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Abstract

Modeling the dependence among multiple loss triangles is critical to loss reserving, risk
management and capital allocation for property-casualty insurers. In this article, we propose
a copula regression model for the prediction of unpaid losses for dependent lines of business.
The proposed method, relating the payments in different run-off triangles through a copula
function, allows us to use flexible parametric families for the loss distribution and to understand
the associations among lines of business. Based on the copula model, a parametric bootstrap
procedure is developed to incorporate the uncertainty in parameter estimates. In the actuarial
applications, we consider an insurance portfolio consisting of personal and commercial auto-
mobile lines. When applied to the data of a major US property-casualty insurer, our method
provides comparable point prediction of unpaid losses with the industry’s standard practice.
Moreover, our flexible structure renders the predictive distribution of unpaid losses, from which,
the accident year reserves, calendar year reserves, as well as the aggregated reserves for the
portfolio can be handily determined. One important implication of the dependence modeling is
the diversification effect in the risk capital analysis. We demonstrate this effect by calculating
the commonly used risk measures, including value at risk and conditional tail expectation, for
the insurer’s portfolio.

Keywords: Run-off triangle, Association, Copula Regression, Bootstrap
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1 Introduction

Loss reserving is a classic actuarial reserving problem encountered extensively in property and
casualty as well as health insurance. Typically, losses are arranged in a triangular fashion as they
develop over time and as different obligations are incurred from year to year. This triangular format
emphasizes the longitudinal and censored nature of the data. The primary goal of loss reserving
is to set an adequate reserve to fund losses that have been incurred but not yet developed. For a
single line of business written by an insurance company, there is an extensive actuarial literature
describing alternative approaches for determining loss reserves. See, for example, Taylor (2000),
England and Verrall (2002), and Wüthrich and Merz (2008).

However, almost every major insurer has more than one line of business. One can view losses
from a line of business as a financial risk; it is intuitively appealing to think about these risks as
being related to one another. It is well-known that if risks are associated, then the distribution of
their sum depends on the association. For example, if two risks are positively correlated, then the
variability of the sum of risks exceeds the sum of variabilities from each risk. Should an insurer use
the loss reserve from the sum of two lines of business or the sum of loss reserves, each determined
from a line of business? This problem of “additivity” was put forth by Ajne (1994) who notes that
the most common approach in actuarial practice is the “silo” method. Here, an insurer divides its
portfolio into several subportfolios (silos). A subportfolio can be a single line of business or can
consist of several lines with homogeneous development pattern. The claim reserve and risk capital
are then calculated for each silo and added up for the portfolio. The most important critique of
this method is that the simple aggregation ignores the dependencies among the subportfolios.

In loss reserving, complicating the determination of dependencies among lines of business is the
evolution of losses over time. As emphasized by Holmberg (1994) and Schmidt (2006), correlations
may appear among losses as they develop over time (within an incurral year) or among losses
in different incurral years (within a single development period). Other authors have focussed
on correlations over calendar years, thinking of inflationary trends as a common unknown factor
inducing correlation.

Much of the work on multivariate stochastic reserving methods to date has involved extending
the distribution-free method of Mack (1993). Braun (2004) proposed to estimate the prediction er-
ror for a portfolio of correlated loss triangles based on a multivariate chain-ladder method. Similarly,
Merz and Wüthrich (2008) considered the prediction error of another version of the multivariate
chain-ladder model by Schmidt (2006), where the dependence structure was incorporated into pa-
rameter estimates. Within the theory of linear models, Hess et al. (2006) and Merz and Wüthrich
(2009b) provided the optimal predictor and the prediction error for the multivariate additive loss
reserving method, respectively. Motivated by the fact that not all subportfolios satisfy the same
homogeneity assumption, Merz and Wüthrich (2009a) combined chain-ladder and additive loss
reserving methods into one single framework. Zhang (2010) proposed a general multivariate chain-
ladder model that introduces correlations among triangles using the seemingly unrelated regression
technique.
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These procedures have desirable properties, focusing on the mean square error of predictions.
In this paper, we focus instead on tails of the distribution. Because of this, and the small sample
size typically encountered in loss reserving problems, we look more to parametric methods based
on distributional families. For example, in a multivariate context, Brehm (2002) employed a log-
normal model for the unpaid losses of each line and a normal copula for the generation of the joint
distribution. The dispersion matrix in the copula was estimated using correlations among calendar
year inflation in different lines of business. Kirschner et al. (2002, 2008) presented two approaches
to calculate reserve indications for correlated lines, among which, a synchronized bootstrap was
suggested to resample the variability parameters for multiple triangles. Following and general-
izing this result, Taylor and McGuire (2007) examined the similar bootstrap method under the
generalized linear model framework, and demonstrated the calculations of loss reserves and their
prediction errors. de Jong (2010) employed factor analytic techniques to handle several sources
of time dependencies (by incurral year, development year, calendar year) as well as correlations
among lines of business in a flexible manner.

An alternative parametric approach involving Bayesian methods has found applications when
studying loss reserves for single lines of business. Some recent work include de Alba (2006), de Alba
and Nieto-Barajas (2008) and Meyers (2009). The Bayesian methods for multivariate loss reserving
problems have rarely been found in the literature. Merz and Wüthrich (2010) is one example, where
the authors considered a bivariate Bayesian model for combining data from the paid and incurred
triangles to achieve better prediction.

We employ a copula method to associate the claims from multiple run-off triangles. Despite the
application of copulas in Brehm (2002) and de Jong (2010), both are focused on correlations in a
model based on normal distributions. In contrast, the focus of this paper is to show how one can
use a wide range of parametric families for the loss distribution to understand associations among
lines of business.

Our reliance on a parametric approach has both strengths and limitations. A strength of the
parametric approach is that is has historically been used for small data sets such as is typical in
the loss reserve setting. With the parametric approach, we can use diagnostic methods to check
model assumptions. To illustrate, in our example of data from a major US insurer, we show that
the lognormal distribution is appropriate for the personal automobile line whereas the gamma
distribution is appropriate for the commercial auto line. Because of our reliance on parametric
families, we are able to provide an entire predictive distribution for “silo” (single line of business)
loss reserves as well as for the entire portfolio. Traditionally, parametric approaches have been
limited because they do not incorporate parameter uncertainty into statistical inference. However,
we are able to use modern parametric bootstrapping to overcome this limitation.

A limitation of the approach presented in this paper is that we focus on the cross-sectional
dependence among lines of business. We incorporate time patterns through deterministic param-
eters, similarly to that historically done in a loss reserve setting. Our goal is to provide a simple
alternative way to view the dependence among multiple loss triangles. We show that the depen-
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dency is critical in determining an insurer’s reserve ranges and risk capital. To show that our loss
reserve forecasts are not ad hoc, we compare our results with the industry’s standard practice, the
chain-ladder prediction, as well as other alternative multivariate loss reserving methods.

The outline of this article is as follows: Section 2 introduces the copula regression model to
associate losses from multiple triangles. Section 3 presents the run-off triangle data and model fit
results. Section 4 discusses the predictive distribution of unpaid losses and shows its implications
in determining the accident year reserves, calendar year reserves, as well as aggregate reserves.
Section 5 illustrates the diversification effect of dependent loss triangles in a risk capital analysis.
Section 6 concludes the article.

