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Chapter 7 — Valuation of outstanding policy portfolios

Partecipating policies with constant annul premiums
Different benefits in case of death
Portfolio valuation

Controlling the balance of assets and liabilities
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Participating policies with constant annual premiums

If the annual premiums are not readjusted (i.e. Ay = Ag), the read-

justment of benefits is different from the full readjustment rule:
Cr =Cr_q (1 —+ pk) .

Typically, the increment AC} is determined as the benefit of an
additional single premium endowment over the residual life of the
principal policy. The additional policy is financed by the excess

return on the investment of the savings premium Aj.

The intensity of the readjustment of benefits will depend on x, n, k.

Ceteris paribus:

- for policies with equal values of x and n, the readjustment will

be increasing w.r. to k;

- for policies with equal values of n and k, the readjustment will

be decreasing w.r. to .

e An approximating rule

(independent of x):

k
Ck:Ck_l(l—F,Ok;)—Co (1——) Pk -

n
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Different benefits in case of death

In many policies benefits payable in case of death (C}) are different

from benefits payable if the insured is alive (CX).

—

: : —D L
— computation of separated streams of technical means C ., C; ;

— computation of separated valuation factors uP (¢, k), u"(t,n).

Technical means of premiums and benefits

valutation date 31/12/1998

200

100

cash flows (million Euro)
1
8 o

1998 2003 2008 2013 2018 2023 2028

maturity year
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Portfolio valuation

Since the calculation of the valuation factors w(t, k) involves Monte
Carlo procedures, the valuation of a portfolio of outstanding poli-
cies can be highly time consuming if the contracts are not properly

aggregated

e For single premium policies or for policies readjusting both premi-

ums and benefits the valuation factors only depend on k — t:
u(t, k) = u(k—t)

— a single “structure” of valuation factors is needed for each class

of policies.

e In the general case, for each class of policies a different stream of

valuation factors is required for different values of x, n and n — t.
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December 31, 1999 — Portfolio of outstanding policies — First order analysis

Reserves
(mllion Euro)

policy traditional stochasti c di ff. %

(a) (b) (a-b) (a-b)/a
CAP 3 +1.5 1, 062 1, 054 9 0. 83
CAP 3 +1 739 755 -16 -2.22
CAP 3 +1 3,114 3,174 - 60 -1.94
CAP 4 +0 1, 450 1,453 -2 -0.17
CAP 3 +0 629 492 137 21.76
CAP 2.5+0 69 36 33 47. 34
SP 3 +1 28 29 -1 -3.05
SP 4 +0 69 71 -2 -2.94
SP 3 +0 136 137 -1 -1.05
SP  2.5+0 14 14 -0 -0.04
NP 3 +0 174 161 13 7.68
PORTFCLI O 7,485 7,376 108 1.45
Legend

CAP: Constant Annual Prem unms (indexed benefits)

SP: Single Prem um (i ndexed benefits)

NP: Non Participating (constant prem unms and benefits)
3+1.5: technical rate 3% nininum guaranteed 4.5%
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December 31, 1999 — Portfolio of outstanding policies — First order analysis

Components of stochastic reserves

policy

CAP 3 +1.5
CAP 3 +1
CAP 3 +1
CAP 4 +0
CAP 3 +0
CAP 2.5+0
SP 3 +1
SP 4 +0
SP 3 +0
SP 2.5+0
NP 3 +0
PORTFCLI O
policy

CAP 3 +1.5
CAP 3 +1
CAP 3 +1
CAP 4 +0
CAP 3 +0
CAP 2.5+0
SP 3 +1
SP 4 +0
SP 3 +0
SP 2.5+0
NP 3 +0
PORTFQOLI O

(mllion Euro)

benefits

(a)

1, 306
1,076
5,789
3,981
2,799
435
29

71
137
14
166
15, 802

benefits
(atb)

1, 306
1,076
5,789
3,981
2,799
435
29

71
137
14
166
15, 802
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prem uns

(b)

253
321
2,615
2,528
2,307
398

0
0
0
0
5
6

8,42

sur vi val

(a)

1,242
1, 005
5,479
3,723
2,587
397
28

69
129
13
160
14, 833

diff.
(a-b)

1, 054
755
3,174
1, 453
492
36

29

71
137
14
161
7,376

deat h
(b)



December 31, 1999 — Portfolio of outstanding policies — First order analysis

Basis Ri sk

St ochasti c duration

policy prem uns benefits survi val death
CAP 3 +1.5 2.15 2.57 2.59 2.23
CAP 3 +1 2.69 2.91 2.94 2.45
CAP 3 +1 3.24 3.33 3.35 2.87
CAP 4 +0 3.55 3.91 3.95 3.33
CAP 3 +0 3.70 4. 14 4.19 3.55
CAP 2.5+0 3.87 4.34 4. 41 3.74
SP 3 +1 1.94 1.94 2.03
SP 4 +0 2.07 2.07 1.87
SP 3 +0 2.18 2.20 1.95
SP  2.5+0 . 2.23 2.25 1.95
NP 3 +0 1.51 2.94 2.93 3.14
PORTFCLI O 3.42 3.49 3.52 3.07
Delta

