the-money put option and Figure 5.2 to an out-of-the-money put
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Figure 5.2: Amin and Bodurtha model for an out-of-the-money American put (K =
0.95x(0)) with 4000, 8000, 16000, 32000 sample paths

option. As anticipated, during the early runs, the averaged results are seen to fluctu-

ate considerably due to the small number of averaged samples. Therefore, results for

the first 1,000 runs are not shown in order to give a clearer picture of the processes.

Vext1 is the extrapolated value using N = 4000, 8000, 16000, whereas Vext2 is the

extrapolated value using N = 8000, 16000, 32000. Figures 5.1 and 5.2 indicate

that when the estimator has sufficient samples, the estimated value will tend to an

accurate reliable value (to within a penny accuracy). From these figures, it is clear

that Vext1 and Vext2 are numerically close. In general, it is not always necessary

to run 10,000 simulations to obtain an accurate extrapolated value. It should be

borne in mind that the model is built up of a forward-rate model and converts this

to a short-rate model, therefore the values fluctuate more than models which are

based on a short-rate model per se. In the following two sections, results are found

to be reliable using just 5000 runs. To further compare this numerical method with

Amin and Bodurtha’s (1995) tree method, two sets of results are presented in Table

5.3, one set is an at-the-money put (K = x(0)), the other an out-of-the-money put

(K = 0.95x(0)). In each set, results are illustrated for two choices of time steps,
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namely 12 and 50. When 12 time steps are used (which is the same number as used

by Amin and Bodurtha, 1995), the values are lower than those with 50 time steps,

reflecting the fact that the more exercise opportunity, the more expensive the option

is. However, 12-time-step values from this model are still higher than the Amin and

Bodurtha results. This is presumably due to the error in the tree method (since 12

branch trees are likely to give very coarse results), and also, as mentioned before,

our choices of initial interest rates are likely not the same as those of Amin and

Bodurtha.

Table 5.3: Comparison of tree method and enhanced LSM method for the Amin
and Bodurtha Model

Number of time steps
Amin and Bodurtha

12 50

At-the-money
4000 4.458 4.474

4.31
8000 4.449 4.459
16000 4.443 4.449
Ext 4.427 4.436

Out-of-the-money

4000 2.413 2.429

2.32
8000 2.404 2.413
16000 2.398 2.404
Ext 2.384 2.390

5.3 Improved Interest-rate Modelling

5.3.1 Assumptions

In this section, a first modification of the pricing model is presented. Despite the no-

table advances in theoretical research and the apparent flexibility of the HJM model,

it is difficult to calibrate data with this high-dimensional nonlinear model. Amin

and Bodurtha (1995) were only able to apply the Ho and Lee (1986) model using

constant volatility. In contrast, short-rate models have the advantage of flexibility

in numerical implementation. It is relatively straightforward to extend one-factor
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short-rate models to multi-factor models, even with stochastic volatilities, when re-

quired. Consequently, based on the risk-neutral measure, the exchange-rate process

is assumed to follow the SDE (5.22) below, whereas interest rates follow the CIR

model, instead of the Ho and Lee model used in the previous section, namely

Exchange Rate:
dxt

xt

= (r − f)dt + σxdWx, (5.22)

Domestic Interest Rate: dr = κr(θr − r)dt + σr

√
rdWr, (5.23)

Foreign Interest Rate: df = κf (θf − f)dt + σf

√
fdWf , (5.24)

where κr and κf are the mean-reverting speed of interest rates of r and f respectively,

θr and θf are the long-run mean of the interest rates r and f respectively, dWx, dWr

and dWf are the increments of standard Brownian motions, the σx, σr, and σf

are the volatilities of x, r and f respectively, and again, the random processes are

correlated as

E[dWidWj] = ρijdt, where i, j = r, f, x.

Note again that ρij = ρji, ρii = 1 and so the correlation matrix is a 3× 3 symmetric

matrix

Σ =




1 ρxr ρxf

ρrx 1 ρrf

ρfx ρfr 1


 .

The parameters κr, κf , θr, θf , σx, σr, σf and ρij are all taken to be constant.

5.3.2 Numerical Scheme

The procedure is similar to that in the previous section, but note the following

changes are made in Step 2:

2. Sample N independent paths of exchange rate xk(ti) for k = 1, 2, . . . , N . Set

xk(0) = x0, the current value of x(t). xk(ti+1) is determined by:

xk(ti+1) = xk(ti) exp

([
rk(ti)− fk(ti)− 1

2
σ2

x

]
∆t + A1,1σxεxi

√
∆t

)
; (5.25)
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similarly, the SDEs (5.23) and (5.24) are approximated as follows:

rk(ti+1) = rk(ti) + κr(θr − rk(ti))∆t

+ (A2,1εxi + A2,2εri)σr

√
rk(ti)∆t, (5.26)

fk(ti+1) = fk(ti) + κf (θf − fk(ti))∆t

+ (A3,1εxi + A3,2εri + A3,3εfi)σf

√
fk(ti)∆t, (5.27)

where εxi, εri and εfi ∼ N(0, 1) are the sequences of independent standard normal

variables at the ith time step.

As mentioned in Section 3.3.3, the absolute value of interest rate at any time t

is necessary to avoid the scheme breaking-down numerically if the negative values

occur (although for the parameters chosen, this is a rare event).

5.3.3 Numerical Results

Some sample results for the currency-option price are presented in Figures 5.3, 5.4

and 5.5. The choice of parameters is important for a newly built model, and therefore

previously referenced parameters have been used wherever possible. The interest

rate parameters in Table 5.4 correspond to those of Treepongkaruna and Gray’s

(2003) estimation where applicable, whilst other parameters are kept consistent

with the Amin and Bodurtha (1995) model, which are shown in Table 5.1.

Table 5.4: American/Bermudan currency-option valuation parameters II

Initial value of domestic interest rate r(0) 0.0585
Initial value of foreign interest rate f(0) 0.00704
Mean-reversion rate of domestic interest κr 0.3334
Mean-reversion rate of foreign interest κf 0.1279
Long term growth rate of domestic interest θr 0.0585
Long term growth rate of foreign interest θf 0.00704
Volatility of domestic interest σr 0.0161
Volatility of foreign interest σf 0.0571

In Figures 5.3, 5.4 and 5.5, results are shown for an American put option obtained

using 4000, 8000, 16000, 32000 sample paths. By averaging over the current and
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preceding values, a converging estimate of the option price is obtained. Again, two

extrapolated processes for N = 4000, 8000, 16000 and N = 8000, 16000, 32000

are obtained using Equation (5.21), which are shown denoted as Vext1 and Vext2

respectively (again, to illustrate the figures more clearly, the values for the first 1,000

runs are omitted). Three types of options are presented, namely an in-the-money

option (Figure 5.3), an at-the-money option (Figure 5.4), and an out-of-the-money

option (Figure 5.5).
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Figure 5.3: Extended model for an in-the-money American put (K = 1.05x(0)) with
4000, 8000, 16000, 32000 sample paths

Note again, the processes of extrapolated value (i.e. Vext1 and Vext2) are ini-

tially more erratic than the original processes, but after 5000 runs, Vext1 and Vext2

have settled down and differ very little (giving better than one penny accuracy).

The result is an interim model which we next extend in order to produce the final

version which takes into account the full set of stochastic parameters.
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Figure 5.4: Extended model for an at-the-money American put (K = x(0)) with
4000, 8000, 16000, 32000 sample paths

5.4 Further Improved Stochastic Volatility Mod-

elling

5.4.1 Assumptions

In this section, stochastic volatilities will be incorporated to complete the model.

Heston’s (1993) model of volatilities is included in the exchange-rate process and

both interest rates processes, leading to the system following six stochastic processes.

Exchange Rate:
dxt

xt

= (r − f)dt + σx

√
υ1dWx, (5.28)

Volatility of x: dυ1 = κ1(θ1 − υ1)dt + σ1

√
υ1dW1, (5.29)

Domestic Interest Rate: dr = κr(θr − r)dt + σr

√
rυ2dWr, (5.30)

Stochastic Volatility of r: dυ2 = κ2(θ2 − υ2)dt + σ2

√
υ2dW2, (5.31)

Foreign Interest Rate: df = κf (θf − f)dt + σf

√
fυ3dWf , (5.32)

Stochastic Volatility of f : dυ3 = κ3(θ3 − υ3)dt + σ3

√
υ3dW3, (5.33)
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Figure 5.5: Extended model for an out-of-the-money American put (K = 0.95x(0))
with 4000, 8000, 16000, 32000 sample paths

where the κ’s are the mean-reverting speed, the θ’s are the long-run mean, the σ’s

are the volatility of volatility, dW ’s are increments of standard Brownian motions,

and the ith and jth Brownian motion processes are correlated as follows

E[dWidWj] = ρijdt where i, j = r, f, x, 1, 2, 3 ρij = ρji, ρii = 1.

The correlation matrix clearly becomes a 6× 6 symmetric matrix

Σ =




1 ρx1 ρxr ρx2 ρxf ρx3

ρ1x 1 ρ1r ρ12 ρ1f ρ13

ρrx ρr1 1 ρr2 ρrf ρr3

ρ2x ρ21 ρ2r 1 ρ2f ρ23

ρfx ρf1 ρfr ρf2 1 ρf3

ρ3x ρ31 ρ3r ρ32 ρ3f 1




,

where the parameters κ’s, θ’s, σ’s and ρ’s are assumed to be constant.
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5.4.2 Numerical Scheme

The main difference with the technique implemented in the previous section is that

the sample paths of the volatilities must also be generated at Step 2:

2. xk(ti+1), rk(ti+1), fk(ti+1) and the volatilities of theirs can be determined by:

xk(ti+1) = xk(ti) exp

([
rk(ti)− fk(ti)− 1

2
σ2

x

]
∆t + A1,1σxεxi

√
υ1k(ti)∆t

)
,

(5.34)

υ1k(ti+1) = υ1k(ti) + κ1 [θ1 − υ1k(ti)] ∆t

+(A2,1εxi + A2,2ευ1i)σ1

√
υ1k(ti)∆t, (5.35)

rk(ti+1) = rk(ti) + κr[θr − rk(ti)]∆t

+(A3,1εxi + A3,2ευ1i + A3,3εri)σr

√
rk(ti)υ2k(ti)∆t, (5.36)

υ2k(ti+1) = υ2k(ti) + κ2[θ2 − υ2k(ti)]∆t

+(A4,1εxi + A4,2ευ1i + A4,3εri + A4,4ευ2i)σ2

√
υ2k(ti)∆t, (5.37)

fk(ti+1) = fk(ti) + κf (θf − fk(ti))∆t

+(A5,1εxi + A5,2ευ1i + A5,3εri + A5,4ευ2i + A5,5εfi)σf

√
fk(ti)υ3k(ti)∆t, (5.38)

υ3k(ti+1) = υ3k(ti) + κ3[θ3 − υ3k(ti)]∆t

+(A6,1εxi + A6,2ευ1i + A6,3εri + A6,4ευ2i + A6,5εfi + A6,6ευ3i)σ3

√
υ3k(ti)∆t,

(5.39)

where εxi, εri, εfi, ευ1i, ευ2i and ευ3i ∼ N(0, 1) are the sequences of independent

standard normal variables at the ith time step.

5.4.3 Numerical Results

There has been some empirical work, albeit focussed on options without early exer-

cise, which provides useful parameters for this section of the thesis. As mentioned

in Section 3.4.2, Dupoyet (2006) provided an empirical investigation into Japanese

Yen/U.S. dollar currency-options, which are applicable in this complete model. The

parameters of Table 5.5 correspond to those of Dupoyet for the exchange rate volatil-

ity (the upper portion of Table 5.5), whilst other parameters have been chosen by
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the author (the lower portion of Table 5.5).