2 Modeling

In a loss reserving context, each element of a run-off triangle may represent incremental payments
or cumulative payments, depending on the situation. Our approach applies to the incremental paid
losses. Assume that an insurance portfolio consists of N subportfolios (triangles). Let i indicate
the year in which an accident is incurred, and j indicate the development lag, that is the number of
years from the occurrence to the time when the payment is made. Define X

(n)
ij as the incremental

claims in the ith accident year and the jth development year. The superscript (n), n ∈ {1, · · · , N},
indicates the nth run-off triangle. Thus, the random vector of multivariate incremental claims can
be expressed by

Xij = (X(1)
ij , · · · , X

(Nij)
ij ), i ∈ {0, · · · , I} and j ∈ {0, · · · , J},

where I denotes the most recent accident year and J denotes the latest development year. Typically,
we have I ≥ J . Note that we allow the imbalance in the multivariate triangles. With Nij being
the dimension of the incremental claim vector for accident year i and development lag j, Nij < N

implies the lack of balance and Nij = N the complete design. The imbalance could be due to
missing values in run-off triangles or the different size of each portfolio.

With above notations, the claims reserves for accident year i and calendar year k, at time I,
can be shown as

J∑

j=I+1−i

Xij for i ∈ {I + 1− J, · · · , I}, and
∑

i+j=k

Xij for k ∈ {I + 1, · · · , I + J},

respectively. Our interest is to forecast the unpaid losses in the lower-right-hand triangle, based on
the observed payments in the upper-left-hand triangle. At the same time, we take into account of
the dependencies among multiple run-offs in the parameter estimation and loss reserve indication.
Here, we assume that all the claims will be closed in J years, that is, all payments are made within
the next J years after the occurrence of an accident.
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2.1 Distributional Models

Due to the typical small sample size of run-off triangles, we focus on the modeling of incremental
payments based on parametric distributional families. In this context, claims are usually normalized
by an exposure variable that measures the volume of the business. We define the normalized
incremental claims as Y

(n)
ij = X

(n)
ij /ω

(n)
i , where ω

(n)
i denotes the exposure for the ith accident year

in the nth triangle. Assume that Y
(n)
ij is from a parametric distribution:

F
(n)
ij = Prob(Y (n)

ij ≤ y
(n)
ij ) = F (n)(y(n)

ij ; η(n)
ij ,γ(n)), n = 1, · · · , N. (1)

Here, we allow different distributional families F (n)(·) for incremental losses of lines with different
characteristics or development patterns. In claims reserving problems, the systematic component
η

(n)
ij , which determines the location, is often a linear function of explanatory variables (covariates),

that is η
(n)
ij = x(n)′

ij β(n). The covariate vector x(n)
ij includes the predictive variables that are used for

forecasting the unpaid losses in the nth triangle, and β(n) represents the corresponding coefficients
to be estimated. The vector γ(n), summarizing additional parameters in the distribution of Y

(n)
ij ,

determines the shape and scale. Except for the location parameter, we assume that all other
parameters are the same for incremental claims within each individual run-off triangle.

Among parametric distributional families, the log-normal and gamma distributions have been
extensively studied for incremental claims in the loss reserving literature. The log-normal model,
introduced by Kremer (1982), examined the logarithm of incremental losses and used the mul-
tiplicative structure for the mean. Another approach based on a log-normal distribution is the
Hoerl curve (see England and Verrall (2002)). Using a log link function, the Hoerl curve replaced
the chain-ladder type systematic component in the log-normal model with one that is linear in
development lag and and its logarithm. With the same linear predictor as in the chain-ladder
method, Mack (1991) proposed using a gamma distribution for claim amounts. Other parametric
approaches, including the Wright’s model (see Wright (1990)) and the generalized linear model
(GLM) framework (see Renshaw and Verrall (1998)), also considered the gamma distribution for
incremental claims.

In our applications, we follow the idea behind the chain-ladder model and use two factors,
accident year and development lag, for covariates. Thus, the systematic component for the nth
subportfolio can be expressed as:

η
(n)
ij = ζ(n) + α

(n)
i + τ

(n)
j , n = 1, · · · , N, (2)

where constraints α
(n)
0 = 0 and τ

(n)
0 = 0 are used in the model development. Specifically, we

consider the form η
(n)
ij = µ

(n)
ij for a log-normal distribution with location parameter µ and scale

parameter σ. For a gamma distribution with shape parameter κ and scale parameter θ, one could
apply the canonical inverse link η

(n)
ij = (κ(n)θ

(n)
ij )−1 in the GLM framework. Alternatively, as

pointed out by Wüthrich and Merz (2008), a log-link η
(n)
ij = log(κ(n)θ

(n)
ij ) is typically a natural
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choice in the insurance reserving context.

2.2 Copula Regression

For large property-casualty insurers, different lines of business are very often related and reserve
indications must reflect the dependencies among the corresponding multiple loss triangles. In a
regression context, a natural choice to accommodate the dependence among lines of business is the
seemingly unrelated regression (SUR) introduced by Zellner (1962). The SUR extends the linear
model and allows correlated errors between equations. However, due to the long-tailed nature, in-
surance data are often phrased in a non-linear regression framework, such as GLMs (see de Jong and
Heller (2008)). Within a GLM, one can introduce correlations via latent variables. Both approaches
to dependency modeling are limited to the concept of linear correlation. Furthermore, assuming a
common distributional family for all triangles might not be appropriate, since subportfolios often
present heterogeneous development patterns. Merz and Wüthrich (2009a) addressed this problem
by combining the multivariate chain-ladder and the multivariate additive loss reserving method
and thus allowing the chain-ladder for one triangle and the additive loss reserving method for the
other in a portfolio. However, no work has appeared to date to address the same problem in a
parametric setup.

In this work, we employ parametric copulas to understand the dependencies among run-off
triangles. In stead of linear correlation, we examine a more general concept of dependence - associ-
ation. A copula is a multivariate distribution with all marginals following uniform distribution on
[0, 1]. It is a useful tool for understanding relationships (both linear and nonlinear) among multiple
responses (see Joe (1997)). For statistical inference and prediction purposes, it is more interest-
ing to place a copula in a multivariate regression context. The application of copula regression
in actuarial science is recent. Frees and Wang (2005, 2006) developed a copula-based credibility
estimates for longitudinal insurance claims. Sun et al. (2008) employed copulas in a similar manner
to forecast nursing home utilization. Frees and Valdez (2008) and Frees et al. (2009) used copulas
to accommodate the dependencies among claims from various types of coverage in auto insurance.
Shi and Frees (2010) introduced a longitudinal quantile regression model using copulas to examine
insurance company expenses.

Consider a simple case where an insurance portfolio consists of two lines of business (N=2).
According to Sklar’s theorem (see Nelsen (2006)), the joint distribution of normalized incremental
claims (Y (1)

ij , Y
(2)
ij ) can be uniquely represented by a copula function as

Fij(y
(1)
ij , y

(2)
ij ) = Prob(Y (1)

ij ≤ y
(1)
ij , Y

(2)
ij ≤ y

(2)
ij ) = C(F (1)

ij , F
(2)
ij ;φ), (3)

where C(·;φ) denotes the copula function with parameter vector φ, and marginal distribution
functions F

(1)
ij and F

(2)
ij follow equation (1). This specification renders the flexibility of modeling

claims of the two subportfolios with different distributional families.
In model (3), the dependence between two run-off triangles is captured by the association
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parameter φ. In addition to the linear correlation, it also measures non-linear relationships. Some
non-linear association measures include Spearman’s rho ρs and Kandall’s tau ρτ :

ρs(Y
(1)
ij , Y

(2)
ij ) = 12

∫ ∫

[0,1]2
C(u, v)dudv − 3, (4)

ρτ (Y
(1)
ij , Y

(2)
ij ) = 4

∫ ∫

[0,1]2
C(u, v)

∂2C

∂u∂v
(u, v)dudv − 1. (5)

Another type of non-linear association is the tail dependence. Based on the copula C, the upper
and lower tail dependence can be derived by:

ρUpper(Y
(1)
ij , Y

(2)
ij ) = lim

u→1−

C̄(u, u)
1− u

, and ρLower(Y
(1)
ij , Y

(2)
ij ) = lim

u→0+

C(u, u)
u

, (6)

where C̄(u, v) denotes the associated survival copula C̄(u, v) = 1− u− v + C(u, v). Note all above
non-linear dependence measures only depend on the association parameter φ. For example, a
bivariate frank copula, which captures both positive and negative association, is defined as

C(u, v) =
1
φ

log
(

1 +
(e−φu − 1)(e−φv − 1)

e−φ − 1

)
.

