
Modeling and Generating Random Vectorswith Arbitrary Marginal Distributions and Correlation MatrixMarne C. CarioDelphi Packard Electric SystemsWarren, OH 44486, USABarry L. NelsonDepartment of Industrial Engineering and Management SciencesNorthwestern University, Evanston, IL 60208, USAApril 9, 1997AbstractWe describe a model for representing random vectors whose component random variables have arbi-trary marginal distributions and correlation matrix, and describe how to generate data based upon thismodel for use in a stochastic simulation. The central idea is to transform a multivariate normal randomvector into the desired random vector, so we refer to these vectors as having a NORTA (NORmal ToAnything) distribution. NORTA vectors are most useful when the marginal distributions of the com-ponent random variables are neither identical nor from the same family of distributions, and they areparticularly valuable when the dimension of the random vector is greater than two. Several numericalexamples are provided.Keywords: simulation, random vector, input modeling, correlation matrix, copulas1 IntroductionIn many stochastic simulations, simple input models|idependent and identically distributed sequences fromstandard probability distributions|are not faithful representations of the physical input process. For ex-ample, the processing times for a single product at a series of k machining stations may be dependent, dueto characteristics of that particular product. Similarly, the service times for a single customer at the orderdesk, cashier and loading dock of a store may be dependent due to characteristics of the order. And the1



quantities of each of k items that a factory demands from a multi-item inventory system would typically berelated. Ignoring such dependence can signi�cantly distort the simulated performance of the system.There are numerous models available for representing and generating random vectors with dependentcomponents and marginal distributions from a common family. Excellent surveys can be found in Devroye[1986] and Johnson [1987]. However, when the component random variables have di�erent marginal distri-butions, from di�erent families, then there are few alternatives available.In this paper we present a model for representing a k � 1 random vector X = (X1; X2; : : : ; Xk)0 witharbitrary marginal distributions and any feasible correlation matrix. We use a transformation-orientedapproach to represent X. This approach takes a random vector with a known correlation matrix, the basevector Z, and transforms it to achieve the desired marginal distributions for the components of the inputvector, X. The target correlation matrix of X is obtained by adjusting the correlation matrix of the basevector. In our model, the base vector Z is a standard multivariate normal random vector, so we refer to Xas having a NORTA (NORmal To Anything) distribution.The idea of transforming multivariate normal vectors into vectors with other marginal distributionshas long been folklore in statistics and simulation. The �rst reference appears to be Mardia [1970] whodescribed transforming bivariate normal random variables. Li and Hammond [1975] discussed the extensionto random vectors of any �nite dimension having continuous marginal distributions. There are numerousother references that hint at the same idea. Therefore, the primary contribution of the present work isto pull together, extend and (in some cases) simplify previous results. In particular, we extend the ideato discrete or mixed marginal distributions, and we establish properties of the transformation that make�tting a NORTA distribution feasible. The results in this paper also extend the results of Cario and Nelson[1996], who de�ned ARTA (AutoRegressive To Anything) processes to model a stationary time series with2



an arbitrary marginal distribution and autocorrelation structure speci�ed through lag p. Their results applyonly to a common marginal distribution, while we allow each element of a NORTA vector to have a di�erentmarginal distribution.Our work is closely related to methods that transform a random vector with uniformly distributedmarginals; see, for example, Cook and Johnson [1981] and Johnson [1987, Chapter 10]. In fact, the NORTAtransformation can be viewed as a two-step process, �rst transforming a multivariate normal vector Z intoa multivariate uniform vector U, then transforming the multivariate uniform vector into the desired inputvector X. The joint distribution of U is known as a copula, and any joint distribution has a representationas a transformation of a copula [Schweizer 1991]. Our approach is quite di�erent from techniques thatrandomly mix distributions with extremal correlations to obtain intermediate correlations (e.g., Hill andReilly [1994]), or methods that exploit special properties of a particular family of distributions. Whatwe gain is a general-purpose, easy-to use tool; what we sacri�ce is computational e�ciency in �tting andrandom-variate generation.We present our model in Section 2. In Section 3 we develop some relationships between the multivariatenormal base vector Z and the input vector X. We then discuss how to use these relationships to selectthe correlation matrix for the base vector that gives the desired correlation matrix for the input vector.In Section 4 we describe how NORTA random vectors are generated for use as simulation inputs and inSection 5 we provide several examples. Our conclusions appear in Section 6.2 ModelThe goal of our model is to de�ne a random vector X with the following properties:� Xi � FXi ; i = 1; 2; : : :; k, where each FXi is an arbitrary cumulative distribution function (cdf); and� Corr[X] = �X , where �X is given. 3



