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The Tail Behavior of Stock Returns:
Emerging versus Mature Markets

Eric Jondeau* Michael Rockinger'
June 1999

Abstract

For Central Banks, institutional, and individual investors it is crucial to un-
derstand the frequency and importance of drops or sudden rises in financial
markets. Extreme value theory (evt) is an interesting tool providing answers to
questions such as: -with what frequency do we find variations of returns beyond
a given threshold? -over a given period, what type of extreme variation can be
expected? -with what type of unconditional distribution of returns are the tails
of returns compatible? -in a cross country setting of emerging and mature finan-
cial markets do extreme variations behave in a similar manner? -can we learn
about the evolution of returns of presently developing economies from the early
returns of presently mature markets? -do countries behave similarly in terms of
up or down crashes for a given level of development?

In the following paper we start with a review of theoretical elements of evt. In
the empirical section of this study we consider five mature markets, nine Asian,
six Eastern European, and seven Latin American emerging markets. The tail-
behavior of returns is found to be compatible with the existence of up to the third
moment but not beyond. The estimation of the tail distribution as a Generalized
Pareto Distribution shows that great care has to be taken for emerging markets
where little data is available and returns’ distribution is subject to violate the
iid assumption. Using a subsample of countries we demonstrate the limitations
of evt. We also show that little can be learned from 19th century US data about
presently emerging markets’ tail behavior.

Keywords: Extreme Value Theory, Generalized Pareto Distribution, Stock
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1 Introduction

Few researchers in empirical finance would argue with the affirmation that finan-
cial markets are subject to extreme variations generally due to stock market crashes.
Those crashes can be brought about by political reasons or economic ones. For a Cen-
tral Bank, the understanding of the expected frequency of a crash or of its magnitude
may be of importance in the management of its reserves. For portfolio management
the observation that returns may take extreme values, incompatible with the assump-
tion of normality, is also of importance since it implies a break-down of traditional
mean-variance analysis.! Furthermore, the possibility of a sudden deterioration of
financial market’s conditions has implications for Value-at-Risk (VaR) analysis. Sim-
ilarly, the increased risk of default during a crash implies for the regulator, who has
to set margin requirements in a futures market, that his settings may not be sufficient
if he does not explicitly take into account the possibility of large sudden movements
in the market. A thorough understanding of extreme value theory (evt) seems to be,
therefore, also of great importance for empirical finance.

The literature which finds that a simple description of stock returns’ distribution
as a normal one is insufficient started early with Mandelbrot (1963) or Fama (1963).2
Those authors suggest the use of stable distributions as an alternative to the normal
one in an effort to take into account the observation that stock returns have excess
skewness and kurtosis. In an alternative approach, aiming at describing patterns of
variable volatility, Engle (1982) developed the ARCH model. This type of model
is also able to generate skewed and leptokurtic returns.> Whereas both types of
approaches model the entire distribution of returns it is possible to focus only on the
distribution of the tails of returns and, thus, to neglect the more central part. In
the statistics literature, DuMouchel (1983) noticed the importance to distinguish the
tails from the more central part of returns’ distribution. In the finance literature,
the investigation how tails of returns behave goes back to Hols and de Vries (1991),
Jansen and de Vries (1991). Koedijk, Schafgans, and de Vries (1990) investigated the
tail behavior of foreign exchange data. Recent research is by Danielsson and de Vries
(1997), or Dacorogna, Miiller, Pictet, and de Vries (1995) for exchange rates. For
stock returns recent work has been made by Loretan and Phillips (1994) and Longin
(1996). There is also some cross country evidence that the tail behavior of returns is
leptokurtic. Longin (1996) considers a database of daily US stock between 1885 and
1990 and confirms that the tail distribution is of the Fréchet type, hence fat-tailed.
Lux (1998) finds a similar behavior for German stocks sampled tick-by-tick.

The goal of this paper is to recall some fundamentals of extreme value theory and
to enrich the academic literature by studying the tail behavior of stock returns in a
cross-country setting. To do so we consider a database of daily stock returns for five
mature markets, nine Asian markets, six FEastern European as well as seven Latin

! The study how extreme values can be incorportated into portfolio management is left for further
research.

2Non-normality is widely documented. We just mention some works with the risk of omitting
many others: Blattberg and Gonedes (1974), Fama and Roll (1971), Fielitz (1976), Fielitz and Rozell
(1983), Simkowitz and Beedles (1980), Kon (1984), Tucker (1992), and Mandelbrot (1997).

3In this type of model, innovations are found to remain excessively leptokurtic. This result is
well known and has lead to modeling innovations either with a Student-t or a Generalized Error
distribution. For a study relating GARCH with extreme value theory see Starica and Pictet (1999).
Fat-tailedness has been further modeled by Baillie, Bollerslev, and Mikkelsen (1996) with the FI-
GARCH model. To the authors’ knowledge the tail-behavior of this model is not known presently.



American ones.* A cross-country investigation of the tail-behavior of returns has
not been done to our knowledge. There exists, however, a strand of literature that
investigates the stock market behavior of emerging markets. Claessens, Dasgupta,
and Glen (1995) investigate the existence of return anomalies and predictability for a
set of 20 countries represented in the International Finance Corporation’s emerging
markets data base. Bekaert and Harvey (1995, 1997), using the same data, study
volatility determinants for emerging markets. They also ask how well those markets
are integrated with developed ones. See also Rockinger and Urga (1998) who focus
on Eastern Furopean markets. Shields (1997) compares asymmetries in volatility
response to news between mature and emerging markets.

The structure of this paper is as follows. In section 2 we present theoretical ele-
ments of extreme value theory. We recall that under the assumption of independence
and identical distribution of returns, asymptotically the distribution of maxima must
be of one of three types which can be nested within a Generalized Extreme Value
(gev) distribution. Similarly, under the same assumptions we recall that the distri-
bution of tails must be of the Generalized Pareto Distribution (gpd). In section 3 we
provide applications of evt that should be useful for the practitioner. In section 4 we
implement evt on our database. In section 5 we present the results of our empirical
investigation. We report various descriptive statistics and the Hill estimates. We
show that for most indices under investigation up to the second moment exists. For
many indices even the third one seems to exist. Next, we report the goodness of the
fit of the gpd to the tails of returns. It is shown that the fit leaves space for im-
provements for some emerging markets. We also present the results of the maximum
likelihood estimation of the generalized extreme value distribution. In section 6 we
compare the tail behavior of returns for the early days of a global US index with
those of presently emerging markets. We find that the behavior then has little to
do with the one of currently emerging markets and, thus, that it is very difficult to
make any predictions how currently emerging markets’ returns tails will evolve in the
future. In section 7 we conclude.

2 Extreme value theory

In this section we consider theoretical issues concerning extreme realizations. A very
thorough description of the theory, at textbook level, can be found in Leadbetter,
Lindgren, and Rootzén (1983) or Embrechts, Kliippelberg, and Mikosch (1997).

There are two different, yet related, approaches to modeling extreme values. A
first approach studies the law followed by the maximum or minimum of returns over
given time horizons. An alternative approach considers the entire tail of a set of
realizations and estimates its associated distribution. We will start our theoretical
description with the former approach.

2.1 Distribution of extremes

We will be concerned in this section with the distribution of the maximum or the
minimum return of a stock. We will recall that such a distribution of extremes can
be of three different types. Before reaching this result we need some notations. Let

‘Datastream provided us with this data.



X1, -+, X7 be a sequence of random variables corresponding to stock returns.” We
notice that
—min(—Xy, -+, —X7p) = max(Xy,---, Xr) = Mp

which shows that without loss of generality it is enough to develop a theory for the
upper tail of the distribution of returns. We next notice that if the X; are independent
and identically distributed, (iid), then, if Fiy(-) is the cumulative distribution function
(cdf) of any X it follows that

PriMr <z] = Prmax(Xy, -, Xr) <]
= PrXi<z,---, Xr<z]
= [Fx(a)".

This indicates that under the iid assumption, the law of the maximum for a finite
sample can be easily obtained if Fx(-) is known. What if 7" becomes large? We notice
that for a given x

T o0 0 else.

and, thus, we obtain a degenerate law. This raises the question if a scaled version of
My converges to a finite distribution. After all, a sum of iid random variables also
degenerates as the sample size increases whereas a scaled version converges, thanks
to the central limit theorem, to a well defined law. For the problem at hand we have
the Fisher-Tippett theorem which characterizes the limit law for maxima. It was
Gnedenko (1943) who provided the first formal proof.

Theorem 1 Let X; be a sequence of iid random wvariables. If there exist norming
constants pp € R, ¥y > 0, and some non-degenerate cdf H such that

Mp —pr _
(2

where = designs convergence in distribution, then H belongs to one of the following
three cdfs:

H,

Gumbel : exp(—exp(—x)), forz € R,

—(—1\> <
Weibull {exP( (=2)%), forz<0,
1, x>0,
0, xz <0,

exp(—z~%), forz >0, a>0.

Fréchet {

The three distributions are called standard extreme value distributions. In Fig-
ure 1 we represent those various distributions.® It is important to notice that the
distributions cannot be flipped symmetrically around a vertical axis. This implies
intuitively that to get a distribution such as the Weibull, the support of the distri-
bution underlying the random variables must be finite. In other words, the Weibull
generates thin tails. On the other hand, empirical evidence suggests that returns are

5Continuously compounded returns are defined by X; = 100 - ln(St/Stfl) where S; is the closing
value of a stock price at time £.
In the graph we have set a=1.



heavy tailed and, therefore, either the Gumbel or the Fréchet distribution are likely
to describe the behavior of extremes of stock market returns.”