It is straight forward to show that the corresponding Spearman’s rho and Kandall’s tau are:

ρs(Y
(1)
ij , Y

(2)
ij ) = 1− 4

φ
[1−D1(φ)],

ρτ (Y
(1)
ij , Y

(2)
ij ) = 1− 12

φ
[D1(φ)−D2(φ)],

where Dk(·), k = 1 or 2, denotes the Debye function.
As a parametric approach, model (3) can be easily estimated using a likelihood based estimation

method. Let c(·) denote the probability density function corresponding to the copula distribution
function C(·). The log-likelihood function for the insurance portfolio is:

L =
I∑

i=0

I−i∑

j=0

ln c(F (1)
ij , F

(2)
ij ;φ) +

I∑

i=0

I−i∑

j=0

ln(f (1)
ij + f

(2)
ij ), (7)

where f
(n)
ij denotes the density of marginal distribution F

(n)
ij , that is f

(n)
ij = f (n)(y(n)

ij ; η(n)
ij ,γ(n)) for

n = 1, 2. The model is estimated using observed paid losses y
(n)
ij , for (i, j) ∈ {(i, j) : i + j ≤ I},

and a reserve is set up to cover future payments y
(n)
ij , for (i, j) ∈ {(i, j) : i + j > I}.

One benefit of dependence modeling using copulas is that a copula preserves the shapes of
marginals. Thus, one can take advantage of standard statistical inference procedures in choosing
marginal distributions, that is the distributional family for each claims triangle. Regarding the
association between triangles, various approaches have been proposed for the choice of copulas (see
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Genest et al. (2009) for a comprehensive review). We exploit this specification by examining the
Akaike’s Information Criterion (AIC). In addition, due to the parametric setup, the entire predictive
distribution for the loss reserves of each line of business as well as for the portfolio can be derived
using Monte Carlos simulation techniques.

A limitation of parametric approaches is that the parameter uncertainty is not incorporated into
statistical inference. To tackle this issue, one can consider a Bayesian framework, where the data
are used to improve the prior and hence the new posterior distribution are used together with the
sampling distribution to compute the predictive distribution for unpaid losses. However, we take
a frequentist’s perspective and choose to overcome this limitation by using modern bootstrapping.
The detailed simulation and bootstrapping procedures are summarized in Appendix A.1.

2.3 Model Extension

This section discusses the potential extensions to the copula regression model by relaxing the model
assumptions. We intend to provide a more general framework for dependent loss reserving, though
the empirical analysis will focus on the basic setup. The first generalization is to adapt model (3)
to the case of multivariate (N > 2) run-off triangles. Similar to the bivariate case, the model enjoys
the computational advantage. Rewriting model (3), the joint density of (Y (1)

ij , · · · , Y
(Nij)
ij ) can be

expressed by:

fij(y
(1)
ij , · · · , y

(Nij)
ij ) = c(F (1)

ij , · · · , F
(Nij)
ij ;φ)

Nij∏

n=1

f
(n)
ij . (8)

For the case of unbalanced data Nij < N , the copula density in (8) will be replaced with the
corresponding sub-copula. Thus, the parameters can be estimated by maximizing the log-likelihood
function:

L =
I∑

i=0

I−i∑

j=0

ln c(F (1)
ij , · · · , F

(Nij)
ij ;φ) +

I∑

i=0

I−i∑

j=0

Nij∑

n=1

ln f
(n)
ij . (9)

To accommodate the pairwise association among N triangles, one could employ the family of
elliptical copulas. The definition of elliptical copulas is given in Appendix A.2. A natural way to
introduce dependency is through the association matrix Σ of an elliptical copula:

Σ =




1 ρ12 · · · ρ1N

ρ21 1 · · · ρ2N

...
...

. . .
...

ρN1 ρN2 · · · 1




. (10)

Here, ρij = ρji captures the pairwise association between the ith and jth triangles. The sub-copula
for model (8) is the elliptical copula generated by the corresponding sub-matrix of Σ.

In both models (3) and (8), we assume an identical association for all claims in the triangle,
regardless of the accident year and development lag. This assumption could be relaxed by specifying
different copulas for claims with regard to the accident year or development lag. For example, the
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association among run-off triangles could vary over accident years, then the model (8)-(9) becomes
(11)-(12), respectively:

fij(y
(1)
ij , · · · , y

(Nij)
ij ) = ci(F

(1)
ij , · · · , F

(Nij)
ij ;φ)

Nij∏

n=1

f
(n)
ij , i = 0, · · · , I (11)

L =
I∑

i=0

I−i∑

j=0

ln ci(F
(1)
ij , · · · , F

(Nij)
ij ;φ) +

I∑

i=0

I−i∑

j=0

Nij∑

n=1

ln f
(n)
ij . (12)

In the above specification, copula functions ci for i ∈ 1, · · · , I could be from the same distribution
with different association matrix Σi. Or they might have the same association structure but are
based on different distributions, for example, the normal copula is used for one accident year, while
the t-copula for the other. Following the same rationale, we could allow the association among
triangles to vary over development years or calendar years.

The more general and also more complicated case is when the independence assumption for
claims in each triangle is relaxed. Within a single triangle, the incremental payments may present
dependency over development lags or calendar years. To introduce such type of dependence, one
might refer to multivariate longitudinal modeling techniques. In the copula regression framework,
to capture the association within and between triangles simultaneously, we choose to replace matrix
(10) with:

Σ =




P1 σ12P12 · · · σ1NP1N

σ21P21 P2 · · · σ2NP2N

...
...

. . .
...

σN1PN1 σN2PN2 · · · PN




. (13)

In the formulation (13), Pn, n = 1, · · · , N is a correlation matrix that describes the association
for claims within the nth triangle. σij = σji measures the concurrent association between the ith
and jth triangles. Pij implies the lag correlation that is straightforward to be derived from Pi and
Pj . As mentioned before, our goal is to provide a general modeling framework for dependent loss
reserving. We leave the detailed discussion of this complicated case to the future study.

3 Empirical Analysis

The copula regression model is applied to the claims triangles of a major US property-casualty
insurer. We pay more attention to the data analysis and select models that are closely fit by the
data. Also, we carefully interpret the association between lines of business.
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3.1 Data

The run-off triangle data are from the Schedule P of the National Association of Insurance Com-
missioners (NAIC) database. The NAIC is an organization of insurance regulators that provides
a forum to promote uniformity in the regulation among different states. It maintains one of the
world’s largest insurance regulatory databases, including the statutory accounting report for all
insurance companies in the United States. The Schedule P includes firm level run-off triangles
of aggregated claims for major personal and commercial lines of business for property-casualty
insurers. And the triangles are available for both incurred and paid losses.

We consider the triangles of paid losses in Schedule P of year 1997. Each triangle contains losses
for accident years 1988-1997 and at most ten development years. The preliminary analysis shows
that the dependencies among lines of business vary across firms. As a result, our analysis will focus
on one single major insurance company. Recall that we assume that all claims will be closed in I

(=10 in our case) years. This assumption is not reasonable for long-tail lines of business. Thus, we
limit our application to an insurance portfolio that consists of two lines of business with relative
short tails, personal auto and commercial auto.