policy preni uns benefits survi val deat h
CAP 3 +1.5 0. 00 0. 00 0.00 0.00
CAP 3 +1 0. 00 0. 07 0. 07 0. 06
CAP 3 +1 0.00 0. 05 0.05 0.05
CAP 4 +0 0. 00 0.03 0.03 0.03
CAP 3 +0 0. 00 0. 02 0.02 0.02
CAP 2.5+0 0. 00 0. 02 0. 02 0.01
SP 3 +1 0.10 0.10 0.11
SP 4 +0 0.11 0.11 0.11
SP 3 +0 0.13 0.13 0.13
SP 2.5+0 . 0.14 0.14 0. 14
NP 3 +0 0. 00 0. 00 0. 00 0. 00
PORTFCLI O 0.00 0.04 0.04 0.03
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December 31, 1999 — Portfolio of outstanding policies — First order analysis

Enbedded opti ons
(mllion Euro)

Put deconposition of benefits

policy benefits base put %
(a+b) (a) (b) b/ (a+b)
CAP 3 +1.5 1, 264 1,190 73 5. 80
CAP 3 +1 1,073 975 97 9.09
CAP 3 +1 5,776 5,152 624 10. 81
CAP 4 +0 3,978 3,526 453 11. 37
CAP 3 +0 2,798 2,558 240 8. 58
CAP 2.5+0 435 402 33 7.62
SP 3 +1 29 26 2 7.89
SP 4 +0 71 67 5 6. 67
SP 3 +0 137 129 8 5. 86
SP  2.5+0 14 13 1 5.32
NP 3 +0 0 0 0 .
PORTFOLI O 15,574 14, 038 1,537 9. 87

Call deconposition of benefits

policy benefits guar ant eed cal | %

(atb) (a) (b) b/ (a+b)
CAP 3 +1.5 1, 264 1, 207 57 4. 47
CAP 3 +1 1, 073 9241 132 12. 30
CAP 3 +1 5,776 4,817 959 16. 61
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December 31, 1999 — VBIF calculation (third order basis)

Val ue of Business In Force
(mllion Euro)

VBI F wi t hout m ni rum guarantees (a) 2,841
Val ue of nini mum guar ant ees (b) 982
VBI F (a-b) 1, 858
I nvest nent gain 108
Mortality gain 157
Surrender gain 269
Val ue of I oadi ngs 1, 324

The val ue of m ni mum guarantees (b) is conputed

Val ue of Business In Force by policy type
(mllion Euro)

I nv. Mort. Sur . Load.

gain gain gain
CAP 3 +1.5 9 5 15 65
CAP 3 +1 -16 10 14 82
CAP 3 +1 - 60 43 109 517
CAP 4 +0 -2 49 56 345
CAP 3 +0 137 44 55 267
CAP 2.5+0 33 8 6 46
SP 3 +1 -1 -0 1 0
SP 4 +0 -2 -0 2 0
SP 3 +0 -1 -0 8 0
SP  2.5+0 -0 -0 1 0
NP 3 +0 13 -0 2 1
PORTFQOLI O 108 157 269 1,324

The val ue of m ni mum guarantees is conputed on

© MDF-FM — Finance of Insurance — vol. 2, p. 88
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VBI F

94
89
608
447
504
93
-0
-0
6

1
16
1, 858

order basis.

Val ue
of mag.

third order basis.

VBI F wi t hout
mn. guar.

161
171
1, 046
702
615
107

2

4

13

2

18
2,841



Controlling the balance of assets and liabilities
The corresponding asset portfolio is evaluated using the same pricing

model used for the policy portfolio

Same pricing model, same valuation date, same calibration

— the values A; and V; (and their sensitivities) can be coherently

compared.
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December 31, 1999 — Asset and Policy Portfolio — First order analysis

ALM anal ysi s

Policy portfolio
(mllion Euro)

Price Dur ati on Del ta
Prem uns 8,426 3.42 0. 00
Benefits 15, 802 3.49 0. 04
Reserve/ Gap 7,376 0. 07 0. 04

| nvest nent portfolio
(mllion Euro)

Price % Duration Delta
Bond 6,176 71.7 1.41 0. 00
St ock 2,441 28.3 0. 00 0. 28
Tot al 8,617 100.0 1.41 0. 28

VaR of the investnent portfolio
(99% 10 days)

Price Amm VaR %
Bond 6,176 95. 06 bp 61 0.99
St ock 2,441 -8.30 % 203 8.30
Tot al 8,617 . 264 3.06
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December 31, 1999 — Asset and Policy Portfolio — First order analysis

ALM anal ysi s

Asset-liability portfolio

Price Dur ati on Delta
| nvest nent s (a) 8,617 1.41 0.28
Prem uns (b) 8,426 3.42 0. 00
Asset (a+b) 17, 043 2.41 0. 14
Liabilities (c) 15, 802 3.49 0. 04
AL Portfolio (atb-c) 1, 241 -1.07 0.11

VaR of the asset-liability portfolio
(99% 10 days)

Price | nt er est % St ock %

VaR (pb) VaR (%
| nvest nent s 8,617 -50 -0.6 203 2.4
Prem uns 8,426 -121 -1. 4 0 0.0
Asset 17,043 -170 -1.0 203 1.2
Liabilities 15, 802 227 1.4 -49 -0.3
AL Portfolio 1, 241 56 4.5 153 12.3

The interest rate VaR of the A/L portfolio corresponds to Anm=- 76. 35 bp.
For an interest rate novenent of +95.06 bp the VaR is negati ve.

