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Abstract

We describe a model for representing random vectors whose component random variables have arbi-
trary marginal distributions and correlation matrix, and describe how to generate data based upon this
model for use in a stochastic simulation. The central idea is to transform a multivariate normal random
vector into the desired random vector, so we refer to these vectors as having a NORTA (NORmal To
Anything) distribution. NORTA vectors are most useful when the marginal distributions of the com-
ponent random variables are neither identical nor from the same family of distributions, and they are
particularly valuable when the dimension of the random vector is greater than two. Several numerical
examples are provided.

Keywords: simulation, random vector, input modeling, correlation matrix, copulas
1 Introduction

In many stochastic simulations, simple input models—idependent and identically distributed sequences from
standard probability distributions—are not faithful representations of the physical input process. For ex-
ample, the processing times for a single product at a series of k¥ machining stations may be dependent, due
to characteristics of that particular product. Similarly, the service times for a single customer at the order

desk, cashier and loading dock of a store may be dependent due to characteristics of the order. And the



quantities of each of k items that a factory demands from a multi-item inventory system would typically be
related. Ignoring such dependence can significantly distort the simulated performance of the system.

There are numerous models available for representing and generating random vectors with dependent
components and marginal distributions from a common family. Excellent surveys can be found in Devroye
[1986] and Johnson [1987]. However, when the component random variables have different marginal distri-
butions, from different families, then there are few alternatives available.

In this paper we present a model for representing a k x 1 random vector X = (X1, X3,..., X3)" with
arbitrary marginal distributions and any feasible correlation matrix. We use a transformation-oriented
approach to represent X. This approach takes a random vector with a known correlation matrix, the base
vector Z, and transforms it to achieve the desired marginal distributions for the components of the input
vector, X. The target correlation matrix of X is obtained by adjusting the correlation matrix of the base
vector. In our model, the base vector Z is a standard multivariate normal random vector, so we refer to X
as having a NORTA (NORmal To Anything) distribution.

The idea of transforming multivariate normal vectors into vectors with other marginal distributions
has long been folklore in statistics and simulation. The first reference appears to be Mardia [1970] who
described transforming bivariate normal random variables. Li and Hammond [1975] discussed the extension
to random vectors of any finite dimension having continuous marginal distributions. There are numerous
other references that hint at the same idea. Therefore, the primary contribution of the present work is
to pull together, extend and (in some cases) simplify previous results. In particular, we extend the idea
to discrete or mixed marginal distributions, and we establish properties of the transformation that make
fitting a NORTA distribution feasible. The results in this paper also extend the results of Cario and Nelson

[1996], who defined ARTA (AutoRegressive To Anything) processes to model a stationary time series with



an arbitrary marginal distribution and autocorrelation structure specified through lag p. Their results apply
only to a common marginal distribution, while we allow each element of a NORTA vector to have a different
marginal distribution.

Our work is closely related to methods that transform a random vector with uniformly distributed
marginals; see, for example, Cook and Johnson [1981] and Johnson [1987, Chapter 10]. In fact, the NORTA
transformation can be viewed as a two-step process, first transforming a multivariate normal vector Z into
a multivariate uniform vector U, then transforming the multivariate uniform vector into the desired input
vector X. The joint distribution of U is known as a copula, and any joint distribution has a representation
as a transformation of a copula [Schweizer 1991]. Our approach is quite different from techniques that
randomly mix distributions with extremal correlations to obtain intermediate correlations (e.g., Hill and
Reilly [1994]), or methods that exploit special properties of a particular family of distributions. What
we gain is a general-purpose, easy-to use tool; what we sacrifice 18 computational efficiency in fitting and
random-variate generation.

We present our model in Section 2. In Section 3 we develop some relationships between the multivariate
normal base vector Z and the input vector X. We then discuss how to use these relationships to select
the correlation matrix for the base vector that gives the desired correlation matrix for the input vector.
In Section 4 we describe how NORTA random vectors are generated for use as simulation inputs and in

Section b we provide several examples. Qur conclusions appear in Section 6.