Table 1 and Table 2 display the cumulative paid losses for personal and commercial auto lines,
respectively. We observe that the portfolio is not evenly distributed in the two lines of business,
with personal auto much larger than the commercial auto. In loss reserving literature, payments
are typically normalized by an exposure variable that measures the volume of the business, such
as number of policies or premiums. We normalize the payment by dividing by the net premiums
earned in the corresponding accident year, and we focus on the normalized incremental payments
in the following analysis. The exposure variable is also exhibited in the above tables.

To examine the development pattern of each triangle, we present the multiple time series plot of
loss ratios for personal and commercial auto lines in Figure 1. Each line corresponds to an accident
year. The decreasing trend confirms the assumption that all claims will be closed within ten years.
A comparison of the two panels shows that the development of the personal automobile line is less
volatile than that of the commercial automobile line.

10



T
a
b
le

1
.

C
u
m

u
la

ti
v
e

P
a
id

L
o
ss

e
s

fo
r

P
e
rs

o
n
a
l
A

u
to

L
in

e
(i

n
th

o
u
sa

n
d

o
f
d
o
ll
a
rs

)

D
ev

el
o
p
m

en
t

L
a
g

A
cc

id
en

t
Y

ea
r

P
re

m
iu

m
s

0
1

2
3

4
5

6
7

8
9

1
9
8
8

4
,7

1
1
,3

3
3

1
,3

7
6
,3

8
4

2
,5

8
7
,5

5
2

3
,1

2
3
,4

3
5

3
,4

3
7
,2

2
5

3
,6

0
5
,3

6
7

3
,6

8
5
,3

3
9

3
,7

2
4
,5

7
4

3
,7

3
9
,6

0
4

3
,7

5
0
,4

6
9

3
,7

5
4
,5

5
5

1
9
8
9

5
,3

3
5
,5

2
5

1
,5

7
6
,2

7
8

3
,0

1
3
,4

2
8

3
,6

6
5
,8

7
3

4
,0

0
8
,5

6
7

4
,1

9
7
,3

6
6

4
,2

7
4
,3

2
2

4
,3

0
9
,3

6
4

4
,3

2
6
,4

5
3

4
,3

3
8
,9

6
0

1
9
9
0

5
,9

4
7
,5

0
4

1
,7

6
3
,2

7
7

3
,3

0
3
,5

0
8

3
,9

8
2
,4

6
7

4
,3

4
6
,6

6
6

4
,5

2
3
,7

7
4

4
,6

0
1
,9

4
3

4
,6

4
9
,3

3
4

4
,6

7
4
,6

2
2

1
9
9
1

6
,3

5
4
,1

9
7

1
,7

7
9
,6

9
8

3
,2

7
8
,2

2
9

3
,9

3
9
,6

3
0

4
,2

6
1
,0

6
4

4
,4

2
3
,6

4
2

4
,5

0
8
,2

2
3

4
,5

6
1
,6

7
2

1
9
9
2

6
,7

3
8
,1

7
2

1
,8

4
3
,2

2
4

3
,4

1
6
,8

2
8

4
,0

2
9
,9

2
3

4
,3

2
9
,3

9
6

4
,5

0
6
,2

3
8

4
,6

1
2
,5

3
4

1
9
9
3

7
,0

7
9
,4

4
4

1
,9

6
2
,3

8
5

3
,4

8
2
,6

8
3

4
,0

6
4
,6

1
5

4
,4

1
2
,0

4
9

4
,6

5
0
,4

2
4

1
9
9
4

7
,2

5
4
,8

3
2

2
,0

3
3
,3

7
1

3
,4

6
3
,9

1
2

4
,0

9
7
,4

1
2

4
,5

2
9
,6

6
9

1
9
9
5

7
,7

3
9
,3

7
9

2
,0

7
2
,0

6
1

3
,5

3
0
,6

0
2

4
,2

5
7
,7

0
0

1
9
9
6

8
,1

5
4
,0

6
5

2
,2

1
0
,7

5
4

3
,7

2
8
,2

5
5

1
9
9
7

8
,4

3
5
,9

1
8

2
,2

0
6
,8

8
6

T
a
b
le

2
.

C
u
m

u
la

ti
v
e

P
a
id

L
o
ss

e
s

fo
r

C
o
m

m
e
rc

ia
l
A

u
to

L
in

e
(i

n
th

o
u
sa

n
d

o
f
d
o
ll
a
rs

)

D
ev

el
o
p
m

en
t

L
a
g

A
cc

id
en

t
Y

ea
r

P
re

m
iu

m
s

0
1

2
3

4
5

6
7

8
9

1
9
8
8

2
6
7
,6

6
6

3
3
,8

1
0

7
9
,1

2
8

1
2
5
,6

7
7

1
6
0
,8

8
3

1
8
4
,2

4
3

1
9
6
,7

4
5

2
0
3
,3

4
7

2
0
6
,7

2
0

2
0
9
,0

9
3

2
0
9
,8

7
1

1
9
8
9

2
7
4
,5

2
6

3
7
,6

6
3

8
9
,4

3
4

1
3
0
,4

3
2

1
5
9
,9

2
8

1
7
2
,5

9
7

1
8
3
,8

0
1

1
8
9
,5

8
6

1
9
3
,8

0
6

1
9
5
,7

1
6

1
9
9
0

2
6
8
,1

6
1

4
0
,6

3
0

9
6
,9

4
8

1
5
3
,1

3
0

1
8
5
,6

0
3

2
0
1
,4

3
1

2
0
9
,8

4
0

2
1
6
,9

6
0

2
1
8
,0

8
5

1
9
9
1

2
7
6
,8

2
1

4
0
,4

7
5

9
0
,1

7
2

1
2
9
,4

8
5

1
5
3
,5

2
9

1
6
6
,6

8
5

1
7
9
,2

8
0

1
8
2
,1

8
8

1
9
9
2

2
7
0
,2

1
4

3
7
,1

2
7

8
8
,1

1
0

1
2
2
,2

6
4

1
4
7
,7

1
9

1
6
7
,1

4
0

1
7
2
,8

6
8

1
9
9
3

2
8
0
,5

6
8

4
1
,1

2
5

9
4
,4

2
7

1
3
4
,7

1
6

1
7
4
,6

2
8

1
8
1
,2

7
8

1
9
9
4

3
4
4
,9

1
5

5
7
,5

1
5

1
2
5
,3

9
6

2
1
2
,1

3
0

2
3
0
,2

3
9

1
9
9
5

3
7
1
,1

3
9

6
1
,5

5
3

1
9
3
,7

6
1

2
1
4
,6

8
4

1
9
9
6

3
2
3
,7

5
3

1
1
2
,1

0
3

1
4
5
,3

5
3

1
9
9
7

2
2
1
,4

4
8

3
7
,5

5
4

11



Personal Auto

Development Lag

Lo
ss

 R
at

io

0.0

0.1

0.2

0.3

2 4 6 8 10

Commercial Auto

Development Lag

Lo
ss

 R
at

io

0.0

0.1

0.2

0.3

2 4 6 8 10

Figure 1: Multiple time series plots of loss ratios for personal auto and commercial auto lines.

The scatter plot of loss ratios is exhibited in Figure 2. This plot suggests a strong positive,
although nonlinear, relationship between commercial and personal auto lines. In fact, the corre-
sponding Pearson correlation is 0.725. Since we are comparing the payments from two triangles
of the same accident year and development lag, the strong correlation reflects the effects of the
potential distortions that might affect all open claims. Such distortion could be a calendar year
inflation, for example, a decision to accelerate the payments in all business lines.