Sometimes it is useful to nest the three distributions. This has been originally
achieved by Jenkinson and von Mises with the generalized extreme value distribution
(gev). They define

e (- V) g £,
Ie(=) { exp (—exp(—z)) if £€=0, L)

where 1 + &z > 0. We then notice that the standard extreme value distributions can
be recovered with

a >0 for the Fréchet distribution,
0 for the Gumbel distribution,
—a 1> 0 for the Weibull distribution.

§
§
§

The parameter & is called the tail index and 1/ is called the shape index.® Our
econometric problem is to decide which is the correct distribution of extremes of
returns for the data at hand and to estimate the norming constants g, ¥, and &.

Having obtained the limit distribution, one can reverse the reasoning and ask
what type of distribution of the cdf Fx(-) underlying the X; will yield convergence
to a given limit distribution. It can be shown that the normal, and lognormal laws
yvield maxima converging to the Gumbel. Cauchy, Pareto, or t-distributed returns
will yield the Fréchet distribution. A uniform distribution would yield the Weibull.

In the empirical-finance literature researchers have tried to capture fat-tailedness
through various means. Kon (1984) modeled returns as a mixture of normals. Tt
can be shown that this mixture distribution yields a Gumbel type distribution. For
ARCH processes Jansen and de Vries (1991) have derived the Fréchet distribution as
the limit distribution.

To estimate the various parameters, a typical approach is to take the maxima
of non-overlapping subsamples and to derive descriptive statistics as well as maxi-
mum likelihood estimates for those maxima. This approach implies, however, that
the sample gets strongly reduced since subsamples have to be taken. In this case
the precision of estimates reduces. An alternative approach, considered in the next
section, is to consider thresholds and to focus on those realizations exceeding a given
threshold. The task is then to fit a distribution to the tail of the distribution. In-
tuitively a link between maxima and tails of the underlying distribution must exist.
This intuition is also developed in the following section. McNeil and Saladin (1997)
provide an application of this method.

2.2 The tail distribution

Definition 2 Let u be a fized real number, the threshold, in the support of X;. The
function
Fulx)=Pr[Xy —u<z|Xy>ul, >0

"Returns cannot be beyond -100%, which corresponds to bankruptcy. For this reason the left tail
of the returns’ support is bounded. However, as long as on average returns are far away from this
boundary, fat-tails are a possibility for a given sample.

®Tn this work we follow the notations of Embrechts, Kliippelberg, and Mikosch (1997).



is called the excess distribution function (edf) of the random variables X; over the
threshold w. The function

e(u) = E[X4| Xy >ul—u
is called the mean-excess function (mef).
The excess distribution function measures the probability that the excess real-
ization relative to the threshold is below a certain value, given that the realization
is above the threshold. The mean-excess function averages those realizations that

exceed u and considers the distance between the mean and u. We have the following
mean-excess functions given a certain distribution for the tail of a distribution:

k
Pareto ﬁ ,a >0,
Weibull u T
. 1
Exponential =~ <.

In Figure 2 we represent the graph of those theoretical mefs associated with several
distributions for X;.

It has been shown by Balkema and De Haan (1974) and Pickands (1975) that for
a certain class of distributions there exists a positive scaling function a(u) such that

X —u 1= 4&x) Ve ifg#£0,
[a(u) §x]X>u}—{ 1 —exp(—x) if £=0.

This means that the scaled excess function F,(x) has a limit distribution which will
be called the Generalized Pareto distribution (gpd) written as G (x) and defined
by

Iim Pr
Uu—+00

L= (L+&a/¢) Ve i E£0
G = k 0 2

ey (@) { 1 —exp(—z/v) if £=0, v > (2)
where x > 0if £ > 0 and 0 < x < —¢ /€ if £ < 0. Clearly, the tail index £ from the
gev is the same as for the gpd. The density of the gpd can be easily derived as

R L O )

An illustration of this density can be found in Figure 3 for a set of parameters
that may typically arise in Finance. We notice that an increase of £ for a constant
level of the scale factor @ increases the tail while steepening the slope at the more
central part of the density. On the other hand, an increase of v given £ yields a
flattening for the central part of the density accompanied by an increase of the tails.
Those results indicate that if one chooses a high enough threshold, then the fit of a
gpd to the tail realizations will also yield an estimate of the tail index.

3 Practical applications of extreme value theory

At this stage we have recalled various theoretical results how extreme returns or tails
of distributions should behave. Once parameters have been obtained it is possible to
address several useful issues such as how to estimate the average waiting time between
extreme realizations or how to estimate the realization of high quantiles. It is also
possible to determine the number of moments that exist for the return generating
distribution and which are compatible with a given tail behavior.



3.1 Waiting time between extremes

Once the tail distribution has been characterized it is possible to compute the mean
waiting time between specific extreme events. This result is useful for the practitioner
who wishes to estimate the average time before a given extreme value occurs. Clearly,
an extreme realization is defined as the exceeding of a return of a given level. Let
X: be iid random variables with cdf G and w a threshold. The fact that X; > u
or not corresponds to a Bernoulli event with success probability p =1 — G(u). The
probability that X; exceeds the threshold at time k& and not before is given by the
geometric distribution p(1 —p)k 1k =1,2,---. As a consequence the average waiting
time before wu is crossed is

+oo
E[min(t > 1: X > u)| = Z kp(1—p)1=1/p.
k=1
Once the parameters of a gpd are estimated it becomes easy to evaluate this quantity.

3.2 Estimation of high quantiles

In the previous section we showed how to compute the average waiting time before an
extreme event occurs. For the practitioner it is of similar importance to know with
what type of frequency a certain extreme event will occur. For instance, how often
can one expect a drop of returns beyond a certain threshold. This type of question
is for instance relevant for Value-at-Risk analysis. There are investors who need to
know the probability that the stock market drops by so and so much on a given day.
Traditionally, one would take historical data and count the frequency of stock market
drops of the desired amount. There are several problems with this approach. First,
there will be very few days with exceedance of the desired level, especially if the level
is large, and one will get a poor estimate of the actual probability. For a reason
of statistical stability one may be better off by modeling the entire tail. Second, it
is possible that one is interested in variations that never occurred before. Again, a
model which explicitly models the tail can help.

A similar, but slightly more complex problem is the measurement of the largest
possible realization over a certain time horizon. For instance what type of extreme
realization can be expected over a horizon of 5 or 50 years. If some daily data
is sampled over 200 trading days, then, under the assumption that there are 200
trading days in a year, we are looking for the largest among 1’000 respectively 10’000
realizations. As a consequence, what we have to compute are very high quantiles.

Formally, define p as the probability of a very rare event. We try to find an
estimate x, such that F'(z,) = p. To solve this issue, Rootzén and Tajvidi (1996) or
McNeil (1997) suggest the following approach. They first notice that for z > u we
have

F(z) =Pr[X <z]=(1 - Pr[X <u])Fyu(z —u)+ Pr[X <u.

Hence, it is possible to estimate the probability of being below a certain threshold,

F(z), with R

F(r) = (1 = Fr(u)Geuy(z) + Fr(u)
where Fip(u) is the empirical distribution function. Furthermore, if we give ourselves
the probability of occurrence of a rare event and seek the associated quantile, inversion



of this formula yields

—£
® 1-p _ ;
4 <p—FT(u) B U+ g l(lﬁ'(u)) 1] if & #0,
u—ln <TA€U)> else.

This formula can be easily implemented once we have estimates of the various
parameters.

Tp=u+G

3.3 Existence of moments

The fact that returns of stock markets are leptokurtic has lead to their modeling
with fat-tailed distributions. Some of those distributions such as Mandelbrot’s (1963)
stable law does not allow for a finite variance. Given the tail behavior of returns, this
question can again be addressed with evt.” Embrechts, Kliippelberg, and Mikosch
(1997, p. 165) recall that if X follows a gpd then for all integers r such that r < 1/¢
the r-th moment exists with

T -1 _
E[XT] = ;f+1 ng:l _I_I; rl

4 Empirical techniques

We now address the question how the tail behavior of a given sample can be char-
acterized and how its parameters can be estimated. A first step in evt is to use
exploratory methods to analyze the data.

4.1 Histograms of extrema

This is the simplest and most straightforward explanatory method to get an idea
of the type of tail behavior. One constructs m-histories (sometimes called blocks in
evt), that is non-overlapping subsamples of length m, and one considers the maximum
over each m-history. This gives a sample of maxima which can be represented by an
histogram. Once an histogram is obtained, a comparison with the densities displayed
in Figure 1 allows an educated guess of the type of extreme value distribution one is
dealing with. Gumbel (1958) as well as Embrechts, Kliippelberg, and Mikosch (1997)
insist on the importance of such a graphical analysis.

4.2 QQ-Plots (quantile plots)
We define the generalized inverse of the cumulative distribution function £ as
Frt)=inf(zx e R: F(z) >t), 0<t<l1.

This function is called the quantile function of the cdf F. [ (¢) defines the {—th
quantile of F'. For the case that F'is a continuous function, /™ is simply the inverse
function. Let x1,---, 27 be the maxima over m-histories and z77 < --- < z17 the

See also Longin (1996, p. 399). He concludes that the US daily returns series allows up to the
third moments but not beyond.



ordered realizations, then the plot {xt,T, Fe (TLH)} is referred to as the quantile
plot.