Table 5.5: American/Bermudan currency-option valuation parameters III

Mean-reversion rate of exchange rate volatility κ1 6.17
Long term growth rate of exchange rate volatility θ1 0.0097
Volatility of the exchange rate volatility σ1 0.21
Correlation between x(t) and υ1(t) ρx1 -0.13
Initial value of exchange rate volatility υ1(0) 0.1236
Initial value of domestic interest rate volatility υ2(0) 0.0161
Initial value of foreign interest rate volatility υ3(0) 0.0571
Mean-reversion rate of domestic volatility κ2 2.5
Mean-reversion rate of foreign volatility κ3 2.0
Long term growth rate of domestic volatility θ2 0.01
Long term growth rate of foreign volatility θ3 0.02
Volatility of domestic interest rate volatility σ2 0.1
Volatility of foreign interest rate volatility σ3 0.1
Correlation between x(t) and υ2(t) ρx2 -0.008
Correlation between x(t) and υ3(t) ρx3 0.007
Correlation between r(t) and υ1(t) ρ1r -0.008
Correlation between υ1(t) and υ2(t) ρ12 -0.006
Correlation between f(t) and υ1(t) ρ1f 0.008
Correlation between υ1(t) and υ3(t) ρ13 0.005
Correlation between r(t) and υ2(t) ρr2 0.02
Correlation between r(t) and υ3(t) ρr3 0.003
Correlation between f(t) and υ2(t) ρ2f 0.008
Correlation between υ2(t) and υ3(t) ρ23 0.002
Correlation between f(t) and υ3(t) ρf3 0.01

Results for currency-option prices with stochastic interest rates and volatilities

are shown in Figures 5.6, 5.7, 5.8, namely an in-the-money option, an at-the-money

option, and an out-of-the-money option respectively. It can be seen that with the

same degree of moneyness, the option with stochastic volatilities gives a higher value.

For example, the price for the at-the-money option in Section 5.3 is about 2.57, whilst

the option with stochastic volatilities is about 4.05. This, no doubt, is because with

stochastic volatilities, the option has more potential for positive payoff, and so the

value of the option is likely to be higher. Note that interest rates generally have

small volatilities compared with exchange rate volatility, therefore the stochastic

volatilities of interest rates do not influence the option value as significantly as the



CHAPTER 5. AMERICAN CURRENCY-OPTIONS 115

1000 1500 2000 2500 3000 3500 4000 4500 5000
6.2

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

Runs (from 1000 to 5000)

A
m

er
ic

an
 p

ut
 o

pt
io

n 
pr

ic
e

N=4000

N=8000

N=16000

Vext2

Vext1
N=32000

Figure 5.6: Stochastic volatility model for in-the-money American put (K =
1.05x(0)) with 4000, 8000, 16000, 32000 sample paths

exchange-rate volatility.

Figures 5.9, 5.10 and 5.11 show the influence of parameter changes on the corre-

lations (i.e. the ρij) between these factors (these are notoriously difficult to measure

using real-world data). Here the values of the ρij (i 6= j) have been increased by a

factor of 10, compared with those used in Figure 5.6 (an in-the-money case), Figure

5.7 (an at-the-money case), and Figure 5.8 (an out-of-the-money case) respectively.

In Figures 5.9, 5.10 and 5.11, the line denoted as “Original Vext” is the extrapo-

lated value (using N = 8000, 16000, 32000) of the original correlation parameters,

and Vext is the extrapolated value (using N = 8000, 16000, 32000) with the larger

correlation parameters. The two extrapolated processes follow somewhat the same

trend, but over all and importantly these show that the correlation factors do not

affect the option value significantly. This may be regarded as a very positive feature

of the model, given the difficulty in estimating parameters in all multi-factor models.

Further, when the correlation between the stochastic factors are larger, the move-

ments of the processes are more likely to be bounded with each other. This implies

that the less random the processes are. Consequently, the price range of Vext is
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Figure 5.7: Stochastic volatility model for at-the-money American put (K = x(0))
with 4000, 8000, 16000, 32000 sample paths

less erratic than that of original Vext, implying that the in-the-money Vext is less

expensive than the original in-the-money option, whereas an out-of-the-money Vext

is more expensive than the original out-of-the-money option.

5.5 Summary

Foreign exchange is the largest of the global financial markets, with daily trading

volume now measured in trillions of U.S. dollars. Associated with this are exchange

traded options and a very active OTC market in currency options. As noted by Carr

and Wu (2007), OTC quotes are based on Garman and Kohlhagen (1983) implied

volatilities, and there remains a tendency to favour analytic solutions for lack of

suitable numerical approaches to richer models.

Until just over a decade ago, only European currency-option pricing was feasible.

Amin and Bodurtha (1995) achieved partial success with early-exercise feature, us-

ing just a 12 step tree, and since then the pricing of American currency-options has
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Figure 5.8: Stochastic volatility model for out-of-the-money American put (K =
0.95x(0)) with 4000, 8000, 16000, 32000 sample paths

remained limited. By applying a new, fast, enhanced accuracy Monte Carlo tech-

nique and using parameters derived from earlier empirical work, we have developed

a more realistic but easily implementable model for American currency-options in

a complex stochastic environment. The resulting model employs up to six stochas-

tic processes, with early exercise, but remains tractable. Tests with empirical data

and parameter sensitivity show the stochastic volatilities to have notable effects on

option values, exchange rate volatility having greater influence than interest rate

volatilities. Usefully, values have been shown to be relatively insensitive to correla-

tions between factors.

This is not only a practical model for currency-option evaluation but also a

promising multi-dimensional option pricing technique which includes early exercise.

Therefore this methodology has the potential for use in many other areas, such as

credit spread option pricing and quanto options.
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Figure 5.9: Influence of correlation parameters for an in-the-money American put
Vext are the processes with 10 times larger correlation than that of Original Vext.
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Figure 5.10: Influence of correlation parameters for an at-the-money American put
Vext are the processes with 10 times larger correlation than that of Original Vext.
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Figure 5.11: Influence of correlation parameters for an out-of-the-money American
put
Vext are the processes with 10 times larger correlation than that of Original Vext.



Chapter 6

Discrete Barrier Currency-Options

No human investigation can be called real science if it cannot be

demonstrated mathematically.

Leonardo da Vinci (1452–1519)

Treatise on Painting

Barrier options are one of the most popular first-generation exotic options, yet little

theoretical research existed on them until the mid 1990s. This chapter begins by

raising a realistic problem related to the currency option market. From both theo-

retical and hedging perspectives, barrier options are well known to be more complex

than standard options. Further, it is shown that barrier options have quite different

hedging properties than standard options.

One type of option heavily traded in the over-the-counter market (i.e. interbank

market) is the reverse barrier option. It is a barrier option with the barrier triggered

at a level when the option is in-the-money. Consequently, for a call option, the

barrier would be above the strike price; for a put, below strike. If the knock-out is

not triggered, the payoff is the same as for a vanilla option. Since option prices are

measured by the potential profit the options carry (also mentioned in Section 5.4.3),

this type of option is generally cheaper than the corresponding vanilla options.

Given the idea of barrier options, a more specific problem will be addressed in this

chapter – the legal quote of the option contract delay caused by mis-hedging loss on

120
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discrete barrier currency-options. The question arises in Section 6.1, whilst Section

6.2 and Section 6.3 will focus on the European case and discretely monitored case

respectively to investigate the profit and loss. Section 6.4 summarises the results of

this chapter.

6.1 Introduction

Wystup and Becker (2005) addressed a mis-hedging problem due to the delay of

currency fixing announcements from central banks. In most previous work in this

area, the markets have been assumed to be perfect, which implies that there are

neither transaction costs nor time delays in transactions. However, in reality, mar-

kets only have limited liquidity. The illiquidity affects the option prices and hedging

strategies. In the present case, the hedging strategy is affected by the delay of the

legal quote of the option contract.

As a simple example, suppose a client bought a European barrier currency option

from the OTC market (normally, from the client’s own bank). At maturity, the client

has to choose whether to exercise the option or not. Of course the seller of the option

will provide a quote at maturity, but in the OTC market a seller is also the “rule

maker”, who might move the quoted cut-off rate in favour of his/her own position.

For fairness, the client prefers some independent quotes to monitor the option and

the reference rate from central bank is preferable. In the present case, the European

Central Bank (hereafter, ECB) was chosen. However, the ECB publishes the fixing

rate with a delay about 10-20 minutes every day. This is basically because the ECB

needs to gather all the exchange-rate information from all the European countries’

central banks and then calculate the reference rate. Therefore it is very likely to

be different from the tradable spot rate on the interbank market. This is not a

problem from a buyer’s perspective, as the client only needs this independent source

to check the validity of the barrier option, the tradable quote is still the instantaneous

spot exchange rate on the interbank market. To the seller, the client’s own bank,

delta-hedging becomes impossible, since the delta may become enormously large
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close to maturity or close to the time for monitoring the barrier. The mis-hedging

problem arises on the seller’s side. This only happens in the OTC market, which

illustrates a drawback of this market (OTC markets are self-regulated, as mentioned

in Section 3.1.1). It causes the seller to mis-hedge the position and the losses can

be substantial; therefore, determining a proper price for the reverse barrier options

is rather important.

6.2 European Up-and-Out Call Option

First, a European up-and-out call option will be employed as a demonstration. To

address the problem, the present model is consistent with Wystup and Becker’s

(2005) assumption, a geometric Brownian motion is used to simulate the exchange

rate process under the risk-neutral measure,

dxt

xt

= (r − f)dt + σxdWt, (6.1)

where r denotes the domestic interest rate, f the foreign interest rate, σx the volatil-

ity and dWt the increments of a standard Brownian motion. These parameters are

assumed to be constant.

The payoff for the option is

V (FT ) = max{FT −K, 0}1Ft<B, (6.2)

where the Ft denotes the ECB fixing rate at time t, T the maturity, K the strike

price, B the knock-out barrier, and 1(·) is the indicator function defined in Section

2.2.2. The seller of the option can only trade with the spot rate, not the fixing rate;

therefore the payoff for the hedging strategy is

V (xT ) = max{xT −K, 0}1Ft<B. (6.3)
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6.2.1 Hedging Error

Hedging is a strategy designed to reduce risk. It involves two positions: a position in

one security and an offsetting position in another related security or securities. Nor-

mally, this counter-balancing position is adjusted when market conditions change,

hence the name dynamic hedging strategy (see Benninga and Wiener, 1998a).

The seller (i.e. the writer) of the option takes the opposite position from the

buyer. Figure 6.1 are shown to illustrate the difference. In the particular case shown

K B S

Premium

Profit

(a) Buyer

K B S

Premium

Profit

(b) Seller

Figure 6.1: Profit and loss function for an up-and-out call option

in Figures 6.1(a) and 6.1(b), both the buyer and the seller of the reverse up-and-out

call options have bounded profit or loss. Therefore, the option is relatively less risky

compared to other standard options. However, this is not the case for the seller if

he/she uses a hedging strategy. The 10-20 minutes delay may change the outcome

of the validity of the option, which may consequently put the seller’s current hedged

position at risk.

There are three possible scenarios at the expiry date. Following Wystup and

Becker’s (2005) paper, the hedging strategy for the seller is delta hedging, and to

be totally realistic, the bid/ask spread δ for the underlying asset xt is introduced.