Netting the VaR of the investnents

Amm VaR % Amm VaR %

(Inv.) (I'nv.) (A/'L) (A'L)
Bond 95.06 pb 61 0.99 -76.35 pb 56 0.91
St ock -8.30 % 203 8. 30 -8.30 % 153 6. 27
Tot al 264 3.06 209 2.43
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Chapter 8 — Alternative valuation methods

VBIF: the annual profits approach
Equivalence with the stochastic reserve approach
Actuarial expectation of future annual profits
Mortality gain
Investment gain
Valuation of the annual profits
Alternative valuation methods
Risk-neutral probabilities
Risk-adjusted discounting

RAD under scenario
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VBIF: the annual profits approach

e The standard approach for determining VBIF' is based on an in-

vestment argument.
We refer for simplicity to a single premium endowment.

During the life of the policy the company must maintain a capital at

the level of the reserve process:

Ry, = 17, >k—1y B,
However, at time k—1 the reserve ﬁk_l can be invested in the refer-
ence fund, providing an annual rate of return I.
The amount ék_l (1 + Ix) realized at time k, net of the new reserve
level Ry, and of the liability Vi represents the technical gain in year
k.
— The VBIF at time 0 can be obtained as the present value of the

sequence of the annual gains.

e At time 0 the annual profits emerging from the policy can be

represented by the cash flow stream:
G={Gr, k=1,2,...,n},

where:
Gr = Ri_1 (1—|—Ik;)—Rk— Yi .

Then the VBIF at time 0 is given by:

Ey=V(0;G) =Y _ V(0;G).
k=1

© MDF-FM - Finance of Insurance — vol. 2, p.93



Equivalence with the stochastic reserve approach

Under the no arbitrage assumption in perfect market the annual
profits approach is equivalent to the stochastic reserve approach.

The previous expression can be explicitely written as:

Eo =Y V(0; Reey (1+I1,)) i: V(0; Ri) = > V(0 Y3). (%)
k=1

k=1 k=1

By the “reinvestment security theorem”:
‘/(t;jik_1<]_+-]k)) ::‘/(t;jik_l).

Thus the first sum in (*) can be expressed as:

n—1

> V(0; Reey (14 1)) Zvo Ri1) =Ro+ Y V(0; Ry
k=1 k=1

thus expression (*) reduces to:

Eo=Ro— ) Vo=Ry—Vp.
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Actuarial expectation of future annual profits

Taking the expectation of the actuarial random variables, the ex-

pected future gains G are defined by:

R k—1Dz [Rp—1(1+1x) — (1=qeir—1) Rk — @uix—1Ck] , k <n,
G =
n—1Pzx [Rn—1<1+—[n) - Cn] ) k=n.

Subtracting the quantity:

Rip—1 (1 +pe)(1+4) — (1 = @yyp—1) Bk — doyi—1 Ok »

which is equal to zero by the equilibrium constraint, we get the

“Homans formula”:

( k—1Pz [Rk—l (Ik — mk)
ék: = 4 + (Ck — Ry (q;+k_1 - Q:c+k:—1)} , k<n,
( n—1Pz Bno1 (In — my), k=n,

where my := (1 4 pr)(1 +4) — 1, that is:

my = max{F I, i} .
e Under first order basis, i.e. if:

— !
In=1 and @eip—1=qpip_1,

then all the expected profits are zero:

AN

Gr,=0, k=1,2,....n.
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e Mortality gain

If I, =1, then the annual gains are:

R k—1Pz (Ck — Ri) (Qpyp—1 — Quwrk—1), k<n,
Gy =
0, k=n,
which can be referred to as mortality gains.
Typically, the P’ measure is “conservative” with respect to the P
measure; that is, for any k: gz4x—1 < q,,4_;. Therefore the mor-

tality gain @kD is not negative.

o [nvestment gain

If Geyr—1 = ¢, p_1, then CA}’k can be interpreted as the actuarial

expectation of the investment gain in year k; it is given by:
GL= o 1p. Ry (I —my). k=1,2,...,n.
® Using the language of the technical means, that is defining:
Kp1=Rj_y pap, 1+i)" 570,

(where R; , is the technical reserve at time k—1 of the corresponding
non participating policy) the investment gain can be rewritten as:

k—1
Gh =K [ (0 +my) (e —ma).
j=1
Since m; = max{( I;, i}, this equation makes apparent the depen-
dence of CA}’é on all the sample path {11, I5, ..., I} } of the fund returns

—— the minimum return guarantee is an annual guarantee.
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e To better characterize the minimum guarantee embedded in the
policy, let us consider the investment gain of an analogous policy

without minimum guarantee; this is the base payoff, defined as:

k—1
By =Ky [[(1+8I) (1-8) 1.
j=1
Of course: Ek > @i
The guarantee payoff, or the put payoff, is the difference:

P.=B,—-GL>o0.

e For £ = 1 we have:
Gl = R: (I, —m1) = R [(1 ~B) I, —max{i — 814, 0} .