To test if x1,---,zp follow a certain distribution, such as a Gumbel, one takes
the ordered sample and plots =, against — ln(—ln(TLﬂ)), that is the inverse of the

Gumbel cdf. If the data is truly generated by a Gumbel distribution then quantiles of
the theoretical and the empirical distribution should match and a roughly linear QQ-
plot is expected. To check for linearity it is customary to also trace the OLS regression
line of the fit of the theoretical on the empirical quantiles. As already discussed by
Gumbel (1958) if the QQ-plot is (with the Gumbel distribution as reference function)
concave, then the limit distribution is a Fréchet one. If the QQ-plot is convex the
limit distribution is Weibull.

This method can be pushed a bit further to yield parameter estimates which can
be used in further estimations. To do so, one assumes that the sample of maxima
follows a gev distribution (1). In this case we obtain after taking logs twice and after
introducing a random noise &; that

In <—ln <TL+1>> - _% In <1 +§W> + e (4)

This equation can now be fitted to the sorted sample with a simple NLLS fit. The
obtained parameters can be used as starting values for a further maximum likelihood
estimation.

4.3 Mean-excess function plots

Estimates of the mef e(u), written as é(u), can be obtained easily from a realization
z1, -,y of Xy, Xp. Indeed, if T ongjtiony 18 the indicator variable taking the
value 1 if the condition is true and 0 otherwise,

) 1 &
é(u) = A Z(mt — u)I{m>u}(xt), u > 0,

U =1

where N, is the number of realizations exceeding u, that is N, = Y7, Tiwsur ().
The mean-excess plot consists in the graph

{(xer,é(zer)) i t=1,---,T}.

The mean-excess plot allows distinction between distributions with light- or heavy-
tailed distribution. Furthermore, a simple OLS fit of a straight line gives the pa-
rameters underlying the distribution. We recall that some characteristic mean-excess
functions are displayed in Figure 3.

4.4 Estimation of the tail index

As we have seen earlier the asymptotic behavior of extreme values depends on the
tail index £. Depending on the values taken by this index we will end up with either
a Fréchet, a Gumbel, or a Weibull distribution. It is therefore of great importance to
be able to quickly characterize the tail index. In this section we present two simple
ways to estimate the index before turning in the next section to the full estimation
of all parameters with the maximum likelihood method.



4.4.1 Pickands tail index estimation

This method can be used for all £ € R. This time we consider those realizations
located in the tails and not only block maxima. Let z;7 < --- < x17 be an ordered
sample of size ¢. Pickands’ (1975) estimator is defined by

AP 1 Ty — T T
Ser = In l .

In(2) Tot T — Ta, T

It can be shown that the Pickands estimator is consistent as long as ¢ is chosen in
such a way that t/T — 0 as T — 4o00. Dekkers and De Haan (1989) have further
shown that Pickands’ estimator is asymptotically normal:

52 (22£+1 + 1)
(2(2¢ - 1)In(2)))*

Vi(Er =€) = NO0(©)  vhere v(9) = )

For empirical purposes, once the parameter £ has been estimated one can use (5)
to compute the standard error. Since Pickands’ estimator is defined for all £ it can
be used to discriminate between the three extreme value distributions. There clearly
remains the empirical issue on how to choose the optimal ¢ for a given sample. We
will turn to that issue later on.

4.4.2 Hill’s tail index estimation

This method can only be used for the Fréchet extreme value distribution (£ > 0). We
consider again x; p issued from the raw sample data. Hill’s (1975) method estimates
£ using

“H 1 t—1
Sr = 1 > In(zjr/zir). (6)
=1

~H
Again if ¢ grows such that ¢/T" — 0 as 1" — 400 it can be shown that &, 1 is consistent.
We also have asymptotic normality:

ﬂ(éf}—g) — N (0,€2).

For empirical purposes the variance £2 can be estimated using %’f 7. It has been shown
that if the X; are generated by a Fréchet distribution then the Hill index will yield
a more efficient tail index than the Pickands’ one. In the appendix we address the
issue how an optimal ¢ can be chosen using a bootstrap method.

4.5 Maximum likelihood estimation of the gev distribution

We first notice that the gev distribution of a general non-centered, non-reduced ran-
dom variable is defined by

exp (— (1+5%)1/5> i 14 &5 > 0,6 #0,

Henw®) = exp (— exp (—%ﬁ)) if £=0.

10



Its density he u.0(x) is given by

1

1 1
% (1 —|—5%/ﬁ) * exp <— (1 +§%ﬁ) 5) where 1 +£%’i > 0,£#0,
he i (2) = e
%exp<_ww_u_e w) if €= 0.
To compute the maximum likelihood estimates one chooses, say, the T" maximum
returns x1, - - -, xp for T" m-histories and fits the likelihood
T
L<£7 s w) = H hf,u,w (xt)1{1+£(%)>0} (xt) (7)
t=1

Using a maximum likelihood routine the various parameters can now be easily es-
timated. It turns out (see Smith (1985)) that the usual asymptotic properties hold
whenever £ > —1/2.

Expression (7) correctly describes the likelihood if the underlying variables are
iid. In empirical work the use of m-histories with m sufficiently large is likely to yield
uncorrelated realizations. As we will see later on, the estimates fluctuate according
to the method chosen, for financial data the assumption of an identical distribution
may not hold.

4.6 Fitting ‘excesses over a threshold’

An other estimation method is based on exceedances of high thresholds. As we have
recalled earlier, for large thresholds, the excess distribution function F,(x) behaves
as a Generalized Pareto distribution, G¢ (), where the scaling parameter depends
on the threshold. The idea of this method is to chose a threshold u, to select the x¢
larger than the threshold u, and to fit to all excess returns s — u the gpd defined
in (2). The density of the gpd has already been determined in equation (3). The
likelihood of one observation can be written as

- _(§+1)1n(¢+5x)+%ln(¢) if £ 0,9 + &z > 0,
¢ —In(y) -2 if £ =0.

Again, it is nearly trivial to set up the numerical maximization for such a function.
The advantage of this approach is that one can use all realizations in the sample
exceeding u and not only the maximum over m-histories. A drawback is that one
has to choose a threshold u. A very high u will again strongly reduce the amount of
available data. The moral of evt is that nothing comes for free.

There remains the choice of the threshold. Whereas McNeil and Saladin (1997)
use simulations to find reasonable levels of the threshold (finding that about 200
values which are actually located in the tails yield good estimates) an alternative
approach is to use a graphical method based on the observation that if the random
variable X follows a gpd then, as was shown by Daragahi-Noubary (1989), the mef

e(u) = E[X —u|X >u|= wlti_u

is a linear function in u.'® A threshold should, therefore, be chosen such that the
relation between the obtained excesses and the mef is roughly linear. Moreover,

(8)

10T must be that £ < 1, otherwise tails are so heavy that the mean does not exist.

11



there exists a one-to-one relation between the parameters of the distribution and the
intercept and slope of the mef. A simple plot of e(u) against u reveals the parameters
1 and £. Once an empirical mef has been obtained, comparison with the theoretical
shapes allows identification of the type of distribution one is dealing with.

5 Empirical results

Since the aim of this study is to provide cross-country evidence for extreme events
we consider a large database of global indices. We consider five indices for mature
financial markets (Standard and Poor composite 500, Nikkei, Dax, CAC40 and the
FTSE100). For emerging markets we consider seven Asian ones (China (Shanghai),
Hong Kong, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan,
and Thailand), six Fastern European ones (the Czech Republic, Hungary, Poland,
Russia, the Slovak Republic, and Slovenia), as well as seven Latin American ones
(Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela).

This database has been extracted out of Datastream. For some of the series care
had to be taken for the earlier part of the sample since the reported frequency was
not daily.!! We used data from the moment on that the frequency was daily. For
some countries we had to append two indices.'? After these corrections, all the data
extracted has been used.

5.1 Descriptive statistics
5.1.1 Cross-country evidence

Table 1 contains various descriptive statistics. We display for the various countries
the starting date of the index as well as the number of observations. All series end
on December 31st 1998. The sample size (Nobs) ranges between 1108 for Poland up
to 7826 for mature markets. The average daily return is positive for most countries.
The median often takes the value 0. An explanation for this is that prices remain
constant over holidays which are not filtered out specially here. From a distributional
point of view this suggests that zero returns will be over-sampled. We do not insist
on this issue since in this study we focus on the tails of distributions and not on the
central part.

Skewness (Sk) and its standardized version (Sk*) are signed measures of the tail
behavior of returns. For developed markets this statistics is generally found to be
negative. For those markets it is crashes that introduce asymmetry. For emerging
markets the picture is not so clear. There are many markets with a positive skewness.
There it is sharp increases in prices that induce asymmetry of returns.

Kurtosis is a symmetric measure of the behavior of the tails of a distribution. This
statistic measures the heaviness of tails as compared to the normal one. Considering
kurtosis (Ku) and its standardized version (Ku*), we notice that this statistics is
too large for all indices to be reconciled with a normal distribution. Globally returns

1 This is the case for Indonesia before October 1989, the Czech Republic before September 1994
and Poland before October 1994. For Brazil the price figures are so small before January 1992 that
price changes are meaningless.