We represent X as a transformation of a k-dimensional, standard multivariate normal (MVN) vector Z =(Z1; Z2; : : : ; Zk)0 with correlation matrix �Z . Speci�cally, the NORTA vector X isX = 0BBBBBB@ F�1X1 [�(Z1)]F�1X2 [�(Z2)]...F�1Xk [�(Zk)] 1CCCCCCAwhere � is the univariate standard normal cdf and F�1X (u) � inffx : FX(x) � ug denotes the inverse cdf.The transformation F�1Xi [�(�)] ensures that Xi has the desired marginal distribution FXi . Therefore, thecentral problem is to select the correlation matrix �Z that gives the desired correlation matrix �X .3 Properties of NORTA VectorsFor i 6= j, let �Z(i; j) be the i; jth element of �Z , and let �X (i; j) be the i; jth element of �X . Thecorrelation matrix of Z directly determines the correlation matrix of X, since �X (i; j) = Corr[Xi; Xj] =CorrnF�1Xi [�(Zi)]; F�1Xj [�(Zj)]o for all i 6= j. To adjust this correlation, we can restrict attention to adjustingE[XiXj ], since Corr[Xi; Xj ] = E[XiXj ]� E[Xi]E[Xj]pVar[Xi]Var[Xj]and E[Xi];E[Xj];Var[Xi] and Var[Xj ] are �xed by FXi and FXj . Then, since (Zi; Zj) has a standard bivariatenormal distribution with correlation Corr[Zi; Zj ] = �Z(i; j), we haveE[XiXj ] = EnF�1Xi [�(Zi)]F�1Xj [�(Zj)]o= Z 1�1 Z 1�1 F�1Xi [�(zi)]F�1Xj [�(zj)]'�Z(i;j)(zi; zj)dzidzj; (1)where '�Z(i;j) is the standard bivariate normal probability density function (pdf) with correlation �Z(i; j).We are only interested in distributions for which this expectation exists.4



Observe from Equation (1) that the correlation between Xi and Xj is a function only of the correlationbetween Zi and Zj , which appears in the expression for '�Z(i;j). We denote this function by cij[�Z(i; j)].Thus, the problem of determining �Z for Z that gives the desired correlation matrix �X for X reduces tok(k � 1)=2 independent problems: For each i 6= j, �nd the value �Z(i; j) for which cij[�Z(i; j)] = �X (i; j).Unfortunately, it is not possible to express the �Z-values in closed form except in special cases (see x5);however, we establish some properties of the function cij that enable us to perform an e�cient numericalsearch to �nd the �Z-values to within any desired precision.The �rst two properties concern the sign and the range of cij [�Z(i; j)] for �1 � �Z(i; j) � 1. The resultsin this section extend results in Cambanis and Marsy [1978] and Cario and Nelson [1996], which apply totime-series input processes with identical marginal distributions.Proposition 1. For any distributions FXi and FXj , cij(0) = 0, and �Z(i; j) � 0 (� 0) implies thatcij[�Z(i; j)] � 0 (� 0).Proof. If �Z(i; j) = 0, thenE[XiXj ] = EnF�1Xi [�(Zi)]F�1Xj [�(Zj)]o = E�F�1Xi [�(Zi)]	EnF�1Xj [�(Zj)]o = E[Xi]E[Xj]since �Z(i; j) = 0 implies that Zi and Zj are independent. If �Z(i; j) � 0 (� 0), then Cov[g1(Zi; Zj); g2(Zi; Zj)] �0 (� 0) for all nondecreasing functions g1 and g2 such that the covariance exists (Tong [1990], p. 20). Takingg1(Zi; Zj) � F�1Xi [�(Zi)] and g2(Zi; Zj) � F�1Xj [�(Zj)], the result follows since F�1X [�(�)] is a nondecreasingfunction. 2It follows from the proof of Proposition 1 that taking �Z(i; j) = 0 results in a vector in which Xi and Xjare not only uncorrelated, but are also independent.Proposition 2. Let �ij and �ij be the maximum and minimum feasible bivariate correlations, respectively,for random variables having marginal distributions FXi and FXj . Then, cij(1) = �ij and cij(�1) = �ij.5