2 Model

The goal of our model is to define a random vector X with the following properties:
o X; ~Fx, i=1,2,... k, where each Fx, is an arbitrary cumulative distribution function (cdf); and

o Corr[X] = Xx, where Xx is given.



We represent X as a transformation of a k-dimensional, standard multivariate normal (MVN) vector Z =

(Z1,7a,...,Zy) with correlation matrix Xz. Specifically, the NORTA vector X is
Fx,[®(Z))]

Py, [9(Z2)]
X =

P, 1®(Z5)]
where ® is the univariate standard normal cdf and Fyx'(u) = inf{z : Fx(z) > u} denotes the inverse cdf.
The transformation F)}ll [®(-)] ensures that X; has the desired marginal distribution F'x,. Therefore, the

central problem is to select the correlation matrix Xz that gives the desired correlation matrix X x.
3 Properties of NORTA Vectors

For ¢ # j, let pz(i,j) be the 4, jth element of Xz, and let px(¢,j) be the ¢, jth element of ¥x. The
correlation matrix of Z directly determines the correlation matrix of X, since px(4,j) = Corr[X;, X;] =

Corr {F)}} [®(Z:)], Fx ! [®(Z; )]} for all ¢ # j. To adjust this correlation, we can restrict attention to adjusting

E[X;X;], since
ELX; X;] - E[XG]E[Y)]
Var[X;]Var[X}]

Corr[X;, X;] =

and E[X;], E[X}], Var[X;] and Var[X;] are fixed by F'x, and F'x;. Then, since (Z;, Z;) has a standard bivariate

normal distribution with correlation Corr[Z;, Z;] = pz(4, j), we have

B = B{rRlers o]}

J

B /—Oo /_°° Fx () Fx [9(2) @) (71, ) dzidz, (1)

where ¢, (; ;) is the standard bivariate normal probability density function (pdf) with correlation pz(3, j).

We are only interested in distributions for which this expectation exists.



Observe from Equation (1) that the correlation between X; and X; is a function only of the correlation
between 7Z; and Z;, which appears in the expression for ¢, (; ;). We denote this function by ¢;;[pz (i, j)].
Thus, the problem of determining 37 for Z that gives the desired correlation matrix X x for X reduces to
k(k — 1)/2 independent problems: For each 7 # j, find the value pz (i, j) for which ¢;;[pz (4, j)] = px (4, 7).
Unfortunately, it is not possible to express the pz-values in closed form except in special cases (see §5);
however, we establish some properties of the function ¢;; that enable us to perform an efficient numerical
search to find the pz-values to within any desired precision.

The first two properties concern the sign and the range of ¢;;[pz (4, j)] for —1 < pz (4, j) < 1. The results
in this section extend results in Cambanis and Marsy [1978] and Cario and Nelson [1996], which apply to
time-series input processes with identical marginal distributions.

Proposition 1. For any distributions Fx, and Fx,, ¢;;(0) = 0, and pz(i,j) > 0 (< 0) implies that
cijlpz (i, )] 2 0 (< 0).

Proof. If pz(4,j) = 0, then
BIX:X] = B{ Fx [o(Z0)] Fx [@( )]} = B {Fx @(Z)} B{ Fx![e(Z)]} = BIXBLX;]

since pz(i,j) = 0 implies that Z; and Z; are independent. If pz (¢, j) > 0 (< 0), then Cov[g1(Z;, Z;), 92(Z;, Z;)] >
0 (£ 0) for all nondecreasing functions g1 and gs such that the covariance exists (Tong [1990], p. 20). Taking
91(Z;, Z;) = F)}ll [®(Z;)] and ¢g2(Z;, Z;) = F)}]l [®(Z;)], the result follows since Fiz'[®(-)] is a nondecreasing
function. O