12For the French index, we used the CAC Général index before July 9th, 1987; for the UK index,
we used the F'T all-shares before January 1st, 1980.

13There is only one exception. For Russia, we suppressed the data for October 16th, 1998, with a
+50% return outlier.
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have excessively fat-tails. In all cases the Jarque-Bera statistics is very large implying
non-normality of the series. Those preliminary statistics confirm our prior that the
behavior of extreme values is of great importance in understanding returns.

To glean further insight in the extremal behavior of stock returns we center and
reduce all return series and consider the standardized minimum and maximum as
well as various percentiles (1%, 5%, 95% and 99%). If the data was truly normal,
we would expect for standardized returns that the empirical percentile corresponds
to the one of the normal distribution. The 1%, 5%, 95%, and 99% critical values
are then —2.3263, —1.6449, 1.6449, and 2.3263. Comparison of ¢l and ¢99 reveals
for all countries that the extreme 1 percentiles are too large to be compatible with a
normal distribution. This confirms our earlier finding that returns’ distributions are
fat-tailed. When comparing ¢b and ¢95 with the associated critical values we notice
that at this level there are not enough realizations to be compatible with a normal
distribution. It is truly the extreme values which generate non-normality in the data.
We notice further that if returns were normal, the realization corresponding to the
min and max would have virtually no probability to exist.

We next consider heteroskedasticity by regressing squared returns on [ = 1,...,5
lagged past squared returns. The Engle statistics T - R?, where T is the sample size
and R? is the coeflicient of determination, which is distributed as a X12 under the null
of homoskedasticity takes very large values. We therefore conclude that there is a
fair amount of heteroskedasticity in the data.

We now wish to test for autocorrelation among returns. Given the high level
of heteroskedasticity we consider a version of the Box-Ljung test which corrects for
heteroskedasticity (see also White, 1980). For 5 (10) lags the QW is distributed as a
X2 (x3o) whose 95% critical level is 11.07 (18.31). As a consequence the QW statistic
is significant for most indices investigated. For some countries the QW10 statistics
takes particularly large values such as for the CAC40, Thailand, the Philippines,
the Czech Republic, Chile, Mexico, Peru, and Colombia. A possibility for such a
large autocorrelation is stale prices. Inspection of the AR(1) and AR(2) coefficients
suggests that the first order autocorrelation is very high for those countries. Since
it is known that the evt developed earlier only holds for independent variables we
consider in the empirical part of the study AR(5) filtered series. To check if those
series are still autocorrelated we consider again the Box-Ljung statistics. We find
that there is no residual autocorrelation for all series. By using AR(5) filtered series
we can believe that we took care at least of some dependencies in the data.

5.1.2 Closer inspection of selected indices

To provide further insights in some of the methods, we will consider four indices in
particular. Those indices are the CAC40, as well as the one of Singapore, Russia, and
Mexico.!* In Figures 4a and 4b we represent the plot of returns for those indices.
In Table 2 we present for each of the four selected indices the five most extreme
positive and negative returns and their associated dates. For the CAC40 we notice
the large drop in the market in May 1981 which came from Mitterrand’s first election.
The October 1987 crash also shows up but its magnitude is not as big as the 1981
crash. We notice that the large drop, for the CAC40, on October 19th 1987 was
followed during the next days by other extreme returns of both signs. This turbulent

14%We choose the CAC40 since this index corresponds to our home country. The other indices were
choosen randomly, one for each geographical area.
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period is associated with the worldwide October crash as well as with the end of the
first period of cohabitation (October 28th) and the beginning new electoral campaign.

For Singapore we notice the importance of the 1987 October crash which largely
dominates the picture. It should be noticed that this period also coincides with the
beginning of an electoral campaign as well as multi-racial conflicts. The crash on
October 16th, 1989 was similarly due to very troubled elections.

The Russian index only exists for more recent dates.” We notice that both the
Russian index and the Mexican one reacted jointly during the 1997 and the more
recent 1998 crash. The amplitude of returns for the Russian market is noticeable.
Anecdotal evidence reveals that on October 28th, 1997 General Lebed was ousted.
On September 17th, 1998 occurred a change of the Prime Minister. On June 18th,
1994 elections took place in Russia.

5.2 Hill Estimates

In this section we will discuss the results of the estimation for the Hill tail index. We
focus directly on this index rather than on Pickand’s since there is clear evidence of
fat-tailedness of returns. We would like to emphasize that our analysis is always done
on AR(5) filtered series to eliminate autocorrelation.'® Given our prior concerning the
extreme value distribution we follow the advice of Gumbel (1958) and of Embrechts,
Kliippelberg, and Mikosch (1997) and start with a graphical analysis. In Figure ba
and 5b we trace the Hill estimates and their associated standard errors for the left and
the right tails of returns. Gumbel suggests that one chooses the tail index in an area
where the index is roughly linear. We notice that for the left and right tails of the
CAC40 the values taken by the tail index are fairly stable once the sample contains
about 100 observations. When turning to the Hill-plots associated with Singapore
we notice a quickly increasing plot that stabilizes at values around 0.37 for the left
tail. The right tail is first stable but increases as samples become larger than 150
observations.

The Hill-plots for Russia are, in Embrechts, Kliippelberg, and Mikosch termi-
nology, horror. This indicates that it will be difficult for this country to come up
with anything reasonable. Possible reasons are the very short sample or a changing
distribution of returns.

Last we turn to the Mexican stock market. Here the sample is more than twice
as large as the Russian market (2868 vs 1153 observations). Inspection of the left
tail reveals a rather stable part up to about 80 observations. From there on the Hill
estimate increases. For the right tail it is even more delicate to find a reasonable
estimate. This plot illustrates well the difficulty when estimating tail indices. If one
uses a large threshold, i.e. few observations, then the Hill estimate is bad because
there are just too few observations. If one lowers the threshold then one uses too
many observations from a region too distant from the extreme and the estimate will
be biased. This illustrates, especially for small samples the importance of a method
allowing a choice of optimal tail size.

To get the optimal Hill index we follow the procedure described in the appendix
of the paper and perform a bootstrap estimation. Table 3 displays our results for the
left and the right tails of the returns distribution. For the group of mature markets

15Notice the change in scale in Figure 4b.
16Tt should be noticed that if one works on unfiltered returns the estimates do not differ qualitatively
from the ones reported.
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we notice that on average the left and right tail index are of similar magnitude. A
similar result holds for the Asian markets but there the level of £ is higher suggesting
that those markets are more prone to crashes. For the Fastern Furopean markets the
left tail is stronger. On average the opposite holds for the Latin American markets.
Considering the standard deviation of the estimates of £ within geographic groups
we notice that the mature markets have very similar indices. The DAX and CAC40
exhibit strikingly similar & estimates of the left tail. The estimates for the right tail
are close. The dispersion of £ among Asian and Latin American markets is similar.
The group where indices vary the most is the Fastern FEuropean one. For instance,
considering the left tail, the Czech Republic has a very small tail index (0.23) whereas
Hungary has a very large (0.41) one.

When considering the accuracy of the estimation of the tail index measured by
STD() we find that for developed markets the estimation is best. The accuracy falls
for Asia, even more for Latin America followed by the least precise Eastern European
countries. This loss of precision can be explained by the decreasing sample size. It
is also because of this smaller sample size that there are less tail observations useful
for the tail index estimation (measured by &*).

5.3 Existence of moments

Now we wish to discuss the existence of moments of the return generating distribution
for the various countries. Let (&, 52) be the tail index and its variance.!” As we have
seen in section 3.3 the r-th moment of a distribution exists if r < 1/§. We now
describe a strategy to identify if the r-th moment exists or not.

Let n be an integer such that n < 1/§ < n 4 1. We first test Hg : n = 1/§
against H} : n > 1/€. If we reject H} we will be confident (up to the usual level
of significance) that at least the n-th moment exists. For the case where H{ cannot
be rejected we further test if we can reject the null in HZ : n — 1 = 1/¢ against
H? :n —1 > 1/¢ (for all empirical applications this is as far as we need to go). If
we reject HE we are confident of the existence of the (n — 1)-th moment. For those
cases where we rejected Hy we further test Hy : £ = n+ 1 against H} : £ < n + 1.
In all cases where this issue mattered we could reject HJ and, thus, we did not need
the (n + 2)-nd moment.

In Table 4 we implement those various tests by distinguishing the left from the
right tail. For the S&P index we confirm Longin’s (1996) finding that the third
moment exists but not the fourth one. For all mature markets we cannot reject the
existence of the third moment except for the Nikkei whose right tail creates some
difficulties. We can however confirm without any doubt that the second moment
exists.

Further scrutiny of Table 4 confirms the existence up to a second moment for
nearly all indices except for Thailand where the right tail does not allow for a second
moment or more.

Concerning the existence of a third moment, the picture is fuzzier. Globally we
find for the left tail that for 18 indices, and for the right tail for 14 indices, the third
moment exists. It is in Eastern European and Asian markets that the existence of
this moment appears to fail.

171t should be noticed that a trivial application of the §-method indicates that if a random variable
€ has variance £2 then 1/¢ has variance 1/¢2.
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Turning to the existence of a fourth moment, we see that for the Czech Republic
the left tail and for Brazil the right tail appear to allow for a fourth moment. However,
when considering the distribution as a whole, thus, combining both the left and right
tail, for no country do we find existence of a fourth moment.