Proof. A correlation of 1 is the maximum possible for bivariate normal random variables. Therefore,taking �Z (i; j) = 1 is equivalent (in distribution) to setting Zi  ��1(U ) and Zj  ��1(U ), where U isa U(0; 1) random variable (Whitt [1976]). But this de�nition of Zi and Zj implies that Xi  F�1Xi [U ] andXj  F�1Xj [U ], from which it follows that cij(1) = �ij by the same reasoning. Similarly, taking �Z(i; j) = �1is equivalent to setting Xi  F�1Xi [U ] and Xj  F�1Xj [1� U ], from which it follows that cij(�1) = �ij : 2Our next two results shed light on the shape of the function cij[�Z(i; j)].Theorem 1. The function cij[�Z(i; j)] is nondecreasing for �1 � �Z (i; j) � 1.Proof. See the Appendix. 2Theorem 2. If there exists � > 0 such that E[jXiXj j1+�] < 1 for all values of �1 � �Z(i; j) � 1;where Xi; Xj are de�ned by a NORTA transformation, then the function cij [�Z(i; j)] is continuous for �1 ��Z(i; j) � 1.Proof. See the Appendix. 2Since cij[�Z(i; j)] is a continuous, nondecreasing function under the mild conditions stated in Theorem2, any reasonable search procedure can be used to �nd �Z (i; j) such that cij[�Z(i; j)] � �X (i; j). Proposition1 provides the initial bounds for such a procedure. Proposition 2 shows that the extremal values of �X (i; j)are attainable under our model. Furthermore, from Proposition 2, Theorem 2 and the Intermediate ValueTheorem, any feasible bivariate correlation for FXi ; FXj is attainable under our model. Theorem 1 providesthe theoretical basis for adjusting the values of �Z(i; j), and is the key to establishing convergence of a searchprocedure.Throughout the previous discussion we assumed that there exists a joint distribution with marginaldistributions FXi ; i = 1; 2; : : : ; k, and correlation matrix �X . However, not all combinations of FXi ; i =1; 2; : : : ; k, and �X are feasible. Clearly, for �X to be feasible we must have �ij � �X (i; j) � �ij for each6



i 6= j: In addition, �X must be nonnegative de�nite. Our next result indicates that �X will be nonnegativede�nite if �Z is.Proposition 3. If �Z is nonnegative de�nite, then so is �X implied by the NORTA transformation.Proof. Provided that �Z is nonnegative de�nite,FX(x1; x2; : : : ; xk) = PrfX1 � x1; X2 � x2; : : : ; Xk � xkg= PrfZ1 � ��1[FX1(x1)]; Z2 � ��1[FX2(x2)]; : : : ; Zk � ��1[FXk(xk)]gis a well-de�ned joint cdf for �1 < xi <1, i = 1; 2; : : : ; k. Therefore, �X must be nonnegative de�nite. 2Comment: In a sense, the problem of representing multivariate random vectors with given marginals anddependence structure has been made di�cult by the popularity of the product-moment correlation as themeasure of dependence. Certain other measures, such as Spearman's � and Kendall's � , are invariant undermonotone transformations, so that �xing these measures for the base vector Z guarantees the same measureson the input vector X. More precisely, both Spearman's � and Kendall's � depend only on the copula of apair of random variables, and X has the same copula as Z by construction.4 Generating Simulation InputLet �Z be the correlation matrix such that cij[�Z(i; j)] � �X (i; j) for all i 6= j. We can check whether �Zis nonnegative de�nite to determine the existence of the desired joint distribution for X. Random vectorsare generated as follows: NORTA Generation Procedure1. Set up: Determine a lower-triangular, nonsingular factorization M of �Z so that MM0 = �Z .2. Generate W = (W1;W2; : : : ;Wk)0, a k � 1 random vector whose elements are i.i.d. standard normalrandom variables. 7