That is

AN

é{:Bl_ﬁl7

where:
Bl — RS (]‘_ﬁ)‘[la

ﬁl :RS max{i—ﬂll, O}
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e Valuation of the annual profits

The VBIF at time 0 can be obtained as the value of the future annual

profits G; under our assumptions:

AN

V(0;Gi) = V(0;Gy) ;
hence:

V(0;G) = fj V(0;Gy) .
k=1

We are mainly interested in the investment component of the annual

profits; we have:
V(0;G1) =V (0;GY),
which can be written as:
V(0;GE) = V(0; By) — V(0; Py) .

Under the fair valuation approach, the sum of this values over the
life of the policy must be equal to the investment component given

by the stochastic reserve approach.

Defining;:
VU, = Ik—mk H 1—i—mj

the value of the investment gain can be expressed as:
Gl =K 10,

where:

. the technical mean K,_; is determined by actuarial assumptions

on the probability measure P(1):

- the factors ¥, are determined by capital market uncertainty.

© MDF-FM - Finance of Insurance — vol. 2, p. 98



Alternative valuation methods

e Risk-neutral probabilities (RNP)
The risk-neutral probability (RNP) approach is natural when the

valuation problem is set up in the framework of contingent claims

pricing. Under the arbitrage principle in a perfect market:
V(0; W) = B [Wg x(0, k)], (RNP)

where:

E(Cj? is the expectation operator taken with respect to the risk-
neutral probability Q, conditional on the information at time
0;

x(0, k) is a stochastic discount factor on the time interval [0, k.

The discount factor x(0, k) and the risk-neutral probability Q must

be specified under an appropriate stochastic model.

Once the sources of market uncertainty are specified in the model, x
and Q are the same for all the securities which depend on these risk
factors

— if the model is calibrated in order to match the observed price of
traded securities, it can be applied to non-traded securities, providing

coherent pricing.

Remark. The valuation of the options embedded in life insurance
policies with the RNP method can be considered a problem in Real
Option Analysis.

[Copeland, Antikarov, 2001] m
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The case of a deterministic interest rate is not realistic in life insur-
ance applications; however it is often considered in order to simplify
the exposition.

If the force of interest r (the spot rate) is constant over time, expres-
sion (RNP) reduces to:

V(0; ¥) =e "FES[ ;]

In the celebrated Black and Scholes model ¥, can be expressed as a
function of an underlying price process {S;}, which is specified as a
geometric brownian motion.

If {S;} has drift parameter y and volatility parameter o, the arbi-
trage argument demands that Q is lognormal with parameters r» and
o, instead of y and o.

The istantaneous expected return p of the underlying does not enter
in the determination of price, since the model prescribes that tak-
ing the average under the modified (r,o)-distribution provides the

appropriate adjustment for the risk aversion.
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e Risk-adjusted discounting (RAD)
The standard approach to calculating VBIF consists in taking the

natural expectation of the random payoff ¥, and then discounting

it at an appropriate risk-adjusted force of interest r,; that is:
V(0; Uy) =e " Eo[ Wy | . (RAD)

The RAD method is widely used in capital budgeting applications,

where it is also referred to as the Net Present Value method.

The risk premium r, —r is usually determined by the observation
of past returns on assets of similar insurance firms, using popular
models as the Capital Asset Pricing Model or the Dividend Discount
Model.

Pros:
- RAD method is easier to communicate to practitioners

- 1s the most intuitive in a single-period setting

Cons:
- RAD method becomes very complicated when the problem is

inherently intertemporal

® high degree of subjectivity is involved in the practical assess-
ment of both the expected payoff and the risk-adjusted rate;
this problem is even more important when option-like payoffs
are considered
— it can be argued that just this difficulty gave an impetus to
the development of the option pricing theory and of the RNP
method.
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® RAD under scenario

Scenario methods are typically used in practical applications of the
RAD approach, in order to derive an estimate of the natural expec-
tation Eg [\I!k }

Since the technical mean W, is a function of the realized return I
of the reference fund, a “best estimate” I} of this random variable
is taken and the “expectation” of W is derived correspondingly.

For illustration purposes, let us assume:
I; =Eg [I k,] .
A problem obviously arises since if ¥}, is a non linear function of I
the property:
EO[\IJk([k)} = \I!k(I;)

in general does not hold.

The embedded options are far-out-of-the-money at the policy is-
suance and in typical market conditions they remain out-of-the-
money during the life of the policy; i.e. normally the assumed sce-

nario is such that, for each future year k:
Iy >1i/8,
which corresponds to:
my = 1} ;
hence:
k—1
K 1Eo[ U] =FKpy [[(U+8I) 1—-P)I; =Eo[ B ]
j=1
—— the embedded options are not captured under the scenario
method.
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Chapter 9 — Unit-linked and index-linked policies

Unit-linked endowment policy

Similarities with participating policies

The standard valuation framework

Reserve and sum insured

Unit-linked policies with minimum guarantee
Put decomposition

Stochastic reserve and VBIF

Profits from management fees

Surrenders

Index-linked endowment policy

Similarities with participating (and u-1) policies
The standard valuation framework

Financial risk

Stochastic reserve and VBIF
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Unit-linked endowment policy

e Given an investment fund, let I} be the market value at time ¢ of

one unit of the fund.