The clear indication of the existence of a second moment, maybe even of a third
moment, sheds some doubts on the use of distributions such as stable laws for which

the second moment does not exists. For a similar conclusion see also Loretan and
Phillips (1994) and Lux (1998).

5.4 ML estimation of the Generalized Pareto distribution

To further assess the data and also to set the way for further estimates such as of high
quantiles it is necessary to focus not only on the tail index but the tail distribution.
Given the theoretical elements recalled above we know that this distribution should
be a Generalized Pareto distribution.

Again, in a similar manner as for the Hill estimate the question of an optimal
threshold arises. If one chooses a threshold too much in the tail one obtains a very
inaccurate estimate because just too few observations are used in the estimation. On
the other hand, when using too many observations one contaminates tail observations
with observations from the center.

Before presenting ML estimates we provide some graphical analysis allowing for
a better understanding of what goes on in the data.

5.4.1 Mean-Excess plots

To get an idea what level of the threshold one should use, we trace in Figures 6a-b the
mean-excess functions for the left and right tail of returns of the four countries under
closer scrutiny. We notice that for a high threshold the mef behaves more erratically
than for low thresholds. On the other hand, as the threshold increases, after a flat
part the mean-excess function increases linearly suggesting that it is there that one
enters the true tail region.

When turning to Russia and to Mexico we notice the very erratic behavior of
the mean-excess function. Those countries illustrate in a rather dramatic manner
what happens if one tries to estimate tail indices on rather small samples. For such
situations it would be useful to have a method for choosing the optimal sample size.
Since to our knowledge, there exists no algorithm who does this for the gpd we use
as threshold the value corresponding to the optimal sub-sample (¢*) obtained with

the method outlined in the appendix and applied earlier in the quest for an optimal
Hill index.

5.4.2 The parameter estimation

Before discussing the results of the gpd estimation reported in Table 5, we would
like to mention that we started with an estimation of the gpd where £ and + were
estimated unrestrictedly. We do not report those estimates here.'® We found for
many countries a large difference in the estimates of £ relative to Table 3. Usually
the tail index tended to be smaller than the one reported in Table 3.

131t should be noticed that for mature markets (with the exception of the Nikkei) the unrestricted
£ was always very close to the one reported here.
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We experimented with various tail sizes and, yet, obtained similar results. For
this reason we decided to report the estimates of i setting the £ parameter equal to
the value obtained in Table 3. Furthermore we use a likelihood-ratio test to see if
the data rejects the gpd when £ is restricted to the value reported in Table 3. Only
very few restrictions are rejected. A noticeable case is the Nikkei. Further rejections
occur for the right tail of Indonesia, both tails of Thailand, the left tail of Hungary,
and the right tail of Peru.

Whereas the parameter £ reported in Table 3 measures the tail of returns asymp-
totically, the parameter @y controls the size of the tail at finite distance. See also
Figure 3 to understand what happens as the parameters change. In Table 5 we no-
tice that v takes the smallest value for mature markets. Both for the left and the
right tails ¢ takes the value 0.66. Exceptions in this group are the S&P with rather
small estimates (0.47 for the left and 0.54 for the right trail) and the Nikkei with large
estimates (0.90 and 0.89 for the left and right tail). Those findings are compatible
with a smaller standard deviation for the S&P than for the Nikkei, yet with extreme
events of equal or larger magnitude. Consideration of the other geographic areas re-
veals that the Asian and Latin American markets have a roughly similar dispersion of
large values whereas the Fastern European ones have the largest ones. The precision
of ¢, written as STD(v)), varies also across the geographic regions proportionally to
the available sample size. Noticeable is again Russia whose 1 oscillates around 3.9
implying large variations in returns.

5.4.3 The actual fit of the gpd

Having obtained parameter estimates for the gpd it is possible to check how well such
a distribution actually fits the tails. For this purpose we trace in Figures 7a-d the
estimated gpd (as a solid line) as well as the empirical distribution function (with
large dots). We notice both for the CAC40 as well as for Singapore a rather good fit
of the gpd. Since the fitted gpd is above actual observations this suggests an under-
estimation of extreme returns. When turning to Mexico and to Russia we notice
unfortunately a strong deterioration in the fit of the gpd. The gpd tends to overstate
the frequency of extreme events. Those graphs, therefore, show the limited abilities
of the gpd to describe the tails for certain emerging markets. For small samples, more
ad-hoc distributions might be useful. Such constructions are left for further research.

This means that if one were to estimate mean waiting times between large events,
one would find too short time intervals.

5.4.4 Estimation of High Quantiles

As an illustration of the use that can be made with those estimations we compute the
largest value that is expected to occur over a 5 respectively 50 years time horizon.
This extrapolation clearly assumes some form of stationarity. Given that today’s
emerging markets will be fully developed within the next 50 years, one can then
expect a rather different behavior of those markets, more similar to today’s mature
markets. This observation clearly stresses the assumption of stationarity.

In Table 6 we present the result of the estimation of high quantiles for the left and
right tails. We report again the sample min and max. We notice that for most indices
the sample min and max are bounded by the estimates found respectively for the 5
and 50 year horizons. An example which does not obey to this rule is given by the
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S&P. Whereas, according to the gpd, over a 50 year period we expect as a worse event
a drop of —9.79%, we actually found on October '87 a crash of —22.83%. Had one
based VaR computations entirely on evt one might have lost quite heavily. Similar
finding actually hold in a lesser extent for the other developed countries. For instance
for France, the worse event over a 50 year period is expected to be a —13.27% drop,
whereas we found a drop of —13.91% in the sample. Those observations confirm
our earlier suspicion that the gpd underestimates extreme realizations for mature
markets.

Turning to the set of emerging markets we notice that on average our gpd es-
timates tend to bound the sample extreme values. There are some exceptions: we
notice that the —40% crash of Hong Kong or the —30% crash in Singapore could
not be guessed given the gpd estimation. On the other hand when turning to the
Eastern FEuropean markets we tend to find overly dramatic results. For instance the
gpd estimates would foresee a —62% crash (—56%) for Hungary (respectively Rus-
sia) over a 50 year horizon. With the same token, for those countries an upward
crash of +79.45% (respectively +62.57%) would be expected over a 50-year horizon.
Those values appear too large. For emerging markets there is therefore a tendency
to overestimate the probability of extreme variations.

For the Latin American countries our results seem to be rather reasonable.

5.5 Estimation of the Generalized Extreme Value distribution
5.5.1 A preliminary analysis of extremes

An alternative estimation method consists in obtaining extremes over m-histories and
to estimate the resulting generalized extreme value distribution. As a preliminary
step in this type of analysis we trace in Figures 8a-8b the histograms of the minimum
and maximum 20-histories that is of returns grouped month by month.

We notice that the extremes of the CAC40 do not spread out very far. On
the contrary, for the emerging markets the range of possible extreme values is very
widespread. This preliminary analysis of extremes in conjunction with Figure 1,
which displayed the density of the various limit distributions, confirms that extremes
of returns are expected to follow a Fréchet distribution.

To foster this prior, we present in Figures 9a-9b the QQ-plots of the extremes.
For all cases under consideration we notice concave QQ-plots. This graphical analysis
confirms our prior that the distribution of extremes is of the Fréchet type in this
international setting (see also Longin, 1996).

5.5.2 ML estimates of the generalized extreme value distribution

In Table 7 we present the parameter estimates for the gev while considering 20-
histories. Considering £ over the various geographic areas, we notice that the tail
estimates take smaller values. We used various m-histories and tended in general to
find slightly lower estimates than for the gpd estimation. For instance, the average
left tail estimate for mature markets was 0.3128 with the Hill estimate, now it is only
0.2487. One possibility explaining this is that the dynamics followed by stock prices
is very complicated and that the required assumptions for the various limit theorems
do not apply.

It should be noticed that this finding changes nothing concerning our discussion of
the existence of at least up to a second moment for returns. On average the standard

18



errors of the tail index are larger than for the Hill estimate. This corroborates the
result that the Hill estimate tends to have good statistical properties. Within the
various groups we also find higher dispersion of the parameters than before.

To sum up, the estimation of the gev confirms our prior that returns are dis-
tributed according to a Fréchet distribution. We find that the tail estimates tend to
be smaller now than the Hill estimates.

6 A comparison with other data

6.1 The early days of a global US index

So far we have established that the tail parameters of various geographic areas take
significantly different values. This observation suggests that financial markets could
have a behavior which converges through time. If such was the case, then if we
considered a presently developed market that existed already a long time ago, we
could expect such a market to have behaved in its early days like a currently emerging
one. To test such a conjecture we consider William Schwert’s (1990) global US stock
index during its early 7826 days (that means that we have a same sample length as
for today’s mature markets). The period covered goes from February 17th 1885 to
March 2nd 1911. In Figure 10 we plot the early returns of this global US index.
Casual inspection of Figure 10 does not reveal any particular behavior for the early
days of the US index. Formal descriptive statistics displayed in Table 8 indicate
a significant negative skewness and fat tails. The Jarque-Bera statistic takes the
value 16°289.35 and is highly significant. We also report that an Engle test reveals
conditional heteroskedasticity.

We also display in Table 9 the results of the optimal Hill estimate. For the left
tail we find an estimate of 0.3401 and for the right tail an estimate of 0.4181. This
latter estimate is quite high when compared with more recent estimates. When we
compare the earlier standard deviation (0.87) with the more recent one (0.94) we
notice that volatility is presently higher. Clearly, this level of volatility is much lower
(nearly half) than the type of volatility met in presently emerging markets. Those
observations lead us to conclude that the early years of this historical database have
little to do with the tail behavior of presently emerging markets. As a consequence
little can be learned from such a series about how presently emerging markets may
evolve in terms of tail behavior.