3.2 Model Inference

This section fits the copula regression model. Since a copula splits the modeling of marginals and
dependence structure, one could evaluate the goodness-of-fit for the marginal and joint distribu-
tions separately. As for marginals, preliminary analysis suggests that a lognormal regression is
appropriate for the personal auto line and a gamma regression is appropriate for the commercial
auto line. To show the reasonable model fits for the two triangles, we exhibit the qq-plots of
marginals for personal and commercial auto lines in Figure 3. Note that the analysis is performed
on residuals from each regression model, because one wants to take out the effects of covariates
(the accident year and development year effects for our case). For the lognormal regression, the
residual is defined as ε̂ij = (ln yij − µ̂ij)/σ̂, and for the gamma regression, the residual is defined as
ε̂ij = yij/θ̂ij . These plots show that the marginal distributions for personal and commercial auto
lines seem to be well-specified. There is some concern that the lower tail of the commercial auto
distribution could be improved.

The results of formal statistical tests are reported in Table 3. The three goodness-of-fit statistics
assess the relationship between the empirical distribution and the estimated parametric distribution.
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Figure 2: Loss ratios of personal auto line versus commercial auto line.

A large p-value indicates a nonsignificant difference between the two. Both probability plots and
hypothesis tests suggest that the lognormal regression and gamma regression fit well for personal
and commercial auto lines, respectively.

Table 3. p-values of Goodness-of-Fit

Personal Auto Commercial Auto
(Lognormal) (Gamma)

Kolmogorov-Smirnov >0.150 0.081
Cramer-von Mises >0.250 0.135
Anderson-Darling >0.250 0.125

With the specifications of marginals, we reexamine the dependence between the two lines. Recall
that there is a strong positive correlation between the loss ratios of personal and commercial auto
lines. This correlation might reflect, to some extent, the accident year and/or development year
effects. To isolate these effects, we look at the relationship between the percentile ranks of residuals
from the two lines, as shown in Figure 4. The percentile rank is calculated by P (ε̂ij) = Ĝ(ε̂ij),
where Ĝ denotes the estimated distribution function of the residual. In our calculation, Ĝ represents
a standard normal distribution for the personal auto line and a gamma distribution with shape
parameter κ̂ and scale parameter 1 for the commercial auto line.

The scatter plot in Figure 4 implies a negative relationship between residuals of the two tri-
angles. The correlation coefficient is -0.2. It is noteworthy that the loss ratios from personal and
commercial auto lines become negatively correlated, after purging off the effects of accident year
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Figure 3: QQ plots of marginals for personal and commercial auto lines.

and development lag. This is an important implication from the risk management perspective, as
will be shown in Section 5.

The above analysis suggests that an appropriate copula should be able to accommodate negative
correlation. We consider the Frank copula and the Gaussian copula in this study. For comparison
purposes, we also examine the product copula that assumes independence and is a special case of
the other two. The likelihood-based method is used to estimate the copula regression model, and
the estimation results are summarized in Table 4.

We report the parameter estimates, the corresponding t statistics, as well as the the value of the
log likelihood function for each model. The result suggests that the negative association between
personal and commercial auto lines are not negligible. First, the t-statistics for the dependence
parameter in both Frank and Gaussian copula models indicate significant association. In the Frank
copula, a dependence parameter of -2.60 corresponds to a Spearmans rho of -0.39. In the Gaussian
copula, a dependence parameter of -0.36 corresponds to a Spearmans rho of -0.34. Second, since
both models nest the product copula as a special case, we can perform a likelihood ratio test to
examine the model fit. Compared with the independence case, the Frank copula model gives a χ2

statistics of 5.12, and the gaussian copula model gives a χ2 statistics of 6.84. Consistently, the
model is of better fit when incorporating the dependence between the two lines of business.

The model selection is based on a likelihood-based goodness-of-fit measure. According to the
AIC, we choose the Gaussian copula as our final model for the determination of reserves. As a step
of model validation, one needs to examine how well the Gaussian copula fits the data. We adopt the
t-plot method introduced by Sun et al. (2008). The t-plot employs the properties of the elliptical
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Figure 4: Scatter plot of residual percentiles from commercial and personal auto lines.

distribution and is designed to evaluate the goodness-of-fit for the family of elliptical copulas. We
display the plot in Figure 5. The linear trend along the 45 degree line provides evidence that the
Gaussian copula is a suitable model for the dependency. A statistical test is performed for sample
correlation. The correlation coefficient between the sample and theoretical quantiles is 0.914. Based
on 5,000 simulation, the p-value for the correlation is 0.634, indicating the nonsignificant difference
between the empirical and theoretical distributions.
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Figure 5: t-plot of residual percentiles of the Gaussian copula regression.

3.3 Comparison with Chain-Ladder Method

To show that our loss reserve forecasts are not ad hoc, this subsection compares the performance
of the copula model with one of the industry’s benchmark, the chain-ladder method. The chain-
ladder method is implemented via a over-dispersed poisson model. We examine both fitted values
and point predictions from the copula model and the chain-ladder fit. The results are presented in
Figure 6 and Figure 7.

Figure 6 compares the fitted loss ratio ŷij , for i + j ≤ I, from the two methods. The fitted
values from the copula model are calculated as exp(µ̂ij + 1/2σ̂2) for the personal auto line, and
(κ̂θ̂ij)−1 for the commercial auto line. Figure 7 demonstrates the relationship for point predictions
of unpaid losses, that is ŷij when i + j > I. We use the predictive mean as the best estimate
for unpaid losses. The predictive mean is derived based on the simulation procedure described in
Appendix A.1. These panels show that both fitted values and point predictions from the copula
model are closely related to those from the chain ladder fit. Thus, a point estimate of aggregated
reserves for the insurance portfolio should be close to the chain-ladder forecast.

We focus on point estimates in this subsection, though a reasonable reserve range is more
informative to a reserving actuary. As mentioned in Section 1, various methods have been proposed
to estimate the chain-ladder prediction error for correlated run-off triangles. By contrast, our
parametric setup allows to provide not only the prediction error, but also a predictive distribution of
reserves. Another implication of this comparison is that for this particular insurer, the dependence
among triangles does not play an important role in determining the point estimate of reserves.
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However, the dependencies are critical, as we will show in the following sections, to the predictive
distribution, and thus the reserve range.
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Figure 6: Scatter plots of fitted value between the chain-ladder method and copula model for the
personal auto and commercial auto lines.
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Figure 7: Scatter plots of predicted value between the chain-ladder method and copula model for
the personal auto and commercial auto lines.

4 Loss Reserving Indications

In practice, reserving actuaries are more interested in reserve ranges rather than point estimates.
This section demonstrates the role of dependencies in the aggregation of claims from multiple run-
off triangles. Also, a bootstrap analysis is performed to show the effects of the uncertainty in
parameter estimates on the predictive distribution of reserves.

4.1 Prediction of Total Unpaid Losses

Based on the copula regression model, a predictive distribution could be generated for unpaid
losses using the Monte Carlo simulation techniques in Appendix A.1. We display the predictive
distribution of aggregated reserves for the portfolio in Figure 8. The left panel exhibits the kernel
density and the right panel exhibits the empirical CDF. To demonstrate the effect of dependency, the
distributions derived from both product and Gaussian copula models are reported. The simulations
are based on the parameter estimates in Table 4.