3. Set Z MW.4. Return X where Xi  F�1Xi [�(Zi)], i = 1; 2; : : : ; k.5. Go to step 2.Steps 1{3 are a standard method for generating a MVN vector; see Johnson [1987] for a detailed justi�cation.5 ExamplesTwo special cases are easier than the general problem. If Xi and Xj have continuous uniformly distributedmarginals, then �X (i; j) = 6� sin�1��Z (i; j)2 �from Li and Hammond [1975, equation (7)]. When Xi and Xj are exponentially distributed, then thetransformation �X (i; j) = cij[�Z(i; j)] is independent of the parameters of the exponential distributions,meaning that a �ne grid of [�X (i; j); �Z(i; j)] pairs can be stored and used as starting values in a search.Figure 1 shows a plot of the function cij [�Z(i; j)] for the uniformly distributed case, where the relationshipis nearly the identity mapping, while Figure 2 shows a similar plot for the exponentially distributed case,where there is signi�cant curvature near the boundary cij[�1] � �0:645.In general, a numerical search is required to �nd the �Z(i; j) such that ci;j[�Z(i; j)] � �X (i; j) for alli 6= j. In the special case when the marginals of X1; X2; : : : ; Xk are all the same, the ARTAFACTS softwaredescribed in Cario and Nelson [1997] does this automatically.1 Two examples are given below.Suppose that we require a trivariate random variable with marginals that are all Gamma(� = 0:03424; �=1ARTAFACTS is designed to �t a stationary time series with arbitrary marginal distribution and autocorrelations speci�edthrough lag p. More information, and the software itself, can be obtained from http://www.iems.nwu.edu/~ nelsonb/ARTA/.8
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Figure 1: The function cij[�Z(i; j)] when Xi and Xj have uniformly distributed marginals.9
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Figure 2: The function cij [�Z(i; j)] when Xi and Xj have exponentially distributed marginals.10



14:4) and correlation matrix �X = 0BB@ 1:0 0:7 0:5 �0:91:0 0:7 �0:61:0 �0:31:0 1CCA :These characteristics are attained by a NORTA vector whose underlying trivariate normal random vectorhas correlation matrix �Z = 0BB@ 1:0 0:704 0:504 �0:9201:0 0:704 �0:6161:0 �0:3041:0 1CCA :Notice that the correlation matrix of Z di�ers only slightly from the desired correlation matrix for X, as isoften the case when FX is continuous and relatively symmetric.One of the advantages of the NORTA transformation is that discrete marginals are no more di�cult thancontinuous marginals (in fact, the numerical work required for �tting discrete marginals is somewhat less).For instance, suppose we require a trivariate random variable with all marginals Binomial(n = 3; p = 0:5)and correlation matrix �X = 0@ 1:0 0:2 �0:81:0 0:21:0 1A :These characteristics are attained by a NORTA vector whose underlying trivariate normal random vectorhas correlation matrix �Z = 0@ 1:0 0:2288 �0:89601:0 0:22881:0 1A :Notice that in this case �X and �Z di�er signi�cantly.Of course, the most important feature of the NORTA transformation is that random vectors that includeboth continuous and discrete component random variables are handled within the same framework. Althoughwe have not yet modi�ed the ARTAFACTS code to �t general NORTA vectors, a crude numerical search willsu�ce in many cases. For example, if we need a bivariate random vector (X1; X2) with X1 having a discrete11