6.2 The recent dynamics of mature markets

One may explain the differences in the tail behavior of mature and emerging markets
by the fact that the sample used for mature markets is much larger than the sample
for emerging markets. Indeed our dataset begins in the late 60s for mature markets,
whereas it begins in the mid-90s for Eastern European markets and for some Latin
American markets. We therefore reestimate the different parameters representing the
tail behavior for the recent days of mature markets: the sample covers the period
from April 2nd, 1993 to December 31st, 1998, that is 1500 observations.

As far as summary statistics, presented in Table 8, are concerned, we first note
that over the recent period, the daily average return is negative for Germany and
France, whereas it is positive for the other countries. Moreover the skewness is
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significantly positive for both countries. Lastly it is worth noting that the excess
kurtosis is far smaller for all countries than for the whole period.

Table 9 reports optimal Hill estimates. For the left tail we obtain basically the
same estimates than over the whole period. Estimates of £ are close to each other
between 0.28 and 0.33. The optimal number of observations ¢* is quite low (between
23 and 51). The estimates of the right tail Hill parameters are more volatile, between
0.28 and 0.36. For the Nikkei the £ parameter is larger than over the whole period
(0.36 vs 0.28). This indicates that over the recent period the 3-rd moment may exist
for the right tail of the Nikkei distribution.

Gpd estimates give more ambiguous results: for the left tail of the distribution,
the parameter v is larger than over the whole period, especially for the DAX and
the CAC40. For these indices, v is as high as 1.1114 and 0.8541 respectively. These
figures are comparable to some of the figures obtained for emerging markets. For
the right tail on the contrary estimates of 2y are smaller than over the whole period.
We obtain rather small estimates for the S&P and the FTSE100 (0.4136 and 0.3624
respectively).

Using a small sample for mature markets does not help to reconcile the estimates
obtained for mature and emerging markets. On the one hand, Hill estimates remain
very stable when the period is shortened; on the other hand, gpd parameter estimates
dramatically change, but in different directions when the left and right tails are
separately considered. Therefore, estimates obtained for mature financial markets
over the recent period are not closer to estimates obtained for emerging markets.
The smaller sample size for our developing countries, therefore, does not explain the
difference in estimates.

7 Conclusion

In this paper we considered a large set of 27 countries composed by several mature
markets and other emerging ones. We review important elements of extreme value
theory and apply these to the database. For all indices it is shown that returns’ dis-
tributions are fat-tailed. In order to be compatible with the tail behavior, the return
generating process has to lay in the domain of attraction of a Fréchet distribution.
This means that certain generating processes such as the mixtures of normals can be
precluded. On the other hand, GARCH processes with possible jumps are compatible
with the observed tails. We show that the Hill estimates of the tail indices are of
roughly similar magnitude across indices. In particular, we find for nearly all indices
a tail behavior compatible with the existence of a first and second moments. For
many indices even a third moment seems to exist.

When turning to the estimation of the Generalized Pareto distribution we notice a
certain instability in the estimation of the tail index as compared to the Hill estimate.
In particular for countries with relatively small samples the estimation is difficult.
Possible reasons for this difficulty is that in emerging countries the distribution of
returns may change in character and its complicated evolution may invalidate the iid
assumption behind the asymptotic results of evt. Since the estimation of the gpd
is the basis for the estimation of high quantiles, waiting times between large given
threshold exceedances, and of the extreme realization over a given time horizon,
its use has to be done carefully for emerging markets. We actually show that the
estimates of a gpd tend to be on the conservative side: crashes are expected too often,
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exceedances of even unreasonable thresholds appear likely...

When turning to mature markets we find a rather good fit of the gpd suggesting
that it could be an interesting tool for applications such as VaR, regulation of Central
Bank reserves, and of Futures margin requirements. Nonetheless the user of those
methods should be aware that for our sample the drop of the S&P in October *87
could not be predicted. Our tail estimate of the S&P suggests over a 50 year period
as a worse possible outcome a drop of 9.79% which has to be compared with the
actual drop of 22.83%!

As we mentioned, the fit of a gpd to emerging market’s data is problematic. One
may therefore ask if financial history can help us to improve our understanding of
worse case scenarios. To partly answer this question we consider a subsample of an
US daily global index covering the same sample size as our main S&P sample. We
find much less volatility and extreme values than in current financial markets. This
suggests that the presently available historic data may not help much in understand-
ing how returns of currently emerging markets may evolve. Moreover, what concerns
its tail behavior, the US market seems to be different from other developed markets.

From an econometric point of view several issues remain open. In this study we
mostly considered the individual behavior of stock indices. For an investor interested
in international diversification the study of simultaneous cross-border crashes may
also be of great importance. An other issue concerns the fit of the gpd for small
samples under non-standard assumptions, that is dropping the independence or the
identical distribution assumption. We know, based on theoretical grounds, that if
returns behaved iid, asymptotically, tails can be described by a gpd. For emerging
markets the iid assumption is likely to be erroneous and clearly the sample is of small
size. How can theory be improved here? A last econometric issue concerns the op-
timal choice of m for the estimation of the generalized extreme value distribution.
Development of a bootstrap based optimal estimate of m appears valuable. Implica-
tions for the asymptotics, once the iid assumption of returns is dropped also seems
relevant for the estimates of the generalized extreme value distribution.

8 Appendix

In this appendix we wish to outline how we obtained an optimal t* for the Hill
estimator. There is also the issue about how to obtain the level delimiting the tail
over which the gpd should be estimated. Since to our knowledge, there exists no
theory on how to obtain such a level, we will also use the t* found for the Hill
estimator for this purpose.

The approach that we use here goes back to work by Hall (1990), and Danielsson
and de Vries (1997). Other work in this area is by Dacorogna, Muller, Pictet, and de
Vries (1995), Drees and Kaufmann (1997), Beirlant, Vynckier, and Teugels (1996).
The fact that we use the method by Danielsson and de Vries (1997) can be justified
by the work of Lux (1998) who compares the various techniques and concludes that
even though the optimal ¢t* varies quite a lot depending on the method chosen, the
eventual tail estimate remains about the same.

The Hill index has been defined in (6) as:

H 1 t—1
Sor =77 > In(ayr/ar).
=1
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where 27 < --- < xy7 is the ordered sample. The index ¢ varies from 1 to T". We
are seeking the ¢* minimizing the mean squared error

#* € argmin; MSE (gt{fT) = argmin, B [(5{} - 5)2} . (9)

The implementation of (9) is based on the estimation of £, written % , using observa-
tions that are truly far in the tail. Danielsson and de Vries (1997, p. 246) suggest
to chose an estimate of £ obtained with 1% of the largest observations. Focusing on
only 1% of the sample gave bad results for emerging markets where the entire sample
is rather small anyway. For those countries we have to use more observations such
as 2.5% or 5% to get a meaningful tail estimate. Next, one tries to approximate the
expectation in (9) by using simulations over subsamples (a bootstrap estimation)
which gets then adjusted to take into account the full sample size. More specifically,
one chooses an arbitrary level T7 < T' and constructs K randomly selected subsam-
ples of size 77. Let I = 1,---, K be the index of the [-th subsample. It is then possible
to obtain the Hill estimate 551’57 t=1,---,T1. An approximation of (9) is then

P Z <5t1,T1 )

An optimal ¢] minimizing this expression has to exist since if ¢; is very small, because
of the resulting small amount of observations involved, the error will be large. On
the other hand, for ¢; large, we are contaminating the tail with observations from the
center of the distribution which should also increase the error.

Since the choice of T is arbitrary it is necessary to adjust the optimal ¢} so that
it corresponds to the full sample size T". It has been shown that the adjusted t* is

defined by
T 28/(26+1/%)
"=t = 10
H(7) (10)
where 3 is an additional parameter. To obtain 3 it is necessary to construct the
following j-th empirical log-moments and a variable A defined as:

t—1

» 1 ;
D = S In(wr/zer))

t_lizl
mm_m®pm®
m@mm®_mwﬂm®'

The parameter 8 appearing in (10) can then be estimated with
B=(VA-1)/&

It is also possible that occasionally the delta is smaller than one. In such a situation
3 is not defined. In such a case we revert to the suggestion of Hall (1990) and select

B=1/¢

The optimal Hill estimate is then E: éﬁflf.

It should be noticed that in this approach there remain many arbitrary choices.
First, there is the choice of the initial estimate of £ whose estimation has already been
discussed. Then there is the choice of T' and T7. We chose for T" the 10% largest obser-
vations and for 77 half the size of T'. Last, one can play with the number of bootstrap
simulations to be performed. We performed always 100 bootstrap simulations.