The first panel shows that the Gaussian copula produces a tighter distribution than the product
copula. The second panel shows close agreement between the two distributions. The tighter
distribution indicates the diversification effect of the correlated subportfolios. Recall that our
data show a negative association between the personable auto and commercial auto lines. On the
contrary, if two subportfolios are positively associated, one expects to see a predictive distribution
that spreads out more than the product copula. In fact, such cases are identified in the preliminary
analysis for other insurers, and we include one example in the case studies in Appendix A.3. We
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need to point out, a fatter distribution does not mean that there is no diversification effect in
the insurance portfolio, because the diversification occurs when subportfolios are not perfectly
correlated.
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Figure 8: Simulated predictive distributions of total unpaid losses from the product and Gaussian
copulas models.

Though we observe the diversification effect of dependencies, Figure 8 does not suggest a sub-
stantial difference between the two predictive distributions. This seems counterintuitive when
relating to the significant dependence parameter of -0.36 in the Gaussian copula model. To explain
this discrepancy, we display the simulated total unpaid losses of the personal auto line versus the
commercial auto line in Figure 9. Consistently, the left panel shows that the product copula as-
sumes no relationship (i.e., independence) between the commercial and personal auto lines. The
right panel shows that the Gaussian copula permits a negative, and nonlinear, relationship. How-
ever, the sizes of the two lines of business are quite different, with the personal auto line dominating
the insurance portfolio. Thus, the diversification effect is offset by the unevenly business allocation.

We confirm this with the analysis of other insurers that show negative relationship between
the personal and commercial auto lines. The results are reported in Appendix A.3. An important
implication of this observation is that the insurer might consider expanding the commercial auto
line or shrinking the personal auto line to take best advantage of the diversification effect. Also
as will be shown in the next section, such dependence analysis is crucial in determining the risk
capital of the insurer.

As mentioned in Section 2.2, to overcome the issue of potential model overfitting, we implement
a parametric bootstrap analysis to incorporate the uncertainty of parameter estimates into the
predictive distribution. Figure 10 presents the simulated and the bootstrapping distributions for
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Figure 9: Plots of simulated total unpaid losses for the personal auto and commercial auto lines.

both personal and commercial auto lines. As expected, the bootstrapping distribution is fatter
than the simulated distribution, because like Bayesian methods, the bootstrap technique involves
various sources of uncertainty.

4.2 Prediction by Year

For accounting and risk management purposes, reserving actuaries might also be interested in the
accident year and calendar year reserves. The accident year reserve represents a projection of the
unpaid losses for accidents occurred in a particular year, and the calendar year reserve represents a
projection of the payments for a certain calendar year. The loss reserving literature focused on the
accident year reserve and total reserve (predictions and their mean square errors) for dependent
lines of business. However, the extension to the calendar year reserve is not always straightforward.
In this section, we demonstrate that the copula regression model is easily adapted for both accident
year and calendar year reserves.

From the Gaussian copula model, we simulate the unpaid losses for each accident year i and
development lag j, and thus the unpaid losses for a certain accident year or calendar year. Table 5
and Table 6 present the point estimate and a symmetric confidence interval for the accident year and
calendar year reserves, respectively. We report the results for both individual lines and aggregated
lines from the Gaussian copula model. For comparison purposes, we also report the results for
aggregated lines from the product copula. The predicted losses are calculated using the sample
mean, and the lower and upper bounds are calculated using the 5th and 95th percentile of the
predictive distribution, respectively. Under the Gaussian copula model, the sum of the predicted

21



6000000 6500000 7000000

0.
0e

+
00

5.
0e

−
07

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

Personal Auto

Unpaid Losses

D
en

si
ty

Simulated
Bootstap

350000 450000 550000 650000

0e
+

00
2e

−
06

4e
−

06
6e

−
06

8e
−

06
1e

−
05

Comercial Auto

Unpaid Losses
D

en
si

ty

Simulated
Bootstap

Figure 10: Predictive distributions of total unpaid losses without and with incorporation of uncer-
tainty in parameter estimates.

losses of individual lines is equal to that of the portfolio. However, this additive relationship is not
true for other estimates, such as percentiles (see Kirschner et al. (2008)). When compared with the
product copula, we observe a narrower confidence interval for aggregated losses due to the negative
dependence between the two subportfolios, though the point estimate is close to the independence
case. This implies that the association assumed by a copula has a greater impact on the predictive
distribution than the predicted mean.

In addition, to account for the uncertainty in parameter estimates, we resort to the bootstrap
technique in Appendix A.1. The bootstrapping predictions of accident year and calendar year
reserves are displayed in Table 7 and Table 8, respectively. We report the predictive mean and the
symmetric confidence interval at 5% significance level for individual lines and combined lines. Not
surprisingly, we see that the point prediction is close to and the confidence interval is wider than
the corresponding observations in Table 5 and Table 6.
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Table 7. Bootstrapping Prediction of Accident Year Reserves (in thousand dollars)

Personal Auto Commercial Auto Portfolio

Accident Predicted Lower Upper Predicted Lower Upper Predicted Lower Upper
Year Loss Bound Bound Loss Bound Bound Loss Bound Bound

1989 4,610 3,733 5,775 783 319 1,412 5,393 4,573 6,501
1990 18,812 16,229 21,727 2,911 1,701 4,404 21,723 18,988 24,666
1991 38,138 33,830 42,602 5,835 3,989 8,158 43,972 39,804 48,258
1992 84,907 75,380 94,959 11,368 8,140 15,332 96,276 87,064 106,282
1993 181,772 163,710 202,274 22,256 16,432 29,098 204,028 187,510 224,238
1994 388,959 346,314 437,985 48,325 36,823 61,966 437,284 396,243 485,498
1995 771,358 684,100 864,330 97,450 70,485 127,058 868,807 791,252 955,942
1996 1,522,266 1,293,289 1,791,688 152,169 108,548 207,014 1,674,436 1,457,959 1,939,494
1997 3,437,295 2,813,539 4,097,722 134,833 81,096 211,087 3,572,128 2,965,710 4,215,735

Table 8. Bootstrapping Prediction of Calendar Year Reserves(in thousand dollars)

Personal Auto Commercial Auto Portfolio

Calendar Predicted Lower Upper Predicted Lower Upper Predicted Lower Upper
Year Loss Bound Bound Loss Bound Bound Loss Bound Bound

1998 3,334,058 2,947,623 3,805,128 193,229 140,587 262,391 3,527,288 3,160,827 3,972,060
1999 1,590,484 1,418,392 1,813,571 123,195 89,422 168,223 1,713,679 1,555,939 1,922,046
2000 847,739 747,624 979,943 112,444 94,174 132,571 960,182 863,347 1,084,457
2001 432,974 378,047 498,869 39,851 30,219 50,314 472,825 421,499 534,634
2002 206,221 179,547 238,058 22,856 16,885 29,758 229,076 204,577 259,035
2003 101,526 87,396 117,845 11,876 8,420 15,869 113,402 100,251 127,885
2004 46,509 39,710 54,229 5,779 4,021 7,936 52,288 45,794 59,546
2005 22,704 18,482 27,689 2,596 1,627 3,811 25,300 21,332 30,006
2006 6,321 4,803 8,026 603 287 1,028 6,924 5,471 8,593

4.3 Comparison with Existing Methods

This section compares the prediction of unpaid losses of the insurance portfolio from the copula
model with various existing approaches. We consider both parametric and non-parametric methods
in the literature. Using a non-Bayesian framework, only a few methods provide the entire predictive
distribution of aggregated reserves for the portfolio. Among them, Brehm (2002) approximated the
silo loss reserve with a log-normal distribution and aggregated different lines of business through a
normal copula. The author estimated the dispersion matrix in the copula through the calendar year
inflation parameters in the Zehnwirth’s model. An alternative approach is presented by Kirschner
et al.(2002, 2008), where a synchronous bootstrapping technique was used to generate the unpaid
losses from multiple triangles based on an overdispersed poisson model. This resampling technique
was examined under the GLM framework by Taylor and McGuire (2007). When modeling the
association among multiple run-off triangles, these two methods share a common assumption with
our copula regression model, i.e., an identical dependence for all claims in the triangle.