It follows from the proof of Proposition 1 that taking pz (¢, j) = 0 results in a vector in which X; and X;
are not only uncorrelated, but are also independent.
Proposition 2. Let p;; and Py be the maximum and minimum feasitble bivariate correlations, respectively,

for random variables having marginal distributions Fx, and Fx . Then, ¢;j(1) = p;; and c;j(—1) = Pij-



Proof. A correlation of 1 is the maximum possible for bivariate normal random variables. Therefore,
taking pz(i,j) = 1 is equivalent (in distribution) to setting Z; «— ®~1(U) and Z; — ®~1(U), where U is
a U(0,1) random variable (Whitt [1976]). But this definition of Z; and Z; implies that X; — F)}ll[U] and
Xj — F)}jl[U], from which it follows that ¢;;(1) = p;; by the same reasoning. Similarly, taking pz (i, j) = —1
is equivalent to setting X; «— F)}ll[U] and X; «— F)}jl[l — U], from which it follows that ¢;;(—1) = p;;- O

Our next two results shed light on the shape of the function ¢;;[pz (7, j)].
Theorem 1. The function ¢;;[pz(i,j)] is nondecreasing for —1 < pz(i,j) < 1.
Proof. See the Appendix. O
Theorem 2. If there exists € > 0 such that E[|X;X;|'T¢] < oo for all values of —1 < pz(i,j) < 1,
where X;, X; are defined by a NORTA transformation, then the function ¢;;[pz (i, j)] is continuous for —1 <
pz(i,j) < 1.
Proof. See the Appendix. O

Since ¢;;[pz (4, j)] is a continuous, nondecreasing function under the mild conditions stated in Theorem
2, any reasonable search procedure can be used to find pz (4, j) such that ¢;;[pz (¢, j)] & px (¢, j). Proposition
1 provides the initial bounds for such a procedure. Proposition 2 shows that the extremal values of px (4, j)
are attainable under our model. Furthermore, from Proposition 2, Theorem 2 and the Intermediate Value
Theorem, any feasible bivariate correlation for Fix,, Flx; is attainable under our model. Theorem 1 provides
the theoretical basis for adjusting the values of pz (4, j), and is the key to establishing convergence of a search
procedure.

Throughout the previous discussion we assumed that there exists a joint distribution with marginal
distributions Fix,,7 = 1,2,... k, and correlation matrix Xx. However, not all combinations of Fx, i =

1,2,...,k, and X x are feasible. Clearly, for X x to be feasible we must have Py < px(4,)) < p;j for each



i # j. In addition, ¥ x must be nonnegative definite. Our next result indicates that X x will be nonnegative
definite if X5 1s.
Proposition 3. If X7 is nonnegative definite, then so is ¥ x implied by the NORTA transformation.

Proof. Provided that X7 is nonnegative definite,

Fx(xi, @, 7)) = Pr{Xy <@, Xo <@y, X < 21}

= Pr{Z <O Fx, (1)), Zo < 7 [Fx,(20)], ., Zi < @7 Fx (2)])

is a well-defined joint cdf for —oco < z; < 00,2 =1,2,..., k. Therefore, X x must be nonnegative definite. O

Comment: In a sense, the problem of representing multivariate random vectors with given marginals and
dependence structure has been made difficult by the popularity of the product-moment correlation as the
measure of dependence. Certain other measures, such as Spearman’s p and Kendall’s 7, are invariant under
monotone transformations, so that fixing these measures for the base vector Z guarantees the same measures
on the input vector X. More precisely, both Spearman’s p and Kendall’s 7 depend only on the copula of a

pair of random variables, and X has the same copula as Z by construction.
4 Generating Simulation Input

Let X7 be the correlation matrix such that ¢;;[pz (¢, j)] = px (4, j) for all i # j. We can check whether X5
is nonnegative definite to determine the existence of the desired joint distribution for X. Random vectors

are generated as follows:

NORTA Generation Procedure
1. Set up: Determine a lower-triangular, nonsingular factorization M of £y so that MM’ = X .