The transaction cost is introduced into the model as it is not negligible when the

seller needs to maintain his/her position covered by hedging (buying or selling the
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underlying to reduce the risk). Consider the three scenarios:

• xT ≤ K. In this case, the seller believes the option is out of the money, and

therefore decides not to hedge any longer, which means ∆ = 0. If in 10-20

minutes (denoted by τ), the option is in the money, i.e. K < FT < B. The

seller has to exercise the option with this naked position. The profit and loss

function (denoted as PL) is

PL = K − xT+τ − δ. (6.4)

• K < xT < B. In this case, the seller believes the option is in the money, and

decides to keep the covered position. Therefore, the delta ∆ = 1. If in 10-20

minutes, the option is out of the money, i.e. FT ≥ B or FT ≤ K. The profit

and loss function is

PL = xT+τ − xT − δ. (6.5)

• xT ≥ B. This case is symmetric with the first case. The seller thinks the

option is knocked out, but it turns out that it is in the money at the end of

this extra 10-20 minutes. The profit and loss function is

PL = K − xT+τ − δ. (6.6)

Note that in the first and third cases, if the fixing FT is very volatile, it may

jump over in-the-money zone, the hedge is accidentally appropriate (very rare

events).

6.2.2 Numerical Scheme

Monte Carlo simulation is again used for the analysis. The algorithm is described

as follows:

1. Divide the time period [0, T ] into M steps. Set ∆t = T/M , and therefore

ti = i∆t, for i = 0, 1, 2, . . . , M .
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2. Sample N independent paths of exchange rate xk(ti), for k = 1, 2, . . . , N using

Euler discretisation.

Set xk(0) = x0, the current value of x(t). xk(ti+1) is determined by:

xk(ti+1) = xk(ti) exp

([
r − f − 1

2
σ2

x

]
∆t + σxεi

√
∆t

)
, (6.7)

where r, f , σx are constant, and εi ∼ N(0, 1) is a sequence of independent

standard normal variables at the ith time step.

3. Recall that the fixing rate Ft is sometimes different from the spot rate; there-

fore, according to Wystup and Becker (2005), the following dynamics are used

for the fixing rate:

Ft = xt + φ, where φ ∼ N(µ, σ2). (6.8)

The parameters in Table 6.1 are estimated from historical data and provided

by Wystup and Becker’s (2005) paper. The most liquid currency pair, Euro–

U.S. dollar is chosen to analyse the extra cost due to the delay.

4. Obtain the mis-hedge quantities using the given profit and loss functions at

time T .

5. Average over the mis-hedge for N sample paths.

6.2.3 Analysis of Error

The necessary parameters which are applied in the model are given below:

The mis-hedge error is shown in Figure 6.2. The profit and loss due to mis-

hedging are plotted against different barriers (from 1.22 to 1.46). The losses are

relatively small when the barriers are very close to the spot rate, or very far from

the spot rate. Overall, the losses are relatively small for one million units of domestic

currency. The largest error, about 15 units of domestic currency, occurs when the

barrier is 1.31 which is at a reasonable distance from the spot rate. The cost is not

substantial as the mis-hedging only occurs at maturity. The significance of this will

be addressed shortly.
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Table 6.1: Testing parameters

Expiry date T 1 year
Spot rate x0 1.21
Domestic interest rate r 0.0217
Foreign interest rate f 0.0227
Exchange rate volatility σx 0.104
Mean of the fixing rate µ −3.125 ∗ 10−6

Standard deviation of the fixing rate σ 1.264 ∗ 10−4

Time step M 250
Sample paths N 1, 000, 000
Strike price K 1.18

6.3 Discretely Monitored Up-and-out Call

The previous case in Section 6.2 assumes continuous monitoring of the barrier. Un-

der such an assumption, Merton (1973) obtained a formula for pricing a knock-out

call. However, real contracts with barrier features specify fixed times for monitoring

of the barrier, typically, daily closing. Numerical examples indicate that there can be

substantial price differences between discrete and continuous barrier options. Even

numerical methods using standard lattice techniques or Monte Carlo simulations

face significant difficulties (see Broadie, Glasserman and Kou, 1997).

The only difference with European barrier calls is that discretely monitored op-

tions have more chance to be mis-hedged for option sellers who use dynamic hedging

strategy. Normally, the monitoring frequency is on a daily basis. Thus, a one year

option will have 250 checking points (250 potential knock-out events, consequently

250 mis-hedge possibilities). From the results in Section 6.2.3, one may have a

rough estimation of the maximum loss, say 15 units of domestic currency times 250

mis-hedge events, that is 3750 units of domestic currency. This section will show

that the potential loss for a discretely monitored option is far more larger than this

estimation.

Again, the payoff function for a discretely monitored up-and-out call option is

V (FT , T ) = max(FT −K, 0)1Ft<B, (6.9)
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Figure 6.2: Mis-hedging error with one million units of domestic currency (U.S.
dollar).

where the Ft denotes the ECB fixing rate at time t, T the maturity, K the strike

price, B the knock-out barrier, and 1(·) is the indicator function defined in Section

2.2.2. And the payoff for the hedging strategy is

V (xT , T ) = max(xT −K, 0)1Ft<B. (6.10)

6.3.1 Hedging Error

The three possible scenarios at maturity are the same as that for the plain European

call analysed in Section 6.2.1, and two additional possibilities that may cause the

mis-hedge at every checking point. This two scenarios are

• xt < B and Ft ≥ B.

In this case, the seller holds ∆ units of the underlying asset in the hedge, ∆(xt)

denotes the dynamic delta hedging quantity at time t. According to the spot

rate at the checking point each day, the seller is holding the hedged position.

However, 10-20 minutes later, the delayed fixing announcement shows that

the option is knocked out. The underlying asset is no longer needed for the
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hedging. The seller has to sell the underlying asset at time t + τ . The profit

and loss function is,

PL = ∆(xt) (xt+τ − xt − δ) . (6.11)

• xt ≥ B and Ft < B.

In this case, the seller thinks the option is out of the money, and decides to

unwind the hedged position. Therefore, he/she sells ∆(xt) units of underlying

asset. In 10-20 minutes FT < B, the seller has to build up a new hedge at

time t + τ , with ∆(xt+τ ) units. The profit and loss function is,

PL = ∆(xt)(xt − δ)−∆(xt+τ )(xt+τ − δ). (6.12)

6.3.2 Numerical Scheme

The situation is a little more complicated than that for a European option, since the

delta is no longer zero or one. Therefore, the magnitude of the dynamic delta is the

key to the profit and loss computation. By offering a continuity correction to the

Merton (1973) option price formula for continuous-time case, an approximation price

for the discretely monitored call option proposed by Hörfelt (2003) (an extension

to Broadie, Glasserman and Kou, 1997, which was introduced in Section 3.4.2) is

presented:

V (xt, t) = xte
−f(T−t)[G(c, d1)−G(b, d1)]−Ke−r(T−t)[G(c, d2)−G(b, d2)],

where

G(z, y) = N(z − y)− e2y(c+β/
√

M)N(z − 2(c + β/
√

M)− y),

d1 =
(r − f + σ2

x/2)
√

T − t

σx

,

d2 =
(r − f − σ2

x/2)
√

T − t

σx

,

b =
ln(K/xt)

σx

√
T − t

,

c =
ln(B/xt)

σx

√
T − t

,

β ≈ 0.5826.
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N(·) is defined in Section 1.4, and β is defined in Section 3.4.2. The delta at

asset price xt can be obtained either by differentiating analytically, or taking the

above and differentiating numerically. The algorithm for the discretely monitored

barrier options is similar as the one for European barrier option, but slightly more

sophisticated:

1. Divide the time period [0, T ] into M steps. Set ∆t = T/M , and therefore

ti = i∆t, for i = 1, 2, . . . , M .

2. Sample N independent paths of exchange rate xk(ti), for k = 1, 2, . . . , N using

Euler discretisation.

Set xk(0) = x0, the current value of x(t). xk(ti+1) is determined by:

xk(ti+1) = xk(ti) exp

([
r − f − 1

2
σ2

x

]
∆t + σxεi

√
∆t

)
, (6.13)

where r, f , σx are constant, and εi ∼ N(0, 1) is a sequence of independent

standard normal variables at the ith time step.

3. Again, the fixing rate can be obtained by applying the following dynamics:

Ft = xt + φ, where φ ∼ N(µ, σ2) (6.14)

4. Obtain the mis-hedge quantities using the given profit and loss functions at

time ti, as a consequence, the contract life of the option may be shorter in some

circumstances. Since additional mis-hedge opportunities exist when ti < T ,

Equations (6.11) and (6.12) are employed. At expiry date (i.e. ti = T ), the

equations (6.4), (6.5) and (6.6) are used to compute the profit and loss.

5. Average over the mis-hedge quantity for N sample paths.

6.3.3 Analysis of Error

The mis-hedge losses are shown in Figure 6.3. The losses due to the announcement

delay are plotted against the corresponding barriers. A similar shape to that in
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Figure 6.3: Mis-hedging error with one million units of domestic currency.

Figure 6.2 is evident. The errors are relatively small when the barriers are very

close to the spot rate or very far from the spot rate. However, comparing to Figure

6.2, the mis-hedging loss of the discretely monitored barrier option is increased

approximately by a factor of 104. The errors are more than 0.6% of one unit domestic

currency. The largest errors, about 4.7% of one unit domestic currency, occur when

the barrier is 1.34 which is at a reasonable distance from the spot rate.

Also to demonstrate the accuracy of the Monte Carlo algorithm for this type of

problem, a comparison with the analytic solution to the option price obtained by

Hörfelt (2003) is shown in Figure 6.4. The parameter set chosen for the comparison

is the same as in Table 6.1. Using the Monte Carlo method to approximate the

discretely monitored up-and-out call, the errors are plotted averaged on one million

sample paths (i.e. N = 1, 000, 000).

Figure 6.4 shows clearly that the further the barrier is from the spot rate, the

larger the numerical error. When the barrier is close to the spot rate, the opportunity

for the option to knock out is higher. Therefore, the option price is lower and the

errors caused by Monte Carlo simulation may be insignificant. Conversely, when
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Figure 6.4: The difference between analytic solution and Monte Carlo approximation
with one million units of domestic currency
The solid line is the error, the dashed lines are 95% two-sided confidence intervals.

the barrier is far from the spot rate, the option is more likely to be influenced by

the discrete time monitoring, and so the option is similar to a European option.

Comparing the numerical solution error to the mis-hedging errors, the numerical

error is insignificant.

6.4 Summary

Barrier options are actively traded in financial markets. The feature of the discrete

time for monitoring the barrier draws interest from both market professionals and

academic researchers.

Wystup and Becker’s (2005) paper presented a realistic problem in the currency

option market. However, their result appears to be in error. In their paper, they

claimed that even if the contract is with one million units of notional domestic

currency (U.S. dollar) the error for a discretely monitored barrier option is a mere

14 U.S. dollars at maximum. However, since it is known that even though the
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mis-hedging occurs only once in the entire contract life, the seller has to re-adjust

his/her hedging position by selling and buying a certain amount of the underlying

asset. Therefore, he/she has to pay the transaction cost at the bid/ask spread at

least once, which is two basis points of the exchange rate. This certainly costs

more than 14 U.S. dollars (two basis points of one million Euros is 200 Euros, i.e.

approximately 260 U.S. dollars).