A unit-linked endowment policy with term n years for a life aged x

provides for payment of

- a number NP of units at the end of the year of death if this

occurs within the first n years (term insurance),
otherwise

- anumber N" of units at the end of the nth year (pure endow-

ment).

If the policy is single premium, the insured pays a lump sum U at

time 0.

e The insured benefit in case of death at time k is:
CyY = N° Fy;

if the insured is alive at time n the benefit is:
Cr=N"F,

—— the insured sums are contractually defined in stochastic units.

e Typically the management of the reference fund is under the insurer

control.

© MDF-FM - Finance of Insurance — vol. 2, p. 108



Similarities with participating policies

Let:
. C : benefit (eventually) paid at time k;
- F; : market value of the reference fund;

+ I, := Fy/Fx_1 — 1: annual rate of return of the fund at time k.

The benefits at time k£ are given by:

Co = NIy,
Ck:Ck_1(1+Ik), Ek=1,2,...,n.

For 0 < h < k < n, we can define the readjustment factors:

k

Fi,
O(h, k) = H (1+1;) = o
J=h+1
(being ®(k, k) =1).
Hence:
Cr = Cy®(0,k) .
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The standard valuation framework

e At time 0 we have the liability stream:
C= {6;“ k:1,2,...,n};

where:

G, Cy, with prob. Po(Cy;k)
71 0, withprob. 1—Py(Cy;k)

e The net single premium is given by:

U=Cp > PPChk) + CyPEY(Chin),

k=1
Or':
U= FO NO ’
where:
Ng := NP Z Pél)(Cg;k) + N* Pél)(Cg;n).
k=1

—— first order basis: probability P(1) and technical rate i = 0.

e Similarly, the net premium reserve at time £k = 0,1, ..., n is defined
by:
Ry = Fy Ny,
where:
Np=:N" Y P(CPij) + N P (Chin).
j=k+1
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—

e The policy can be “hedged” by the insurer by purchasing N

units at time O;

- the hedging strategy is a replicating strategy, because the port-
folio purchased at time 0 replicates (on the average) the future
liabilities;

- the hedging strategy is a static strategy;

- the hedging strategy is not completely riskless, because of mor-

tality uncertainty;

- If NP = N* = N the hedging strategy is a riskless strategy.

Both financial and actuarial risk are eliminated from the policy.
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Reserve and sum insured

The reserve at time k can be expressed as:

Ry =CY E: Pi(C7i7) + Cp Pr(Crin)
j=k+1

> Pi(CT:))

j=k+1

+CE Y Pr(CPij) + Cp Pr(Crin) .
j=k+1

Since:
Z Pk j + Pk Z 3—1/1Q:c nPe =1,
Jj=k+1 j=k+1

one has:

R = Cf + (CR = Ch) Y. P(CPi)).
j=k+1

o If N° = N* = N, then: Cp = C} = Cy, = N Fy,, VEk; hence:
Rk:Ck

—— the reserve at time k is equal to the current value C}. of the
N = U/F}, units purchased at time 0

—— the contract is not exposed to mortality risk.

o If N° > N" the reserve is greater than Cy.
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Unit-linked policies with minimum guaratee

Assume that the insured benefits ), cannot be lower than a floor
value N M, fixed at time O:

Ck = maX{NFk, NMk}

e.g.:
Mk: = FO (1+g)k7

with ¢g: a minimum guaranteed annual return

— maturity guarantee.

Remark. Tipically the reference fund F' has a substantial equity

component. Thus also negative values of g can be of interest. n

The insured sum can also be expressed as:

F
C,, = NF, max{?, (1—|—g)”} ,

0
hence:
On = CO CID(O,n) ,
where:
CO — NFO )
and:

(0, n) :max{%, (1+g)"} |
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Put decomposition

Since C,, can be written as:
Cp, =NF, + N max{M, — F,,, 0},

the policy is equivalent to a u-l1 policy with sum insured N Fj, and
without minimum guarantee, plus a contract providing at time n the
payoft:

P, := N max{M,, — F,,, 0}.

This is the payoff of a portfolio of N european put options on the

price of the unit, with exercise date n and strike price M,,.

— In principle, the insurer can eliminate financial risk by purchas-

ing the put options.

Remark. The expression:

F.
C,=0Cy max{—n, (1+g)”} :
Fo

can be written as:
Cy = Cp max H ,H(l—I—g) :
i D=1 5

The payoff of a policy with annual guarantees can be expressed in-

C,=C max , (1 + :
0 1};[1 {Fk:—l (1+9)

Of course in a multiple period contract there is a significant difference

stead as:

between the two guarantees. m
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Stochastic reserve and VBIF

e The stochastic reserve at time t (for a single premium policy) is
given by:
V,=V(t0).

e Correspondingly, the VBIF at time ¢ is defined by:

Et:Rt—V;g.