The first comparison is performed with the above two parametric approaches. Figure 11 dis-
plays the predictive distributions of the total unpaid losses of the insurance portfolio from various
parametric methods. For the synchronous bootstrap, we follow Taylor and McGuire (2007) and
assume a gamma distribution for both personal and commercial auto lines. Without taking param-
eter uncertainty into consideration, the copula model and the log-normal model in Brehm (2002)
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provide tighter distributions. Note that for this particular insurer, the log-normal distribution is
not a good approximation for the total unpaid losses of the portfolio. Applying the parametric
bootstrap in Appendix A.1, the predictive distribution from the copula model moves toward the
result of Taylor and McGuire (2007). This is explained by the fact that both methods incorporate
the parameter uncertainty by resampling run-off triangles.
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Figure 11: Predictive distributions of total unpaid losses of the insurance portfolio from various
parametric methods.

The second comparison is made between parametric and non-parametric methods. Three non-
parametric approaches are applied to the insurance portfolio: the multivariate chain-ladder method
in Merz and Wüthrich (2008), the multivariate additive loss reserving method in Merz and Wüthrich
(2009b), and the combined multivariate chain-ladder and additive loss reserving method in Merz
and Wüthrich (2009a). The estimated aggregated reserves and the corresponding prediction error
from various approaches are summarized in Table 9. Note that the reported prediction standard
error represents the standard deviation of the predictive distribution for the parametric models,
and the mean square error of prediction for the non-parametric models. The predictions from the
parametric approaches agree with the observations in Figure 11: the copula model and log-normal
approximation provides tighter predictions, while the bootstrapped copula and GLM involve more
predictive variability. The comparisons with non-parametric methods are rather interesting. In
general, we observe the consistency between the two bootstrap models and the four non-parametric
approaches. Recall that the main difference between the multivariate chain-ladder and multivariate
additive loss reserving method is that the latter allows for the incorporation of external knowledge
or prior information in the prediction. For this reason, and also because all subportfolios might not
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satisfy the same homogeneity assumption, Merz and Wüthrich (2009a) combined the two methods
into one integrated framework, where the chain-ladder method could be applied to one subportfolio
and the additive loss reserving method to the other. Thus, we have two combinations as shown
in Table 9. From this perspective, the copula model offers similar flexibility by allowing different
marginal specifications for different lines of business. This might explain the comparable results
from the bootstrapped copula model and the combined multivariate chain-ladder and additive loss
reserving method.

Table 9. Comparison of Different Approaches

Method Estimated Reserves Prediction Std Error

Copula 6,906,329 191,849
Bootstrap 6,921,032 328,991
Brehm(2002) 6,917,133 218,599
Taylor&McGuire(2007) 6,964,043 345,532
Merz&Wuthrich(2008) 6,927,224 339,649
Merz&Wuthrich(2009b) 7,584,956 344,603
Merz&Wuthrich(2009a)-I 7,634,670 368,917
Merz&Wuthrich(2009a)-II 6,877,302 320,497

5 Risk Capital Implication

The predictive distribution of unpaid losses helps actuaries to determine appropriate reserve ranges,
it is also helpful to risk managers in determining the risk capital for an insurance portfolio. This
section examines the implication of dependencies among loss triangles on the risk capital calculation.
Risk capital is the amount of fund that property-casualty insurers set aside as a buffer against
potential losses from extreme events. We consider two numerical measures that have been widely
used by actuaries, the value-at-risk (VaR) and conditional tail expectation (CTE). The VaR (α)
is simply the 100(1 − α)th percentile of the loss distribution. The CTE (α) is the expected losses
conditional on exceeding the VaR (α).

We calculate both risk measures for the insurance portfolio that consists of the personal auto
and commercial auto lines. The risk capital estimates and corresponding confidence intervals are
displayed in Table 10. One way to examine the role of dependencies is to calculate the risk measure
for each subportfolio (i.e. the personal auto line and the commercial auto line), and then use the
simple sum as the risk measure for the entire portfolio. This is the result reported under the silo
method. We also report the risk measures calculated from the product copula and Gaussian copula
models. The product copula treats the two lines of business as unrelated, and the Gaussian copula
captures the association between the two triangles.
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Table 10 shows that the risk measures from both copula models are smaller than the silo
method for this particular insurer, although the subadditivity of VaR is not guaranteed in general.
The corresponding confidence intervals suggest that the differences among the three methods are
statistically significant. This observation is attributed to the diversification effect in the portfolio.
The silo method implicitly assumes a perfect positive linear relationship among subportfolios, which
does not allow any forms of diversification. The implication of this example is that by taking
advantage of the diversification effect, an insurer could reduce the risk capital for risk management
or regulatory purposes. A comparison of the copula models shows that both VaR and CTE are
smaller for the Gaussian copula model than the product copula model. This is explained by the
negative association between the two lines of business. One expects that the risk measures are
larger for the Gaussian copula model than the product copula model, if the two triangles present
positive association. The above results indicate that the silo method leads to more conservative
risk measures, while the copula model leads to more aggressive risk measures. For this particular
insurer, the risk measures from various assumptions do not substantively, though statistically, differ.
Again, as discussed in Section 4.1, this is due to the disproportional size of the two subportfolios.
The result implies that the insurer should increase the volume of the commercial auto line, if he
is considering expanding, to take better advantage of the negative dependency. We verify these
patterns by increasing the number of simulations and by analyzing the data for other large property-
casualty insurers. Case studies can be found in Appendix A.3.

To examine the effect of uncertainty in parameter estimates, we re-calculate both VaR and CTE
following the parametric bootstrap procedure in Appendix A.1. The calculations are based on the
Gaussian copula model and the results are displayed in Table 11. For comparison purposes, the
VaR and CTE from the simulation method are reproduced from the rows of the Gaussian copula
in Table 10. Consistently, the bootstrap estimates are larger than the simulation estimates. Recall
that the bootstrap produces a fatter predictive distribution, where one typically goes further in
the tail to achieve a desired percentile. We find that the effect of incorporating the uncertainty in
parameter estimates is even larger than that of diversification, which is explained by the dominating
size and the small volatility of the personal auto line in the insurance portfolio.

6 Summary and Concluding Remarks

We considered using copulas to model the association among multiple run-off triangles, and showed
that dependencies are critical in the determination of reserve ranges and risk capitals for property-
casualty insurers.

Our parametric approach enjoys several advantages in the prediction of unpaid losses for an
insurance portfolio. First, the copula model allows for different parametric regression for different
lines of business. In fact, the data supported a lognormal regression for the personal auto line and
a gamma regression for the commercial auto line, when we applied the method to the data of a
major US insurer. Second, in addition to point estimates and their prediction errors, predictive
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distributions can be derived for unpaid losses, and thus loss reserves. We demonstrated the accident
year and calendar year reserves for both individual lines and aggregated lines. Third, due to the
parametric nature, a modern bootstrap can be easily performed to incorporate the uncertainty in
parameter estimates and to examine the potential modeling overfitting.