uniform distribution on f1; 2; : : : ; 10g, X2 having an exponential distribution with mean 10, and (X1; X2)having correlation matrix �X = � 1:0 �0:51:0 �then these characteristics will be attained by a NORTA vector whose underlying bivariate normal randomvector has correlation matrix �Z = � 1:0 �0:5761:0 � :In this case we matched the desired correlation by using a bisection search on �Z (1; 2), estimating the impliedcorrelation �X (1; 2) by generating 200000 random vectors (the standard error of the correlation estimate isapproximately 0:0016). For dimension k > 2 the same procedure would be followed for each of the k(k�1)=2pairs of correlations. Figure 3 shows a scatterplot of 200 observations from this NORTA vector, where it isclear that small values of the discrete uniform tend to be paired with large values of the exponential, andvice versa.6 ConclusionsThe NORTA method, and the related ARTA method for time-series input processes, provide a general-purpose tool for modeling and generating dependent input processes. This generality comes at the cost ofcomputational e�ciency. The �tting process is time consuming, although this expense is incurred only oncefor each input model. More importantly, the marginal time for generating each NORTA variate can be longerthan the fastest available method for a particular distribution, due to the need to evaluate the compositefunction F�1X [�(�)]. However, in system simulation applications where input/output processing, event-listmanagement, animation, etc. account for the bulk of the execution time, the additional time required togenerate NORTA variates will be acceptable, and the generality of the method welcome.12
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Figure 3: Scatterplot of 200 observations from a bivariate exponential-discrete uniform NORTA randomvector with correlation �0:5. 13



It is also important to note that there is no statistical theory to back up the use of a NORTA distribution;in fact, there seems to be little reason to believe that the \true" underlying distribution is ever NORTA.The philosophy of the NORTA approach is to match distributional properties|marginals and correlationmatrix|that are considered important to having a good model, rather than giving any consideration to�nding the true model, if such a thing ever exists.AppendixLemma 1. Let ~� = � 00 � and ��i = � 1 �i�i 1 �, and let (N1; N2)0 and (Z1; Z2)0 be bivariate normalrandom variables with common mean ~� and variance-covariance matrices ��2 and ��1 , respectively, where0 � �1 < �2 < 1. Let g1(x) and g2(x) be nondecreasing functions of x for �1 < x < 1. Then for any gifor which E[g2i (N )] exists, i = 1; 2, the E[g1(N1)g2(�N2)] � E[g1(Z1)g2(�Z2)].Proof. The proof extends Cario and Nelson [1996], Lemma 1.Let T1; T2; V1; V2; and W be i.i.d. N(0,1) random variables. Then,(N1;�N2) d= �p1� �2T1 +p�2 � �1V1 +p�1W;�p1� �2T2 �p�2 � �1V1 �p�1W�and (Z1;�Z2) d= �p1� �2T1 +p�2 � �1V1 +p�1W;�p1� �2T2 �p�2 � �1V2 �p�1W�where d= denotes equality in distribution. Therefore,E[g1(N1)g2(�N2)] = E hEnE hg1(p1� �2T1 +p�2 � �1V1 +p�1W ) �g2(�p1� �2T2 �p�2 � �1V1 �p�1W ) j V1;W i jWoi= E hEn	(1)W (V1)	(2)�W (�V1) jWoi14



where 	(i)w (v1) = E hgi(p1� �2T +p�2 � �1V1 +p�1W ) j V1 = v1;W = wiand the expectation is with respect to T , an independent N(0; 1) random variable.2For g1 nondecreasing and �xed W = w, the function 	(1)w (v1) is nondecreasing in v1. Similarly,�	(2)�w(v)is nonincreasing in v (where v is a dummy variable used only for clarity). Therefore,Var h	(1)w (V1)� n�	(2)�w(V )oi = Var h	(1)w (V1)i+ Var h�	(2)�w(V )i� 2Cov h	(1)w (V1);�	(2)�w(V )iis minimized with respect to all joint distributions of (V1; V ) with N(0; 1) marginals when V1 = ��1(U )and V = ��1(1 � U ), where � is the standard normal cdf and U is a U(0; 1) random variable (Ru-binstein et al. [1985], Proposition 1). For N(0; 1) random variables this implies that V = �V1. There-fore, Cov[	(1)w (V1);�	(2)�w(V )] is maximized (equivalently, Cov[	(1)w (V1);	(2)�w(V )] is minimized) by lettingV = �V1. Thus,Ef	(1)w (V1)	(2)�w(�V1) jW = wg � Ef	(1)w (V1) jW = wgEf	(2)�w(�V1) jW = wg (2)= Ef	(1)w (V1) jW = wgEf	(2)�w(�V2) jW = wg (3)where (2) holds because the minimum expected value must be smaller than the expected value under inde-pendence, and (3) holds because V1 and V2 are identically distributed. Since (2) and (3) hold for any valueof W , it follows thatE hEf	(1)W (V1)	(2)�W (�V1) jWgi � E hEf	(1)W (V1) jWgEf	(2)�W (�V2) jWgi :But notice that E [g1(Z1)g2(�Z2)] = E hEf	(1)W (V1)	(2)�W (�V2)g jW i2Notice that T1 d= �T2, and they are independent. 15