® Under our assumption, we have (for a policy with Cp = Cp = C):

Vi= ) PuCrik)V(tCy).
k=t+1

- If the policy does not provide minimum guarantees, i.e. C = N F}:
V(t;Cr) = NFy,
since, by the no-arbitrage principle:
V(t; Fy) = Fy .
Thus, given that Y, , | P;(Cy; k) =1, one has:
Vi=NF; =C; = Ry,

and:
Et - O .
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Profits from management fees

Assume that at each year end the fund pays to the insurer manage-
ment fees determined as a fraction f of the current NAV; at time &

the value I} of the fund is now:

where F}, is the value of an analogous fund without management

fees.

The sum insured is now C} = NF};; hence:
V(0;C)=N(1—*V(0;F,) =NFy (1 - f)* =Ry (1 — f)*.
Therefore the stochastic reserve at time 0 is:

= Po(Cii k) V(0;Cy)

=Ry Y Po(Crik) (1-f)" <Ro.

k=1

The VBIF is given by:

Ey =Ry — Vo = Ry Z o(Cr; k) (1= f)F

Remark. For a policy without embedded options the VBIF is inde-

pendent of the fund investment strategy. m

Remark. If the policy provides minimum return guarantees the value
of the embedded put option is subtracted from the VBIF.

The put price is generally depending on the investment strategy. =
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Surrenders

e When applied to unit-linked policies Assumption 1 can result to

be critical.

e In a policy without embedded options the redemption at time £
causes a loss for the insurer equal to the current value E} of the
residual VBIF
—— the value E} provides a benchmark for defining appropriate
penalties (contractually specified at time 0 as a fraction of the NAV
F} at time k).

e To avoid serious hedging problems, minimum guarantees should

not be provided in case of surrender.
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Index-linked endowment policy

e Let us refer to a capital market index Fj3.

Let ®"(0, k) and ®"(0, k) be fixed functions of F;, j =1,2,..., k;
that is:
(0, k) = O“(Fy, Fy, ..., F})

O°(0,k) = O°(F, Fo, ..., Fy).

An i-1 endowment with term n years for a life with age x provides

for payment of

- the benefit C§ ®°(0, k) at the end of the year of death if this

occurs within the first n years (term insurance),
otherwise

- the benefit C§ ®“(0,n) at the end of year n (pure endow-

ment),

where the initial benefits Cj and Cjy are fixed at time 0.

Single premium: the insured pays a lump sum U at time O.

e Some elementary examples:

L _ D _ F
(0. k) = @7(0,k) = 1,
(S50 F) 7k
(0, k) = ®°(0,k) = " ,

BL(0, k) = (0, k) = max {% (1 +g)k} .
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Similarities with participating (and u-1) policies

Let:
. C : benefit (eventually) paid at time k;
- F} : market value of the reference index;

+ I, := F}/Fx_1 — 1: annual rate of return of the index at time k.
Given the initial sum insured Cy, the benefits at time k£ are given by:
Cr,=Co®(0,k), k=1,2,...,n.

where the function:
®(0,k) = ®(Fy, Fo, ..., Fi),
is contractually fixed at time 0.

Remark. It is relevant to observe that in the i-1 policies the reference
index is observed on the market and cannot be influenced by the

isurer. m
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The standard valuation framework

e At time 0 we have the liability stream:
C= {5k, k:1,2,...,n};

where:
~ { Ck, with prob. Po(Cy; k)

Ch = 0, with prob. 1—Py(Cy;k)

e The net single premium is given by:

U=Cy > (1+i) " PP(CR k) + Ck (1+40) " P (Cin),

k=1

— first order basis: probability P(1) and technical rate 1.

If the policy is fully indexed the technical interest rate is set equal
to 0.

e The net premium reserve at time £ = 0,1,...,n is defined by:
Ry=:Cp Y (1+49)~U=PP(cr;))
j=k+1

+CL 1+ i)~ =PPWY(CLp) .
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Financial risk

To meet solvency requirements the insurer purchases a portfolio of
assets backing the contract. At each date ¢t € [0,n] the market value

A; of the asset portfolio cannot be lower than the technical reserve:

Ay > Ry .

e (lassical scheme. The insurer is involved in a replicating invest-
ment strategy providing the result A; > R; for any t.
[Brennan, Schwartz, 1976]

Remark. If the & functions include minimum guarantees the repli-
cating strategy is a dynamic hedging strategy, as prescribed by the

option pricing theory. m

o Scheme with underlying security. At time 0 let us consider a

stochastic zcb with maturity n and terminal payoft:
Y, :=®(0,n).

Assume that the zcb is traded on the market at the price @); an
assume that:

Qo =1, at time 0

Q¢ = ®(0,t), for each t <n

= the equality A; = R; is guaranteed if at time 0 the insurer pur-

chases Ayg = Cy units of this zcb.
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v In actual contracts the equality Q; = ®(0,t¢) is obtained “by
definition” since the price (); is used as the reference index; that is

the ® function is defined as:

®(0,t) := Q Vt.

Qo

— In a policy written on an underlying security the insurer is not

faced with investment risk.

— If the issuer of the underlying security is defaultable the policy
involves counter-party risk. This default risk can be faced by
the insurer or by the policyholder, depending on the specific

contractual clauses.