A
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Captions

Table 1: The first line of this Table indicates the date when our series start.
All series end with December 31st 1998. Nobs is the number of observations in each
series. Std is the standard deviation of returns. Sk (Sk*) and Ku (Ku*) represent
the skewness (its standardized version) and its analogues for kurtosis. The Jarque-
Bera (JB) statistics is defined as (Sk*)? + (Ku*)2. It is distributed as a x4 under
the null hypothesis of normality. Stud. min and stud. max represent the minimum
and maximum of centered and reduced returns. ql, ¢5, ¢95, and ¢99 represent the
1, 5, 95, and 99 percentile of centered and reduced returns. TR1 (T R5) represents
the Engle statistic for heteroskedasticity obtained by regressing squared returns on
one (five) lags. ARj, j=1,---,5, are the 5 coefficients of autocorrelation. @5, @10,
and Q20 represent the Box-Ljung statistics without correction for heteroskedasticity.
Those with correction for heteroskedasticity are noted QW5, QW 10, and QW 20.
@5 and QW5 on filt. data are the Box-Ljung tests without and with correction for
heteroskedasticity after the returns have been filtered by an AR(5) autoregression.

Table 2: For four selected indices we represent the five most extreme positive
and negative returns with their associated dates.

Table 3: We present the optimal Hill estimates both for the left and the right tail
of the returns’ distribution. The optimal sample size is determined by a bootstrap
search. t* represents the optimal number of observations that should be included
in the tail. The threshold, that is the value taken by the £*-th observation is also
represented. We present £ and its standard deviation STD(E). For each group of
countries we present the mean and standard deviation of the various estimates.

Table 4: We test if a given moment exists for a distribution. Let r = 1/£ and n
be an integer such that n < r < n+4 1. If we can accept the alternative hypothesis
r > n then we believe that the n-th moment exists. In this case we have a YES in
the table. If r = n cannot be rejected we further test if r = n — 1 can be rejected. If
this test can be rejected we have an A in the Table. It means that the hypothesis of
the existence of an n-th moment cannot be rejected.

Table 5: Maximum likelihood estimates of the parameter 1 of the Generalized
Pareto distribution given the estimate of £ from Table 3. As tail-sample we use the
same one as for the Hill estimation with optimal sample size. Lik. represents the
log-likelihood of the sample. LRI is a likelihood ratio statistic to check if the use of
£ from Table 3 rather than an unconstrained version is acceptable.

Table 6: Here we present the high quantile estimates of the various countries.
The estimate £999 (resp. £9999) correspond to the largest realization expected over
a b (resp. 50) year horizon. To render those estimates comparable with actual data
we recall the min/max obtained from actual data displayed initially in Table 1.

Table 7: This Table presents the parameter estimates for the gev distribution.
We distinguish the left from the right tail as well as various geographic areas.

Table 8: Here we present descriptive statistics for the early days of a global US
index as well as for subsamples of presently mature markets.

Table 9: For both tails of the distribution we present the results of the optimal
Hill estimates and the parameters of the gpd estimation. The series considered are
the early days of a global US index as well as subsamples of presently mature markets.

Figure 1: Representation of the Gumbel, Fréchet, and Weibull densities.

Figure 2: Representation of various mean-excess functions conditional on the
distribution of the underlying random variables. We get for Pareto random variables
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(k+u)/(1/€ —1). In the graph we take k = 2, and £ = 0.5. For the Weibull we
obtain a mef of u(1—7)/7. We choose 7 = 0.75 and 7 = 1.25. The exponential yields
a mef of 1/\. Here we take A\ = 3.

Figure 3: This graph traces the density of the Generalized Pareto Distribution
for various parameters. As the tail index £ increases the tail becomes fatter, meaning
that less moments will exist. If for a given tail index the scale parameter increases,
the tail fattens for small tail values. Asymptotically the tail is the same.

Figures 4a and 4b: Those graphs trace the evolution of returns for selected
countries over time. Notice the smaller samples in Figure 4b.

Figures 5a and 5b: Those graphs represent the Hill plots for the left and
right tails of return distributions. For all graphs the central line (continuous line)
corresponds to the Hill estimates given a certain amount of observations in the tail.
The dashed lines correspond to 95% confidence intervals. The Hill estimation is
always computed with at least 15 tail observations.

Figures 6a-6b: Those Figures represent the graphs of the mean-excess function
for various thresholds.

Figures 7a-7d: Here we trace the estimated gpd (continuous line) against the
empirical distribution function (dotted line). The upper graph is always for the left
tail of returns whereas the lower graph corresponds to the right tail.

Figure 8: In those Figures we represent the histogram of the maximum and
minimum of blocks of 20 returns.

Figures 9a-9b: Here we represent the QQ-plots. For a given ordered sample
{zr 7, -, 217} we trace the x;7 on the horizontal axis and on the vertical axis
I (t/T 4 1) that is the inverse cumulative distribution function of the Gumbel. The
straight line represents on OLS fit of a line through the set {(z; 7, F (¢/T +1)),t =
1,---,T}. Concavity of this set implies that extremes follow a Fréchet distribution.

Figure 10: This graph represents the first 7826 returns of a large US index. The
period starts on February 17th 1885 and ends on March 2nd 1911.

Figure 11: Here we represent similarly to Figures 7 the estimated and the actual
distribution function.
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XK P Nikkei DAX CAC40 FTSE100 China Hong Kong Indonesia Malaysia  Philippines
Beg. date 19690102 19690102 19690102 19690102 19690102 19920522 19750102 19891016 19800103 19860103
Nobs 7826 7826 7826 7826 7826 1725 6261 2404 4956 3390
Mean 0,032 0,025 0,028 0,035 0,035 -0,006 0,065 -0,006 0,021 0,080
Median 0,010 0,003 0,000 0,000 0,025 0,000 0,000 0,000 0,000 0,000
Std 0,935 1,073 1,059 1,039 1,034 3,174 1,812 1,472 1,621 1,935
Min -22,833 -16,135 -13,710 -13,910 -13,029 -17,905 -40,542 -12,732 -24,153 -15,786
Max 8,709 12,430 8,872 8,225 8,943 28,860 17,247 13,126 20,817 15,657
Sk -1,975 -0,295 -0,622 -0,651 -0,322 1,369 -2,339 0,415 -0,345 0,083
Sk* -71,336 -10,655 -22,452 -23,518 -11,630 23,212 -75,553 8,304 -9,910 1,975
Ku 50,702 15,126 10,742 11,169 10,161 13,763 52,440 15,257 33,135 8,961
Ku* 915,571 273,142 193,974 201,679 183,479 116,678 846,988 152,700 476,160 106,498
JB 843358,5 74720,3 38130,0 41227,6 33799,6 14152,5 723096,3 23386,2 226826,8 11345,8
stud. min -24,459 -15,066 -12,968 -13,422 -12,636 -5,638 -22,412 -8,646 -14,909 -8,201
ql -2,541 -3,085 -2,662 -2,744 -2,683 -2,782 -2,927 -3,107 -2,776 -2,842
g5 -1,520 -1,549 -1,531 -1,552 -1,513 -1,508 -1,408 -1,342 -1,380 -1,463
g95 1,518 1,411 1,468 1,495 1,403 1,401 1,367 1,330 1,296 1,538
g99 2,512 2,884 2,417 2,457 2,530 3,391 2,589 3,340 2,451 2,900
stud. max 9,282 11,565 8,349 7,884 8,616 9,093 9,483 8,923 12,826 8,051
TR1 102,844 398,705 321,137 74,957 1938,754 15,488 29,042 85,971 1083,602 216,015
TR5 383,826 571,282 680,060 597,742 2039,764 136,932 101,443 202,643 1191,379 349,652
AR1 0,084 0,013 0,050 0,121 0,154 0,024 0,014 0,245 0,095 0,172
AR2 -0,018 -0,046 -0,055 -0,006 0,002 0,012 -0,017 0,067 0,029 0,002
AR3 -0,016 0,020 -0,003 -0,009 0,018 0,061 0,089 -0,015 0,010 0,000
AR4 -0,023 0,022 0,019 0,035 0,038 0,046 0,013 -0,038 -0,049 0,037
AR5 0,024 -0,013 0,017 0,011 0,007 0,017 -0,006 0,024 0,044 -0,005
Q5 13,739 5,236 9,681 25,132 40,217 2,351 10,860 32,267 14,195 21,026
Q10 7,789 4,361 7,135 15,512 24,741 2,712 6,533 21,045 7,568 12,398
Q20 4,482 3,770 4,468 9,038 14,914 2,704 4,162 13,723 5,493 9,569
QW5 10,019 8,158 15,652 56,260 29,971 3,179 13,178 37,255 9,542 34,989
QW10 20,364 15,862 25,577 63,272 40,852 14,112 15,167 48,261 13,571 44,933
QW20 25,917 32,550 35,282 74,902 51,316 34,200 21,006 60,937 29,113 67,993
Q5 on filt. data 0,006 0,001 0,021 0,008 0,006 0,012 0,007 0,059 0,015 0,004
QWS5 on filt. data 0,005 0,003 0,042 0,013 0,010 0,026 0,015 0,104 0,012 0,008