2. Generate W = (W1, Ws, ..., W), a k x 1 random vector whose elements are i.i.d. standard normal
random variables.



3. Set Z — MW.
4. Return X where X; — FY'[®(Z)], i=1,2,... k.

5. Go to step 2.
Steps 1-3 are a standard method for generating a MVN vector; see Johnson [1987] for a detailed justification.
5 Examples

Two special cases are easier than the general problem. If X; and X; have continuous uniformly distributed
marginals, then
. 6 . _ i,
px(i,j) = —sin ! (@)

from Li and Hammond [1975, equation (7)]. When X; and X; are exponentially distributed, then the
transformation px(i,j) = ¢;j[pz(i,j)] is independent of the parameters of the exponential distributions,
meaning that a fine grid of [px(¢,7), pz(¢, )] pairs can be stored and used as starting values in a search.
Figure 1 shows a plot of the function ¢;;[pz (4, j)] for the uniformly distributed case, where the relationship
is nearly the identity mapping, while Figure 2 shows a similar plot for the exponentially distributed case,
where there is significant curvature near the boundary ¢;;[—1] &~ —0.645.

In general, a numerical search is required to find the pz(¢, ) such that ¢ ;[pz(7,j)] = px(i,j) for all
i # j. In the special case when the marginals of X7, X5, ..., X are all the same, the ARTAFACTS software

described in Cario and Nelson [1997] does this automatically.! Two examples are given below.

Suppose that we require a trivariate random variable with marginals that are all Gamma(5 = 0.03424, o« =

LARTAFACTS is designed to fit a stationary time series with arbitrary marginal distribution and autocorrelations specified
through lag p. More information, and the software itself, can be obtained from http://www.iems.nwu.edu/~ nelsonb/ARTA/.
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Figure 1: The function ¢;;[pz (¢, j)] when X; and X; have uniformly distributed marginals.
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Figure 2: The function ¢;;[pz(4, j)] when X; and X; have exponentially distributed marginals.
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14.4) and correlation matrix

1.0 07 05 -=0.9

10 07 —0.6
Yx = 1.0 —0.3
1.0

These characteristics are attained by a NORTA vector whose underlying trivariate normal random vector

has correlation matrix

1.0 0.704 0.504 —-0.920
1.0 0.704 —-0.616

1.0 -0.304

1.0

Yy =

Notice that the correlation matrix of Z differs only slightly from the desired correlation matrix for X, as is
often the case when F'x is continuous and relatively symmetric.

One of the advantages of the NORTA transformation is that discrete marginals are no more difficult than
continuous marginals (in fact, the numerical work required for fitting discrete marginals is somewhat less).
For instance, suppose we require a trivariate random variable with all marginals Binomial(n = 3,p = 0.5)

and correlation matrix

1.0 0.2 -0.8
Yx = 1.0 0.2
1.0

These characteristics are attained by a NORTA vector whose underlying trivariate normal random vector
has correlation matrix
1.0 0.2288 —0.8960

Y, = 1.0 0.2288
1.0

Notice that in this case X x and Xy differ significantly.

Of course, the most important feature of the NORTA transformation is that random vectors that include
both continuous and discrete component random variables are handled within the same framework. Although
we have not yet modified the ARTAFACTS code to fit general NORTA vectors, a crude numerical search will

suffice in many cases. For example, if we need a bivariate random vector (X1, X2) with X; having a discrete

11



uniform distribution on {1,2,...,10}, X5 having an exponential distribution with mean 10, and (X1, X3)

having correlation matrix

1.0 —0.5
== ()

then these characteristics will be attained by a NORTA vector whose underlying bivariate normal random

vector has correlation matrix

1.0 —0.576
Yy = ( 1.0 ) .