— If the price of the underlying security is determined on a non
efficient market, the insurer can incur in losses in case of re-
demption if the price (); is greater than the fair value of the
security. This surrender risk can be reduced by stipulating a

buy-back ageement with the bond issuer.

— Typically the underlying security of the i-1 policy is a structured
bond which includes minimum return guarantees. If the price
()¢ is not efficiently determined the insurer needs an appropriate
pricing model in order to control possible deviations of (); from

its fair value.
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Stochastic reserve and VBIF
The usual definitions apply to i-1 policies.

©® The stochastic reserve at time ¢ (for a single premium policy) is
given by:
Vi =V(tC).

® Correspondingly, the VBIF at time ¢ is defined by:

Et:Rt_W.
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Appendix — An elementary model for arbitrage pricing

The derivative contract

Single period binomial model

The hedging (or replication) argument
The risk-neutral valuation

Valuing a life insurance liability
Valuing the investment gain

Example
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The derivative contract

Let us consider at time ¢ a stochastic zcb with maturity 7' > t and
payoff Drp.

Assume that Dt is a function:

Dy := g(FT)7

where F' is the market price of a traded security (or of a portfolio of
traded securities)

—— the price F; can be observed on the market at time ¢.

The zcb D is a contingent claim or a derivative contract; the portfolio

F' can be referred to as the underlying of this contract.

The valuation problem is to derive the time ¢ value of the derivative

contract, that is the price:

D; =V (t;Dr).
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Single period binomial model

Let t = 0 and T = 1 and assume (slightly changing notations) the

following binomial evolution of the undrlying price.

0 1

| |

| |

P ul’ with prob. p
dF with prob. 1 —p

— stochastic growth factor ¢, with possible values u or d.
Let u > d.

Assume there exists a riskless investment opportunity (the riskless

bond) with interest rate r in [0, 1]
— deterministic growth factor: m :=1+r.
We suppose that F' pays no dividends and we make the usual perfect
market assumptions; that is:

— no transaction costs, no taxes;

— short sales are allowed;

— the agents are price taker and prefer more to less;

— the securities are infinitely divisible;

— riskless arbitrage opportunities are precluded.
A first consequence: to prevent arbitrage the following inequalities
must hold:

u>m>d.
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The hedging (or replication) argument

Correspondingly to the evolution of F', we have the derivative price

evolution:

0 1

| |

| |

P F, =uF with prob. p
F;=dF with prob. 1 —p
D, = g(uF) with prob. p

D
Dy = g(dF) with prob. 1 —p

Let us consider a portfolio containing A units of F' and the amount
B in riskless bond.

The price evolution of this portfolio is given by:

uF" A+ mB with prob. p
dF' A +mB with prob. 1 —p

FA+B

In order that the portfolio replicates the contingent claim payoff the

following equalities must hold:

{UFA + mB

|
N
&

dFA + mB
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Solving these equations, we obtain:

D, — Dy
A= “w  —d
(u—d)F’
and:
B— ’LLDd—dDu
(u—d)m

For these values of A anf B the portfolio exactly replicates the ter-

minal value of D (the equivalent portfolio, or replicating portfolio).

To avoid arbitrage the price of this ptf must be equal to the price of

the derivative (the “low of one price”); that is:

D=FA+B=
Du—Dd uDd—dDu o

u—d i (u—>b)m

1 /fm—u uUu—m
S— D, D )
m(u—d +u—d d)

This equation can be rewritten as:

D:%[unJr(l—q)Dd}.

where:

e The value of the derivative D is independent on the natural prob-

ability p.

e The value of the derivative does not depend on investor’s attitude

toward risk.
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The risk-neutral valuation

The contingent claim price can be expressed as discounted the ex-

pectation:

1
DO — m EOQ [Dl]

where E? is the expectation operator with respect to the probability

q, which is referred to as risk-neutral probability.

The expected return of F' (with respect to the natural probability p)

is given by:

=(u—=1)p+(d-1)(1~-p).

If the expectation is taken with respect to ¢ one has:

Q
P = =gt @- -0
:(u—1)z7“__j+(d—1)z__7g
—m—1=r.
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Valuing a life insurance liability

Single premium pure endowment maturing at time 1, with current

sum insured Cy an technical rate 1.

The policy is participating, with reference return I := Fy/Fy — 1

and participation coefficient 3: hence the benefit a time 1 is:

1 +max{f 1, i}
1+1

Y, = Cp

)

or:
Y1 = R[14+max{B ], i}],
where R := Cy/(1 +1).

We have:

0 1

| |

| |

P F, =uF with prob. p
F;=dF with prob. 1 —p

; I,=u—1 with prob. p
Is=d—1 with prob. 1 —p
Yy =R[l +max{f(u—1), i}

Y

Yy=R[l +max{3(d—1), ¢}]
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Using the expression:
Y, = R(l —i—ﬁ]l) + R max{i — 81, 0},
we can value separately the linear component (the “base” compo-
nent):
Li=R(1+416),

and the put component:

Plszax{z'—ﬁIl,O}.

e For the base component we have:
Lg=R[1+3(d-1)]=R[1-75)+(d].