Given the evidence by Easton et al. (2004), with the same parameters observed

barrier option prices are greater than theoretical barrier option prices. Also the

observed barrier option prices are significantly higher than the observed European

option prices. These findings suggest one of the factors could be that barrier options

have very high Greeks near the barrier level. The resultant instability of the Greeks

may cause option sellers to require a premium, not included in standard pricing

models, to compensate the hedging difficulties.

This chapter has delivered more accurate results regarding the impact of the

mis-hedging, so that the importance of an improved pricing model is shown. Also,

it somewhat inspires this thesis for development of a new class of barrier option,

quantile Parisian-style options, which will be introduced in the next chapter.



Chapter 7

A New Class of Options: Quantile

Parisian and ParAsian Options

This result is too beautiful to be false; it is more important to have

beauty in one’s equations than to have them fit experiment.

—— Paul Dirac (1902–1984)

The evolution of the Physicist’s Picture of Nature Scientific American

7.1 Introduction

As stated in the previous chapter, the discontinuity at the barrier inherent in stan-

dard knock-out (or knock-in) options creates a number of problems for both buyers

and sellers alike. Buyers might lose their entire investment due to a sudden price

jump through the barrier. For sellers, hedging is difficult, since the delta of a stan-

dard barrier option is discontinuous around the barrier, and its gamma is therefore

infinite (a delta function) at the barrier (see Wilmott, 2000a). More practically,

the impact of the jump might tempt both buyers and sellers of such options to

manipulate the market over a very short term.

The discontinuity at the barrier causes a problem. A large trading volume can

drive the price of the underlying asset across the barrier. Therefore, there is a

133
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potential opportunity for sellers to manipulate the option validity. Sesit and Jereski

(1995) mentioned a particular event in the foreign exchange market in 1995:

Knock-out options can roil even the mammoth foreign-exchange mar-

kets for brief periods. David Hale, chief economist at Kemper Financial

in Chicago, notes that in the past year, many Japanese exporters moved

to hedge against a falling dollar with currency options. Confident at

the time that the dollar would fall no further than 95 yen, the exporters

chose options that would knock out at that level. Once the dollar plunged

through 95 yen early last month, “they lost everything,” he says. The

dollar then tumbled as the Japanese companies, “which had lost their

hedges, scrambled to cover” their large exposures by dumping dollars.

Making matters more volatile, dealers say that pitched battles often

erupt around knock-out barriers, with traders hollering across the trading

floor of looming billion-dollar transactions. In three or four minutes it is

all over. But in that time every trade gets sucked into the vortex.

As mentioned in Section 3.4.2, a new class of options was introduced in 1994,

Parisian options. It avoids the disadvantage of standard barrier options, since

Parisian options are not knocked out (or knocked in) immediately after the un-

derlying asset price hits the barrier, but after the consecutive time that the price

spends beyond the barrier reaches the predetermined time in the option contract

(see Pechtl, 1995). Also as mentioned in Section 3.4.2, an extension to Parisian

options, ParAsian options were introduced by Chesney, Jeanblanc-Picque and Yor

(1997), which are not knocked out (or knocked in) unless the total time that the

underlying asset price spends beyond the barrier reaches the predetermined time in

the option contract. As a consequence, the jump in price of the underlying asset

does not affect the validity of the option, and it is more difficult for both buyers

and sellers to manipulate the price over a relatively long term. As a further advan-

tage, the time-indicated features have much less extreme Greeks, in particular, the

discontinuity of the delta is smoothed and the variation of the gamma is no longer
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so extreme.

There are several combinations of features that fully define Parisian and ParAsian

options. There are eight types of options corresponding to the combinations of

up/down, in/out and put/call and Parisian/ParAsian. By introducing an extra

criterion, we term “quantile barrier” to be discussed next, it leads to 32 instruments

in total. Since it is straightforward to vary the implementations using the Monte

Carlo method, this chapter will only consider down-and-out calls for both Parisian

and ParAsian options, and we focus on just four cases, namely Parisian, ParAsian,

quantile Parisian, and quantile ParAsian options. The new term “quantile” will be

formally defined and used in Section 7.3 to interpret the second criterion of validity

for Parisian and ParAsian options.

A practical point is that the discrete monitoring effect for barrier options is very

significant. Often barrier option contracts specify that the barrier is only to be

monitored at the market close every day. Estimating the magnitude of the effect of

this is crucial. As described in Taleb (1996), continuously monitored barrier options

can tempt either the option buyer or seller to influence the underlying asset price.

Discretely monitored options suffer from similar problems. Broadie, Glasserman,

and Kou (1999) addressed the relation between discrete-time and continuous-time

prices from three perspectives. First, nearly all closed-form solutions available for

pricing barrier options are based on continuous-time modelling, but most traded op-

tions are based on discrete-time modelling (see Section 3.4.2), which implies use of a

continuous formula to approximate the price of a discrete option is a practical issue.

Second, if the option is based on continuous-time modelling of the underlying asset

price, a discrete numerical method is often required for valuation, for example, im-

portantly American options. Improving the quality of the numerical method involves

analysing how a discrete-time, discrete-valued process approximates a continuous-

time, continuous-valued process (this problem has been addressed in chapter 6).

Finally, numerical methods are necessary for precise evaluation of discrete-time op-

tion prices. These are themselves based on a discretisation of time, but typically
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much finer time intervals than that specified in the terms of an option. Thus, numer-

ically pricing a discrete option involves two discrete time increments – the intervals

between underlying asset prices that determine the option payoff and the time step

in the numerical method (i.e. the main issue in this chapter).

This chapter aims to illustrate high-dimensional path-dependent option pricing

models using the Monte Carlo method, and then applies the framework to the cur-

rency option model. The pricing model algorithms are demonstrated applying the

Black-Scholes (1973) framework for simplicity. Section 7.2 establishes the model for

both Parisian and ParAsian options and illustrates the difference between the two

options. Section 7.3 introduces a new feature, the quantile barrier, into the model.

In Section 7.4, the framework of currency options with stochastic interest rates and

stochastic volatilities is progressively introduced. Conclusions for this chapter are

drawn in Section 7.5.

7.2 Parisian and ParAsian Options

7.2.1 Model Setup

This section focuses on the extensions of Parisian and ParAsian features. The crucial

aspect of Parisian and ParAsian features is that they are path-dependent with the

payoff dependent on the time that the underlying asset price spends beyond the

barrier. The barrier time for a down-and-out (or down-and-in) option is the time

below the barrier and for an up-and-out (or up-and-in) option it is the time above

the barrier. Parisian and ParAsian options are very similar, the only distinction

being the definition of the barrier time.

First, a formal definition of the new variable, τ , barrier time for a Parisian down-

and-out option is introduced. The barrier time is defined as the length of time the

underlying asset has been below the barrier in the current excursion, namely

τ := t− sup[u ≤ t|Su ≥ B]. (7.1)

This definition represents the difference between the current time t and the last time
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Su is below the barrier (see also Haber, Schonbucher and Wilmott, 1999; Yu, 2005).

Consequently, τ is zero if St is above the barrier and is reset to zero if Su moves

from below to above the barrier.

The dynamics of τ for a down (down-and-in or down-and-out) barrier is given

as follows:

dτt =





dt if St < B

−τt−δt if St = B,

0 if St > B

(7.2)

where τt− is the left limit of τ , δt is the Dirac measure at t1, and B is the barrier level

which is predetermined in the option contract. This new variable, τ , can be viewed

as a clock that is triggered as soon as the underlying asset price St hits the barrier

B and starts counting, but is reset as soon as St returns above B. The knock-out

is not activated until the clock has reached its limit, i.e. τ ≥ T̄ , where T̄ is the

occupation time, also known as the “window”, which is also predetermined in the

option contract. A typical sample path of the underlying asset for a down-and-out

Parisian option is shown in Figure 7.1. In this case, the option is not knocked out

unless τ1 ≥ T̄ given τ1 > τ2.

The barrier time for a ParAsian option, τ , follows the dynamics:

dτt =





dt if St < B

T̄ − τt−δt if St = B,

0 if St > B

(7.3)

where τt− is the left limit of τ , δt is the Dirac measure at t, again B is the barrier.

The difference with Parisian options is that τ is triggered as soon as the underlying

asset price St hits the barrier B and starts counting, and is stopped as soon as St

returns above B, but is not reset to zero. Again, the knock-out is not activated until

1Dirac measure is a probability measure that for any set A and any x ∈ A, define for any A′ ⊂ A
as follows,

δA′ =

{
0 if x /∈ A′

1 if x ∈ A′.
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Figure 7.1: Characteristics for a down-and-out Parisian and ParAsian option

τ ≥ T̄ , where T̄ is the window. The typical sample path of the underlying asset in

Figure 7.1 can also be applied to a down-and-out ParAsian option. In this case, the

option is not knocked out unless τ1 + τ2 ≥ T̄ .

7.2.2 Assumptions

To illustrate the exotic feature, a simple Black-Scholes (1973) framework is applied.

Assume the underlying asset is governed by a geometric Brownian motion, under a

risk-neutral measure:

dSt

St

= rdt + σdWt, (7.4)

where dWt denotes the increment of a standard Brownian motion, r is the risk-free

interest rate and σ the volatility, and both r and σ are held constant.

The value function for a Parisian down-and-out call at time t, denoted as VP−do(St, t),

that satisfies the equation under the risk-neutral measure Q is

VP−do(St, t) = EQ
[
e−r(T−t) max{ST −K, 0}1(τ<T̄ )

]
, (7.5)

where K is the strike price, r is the risk-free interest rate, T is the expiry date, and

1(·) is the indicator function (defined in Section 2.2.2) with respect to the barrier

time τ . A ParAsian down-and-out option, VPA−do(St, t) has precisely the same form,
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but a slightly different interpretation, in particular, the barrier time τ in the formula

for a ParAsian option is different from that of a Parisian option (as discussed above).

7.2.3 Numerical Scheme

The nature of Parisian and ParAsian options invites thought on numerical implemen-

tation which will now be addressed. Again, the numerical method will be described

step by step and the notations will change to S(t) = St(ω), following Section 4.3:

1. Divide the time period [0, T ] into M steps. Set ∆t = T/M , thus ti = i∆t, for

i = 0, 1, 2, . . . , M . The window (i.e. occupation time) can be set as T̄ = m∆t.

2. Sample N independent paths of the underlying asset price Sk(ti), for k =

1, 2, . . . , N using Euler discretisation. Sk(ti+1) can be determined by:

Sk(ti+1) = Sk(ti) exp

([
r − 1

2
σ2

]
∆t + σ

√
∆tεi

)
, (7.6)

where r and σ arise from Equation (7.4), and εi ∼ N(0, 1) is a sequence of

independent standard normal variables.

3. Use a timer “BT” as an indicator of the barrier time and “CT” for the length

of the barrier time. At each time step, for both Parisian and ParAsian options

BT (i) =





1 if Sk(ti) ≤ B

0 if Sk(ti) > B .

(7.7)

Note that the length of barrier times are determined differently. Namely,

CT (i) =
i∏

j=i−m

BT (j) for a Parisian option, (7.8)

CT (i) =
i∑

j=1

BT (j) for a ParAsian option. (7.9)

For the kth sample path, set Vk(S(T )) = 0 if CT (i) = 1 for the Parisian

option and set Vk(S(T )) = 0 if CT (i) = m + 1 for the ParAsian option, where

Vk(S(T )) is the payoff function at time T , namely

Vk(S(T )) = max{S(T )−K, 0}. (7.10)
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4. Discount Vk(S(T )), k = 1, 2 . . . , N back to time t = 0 with the risk-free interest

rate, namely

Vk(S(0)) = e−rT Vk(S(T )), k = 1, 2 . . . , N. (7.11)

5. Average over the result of V (S(0)),

V̄ (S(0)) =
1

N

N∑

k=1

Vk(S(0)). (7.12)

The Monte Carlo methods for both Parisian and ParAsian options are very straight-

forward. Two option prices can be computed simultaneously in the same programme.