In this case we matched the desired correlation by using a bisection search on pz(1,2), estimating the implied
correlation px(1,2) by generating 200000 random vectors (the standard error of the correlation estimate is
approximately 0.0016). For dimension k > 2 the same procedure would be followed for each of the k(k—1)/2
pairs of correlations. Figure 3 shows a scatterplot of 200 observations from this NORTA vector, where it is
clear that small values of the discrete uniform tend to be paired with large values of the exponential, and

vice versa.
6 Conclusions

The NORTA method, and the related ARTA method for time-series input processes, provide a general-
purpose tool for modeling and generating dependent input processes. This generality comes at the cost of
computational efficiency. The fitting process is time consuming, although this expense is incurred only once
for each input model. More importantly, the marginal time for generating each NORTA variate can be longer
than the fastest available method for a particular distribution, due to the need to evaluate the composite
function F)}l[q)()] However, in system simulation applications where input/output processing, event-list
management, animation, etc. account for the bulk of the execution time, the additional time required to

generate NORTA variates will be acceptable, and the generality of the method welcome.
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Figure 3: Scatterplot of 200 observations from a bivariate exponential-discrete uniform NORTA random
vector with correlation —0.5.
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It is also important to note that there is no statistical theory to back up the use of a NORTA distribution;
in fact, there seems to be little reason to believe that the “true” underlying distribution is ever NORTA.
The philosophy of the NORTA approach 1s to match distributional properties—marginals and correlation
matrix—that are considered important to having a good model, rather than giving any consideration to

finding the true model, if such a thing ever exists.
Appendix

Lemma 1. Let i = ( 8 ) and ¥, = ( pl' p{ ), and let (N1, N2)' and (Z1,75) be bivariate normal

random varitables with common mean fi and variance-covariance matrices X, and X, , respectively, where
0<p1 <p2<l. Let g1(x) and g2(x) be nondecreasing functions of x for —oo < & < o0o. Then for any g;

for which E[g?(N)] ewxists, i = 1,2, the E[g1(N1)g2(—Na)] < E[g1(Z1)g2(—72)].

Proof. The proof extends Cario and Nelson [1996], Lemma 1.

Let 71,75, Vi, Va, and W be i.i.d. N(0,1) random variables. Then,

(N1, —N3) 2 (\/1 —p2 +pr — Vi W =L = paTs — pa — i Vi — \/p_IW)

and
(Z1,—73) 2 (\/1 —p2 + 2 — Vi W =L = paTs — pa — p1 Vo — \/p_IW)

where £ denotes equality in distribution. Therefore,

Elg1(N1)g2(—Na)]

B[B{E [0n(VT=paTi + Vo =i Vi + VW)
92(=/T = p2Ty = \/p2 — piVi — /oI W) | V4, W] | WH

= w[p{uney vy )]

14



where
U () = [gz (V1=pT+pr—piVi+ /W) | Vi=v,W=w

and the expectation is with respect to 7', an independent N(0, 1) random variable.?
For g1 nondecreasing and fixed W = w, the function \Ilgvl)(vl) is nondecreasing in vy. Similarly, —\I!(_zl)v (v)

is nonincreasing in v (where v is a dummy variable used only for clarity). Therefore,
Var [90(11) = { =92 (V) }] = Var [0(11)] + Var |92 ()] - 2Cov [#(1), — 92 (V)

is minimized with respect to all joint distributions of (V;,V) with N(0,1) marginals when V3 = ®~1(U)
and V = ® (1 — U), where ® is the standard normal cdf and U is a U(0,1) random variable (Ru-
binstein et al. [1985], Proposition 1). For N(0,1) random variables this implies that V' = —V;. There-

fore, Cov[\I!(l)( 1), —y )( V)] is maximized (equivalently, Cov[\Ilgvl)(Vl), \I!(_zgv(V)] is minimized) by letting

V = —V1. Thus,
E{ED (V)W) (Vi) | W =w} < E{ED1) | W = wlE{WZ) (-V1) | W = w} (2)
= E{U(V) | W = w}E{WY)(=12) | W = w} (3)

where (2) holds because the minimum expected value must be smaller than the expected value under inde-
pendence, and (3) holds because Vi and Vs are identically distributed. Since (2) and (3) hold for any value

of W, it follows that
B [B{wl) () e, (—vi) | W] < B [Blel)(vi) | we(e), (-va) | 1],
But notice that

Elpn(Z0)g:(-2)] = B[ (A)wl (—va)} | w

. d .
?Notice that Ty = —75, and they are independent.