= E hEf	(1)W (V1) jWgEf	(2)�W (�V2) jWgisince V1 and V2 are independent. 2Corollary. Let (N1; N2)0 and (Z1; Z2)0 have bivariate normal distributions with common mean ~� andvariance-covariance matrices ��2 and ��1 , respectively, where �1 < �2 < �1 � 0. Let g1(x) and g2(x) benondecreasing functions of x for �1 < x <1. Then, E[g1(N1)g2(N2)] � E[g1(Z1)g2(Z2)]:Proof. This follows from Lemma 1 since (N1;�N2)0 and (Z1;�Z2)0 have bivariate normal distributionswith mean ~� and covariance matrices ���2 and ���1 , respectively. 2Lemma 2. Under the same conditions as Lemma 1, E[g1(N1)g2(N2)] � E[g1(Z1)g2(Z2)].Proof. The proof extends Tong [1990], Theorem 5.3.10, to the case of nonidentical cdfs. It is analogous tothe proof of Lemma 1, but makes use of the fact that(N1; N2) d= �p1� �2T1 +p�2 � �1V1 +p�1W;p1� �2T2 +p�2 � �1V1 +p�1W�(Z1;�Z2) d= �p1� �2T1 +p�2 � �1V1 +p�1W;p1� �2T2 +p�2 � �1V2 +p�1W�and that the covariance between any nondecreasing functions of V1 and V is maximized with respect toall joint distributions of (V1; V ) with N(0; 1) marginals when V = V1 = �(U ) (Rubinstein et al. [1985],Proposition 1). 2Proof of Theorem 1. By taking gi � F�1Xi [�(�)] in the Corollary (if �Z(i; j) < 0) or in Lemma 2 (if�Z(i; j) � 0), it follows that cij[�Z(i; j)] is a nondecreasing function for �1 � �Z(i; j) � 1: 216



Lemma 3. For given cdfs FXi , i = 1; 2, if there exists � > 0 such thatZ 1�1 Z 1�1 sup� 2 [�1; 1] n��F�1X1 [�(z1)]F�1X2 [�(z2)]��1+� '�(z1; z2)odz1dz2 < 1 (4)then c12(�) is a continuous function for �1 � � � 1.Proof. The proof extend Cario and Nelson [1996], Lemma 2.Let Z1 and Z3 be i.i.d. N(0,1) random variables. Let � 2 [�1; 1] be �xed, and f�ng1n=1 be any sequencesuch that �n 2 [�1; 1], for n = 1; 2; : : : ; and �n ! � as n!1. For n = 1; 2; : : : ; de�neZ1n � Z1; Z2n � �nZ1 +p1� �2nZ3; Z2 � �Z1 +p1� �2Z3:Further, let Xin � F�1Xi [�(Zin)], for i = 1; 2, and h� z1z2 � � F�1X1 [�(z1)]F�1X2 [�(z2)]: Since h is monotone inz1 and z2 individually, it has a countable number of discontinuities. Therefore, by the Continuous MappingTheorem (Billingsley [1995], Theorem 29.2)h� Z1nZ2n � d) h� Z1Z2 � as n!1;since � Z1nZ2n � d) � Z1Z2 � as n!1;where d) denotes convergence in distribution. Equivalently,X1nX2n d) X1X2 as n!1; (5)where Xi � F�1Xi [�(Zi)], for i = 1; 2: It follows from (4), (5), and Theorem 25.12 of Billingsley [1995], thatE[X1nX2n]! E[X1X2] as n!1; equivalently, c12[�n]! c12[�] as n!1: 217
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