7.2.4 Results and Analysis

The parameters used in this section are consistent with Broadie, Glasserman, and

Kou (1997).

Table 7.1: Parisian and ParAsian options valuation parameters

Expiry date T 0.2 year
Initial value of underlying asset S(0) 100
Risk-free interest rate r 0.1
Volatility σ 0.3
Strike price K 100
Barrier B 85, 90, 95
Time step M 50
Sample paths N 1,000,000

To observe the influence of the barrier level, Figures 7.2 and 7.3 illustrate Parisian

and ParAsian options prices respectively. The option price changes with respect to

the different barrier levels.

The results are plotted against different window lengths (i.e. the number of time

steps required to knock out). Note that the closer the barrier is to the spot price of

the underlying asset (i.e. S(0)), the easier it is for the price to hit the barrier, and

therefore the option is much more sensitive to the window. In both Figures 7.2 and

7.3, when the window length is shorter than 30 time steps (0.12 years), the option
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Figure 7.2: Parisian down-and-out call option value with barrier = 85, 90, 95;
window length = 0.02 year
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Figure 7.3: ParAsian down-and-out call option value with barrier = 85, 90, 95;
window length = 0.02 year
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prices increase steeply when the barrier level is 95, but when the barrier level is

85, the price only fluctuates around the value 6.33 for both Parisian and ParAsian

options. This highlights the fact that the window is more influential on options

with a barrier close to the spot value, which exactly confirms the importance of the

window to barrier option valuation.

In order to investigate further the difference between the two types of options,

Figures 7.4 and 7.5 are shown the comparison of the option values when the barrier

level is set at 90 and 95 respectively, and the window length is from 0 to 0.02 years.

(as mentioned above, when the barrier is set at 85, the value for both options are

very close).
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Figure 7.4: Comparison of Parisian and ParAsian down-and-out call option value
with barrier B = 90; window length = 0.02 year

Again, both figures 7.4 and 7.5 show option values against different window

lengths. At the initial point of both figures, the window length is 0, which means the

options will be knocked out as soon as the underlying asset price hits the barrier. In

this case, the options are numerically equivalent to standard barrier options. When

the window length is equal to the expiry date T , both Parisian and ParAsian options

are not knocked out until the expiry date, and therefore they are equivalent to vanilla
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Figure 7.5: Comparison of Parisian and ParAsian down-and-out call option value
with barrier B = 95; window length = 0.02 year

European options. As a consequence, the two curves have the same starting and end

points. In general, however, Parisian options are more expensive than corresponding

ParAsian option. This is because the probability for a Parisian option to knock out

is lower than that of a ParAsian option. This is not especially obvious in the case

where the barrier is at 90, since both options have the spot price (i.e. S(0) = 100)

not so close to the barrier and it is not easy for either option to reach the barrier.

However, the difference is very clear when the barrier is 95, since at this level the

underlying asset prices can often fluctuate across the barrier.

In the next section, the new feature will be introduced to Parisian and ParAsian

options.

7.3 Quantile Barriers — A New Feature

As a broadly used class of options, Parisian and ParAsian features are common in

convertible bonds or for derivatives which has a relatively illiquid underlying asset.

From the perspective of risk management, the Parisian and ParAsian features are
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used for pricing default risk (and liquidation risk) under bankruptcy procedures

(see Chen and Suchanecki, 2006). In order to interpret the realistic bankruptcy

procedure under the Chapter 11 provision2, these risks are represented by either

Parisian or ParAsian features. Also the feature is applicable to the valuation of

bank deposit guarantees, bank deposit insurance, convertible bonds. Moreover, real

option problems can be adapted into the Parisian or ParAsian framework.

It is worth pointing out that not only the occupation time (window) of the

underlying asset price beyond the barrier is very important, but also the distance

beyond the barrier. In risk management, the creditors will certainly not have the

same tolerance when the firm asset value is one unit of currency below zero compared

to one million units of currency below zero. Creditors prefer to default when the

firm value is deep in debt rather than just crossing the barrier. This trigger can be

regarded as a second criterion, a “quantile barrier”, so the option can be knocked

out when either a time or distance barrier is breached3.

This idea, inspired by risk management, can also be used for real options —

the analogy between investment decision and barrier financial derivatives further

extends in this case. The feature allows the representation of a lag between an

investment decision and its implementation. An investment project can be built

either with a delay at a certain cost, or immediately for a higher cost (similarly see

Gauthier, 2002). Overall, this is a new feature in the option markets which has the

potential for a new generation of exotic options.

The term “quantile” is used in this thesis to address the integrated quantity

barrier feature, since an existing class of option, “α–quantile option”, has the similar

characteristics. Ballotta and Kyprianou (2001) stated on page 138: “the α–quantile

option’s payoff at maturity is defined by the order statistics of the underlying asset

2The criteria to liquidate a company after the onset of financial distress vary substantially
across countries and regimes. Chapter 11 of the U.S. Bankruptcy Code enables the prolonged
operation of companies in financial distress but the U.K. insolvency law is characterised by the strict
enforcement of creditors’ contractual rights, including the liquidation rights of secured creditors.
For more in-depth introduction on bankruptcy procedure, see Galai, Raviv and Wiener (2005).

3In fact, if the option can only be knocked out when both time and quantity barrier are breached,
this type of option can be viewed as another modification, which leads another 32 instruments.



CHAPTER 7. QUANTILE PARISIAN AND PARASIAN OPTIONS 145

price; in particular, this order statistic or, better, the α–percentile point of the stock

price for 0 < α < 1, can be thought of as the level at which the price stays below for

α percent of the time during the option’s contract period.” The formal definition

of α–quantile is also given by Higham (2004): for a given a strictly positive density

function f(x) and a given 0 < α < 1 we define the αth quantile of f as z(α), where

∫ z(α)

−∞
f(x)dx = α. (7.13)

It might not be the most precise nomenclature for the feature that we address in this

thesis, but it gives an idea of this second barrier for Parisian and ParAsian options.

As mentioned in Section 7.1, the table below shows the 16 different types of

Parisian options – permutations are the same for ParAsian options; which gives all

together 32 types of options

Table 7.2: Permutations of the different types of Parisian option

Non-Quantile Quantile
Up

√ √ √ √ √ √ √ √
Down

√ √ √ √ √ √ √ √

In
√ √ √ √ √ √ √ √

Out
√ √ √ √ √ √ √ √

Call
√ √ √ √ √ √ √ √

Put
√ √ √ √ √ √ √ √

7.3.1 Definition

The quantile barrier is defined formally as

τ ′ = inf

[
0 ≤ t ≤ T |

∫ t

0

(B − Su)1{Su≤B} du = Q

]
, (7.14)

where St is the underlying asset price and B is the barrier. Here Q is a new term,

the quantile barrier. This definition introduces τ ′ as the first time that the total

quantity of St below the barrier B exceeds the predetermined level Q before the

expiry date T .
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The value function of a quantile Parisian down-and-out option, VQP−do(St, t)

satisfies the following equation under the risk-neutral measure Q:

VQP−do(St, t) = EQ
[
e−r(T−t) max{ST −K, 0}1(ρ<T̄ )

]
, (7.15)

where

ρ = τ ∧ τ ′, (7.16)

where τ is defined in Equation (7.1), K is the strike price, r is the risk-free interest

rate, T is the expiry date, and 1(·) is the indicator function defined in Section 2.2.2.

Again the ParAsian down-and-out option, VQPA−do(St, t) has the same form, but a

slightly different interpretation, in particular, the barrier time τ in the formula for

a ParAsian option is different from that of a Parisian option (as described in the

previous section).

7.3.2 Numerical Scheme

The numerical algorithm is similar to that introduced in Section 7.2.3. The main

difference is that an extra indicator for the quantile barrier is required at Step 3:

3. Denote “QT” as the quantile barrier indicator, for both Parisian and ParAsian

options,

QT (i) =
i∑

j=1

(∆t min{Sk(tj)−B, 0}) , (7.17)

where S is the underlying asset price, B is the barrier. For the kth sample

path, set Vk(T ) = 0 if |QT (i)| > Q.

7.3.3 Numerical Results

In Section 7.2.4, some properties of Parisian and ParAsian options have been shown

through numerical calculation. This section will focus on the new properties that

the feature of quantile barrier brings to the option price.

Since it is a novel feature for options, an estimate of the range that the underlying

asset price can possibly reach, is very important. To obtain this band, two extreme
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cases are considered, the upside price and the downside price of the underlying

asset. It can be approximated by assuming that the ε in Equation (7.6) is 1 for the

case of upside price and −1 for the downside case (this implies that the underlying

asset prices cannot exceed those bounds the during the contract life). Note that

the upside price is not relevant to the quantile barrier of a down-and-out option,

therefore, only the downside price need be considered. Employing the parameters in

Table 7.1, the possible maximum quantile barrier of the underlying asset is shown

in Table 7.3 with respect to different levels of discretisation.

Table 7.3: Quantile level of a down-and-out option

Barrier ∆t = 0.004 ∆t = 0.0008 ∆t = 0.0004 ∆t = 0.00008 ∆t = 0.00004
90 5.03 9.69 11.66 15.03 15.90
95 5.94 10.65 12.64 16.02 16.89

The discretisation is one of the main issues in numerical implementation of option

pricing, which is confirmed in Table 7.3. When the time step is small, the potential

downside quantity over the option contract life is larger than with large time steps.

In the following section, the largest time step level is used (∆t = 0.004) without

other specification, because this is equivalent to barriers monitored every working

day. Based on the same parameters, some figures are shown as comparison of the

quantile Parisian and quantile ParAsian down-and-out call option prices. All the

figures in this subsection show that the option prices change significantly according

to different quantile barrier levels. The figures are plotted with quantile barrier from

0 to 5 with increments of 0.01, and the cases of two barrier levels (90 and 95) are

shown.

Figures 7.6 and 7.7 show the influence of the quantile barrier on the option price

with barriers set at 90 and 95 respectively. Here, the window is set to be 0.2 years (i.e.

50 time steps), which implies the Parisian and ParAsian are just vanilla European

options, the time barrier is not one of the knock-out criteria for the options, therefore

the option prices in both figures should have the same values without considering
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the errors result from the fluctuation caused by the Monte Carlo simulation and

discretisation. Figure 7.6(a) shows a larger range of quantity barriers, from 0 to 5

with increments of 0.01, and Figure 7.6(b) plots a region of Figure 7.6(a), which is

from 0 to 1 with a finer increment 0.0005. Figure 7.7(b) plots a region of Figure

7.7(a), from 0 to 1 with a finer increment 0.0005, which have the same trend as

that seen in Figure 7.7(a). Again, it is very clear from Figures 7.6(b) and 7.7(b)

that when the spot rate S(0) is close to the barrier, the option value will be highly

sensitive to the quantile barrier level. Also, for 0.2-year options the underlying asset

do not vary significantly when the quantile barrier is more than one unit of currency.

This implies that the possibility of the underlying asset cross below the barrier more

than one unit of domestic currency is very low.