Hence we find:

and:

e For the put component we have:
1
P=—\qP,+(1—-q) Py,
m

and: P P
Ap — u — 4Ld
P w—d)F’

where:

P, = R max{i — 3 (u—1), 0},

P;=Rmax{i—(0(d—1), 0}.
Since P, < P;, then Ap <O0.
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Valuing the investment gain

Referring to the same policy, we consider the investment gain of the

insurer at time 1, given by:
Gi1=R|L —max{8 1, i}],
which can be written as:
Gi=R(1-0)I; — Rmax{i — (1, 0}.

Thus GG; can be written as the difference between the linear compo-

nent:

Hi=R(1-8)1,

and the put component:

Plszax{i—ﬂll,O}.

e The linear component is now given by:

H, = R[(1—-f)(u—1)],
Ha=R[(1—8)(d—1)].

Hence we find:

H=—[qH.+ (0~ q)H
=R (1) [qut (1 - g)d—1].
and: Ho_H, R
An=a—gr -0 F
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Example
Let:
u=11,d=1/u, r=5%, F =10 (“market parameters”);
Co =102, i =2% (hence R =100), 3 =0.8 (“policy features”) .

Under the binomial scheme:

p_1g =4
B F; =9.09091
; I,=11-1=0.1
I; = 0.909091 — 1 = —0.091
Y, = 100 x (1 + max{0.8 x 0.1, 0.02}) = 108
Y

Y,; =100 x (1 + max{0.8 x —0.091, 0.02}) = 102

The risk-neutral probability is:

m—d _ 1.05— 0.909091
1= "4~ T1_oooo0or T

and the value of the insurance liability is:

Q
V(0;Yy) = Efgf) = %[qYu +(1—4q) Yd}

1
1.05
1

= —— 106.4286 = 101.361 .
1.05

- [0.7381 x 108 + (1 — 0.7381) x 102}
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The composition of the replicating portfolio is:

Y, - Y, 108 — 102
A = a _ 10810 — 3.1429
(u—d)F 11 —9.09091

and:

uYy;—dY, 1.1 x102-0.909091 x 108  14.018
(u—d)m (1.1 -0.909091) x 1.05  0.2005

B = = 69.932.

Hence in order to hedge the liability Y7, the insurer must allocate
the amount V' = 101.361 investing:

® 10 x 3.1429/101.361 = 31% of V in the reference fund,

and:

® 69.932/101.361 = 69% of V in riskless bonds.

Valuation of the components

e Base component
L,=R[1+p(u—-1) =100 x (1+0.8x0.1) =108,

Ly=R[1+3(d—1)] =100 x (1+0.8 x —0.091) = 92.7273.

Hence we find:

1
L=—lqLy+(1-q)Lg
m

1
- [0.7381 x 108 + (1 — 0.7381) x 92.7273]

= 99.0476 .

and: R 100
A _— —_— = . _— = .
L 5 I 0.8 x 10 8
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e Put component
P, = R max{i — # I, 0}
= 100 x max{0.05 — 0.8 x 0.1, 0} =0,
P; = R max{i — 314, 0}
= 100 x max{0.05 — 0.8 x —0.091, 0} = 9.27273.
Thus the put value is:

1
P— — [un+(1—q)Pd
m

1
= o [0.7381 % 0+ (1 —0.7381) x 9.27273]

= 2.31293.

with delta:

P,—P;  0-—2.31293
PT (w=d)F 11 —19.09091

In fact one can obtain:

V =L+ P =99.0476 + 2.31293 = 101.361.

A=A +Ap=8—4.8571 =3.1429.
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The investment gain

The investment gain generated by the policy at time 1 can have the

values,
Gy, =R [[u — max{( I, z}]
=100 x [0.1 — max{0.8 x 0.1, 0.05}] =2,
Gg=R [Id — max{ 3 I, z}]
=100 x [ —0.091 — max{0.8 x —0.091, 0.05}] = —11.0909.

Therefore the value of the investment gain is negative:

=" [aCut (-Gl

m

1
- — 0.7381 x 2+ (1 0.7381) x —11.0909)

= —1.36054 .

with delta:

Gy —Gq 2+ 11.0909
A = = — 6.8571.
“T u—d)F 11 —19.09091

e For the linear component we have:
H,=R[1-06)I,]=R[(1-0.8) x0.1] =2,
H;=R[(1-p3)1;) =R[(1—-0.8) x —0.091] = —1.818218.

Hence one obtains:
1
H == |qH,+ (1~ q)H,
m

- [0.7381 x 2+ (1—0.7381) x —1.818218

= 0.95238.
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with: R
AH:(l—ﬁ)F:()QxlO:Q.

Performing the valuation by G = H — P we get:
G=H — P =0.95238 — 2.31293 = —1.36054 .

The retained interest H is not sufficient to offset the cost of the

minimum guarantee.

Remark. The difference:
E:=R-V =100-101.361 = —1.361,

is the (investment component of) the VBIF generated by the con-

tract. n

Remark. For a participation coefficient 3 = 0.6 one would obtain:
V =99.9546, L = 98.0952, P = 1.8594, H = 1.90476,
E=R—-V =100 —-99.9546 = 0.0454 . m
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