15



BBl (V1) | W), (=va) | W)
since V7 and V5 are independent. O

Corollary. Let (Ny, No)' and (71, 72) have bivariate normal distributions with common mean [ and
variance-covariance matrices ¥, and X, , respectively, where —1 < py < p1 < 0. Let g1(z) and go(x) be

nondecreasing functions of @ for —oo < ¥ < 0o. Then, Elg1(N1)g2(N2)] < E[g1(71)g2(72)].

Proof. This follows from Lemma 1 since (N1, —N3) and (Z1,—72)" have bivariate normal distributions

with mean fI and covariance matrices ¥_, and X_, | respectively. O
Lemma 2. Under the same conditions as Lemma 1, E[g1(N1)g2(N2)] > E[g1(Z1)g2(Z2)].

Proof. The proof extends Tong [1990], Theorem 5.3.10, to the case of nonidentical cdfs. It is analogous to

the proof of Lemma 1, but makes use of the fact that

(N1, Na) L (\/1—P2T1+\/p2—p1V1+\/p1W,\/1—p2T2+\/p2—p1V1+\/p1W)
(Z1,—72) L (\/1—P2T1+\/p2—p1V1+\/p1W,\/1—p2T2+\/p2—p1V2+\/p1W)

and that the covariance between any nondecreasing functions of Vi and V is maximized with respect to
all joint distributions of (V1,V) with N(0, 1) marginals when V' = ¥} = ®(U) (Rubinstein et al. [1985],

Proposition 1). O

Proof of Theorem 1. By taking ¢; = F'[®(-)] in the Corollary (if pz(i,j) < 0) or in Lemma 2 (if

z

pz(i,7) > 0), it follows that ¢;;[pz (4, j)] is a nondecreasing function for —1 < pz(4,j) < 1. O

16



Lemma 3. For given cdfs Fx,, 1 = 1,2, if there exists € > 0 such that

Ly (it e fads < o (1)

then c12(p) is a continuous function for —1 < p < 1.

Proof. The proof extend Cario and Nelson [1996], Lemma 2.
Let 71 and Z3 be i.i.d. N(0,1) random variables. Let p € [—1, 1] be fixed, and {p, }52; be any sequence

such that p, € [-1,1],forn=1,2,... and p, — p as n — co. For n = 1,2,..., define

Zin =21, Zowm=paZi+1—p2Zs, Zy=pZi+/1—p*Zs.

F)}ll [®(z )]F)}j [®(z2)]. Since h is monotone in

Further, let X;, = F)}l[q)(Zm)], fori=1,2 and h ( zl )
¢ 2

z1 and zs individually, it has a countable number of discontinuities. Therefore, by the Continuous Mapping

Theorem (Billingsley [1995], Theorem 29.2)

Zin 4 Zy
h(Zzn)§h<Z2)asn—>oo,

Zin 4 4l as n — 0o

Zan Z3 ’

where = denotes convergence in distribution. Equivalently,

since

XlnX2n :d> X1X2 as n — o0, (5)

where X; = F)}ll [®(7;)], for i = 1,2. Tt follows from (4), (5), and Theorem 25.12 of Billingsley [1995], that

E[X1,X2,] — E[X1X5] as n — o0; equivalently, ¢12[p,] — c12[p] as n — oo. O

17



Notice that condition (4) of Lemma 3 is equivalent to stating that E[| X;X; |'*¢] < oo for all values of

—1 < pz(4,j) < 1, where X;, X; are defined by our transformation, which is the condition given in the

statement of Theorem 2.

Proof of Theorem 2. Theorem 2 follows immediately from Lemma 3 with 7, = 7;, 7, = 7;, X; =

Xi,Xo = Xj, and p = pz(3,j). O
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