7.3.4 Quantile Parisian and Quantile ParAsian

To avoid terminology confusion, the following options we consider are the options

with both time barrier and quantile barrier features. Figures 7.8 and 7.9 show

the quantile Parisian and quantile ParAsian option prices with respect to different

quantile barrier and different barrier levels. Option prices for the knock-outs are

triggered by either the window or the integrated area excess of the barrier. In order

to smooth out the fluctuation caused by the discretisation, smaller time increments

are chosen. The Figures 7.8 and 7.9 are with increments of 0.0005. The window is

chosen to be 0.02 year (5 days) for both of the cases, in line with an empirical paper

by Easton and Gerlach (2006)4. In the Figures 7.8 and 7.9, when the quantile

barrier is larger than 0.4, the two option values plateau. In the both cases, the

option values increase dramatically when the integrated area excess of the barrier

is relatively small. And again, the barrier level affects the option values too. As

seen in Figure 7.8, the possibility of the underlying asset moving cross the barrier

B = 90 is lower than that of B = 95, consequently the option prices differences

between Parisian and ParAsian are more obvious in Figure 7.9 than in Figure is 7.8.

4Easton and Gerlach (2006) investigated the discretely-monitored barrier currency-option in
the Australian option market.
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Figure 7.6: Comparison of Quantile European down-and-out call option value with
barrier= 90
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Figure 7.8: Comparison of quantile Parisian and quantile ParAsian down-and-out
call option value with barrier = 90, window = 0.02 year
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Figure 7.9: Comparison of quantile Parisian and quantile ParAsian down-and-out
call option value with barrier = 95, window = 0.02 year
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However, the values still fluctuate due to the discretisation of the numerical scheme

and also the affect of Monte Carlo simulation.

The two figures 7.10 and 7.11 show the quantile Parisian option price differences

with different window lengths. Figure 7.10 shows the values with a window length

of 0.02 year (5 days) and of 0.1 year (25 days) with the barrier 90, and Figure 7.11

with barrier 95. The values are plotted against the quantile barrier level from 0 to

1. Options with a shorter window length appear to be considerably less expensive
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Figure 7.10: Comparison of quantile Parisian down-and-out call option value with
different window length = 0.02, 0.1 years, with barrier = 90

than those with longer window lengths for both barrier levels.

Figures 7.12 and 7.13 show the quantile ParAsian option price differences with

different window lengths. Figure 7.12 shows the values with a window length of 0.02

year (5 days) and of 0.1 year (25 days) with barrier 90, and Figure 7.13 with barrier

95. Again, the values are plotted for different values of the quantile barrier level

from 0 to 1. Again, those with shorter window length appear to be considerably

less expensive than those with longer window lengths. The reason for this is quite

straightforward, it is because with shorter window length the options are easier to

be knocked out than that of longer window length.
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Figure 7.11: Comparison of quantile Parisian down-and-out call option value with
different window length = 0.02, 0.1 years, with barrier = 95
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Figure 7.12: Comparison of quantile ParAsian down-and-out call option value with
barrier = 90, window = 0.02, 0.1 years
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7.4 Application to Currency Options

To be consistent with the overall theme of this thesis, this section extends the

basic quantile Parisian and quantile ParAsian feature to the currency option pricing

problem. The model with stochastic interest rates and stochastic volatilities is

considered, using the same assumptions as used in Section 5.4.1. The parameters

employed are those from Chapter 5, whenever applicable.

Before applying the new features, a benchmark must be obtained. A plain down-

and-out European option value is 8.003, provided by a 10-million simulation, we now

progressively add new features into the model. Figures 7.14 and 7.15 show the down-

and-out currency options with a barrier set at 10 percent lower than the spot price

of the underlying asset and 5 percent lower than the spot price respectively. To

avoid fluctuating result from Monte Carlo random number generator, the same set

of random numbers are used for both quantile Parisian and ParAsian options. Two

sets of results are shown for window length 0.06 years. In Figures 7.14(a) and 7.15(a)

are with quantile barrier from 0 to 1 with time increment 0.01, whereas Figures

7.14(b) and 7.15(b) are with quantile barrier from 0 to 10 with a slightly coarse time

increment 0.1. ParAsian options return lower values than corresponding Parisian

options. However the time-discretisation of numerical implementation makes the

value curve fluctuate, even with the same set of random numbers for the sample

paths. From Figures 7.14 and 7.15, a conclusion can be drawn, namely the quantile

Parisian is always more expensive than the corresponding ParAsian option and less

expensive than the corresponding European option (the exceptions shown in the

results are due to sampling error). Again, one needs to bear in mind that the

discretisation of the numerical technique has a substantial impact on this class of

options. As mentioned in Section 3.4.2, all the numerical methods are affected by

it.
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Table 7.4: Quantile Parisian and ParAsian currency-option valuation parameters

Barrier B 0.90x(0) and 0.95x(0)
window T̄ 0.06 year
Expiry date T 1 year
Time step M 250
Sample paths N 100,000
Initial value of exchange rate x(0) 0.0079101
Strike price K 0.0079101
Initial value of domestic interest rate r(0) 0.0585
Initial value of foreign interest rate f(0) 0.00704
Mean-reversion rate of domestic interest κr 0.3334
Mean-reversion rate of foreign interest κf 0.1279
Long term growth rate of domestic interest θr 0.0585
Long term growth rate of foreign interest θf 0.00704
Mean-reversion rate of exchange rate volatility κ1 6.17
Long term growth rate of exchange rate volatility θ1 0.0097
Volatility of the exchange rate volatility σ1 0.21
Correlation between x(t) and υ1(t) ρx1 -0.13
Initial value of exchange rate volatility υ1(0) 0.1236
Initial value of domestic volatility υ2(0) 0.0161
Initial value of foreign volatility υ3(0) 0.0571
Mean-reversion rate of domestic volatility κ2 2.5
Mean-reversion rate of foreign volatility κ3 2.0
Long term growth rate of domestic volatility θ2 0.01
Long term growth rate of foreign volatility θ3 0.02
Volatility of domestic interest rate volatility σ2 0.1
Volatility of foreign interest rate volatility σ3 0.1
Correlation between x(t) and υ2(t) ρx2 -0.008
Correlation between x(t) and υ3(t) ρx3 0.007
Correlation between r(t) and υ1(t) ρ1r -0.008
Correlation between υ1(t) and υ2(t) ρ12 -0.006
Correlation between f(t) and υ1(t) ρ1f 0.008
Correlation between υ1(t) and υ3(t) ρ13 0.005
Correlation between r(t) and υ2(t) ρr2 0.02
Correlation between r(t) and υ3(t) ρr3 0.003
Correlation between f(t) and υ2(t) ρ2f 0.008
Correlation between υ2(t) and υ3(t) ρ23 0.002
Correlation between f(t) and υ3(t) ρf3 0.01
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7.5 Summary

This chapter explores a new class of options, quantile Parisian and quantile ParAsian

options. This class of options offers a large range of flexibility to deal with more

realistic credit risk products. In credit derivatives literature it is highly recom-

mended that Parisian and ParAsian options are used for pricing defaultable bonds

in structural models.

To capture the characteristics of defaultable bonds (also applicable to real options

— the analogy between investment decision), a new feature has been introduced,

which allows the bond to default more easily because of the tolerance of creditors,

which also allows the representation of a lag between an investment decision and its

implementation. An investment project can be built either with a delay at a certain

cost, or immediately for a higher cost. Overall, this new feature has the potential

for a new generation of exotic options.

Finally, the application of these ideas to currency options has been illustrated,

and is quite easy to apply the new feature to the currency option framework. Two

important cases are considered, as shown in Section 7.4, and these can be extended to

any other combinations in Table 7.2. For currency option applications, the numerical

implementation has been shown to have a noticeable impact on option prices. Given

the limited accuracy of Monte Carlo simulations, there is much scope for further

investigation into option valuations of this type.
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Figure 7.13: Comparison of quantile ParAsian down-and-out call option value with
barrier = 95, window = 0.02, 0.1 years
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Figure 7.14: Comparison of down-and-out quantile call with barrier B = 0.9x(0),
window T̄ = 0.06 year
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Figure 7.15: Comparison of down-and-out quantile call with barrier B = 0.95x(0),
window T̄ = 0.06 year



Chapter 8

Conclusions

The whole of science is nothing more than a refinement of everyday

thinking.

—— Albert Einstein (1879-1955)

Throughout this thesis, pricing of high-dimensional options is addressed using

Monte Carlo simulation approach which is the only well established approach to

date for these mathematically challenging problems.

8.1 Summaries

The research presented in this thesis addresses the development of four important

types of currency option models: American options, discretely-monitored barrier

options, quantile Parisians and quantile ParAsian options. By setting the underly-

ing asset, exchange rate process, into a totally stochastic environment, the model

becomes complex but more realistic. The Monte Carlo method, modified for speed

and handling early exercise has allowed modelling with stochastic interest rates and

volatilities with correlation.

The goal of Chapter 5 had been to develop a more realistic but practical model

for American currency-options. First, the new method has been applied to the Amin

and Bodurtha (1995) framework as a benchmark. In order to develop a new model

160
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in the totally stochastic environment, an extended model employs the CIR model,

which provides flexibility for further extension to a more sophisticated framework,

including stochastic interest rates and stochastic volatilities. One of the most useful

findings in this chapter is that the correlations between the various stochastic factors

do not significantly impact the valuation. This has been addressed in the final part

of Chapter 5. It has allowed further development of an easily implementable model

covering the fullest range of parameters yet available including American-style early

exercise. This chapter has developed not only a practical model for currency-option

evaluation, but also a promising multi-dimensional option pricing technique which

offers better accuracy than the Longstaff and Schwartz (2001). This has been proved

using Amin and Bodurtha (1995) framework settings as well as the parameters shown

in Chapter 5). Furthermore, the numerical technique has the potential to be applied

in many other areas, such as credit spread option pricing, quanto, basket options,

or sophisticated high-dimensional term structure derivatives.

Chapter 6 used a realistic example to address the mis-hedge problem of plain

barrier options. For the case of discretely monitored barrier options, the options

are checked only once a day, and the delay of the announcement for the reference

rate will put the option seller at risk. By referring to Wystup and Becker (2005),

corrected results are obtained. A huge potential loss can happen to the seller (for

the case in Chapter 6, the loss is up to 5%). Also the issue of discontinuity shows

the importance of the birth of a new class of option which is addressed in Chapter

7.

In Chapter 7, quantile Parisian-style options, a new class of options offers a very

large range of flexibility to deal with more realistic credit risk products and also

provides more sensible features for investment decision in real options. Provided the

soft trigger feature (the option is not knocked out/in at the moment the underlying

asset reaches the barrier, but takes time to make the knock out/in) of standard

barrier options, Parisian and ParAsian options are highly recommended for pricing

defaultable bonds in structural models. To capture the characteristics of defaultable
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bonds, also applicable to real options, a new feature has been introduced that allows

the bond to default more easily because of the tolerance of creditors (they prefer

the company to default when it is deep in debt instead of just reaching a barrier).

It also allows the representation of a lag between an investment decision and its

implementation (an investment project can be built either with a delay at a certain

cost, or immediately for a higher cost). Overall, this new feature has potential for

a new generation of exotic options. Finally, the application to currency options has

been illustrated, and it is quite easy to apply the new feature to the currency option

framework. Two important cases are considered, and clear characteristics can be

observed.

8.2 Future Research

Future research regarding to this thesis can be addressed in the following three

aspects.

In practice, it is important not only to evaluate the option price accurately and

efficiently, but also to evaluate the hedging parameters. Calculation of the Greeks

using Monte Carlo methods would be an interesting area to explore. As mentioned

in Chapter 4, extreme Greeks result from the discontinuity of numerical methods, in

particular delta and gamma. Overcoming this disadvantage of Monte Carlo methods

in this respect would be useful in the future work.