We investigated a synthetic insurance portfolio that consists of the personal auto and commercial
auto lines. Using the data of a major US insurer, our analysis suggested that the association among
lines of business played a more important role in calculating reserve ranges than point estimates.
In fact, we showed the point estimates from the copula model were close to the chain-ladder
predictions, and the predictive distributions (or mean square error of prediction) were comparable
to the results from alternative approaches. Finally, the calculation of risk capitals implied that the
diversification effect relied on the magnitude of the dependency as well as the comparative size of
each individual line.
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A. Appendix

A.1 Simulation and Bootstrap

One advantage of a parametric approach is that a predictive distribution of reserves can be obtained
by simulating from the parameters. The simulation can be easily performed for the copula regression
model. One could generate the pseudo unpaid losses according to the following procedure:

(1) For accident year i and development lag j that stratify i+j > I, generate a Nij-dimensional
realization (u(1)

ij , · · · , u
(Nij)
ij ) from the copula function c(·; φ̂), where φ̂ is the estimate of φ.

(2) Simulate the unpaid losses for accident year i and j by y
(n)
ij = F (n)(−1)(u(n)

ij ; η̂(n)
ij , γ̂(n)) for

i + j > I and n = 1, · · · , Nij . Here η̂
(n)
ij and γ̂(n) denote the estimate of η

(n)
ij and γ(n), respectively.

(3) For the insurance portfolio, we have:
• The unpaid losses for accident year i (i = 1, · · · , I) is

J∑

j=I+1−i

Nij∑

n=1

ω
(n)
i y

(n)
ij

.
• The unpaid losses for calendar year k (k = I + 1, · · · , I + J) is

∑

i+j=k

Nij∑

n=1

ω
(n)
i y

(n)
ij

.
• The total unpaid losses is

I∑

i=1

I∑

j=I−i+1

Nij∑

n=1

ω
(n)
i y

(n)
ij

.
Thus, the predictive distribution for the accident year reserve, calendar year reserve, and total
reserve can be derived by repeating the above procedures.

One merit of the parametric specification of the copula regression model is that the uncertainty
in parameter estimates can be incorporated into the statistical inference by modern bootstrapping.
The bootstrap technique serves the same purpose as the Bayesian analysis. Briefly, we use the
pseudoresponses to compute the bootstrap distribution of parameters, based on which, we generate
the predictive distribution of unpaid losses. The parametric bootstrap procedure is summarized as
follows:

(1) Create a set of pseudoresponses of normalized incremental paid losses y
∗(n)
ij,r , for i, j such

that i + j ≤ I and n = 1, · · · , Nij , following the above simulation technique.
(2) Use the pseudoresponses to form the rth bootstrap sample {(y∗(n)

ij,r ,x(n)
ij ) : i + j ≤ I}, and

from which to derive the bootstrap replication of the parameter vector (η̂∗(n)
ij,r , γ̂

∗(n)
r , φ̂∗r).
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(3) Repeat the above two steps for r = 1, · · · , R. Then based on the bootstrapping distribution
of parameters, we are able to simulate the predictive distribution of unpaid losses or reserves for
each individual line as well as the insurance portfolio.

A.2 Elliptical Copula

Elliptical copulas are extracted from elliptical distributions. Consider a N -dimensional random
vector Z that follows multivariate elliptical distribution with location parameter 0 and correlation
matrix Σ. Let

hZ(z) =
cN√
detΣ

gN

(
1
2
z
′
Σ−1z

)
,

be the density function of Z, and HZ(z) be the corresponding distribution function. Here, cN is a
normalizing constant and gN (·) is known as density generator function. See Landsman and Valdez
(2003) for discussions of commonly used elliptical distributions in actuarial science.

The N -dimensional elliptical copula, a function of (u1, · · · , uN ) ∈ [0, 1]N , is defined by:

C(u1, · · · , uN ) = HZ(H−1(u1), · · · ,H−1(uN )),

with the corresponding probability density:

c(u1, · · · , uN ) = hZ(H−1(u1), · · · ,H−1(uN ))
N∏

n=1

1
h(H−1(un))

.

Here, h and H are the density and distribution function for the marginal, respectively. One nice
property of elliptical copulas is that any sub-copula belongs to the same family as the parent copula.

A.3 Case Studies

This section summarizes supplementary results on the dependent loss reserving studies. We provide
evidences including: first, the association between lines of business varies across insurers; second,
the implication on the loss reserve of dependencies among triangles relies on the construction of the
insurance portfolio. In doing so, we apply the copula regression model to the insurance portfolio
of the personal auto and commercial auto lines for two other major property-casualty insurers
(denoted by Insurer A and Insurer B thereafter). One insurer shows negative association between
the two claims triangles, while the other one shows positive association. The portfolios for both
insurers are approximately equally distributed into the personal auto and commercial auto lines.
The following displays the predictive distributions of unpaid losses and the risk measures of the
insurance portfolio for both insurers.

Insurer A exhibits significant negative association between the personal auto and commercial
auto lines. For a Gaussian copula regression with gamma models for both lines, the estimated
association parameter is -0.44. Figure 12 presents the simulated unpaid losses for two lines under
the product and Gaussian copulas. Unlike the insurer in Section 4, the two lines are of similar size.
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This explains the stronger diversification effect on the predictive distribution, as shown in Figure
13. The predictive density for the portfolio from the Gaussian copula model is tighter than the
independent case.

In contrast, Insurer B presents significant positive association between the two lines of business.
We use a gamma model for the personal auto line and a log-normal model for the commercial auto
line, the association parameter in the Gaussian copula is 0.34. The simulated unpaid losses and
the predictive distribution are provided in Figure 14 and Figure 15, respectively. Note that in the
presence of positive association, the predictive density from the Gaussian copula model is fatter
than the independent case.

Furthermore, we provide the estimated risk measures of the insurance portfolio for both insurers
in Table A.1 and A.2. Three assumptions are examined for each firm. The silo method assumes a
perfect positive correlation between the losses from the personal auto and commercial auto lines.
The product copula considers the independence case. The Gaussian copula uses the association
inferred from the data. The small standard deviation indicates the significant difference between
various approaches. The silo method gives the largest estimates of risk measures, because it does
not account for any diversification effect in the portfolio. The lower the correlation between sub-
portfolios is, the more significant the diversification effect we will observe. As a result, the risk
measures from the Gaussian copula model are smaller than those from the product copula model
for Insurer A, while the relationship is opposite for Insurer B.
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Figure 12: Plots of simulated total unpaid losses of the personal auto and commercial auto lines
for Insurer A.
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Figure 13: Predictive distributions of total unpaid losses from the product and Gaussian copula
models for Insurer A.

Table A.1. Estimates of Risk Capital for Insurer A (in thousand dollars)

VAR Standard VAR Standard VAR Standard
(10%) Error (5%) Error (1%) Error

Silo 175,019 200 179,241 252 187,396 471
Product Copula 171,110 195 174,093 243 179,807 449
Gaussian Copula 168,899 155 171,225 192 175,687 355

CTE Standard CTE Standard CTE Standard
(10%) Error (5%) Error (1%) Error

Silo 180,604 232 184,267 302 191,628 586
Product Copula 175,045 226 177,618 293 182,752 560
Gaussian Copula 171,971 179 173,980 232 177,993 444

Table A.2. Estimates of Risk Capital for Insurer B (in thousand dollars)

VAR Standard VAR Standard VAR Standard
(10%) Error (5%) Error (1%) Error

Silo 402,368 227 407,201 285 416,431 524
Product Copula 397,571 226 400,941 281 407,331 500
Gaussian Copula 399,337 265 403,261 326 410,737 589

CTE Standard CTE Standard CTE Standard
(10%) Error (5%) Error (1%) Error

Silo 408,733 260 412,893 334 421,163 643
Product Copula 402,001 256 404,890 328 410,603 615
Gaussian Copula 404,493 298 407,861 383 414,532 734
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Figure 14: Plots of simulated total unpaid losses for the personal auto and commercial auto lines
for Insurer B.
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Figure 15: Predictive distributions of total unpaid losses from the product and Gaussian copula
models for Insurer B.
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