In Chapter 7, for quantile Parisian and ParAsian options — down-and-out call

options are considered. The options are knocked out when either the time barrier or

the quantile barrier are breached. Other modifications shown in Table 7.2 can also

be considered. Furthermore, the options introduced in Chapter 7 are of European

type. Early exercise feature may be added in, giving the option more flexibility and

therefore attracting a wider market of buyers. As the Parisian-style options suffer

the same problems as that of barrier options. For discretely-monitored Parisian and

ParAsian options, the hedging difficulty is one of the priority issues in practice. The

potential hedging errors can be substantial, consequently affecting option prices,
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which is worthy of attention in the future.

The modelling and numerical methods research carried out in this thesis is un-

derpinned by data drawn from the empirical work of others, that work itself based

on simpler theoretical models. The reliability of such an analysis is a condition of the

currency option modelling, especially in a highly stochastic environment. However,

it would be satisfying to see later empirical work in other research groups employ

modelling of the type developed here.



References

Adams, P., & Wyatt, S. 1987a. Biases in Option Prices - Evidence from the Foreign-

Currency Option Market. Journal of Banking and Finance, 11, 549–562.

Adams, P., & Wyatt, S. 1987b. On the Pricing of European and American Foreign-

Currency Call Options. Journal of International Money and Finance, 6, 315–

338.

Amin, K., & Bodurtha, J. 1995. Discrete-Time Valuation of American Options with

Stochastic Interest Rates. The Review of Financial Studies, 8, 193–234.

Amin, K., & Jarrow, R. 1991. Pricing Foreign Currency Options under Stochastic

Interest Rates. Journal of International Money and Finance, 10, 310–329.

Amin, K., & Ng, V. 1993. Option Valuation with Systematic Stochastic Volatility.

Journal of Finance, 48, 881–910.

Anderson, E. 1999. Monte Carlo Methods and Importance Sampling. Univer-

sity of California, Berkeley. http://ib.berkeley.edu/labs/slatkin/eriq/

classes/guest_lect/mc_lecture_notes.pdf. Last accessed on August 25th,

2006.

Andricopoulos, A., Widdicks, M., Duck, P., & Newton, D. 2003. Universal Option

Valuation Using Quadrature. Journal of Financial Economics, 67, 447–471.

Andricopoulos, A., Widdicks, M., Duck, P., & Newton, D. 2004. Corrigendum to

“Universal Option Valuation Using Quadrature”. Journal of Financial Eco-

nomics, 73, 603.

164



REFERENCES 165

Andricopoulos, A., Widdicks, M., Newton, D., & Duck, P. 2006. Extending Quadra-

ture Methods to Value Multi-asset and Complex Path Dependent Options.

Journal of Financial Economics. To appear.

Atkinson, K. 1989. An Introduction to Numerical Analysis. New York: John Wiley.

Avellaneda, M., & Wu, L. 1999. Pricing Parisian-style Options with A Lattice

Method. International Journal of Theoretical and Applied Finance, 2, 1–16.

Bailey, R. 2005. The Economics of Financial Markets. Cambridge: Cambridge

University Press.

Bakshi, G., & Chen, Z. 1997. Equilibrium Valuation of Foreign-Exchange Claims.

Journal of Finance, 52, 799–826.

Bakshi, G., Cao, C., & Chen, Z. 1997. Empirical Performance of Alternative Option

Pricing Models. The Journal of Finance, 52, 2003–2049.

Bakstein, D. The Pricing of Derivatives in Illiquid Markets. Mathematical Finance

Group, University of Oxford.

Ballotta, L., & Kyprianou, A. 2001. A Note on the α-quantile Option. Applied

Mathematical Finance, 8, 137–144.

Bally, V., Pages, G., & Printems, J. 2005. A Quantization Tree Method for Pricing

and Hedging Multidimensional American Options. Mathematical Finance, 15,

119–168.

Barone-Adesi, G., & Whaley, R. 1987. Efficient Analytic Approximation of American

Option Values. The Journal of Finance, 42, 301–320.

Barraquand, J., & Martineau, D. 1995. Numerical Valuation of High Dimensional

Multivariate American Securities. Journal of Financial and Quantitative Anal-

ysis, 30, 383–405.



REFERENCES 166

Bates, D. 1996. Jumps and Stochastic Volatility - Exchange-Rate Processes Implicit

in Deutsche Mark Options. Review of Financial Studies, 9, 69–107.

Benninga, S., & Wiener, Z. 1998a. Dynamic Hedging Strategies. Mathemetica in

Education and Research, 7(1), 1–5.

Benninga, S., & Wiener, Z. 1998b. Term Structure of Interest Rates. Mathemetica

in Education and Research, 7(2), 1–9.

Benninga, S., Björk, T., & Wiener, Z. 2002. On the Use of Numeraires in Option

Pricing. Journal of Derivatives, 10, 1–16.

Bernard, C., Le-Courtois, O., & Quittard-Pinon, F. 2005. A New Procedure for

Pricing Parisian Options. Journal of Derivatives, 12, 45–54.

Biger, N., & Hull, J. 1983. The valuation of currency options. Financial Manage-

ment, 12, 24–28.

Björk, T. 2004. Arbitrage Theory in Continuous Time. second edn. Oxford Univer-

sity Press.

Black, F. 1976. The Pricing of Commodity Contracts. Journal of Financial Eco-

nomics, 3, 167–179.

Black, F., & Karasinski, P. 1991. Bond and Option Pricing When Short Rates Are

Lognormal. Financial Analysts Journal, 47, 52–59.

Black, F., & Scholes, M. 1973. The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 81, 637–655.

Black, F., Derman, E., & Toy, W. 1990. A One-factor Model of Interest Rates and

Its Application to Treasury Bond Options. Financial Analysts Journal, 46,

33–39.

Bodurtha, J., & Courtadon, G. 1987. Tests of an American Option Pricing Model on

the Foreign Currency Options Market. Journal of Financial and Quantitative

Analysis, 22, 153–167.



REFERENCES 167

Boyle, P. 1977. Options: A Monte Carlo Approach. Journal of Financial Economics,

4, 323–338.

Boyle, P., & Tse, Y. 1990. An Algorithm for Computing Values of Options on the

Maximum or Minimum of Several Assets. Journal of Financial and Quantitative

Analysis, 25, 215–227.

Boyle, P., Evnine, J., & Gibbs, S. 1989. Numerical Evaluations of Multivariate

Contingent Claims. Review of Financial Studies, 2, 241–250.

Brace, A., Gatarek, D., & Musiela, M. 1997. The Market Model of Interest Rate

Dynamics. Mathematical Finance, 7, 127–155.

Bratley, P., Fox, B., & Schrage, L. 1987. A Guide to Simulation. New York:

Springer-Verlag.

Brennan, M., & Schwartz, E. 1978. Finite Difference Methods and Jump Processes

Arising in the Pricing of Contingent Claims. Journal of Financial and Quanti-

tative Analysis, 13, 461–474.

Brennan, M., & Schwartz, E. 1982. An Equilibrium Model of Bond Prices and A

Test of Market Efficiency. Journal of Financial and Quantitative Analysis, 17,

301–329.

Brigo, D., & Mercurio, F. 2006. Interest Rate Models: Theory and Practice. second

edn. Heidelberg: Springer Finance.

Broadie, M., & Detemple, J. 1996. American Option Valuation: New Bounds,

approximations, and a Comparison of Existing Methods. Review of Financial

Studies, 9, 1211–1250.

Broadie, M., & Glasserman, P. 1997. Pricing American-style Securities by Simula-

tion. Journal of Economic Dynamics and Control, 21, 1323–1352.

Broadie, M., & Glasserman, P. 2004. A Stochastic Mesh Method for Pricing High-

Dimensional American Options. Journal of Computational Finance, 7, 35–72.



REFERENCES 168

Broadie, M., Glasserman, P., & Kou, S. G. 1997a. A continuity Correction for the

Discrete Barrier Options. Mathematical Finance, 7, 325–349.

Broadie, M., Jain, G., & Glasserman, P. 1997b. Enhanced Monte Carlo estimation

for American Option Prices. Journal of Derivatives, 5, 25–44.

Broadie, M., Glasserman, P., & Kou, S. G. 1999. Connecting Discrete and Contin-

uous Path-dependent Options. Finance and Stochastics, 3, 55–82.

Cairns, A. 2004. Interest Rate Models. Oxford: Princeton University Press.

Caporale, G., & Cerrato, M. 2005. Valuing American Put Options Using Chebyshev

Polynomial Approximation. Centre for International Capital Market.

Carr, P., & Wu, L. 2007. Stochastic Skew in Currency Options. Journal of Financial

Economics. To appear.

Carriere, J. 1996. Valuation of The Early-exercise Price for Options Using Simula-

tions and Nonparametric Regression. Insurance: Mathematics and Economics,

19, 19–30.

Cerrato, M., & Cheung, K. 2005. An Empirical Analysis on the Convergence of

Monte Carlo Least Squares Estimators.

Chance, D. 1995. A Chronology of Derivatives. Derivatives Quarterly, 2, 53–60.

Chang, C. 2001. Efficient Procedures for The Valuation and Hedging of American

Currency Options with Stochastic Interest Rates. Journal of Multinational

Financial Management, 11, 241–268.

Chen, A., & Suchanecki, M. 2006. Default Risk, Bankruptcy Procedures and the

Market Value of Life Insurance Liabilities. In: Fourth World Congress of Bache-

lier Finance Society.

Chesney, M., & Gauthier, L. 2006. American Parisian Options. Finance and Stochas-

tics. To appear.



REFERENCES 169

Chesney, M., & Jeanblanc, M. 2004. Pricing American Currency Options in A jump

diffusion Model. Applied Mathematical Finance, 11, 207–225.

Chesney, M., Jeanblanc-Picque, M., & Yor, M. 1997. Brownian Excursions and

Parisian Barrier Options. Advances in Applied Probability, 29, 165–184.

Choi, S., & Marcozzi, M. 2001. A Numerical Approach to American Currency

Option Valuation. Journal of Derivatives, 9, 19–29.

Choi, S., & Marcozzi, M D. 2003. The Valuation of Foreign Currency Options under

Stochastic Interest Rates. Computers and Mathematics with Applications, 46,

741–749.

Chowdhury, I., & Sarno, L. 2004. TimeVarying Volatility in the Foreign Exchange

Market: New Evidence on its Persistence and on Currency Spillovers. Journal

of Business Finance and Accounting, 31, 759–780.

Clark, P., Tamirisa, N., & Wei, S. 2004. Exchange Rate Volatility and Trade Flows–

Some New Evidence. International Monetary Fund.

Clement, E., Lamberton, D., & Protter, P. 2002. An Analysis of A Least Squares

Regression Method for American Option Pricing. Finance and Stochastics, 6,

449–471.

Clwelow, L., & Strickland, C. 1999. Implementing Derivatives Models. Chichester:

John Wiley and Sons.

Cornwall, M., Chesney, M., Jeanblanc-Picque, M., Kentwell, G., & Yor, M. 1997.

Parisian Barrier Options: A Discussion. Risk, 10, 77–79.

Costabile, M. 2002. A Combinatorial Approach for Pricing Parisian Options. Deci-

sions in Economics and Finance, 25, 111–125.

Cox, J., & Ross, S. 1976. The Valuation of Options for Alternative Stochastic

Processes. Journal of Financial Economics, 3, 145–166.



REFERENCES 170

Cox, J., Ross, S., & Rubinstein, M. 1979. Option Pricing: A Simplified Approach.

Journal of Financial Economics, 7, 229–263.

Cox, J C., Ingersoll, J E., & Ross, S A. 1985. An Intertemporal General Equilibrium

Model of Asset Prices. Econometrica, 53, 363–384.

Cross, S. 1998. All About The Foreign Exchange Market in The United States. Tech.

rept. Federal Reserve Bank of New York.

Cuthbertson, C., Pavliotis, G., Rafailidis, A., & Wiberg, P. 2005. Asymptotic anal-

ysis for foreign exchange derivatives with stochastic volatility. This version:

March 2nd, 2005.

Daniel, C., & Woods, F. 1980. Fitting Equations to Data. Chichester: John Wiley

and Sons.

DeRosa, D. 1992. Options on Foreign Exchange. Probus.

Doffou, S., & Hilliard, J E. 2001. Pricing Currency Options Under Stochastic Interest

Rates and Jump-diffusion Processes. The Journal of Financial Research, 24,

565–585.

Doob, J. 1996. The Development of Rigor in Mathematical Probability (1900–1950).

American Mathematics Monthly, 103, 586–595.

Draper, N., & Smith, H. 1998. Applied Regression Analysis. Chichester: John Wiley

and Sons.

Duan, J.C., & Wei, J. 1999. Pricing Foreign Currency and Cross-Currency Options

Under GARCH. Journal of Derivatives, 7, 51–63.

Duck, P., Newton, D., Widdicks, M., & Leung, Y. 2005. Enhancing the Accuracy of

Pricing American and Bermudan Options. Journal of Derivatives, 12, 34–44.

Duffie, D. 1988. Security Markets: Stochastic Models. Second edn. London: Aca-

demic Press.



REFERENCES 171

Duffie, D. 1996. Dynamic Asset Pricing Theory. Second edn. Princeton: Princeton

University Press.

Dupoyet, B. 2006. Information Content of Cross-Sectional Option Prices: A Com-

parison of Alternative Currency Option Pricing Models on the Japanese Yen.

The Journal of Futures Markets, 26, 33–59.

Easton, S., & Gerlach, R. 2006. Modelling Exchange-traded Barrier Options Traded

in the Australian Options Market. Accounting and Finance, 46, 1–14.

Easton, S., Gerlach, R., Graham, M., & Tuyl, F. 2004. An Empirical Examination

of The Pricing of Exchange-traded Barrier Options. The Journal of Futures

Markets, 24, 1049–1064.

Egloff, D. 2005. Monte Carlo Algorithms for Optimal Stopping and Statistical

Learning. Annals of Applied Probability, 15, 1396–1432.

Evans, M., & Swartz, T. 2000. Approximating Integrals via Monte Carlo and De-

terministic Methods. Oxford: Oxford University Press.

Feller, W. 1951. Two Singular Diffusion Problems. Annals of Mathematics, 54,

173–182.

Figlewski, S., & Gao, B. 1999. The Adaptive Mesh Model: A New Approach to

Efficient Option Pricing. Journal of Financial Economics, 53, 313–351.

Fries, C. 2005. Foresight Bias and Suboptimality Correction in Monte-Carlo Pric-

ing of Options with Early Exercise: Classification, Calculation and Removal.

http://www.christian-fries.de/finmath/foresightbias/. Last accessed

August 24th, 2006.

Fu, M., Laprise, S., Madan, D., Su, Y., & Wu, R. 2001. Pricing American Options: A

Comparison of Monte Carlo Simulation Approaches. Journal of Computational

Finance, 4, 39–88.



REFERENCES 172

Fusai, G., & Tagliani, A. 2001. Pricing of Occupation Time Derivatives: Continuous

and Discrete Monitoring. Journal of Computational Finance, 5, 1–37.

Galai, D., Raviv, A., & Wiener, Z. 2005. Liquidation Triggers and the Valuation of

Equity and Debt. In: EFA 2005 Moscow Meetings Paper.

Garman, M., & Kohlhagen, S. 1983. Foreign Currency Option Values. Journal of

International of Money and Finance, 2, 231–237.

Gauthier, L. 2002. Excursions Height- and Length-related Stopping Times, and

Application to Finance. Advances in Applied Probability, 34, 846–868.

Geske, R., & Johnson, H. 1984. The American Put Option Valued Analytically. The

Journal of Finance, 39, 1511–1524.

Glasserman, P. 2003. Monte Carlo Methods in Financial Engineering. New York:

Springer.

Glasserman, P., & Yu, B. 2004. Number of Paths Versus Number of Basis Functions

in American Option Pricing. The Annals of Applied Probability, 14, 2090–2119.

Glynn, P., & Iglehart, D. 1989. Importance Sampling for Stochastic Simulations.

Management Science, 35, 1367–1392.

Goodman, J. 2004. Stochastic Calculus Lecture Notes. http://www.math.nyu.edu/

faculty/goodman/teaching/StochCalc2004/. Last accessed on April 25th,

2006.

Goodman, J. 2005. Monte Carlo Lecture Notes. http://www.math.nyu.edu/

faculty/goodman/teaching/MonteCarlo2005/ Last accessed on April 25th,

2006.

Gorovoi, V., & Linetsky, V. 2004. Black’s Model of Interest Rates as Options,

Eigenfunction Expansions and Japanese Interest Rates. Mathematical Finance,

14, 49–78.



REFERENCES 173

Grabbe, J. 1983. The Pricing of Call and Put Options on Foreign-Exchange. Journal

of International Money and Finance, 2, 239–253.

Graziano, G., & Rogers, L.C.C. 2006. Hybrid Derivatives Pricing under

the Potential Approach. http://www.statslab.cam.ac.uk/~chris/papers/

PotentialHybrid3.pdf. Last accessed on 5th September, 2006.

Haber, R., Schonbucher, P., & Wilmott, P. 1999. Pricing Parisian Options. Journal

of Derivatives, 6, 71–80.

Hammersley, J., & Handscomb, D. 1964. Monte Carlo Methods. Second edn. London:

Chapman and Hall.

Hammersley, J., & Morton, K. 1956. A New Monte Carlo Technique: Antithetic

Variates. Proceedings of the Cambridge Philosophical Society, 52, 449–475.

Haugh, M., & Kogan, L. 2004. Pricing American Options: A Duality Approach.

Operations Research, 52, 258–270.

Heath, D., Jarrow, R., & Morton, A. 1992. Bond pricing and the term structure of

interest rates: A new methodology for contingent claim valuation. Economet-

rica, 60, 77–105.

Henigan, M. 2006. The International Treasurer’s Handbook 2006. London: ACT

Publications.

Heston, S L. 1993. A Closed-Form Solution for Options with Stochastic Volatility

with Applications to Bond and Currency Options. Review of Financial Studies,

6, 327–343.

Higham, D. 2004. An Introduction to Financial Option Valuation. Cambridge:

Cambridge University Press.

Higham, D., & Mao, X. 2005. Convergence of Monte Carlo Simulations Involving

The Mean-reverting Square Root Process. Journal of Computational Finance,

8, 240–257.



REFERENCES 174

Hilliard, J E., Madura, J., & Tucker, A L. 1991. Currency Option Pricing with

Stochastic Domestic and Foreign Interest Rates. Journal of Financial and

Quantitative Analysis, 26(2), 139–151.

Ho, T., & Lee, S. 1986. Term Structure Movements and Pricing Interest Rate

Contingent Claims. The Journal of Finance, 41, 1011–1028.

Ho, T., Stapleton, R., & Subrahmanyam, M. 1997. The Valuation of American

Options with Stochastic Interest Rates: A Generalization of the Geske-Johnson

Technique. The Journal of Finance, 52, 827–840.

Hobson, D. 1998. Statistics in Finance. London: Arnold.

Hörfelt, P. 2003. Extension of the Corrected Barrier Approximation by Broadie,

Glasserman, and Kou. Finance and Stochastics, 7, 231–243.

Hugonnier, J. 1999. The Feynman-Kac Formula and Pricing Occupation Time

Derivatives. International Journal of Theoretical and Applied Finance, 2, 153–

178.

Hull, J. 2002. Options, Futures, and Other Derivative Securities. fifth edn.

Englewood-Cliff, N.J.: Prentice-Hall.

Hull, J., & White, A. 1994a. Numerical Procedures for Implementing Term Structure

Models: Single Factor Models. Journal of Derivatives, 2, 7–19.

Hull, J., & White, A. 1994b. Numerical Procedures for Implementing Term Structure

Models: Two Factor Models. Journal of Derivatives, 2, 37–47.

Hunt, P., & Kennedy, J. 2005. Financial Derivatives in Theory and Practice. Chich-

ester: John Wiley and Sons.
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ETH Zürich: Birkhäuser.
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Appendix A

Matlab “randn” Test

For Monte Carlo methods, “well behaved” random numbers are crucial. Therefore,

a high quality of random number generator is essential for the programs. Kahaner,

Moler and Nash (1989) defined five criteria to judge the generator:

• Quality: pass all the statistical tests and have a very long period.

• Efficiency: quick and less storage consuming.

• Repeatability: minimal change in the starting condition required.

• Portability: work universally.

• Simplicity: easy to implement.

The simulation in this thesis was implemented in Matlab 7.1.0.183(R14) program-

ming environment. In this appendix we prove that the built in function “randn”

in Matlab is good enough for the programs in this thesis. We generate 50 million

normal random variables and test the mean and the variance of those variables. The

tests are repeated 10 times and shown individually. The random number generator

“randn” is proven to provide sufficient normal distribution behaviour. According

to Matlab software official documentation1, the period of the generator is around

1.37 ∗ 10449, whereas the longest period required by the simulations in this thesis is

around 1.92 ∗ 1011. For more detailed test, see Higham (2004).

1The full document can be found at: http://www.mathworks.com/moler/random.pdf.
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Table A.1: Random number generator testing

Mean Variance
0.0000 1.0003
-0.0001 1
0.0002 1
0.0000 1.0002
-0.0004 1.0004
0.0001 0.9998
0.0002 0.9999
-0.0002 0.9998
0.0001 0.9999
0.0000 0.9999



Appendix B

Exchange Rate Process

Under the risk-neutral measure, the exchange rate process is initially assumed to

have a general form as:

dxt

xt

= µxdt + σxdWx, (B.1)

where µx is the drift of the exchange rate, a function with respect to two short

rates of interest rd and rf , σx is the volatility of the exchange rate, and dWx is the

increments of a standard Brownian motion. Moreover, we assume

dBd

Bd

= rddt, (B.2)

dBf

Bf

= rfdt, (B.3)

B∗
f

Bf

= xt, (B.4)

where

Bd = the domestic zero-coupon bond,

Bf = the foreign zero-coupon bond,

B∗
f = the foreign zero-coupon bond in domestic currency.

Following Björk (2004), the model is based in the domestic economy, therefore

Bd is chosen to be the numeraire. Using Itô’s lemma, we have

dB∗
f = B∗

f (µ + rf )dt + B∗
fσxdWx. (B.5)
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Equation (B.5) is a risk-free process in the domestic economy. As Bf is risk-free in

the foreign economy:

dB∗
f = B∗

frddt + B∗
fσxdWx. (B.6)

Since it is assumed that there is no arbitrage, the same product should have the

same price no matter which economy it is issued from. Equations (B.5) and (B.6)

are identical if µx = rd − rf , the exchange rate process dxt is then given by

dxt

xt

= (rd − rf )dt + σxdWx, (B.7)

corresponding to Equation 5.1.