Table 1.a: Descriptive Statistics




Singapore South Korea Taiwan Thailand| Czech Rep. Hungary Poland Russia Slovak Rep. Slovenia
Beg. date 19750102 19750102 19750102 19750502 19940920 19910103 19941004 19940801 19930915 19940104
Nobs 6261 6261 6261 6175 1118 2086 1108 1153 1382 1303
Mean 0,030 0,034 0,056 0,021 -0,055 0,088 0,027 -0,063 -0,038 0,040
Median 0,000 0,000 0,000 0,000 0,000 0,021 0,000 0,000 0,000 0,000
Std 1,379 1,407 1,847 1,400 1,037 1,728 1,994 3,647 2,040 1,567
Min -30,042 -17,370 -19,656 -10,028 -7,077 -18,034 -10,286 -26,245 -20,573 -9,853
Max 15,867 10,024 19,914 11,350 4,739 13,616 7,893 23,510 29,022 7,465
Sk -1,740 -0,150 0,106 0,107 -0,426 -1,249 -0,109 -0,137 2,448 -0,396
Sk* -56,201 -4,853 3,422 3,427 -5,819 -23,287 -1,484 -1,898 37,155 -5,836
Ku 47,726 11,051 9,646 9,742 4,460 19,166 2,509 9,607 49,067 5,344
Ku* 770,859 178,492 155,794 156,268 30,441 178,684 17,047 66,585 372,341 39,378
JB 597382,6 31883,0 242835 244315 960,5 32470,4 292,8 4437,2 140018,2 1584,7
stud. min -21,811 -12,372 -10,674 -7,176 -6,769 -10,487 -5,172 -7,179 -10,065 -6,311
ql -2,608 -2,893 -3,030 -2,983 -3,123 -3,545 -2,709 -3,067 -2,582 -3,249
g5 -1,431 -1,420 -1,536 -1,490 -1,691 -1,230 -1,571 -1,437 -1,241 -1,566
g95 1,431 1,541 1,501 1,429 1,574 1,461 1,640 1,362 1,263 1512
q99 2,646 2,895 2,769 3,165 2,700 2,546 2,818 3,124 2,642 2,836
stud. max 11,487 7,101 10,753 8,091 4,621 7,828 3,945 6,463 14,244 4,737
TR1 444,812 186,143 1211,394 753,781 83,634 239,224 135,444 154,111 422,541 186,412
TR5 790,634 560,055 1442,228 1033,881 173,877 287,879 166,657 159,672 504,456 213,875
AR1 0,137 0,074 0,019 0,192 0,311 0,113 0,198 0,075 -0,232 0,300
AR2 -0,028 0,006 0,057 0,031 0,159 0,090 0,016 0,107 0,056 -0,040
AR3 0,018 -0,007 0,061 0,042 0,044 -0,028 0,009 0,055 0,255 -0,020
AR4 0,047 -0,018 0,019 0,030 0,010 0,022 0,012 0,005 -0,072 0,009
AR5 0,000 -0,028 0,014 0,011 -0,052 -0,019 -0,044 0,018 0,212 0,017
Q5 27,643 8,438 9,853 50,193 28,516 9,408 9,274 4,761 47,742 24,269
Q10 14,439 5,617 6,816 28,104 17,809 7,843 5,892 5,177 28,218 15,298
Q20 8,089 4,894 5,531 16,671 10,475 7,097 3,565 4,499 17,776 8,365
QW5 15,255 12,612 15,044 49,538 45,292 7,050 19,393 9,131 11,700 40,399
Qw10 18,466 15,969 23,041 53,540 58,133 16,597 24,134 24,797 22,851 46,912
QW20 26,291 26,666 35,664 64,541 70,911 25,298 31,292 33,883 34,888 53,472
Q5 on filt. data 0,001 0,008 0,001 0,006 0,138 0,007 0,047 0,056 0,455 0,009
QWS5 on filt. data 0,002 0,012 0,003 0,012 0,232 0,008 0,157 0,168 0,240 0,031

Table 1.b: Descriptive Statistics




Argentina Brazil Chile Colombia Mexico Peru  Venezuela
Beg. date 19930803 19920102 19870105 19920103 19880105 19910103 19940103
Nobs 1413 1826 3129 1825 2868 2086 1304
Mean 0,004 0,510 0,083 0,062 0,128 0,190 0,120
Median 0,042 0,307 0,000 0,000 0,029 0,000 0,000
Std 2,284 3,433 0,997 1,140 1,753 1,680 2,174
Min -14,765 -17,229 -12,304 -5,289 -14,314 -8,796 -10,805
Max 12,072 22,813 6,471 9,918 12,154 8,908 20,062
Sk -0,547 0,097 -0,363 1,094 0,002 0,315 0,875
Sk* -8,393 1,700 -8,280 19,071 0,036 5,868 12,904
Ku 4,820 3,057 11,436 9,955 7,925 3,802 12,319
Ku* 36,987 26,669 130,580 86,810 86,633 35,444 90,806
JB 1438,5 714,1 17119,8 7899,7 7505,3 1290,7 84122
stud. min -6,467 -5,167 -12,421 -4,692 -8,239 -5,347 -5,024
ql -2,801 -2,825 -2,629 -2,473 -2,900 -2,742 -2,800
g5 -1,745 -1,587 -1,434 -1,419 -1,485 -1,396 -1,479
q95 1,404 1,703 1,548 1,612 1,453 1,725 1,378
q99 2,593 2,694 2,860 3,261 2,663 3,010 3,039
stud. max 5,284 6,496 6,405 8,645 6,861 5,188 9,171
TR1 101,939 62,803 48,746 34,223 230,266 234,384 309,788
TR5 196,359 216,283 104,777 79,423 303,194 256,103 314,215
AR1 0,095 0,071 0,291 0,352 0,200 0,383 0,238
AR2 -0,053 0,023 0,108 0,199 -0,009 0,041 0,028
AR3 -0,014 0,004 0,039 0,108 0,009 0,007 -0,036
AR4 0,034 0,017 0,058 0,059 0,069 0,052 0,048
AR5 0,015 0,024 0,070 -0,032 0,033 0,029 0,078
Q5 3,789 2,349 66,726 65,911 26,468 63,480 17,608
Q10 4,456 4,026 37,833 33,376 14,391 37,194 10,706
Q20 3,177 3,618 21,599 17,675 8,212 22,196 5,824
QW5 8,854 5,284 105,429 92,036 40,579 112,915 12,351
Qw10 15,961 23,422 118,799 94,149 45,545 124,926 22,726
QW20 24,602 36,775 130,638 99,817 54,431 130,132 36,084
Q5 onfilt. data 0,002 0,022 0,095 0,012 0,041 0,046 0,083
QWS on filt. data 0,006 0,062 0,231 0,028 0,100 0,190 0,271

Table 1.c: Descriptive Statistics



CAC40 Russia
19810513 -13,91 19971028 -26,245
19871019 -10,14 19980827 -21,338
19871028 -9,11 19980917 -19,199
19871026 -8,45 19980826 -17,679
19871110 -7,61 19971003 -16,041
19871029 6,39 19980715 15,848
19690811 6,48 19940815 16,605
19910117 6,81 19960618 16,783
19780313 7,40 19971029 21,874
19871112 8,23 19971006 23,510
Singapore Mexico
19871020 -30,04 19971027 -14,314
19871019 -15,15 19880106 -10,526
19871023 -14,07 19880309 -10,448
19851205 -11,11 19980910 -10,341
19891016 -9,73 19880315 -10,120
19750131 8,30 19950131 9,779
19980113 8,77 19971028 11,056
19750214 10,62 19880229 11,690
19750128 10,93 19880118 11,709
19871022 15,87 19980915 12,154

Table2: Most extreme returns and date of occurrence



Left tail of distribution

Right tail of distribution

¢ STD t* threshold ¢ STD t* threshold
S&P 0,3115 0,0180 301 -1,54 0,2768  0,0233 141 2,00
Nikkei 0,2805 0,0276 103 -3,00 0,3576  0,0308 135 2,43
DAX 0,3388 0,0183 342 -1,70 0,3070  0,0230 178 1,99
CAC40 0,3337 0,0214 244 -1,93 0,2770  0,0227 149 2,19
FTSE100 0,2994 0,0241 154 -2,18 0,3333 0,0284 138 2,12
MEAN 0,3128 0,0219 229 -2,07 0,3103  0,0256 148 2,14
STD 0,0242 0,0041 100 0,57 0,0354  0,0037 17 0,18
China 0,3062 0,0497 38 -6,48 0,4379 0,0762 33 7,92
Hong Kong 0,3775 0,0306 152 -3,61 0,3625 00,0286 161 3,23
Indonesia 0,3641 0,0607 36 -3,75 0,4682  0,0690 46 3,34
Malaisia 0,4100 0,0386 113 -3,11 0,4063 0,0251 263 2,06
Philippines 0,3928 0,0369 113 -3,30 0,3504 0,0331 112 3,52
Singapore 0,3716 0,0255 212 -2,27 0,3393 0,0333 104 2,95
South Korea 0,3742 0,0322 135 -2,92 0,3611  0,0266 184 2,73
Taiwan 0,2662 0,0242 121 -4,43 0,2971  0,0293 103 4,43
Thailand 0,3405 0,0313 118 -3,31 0,3392 0,034 92 3,72
MEAN 0,3559 0,0366 115 -3,69 0,3736  0,0396 122 3,77
STD 0,0449 0,0118 54 1,20 0,0538 0,0191 71 1,69
Czech Rep. 0,2310 0,0530 19 -2,68 0,2233 00,0499 20 2,33
Hungary 0,4065 0,0742 30 -4,84 0,3442  0,0420 67 3,01
Poland 0,2746 0,0614 20 -4,52 0,2946  0,0529 31 391
Russia 0,3067 0,0970 10 -12,50 0,3326  0,0807 17 10,39
Slovak Rep. 0,4013 0,0518 60 -2,67 0,3928  0,0655 36 3,52
Slovenia 0,3521 0,0622 32 -3,14 0,1943  0,0486 16 3,95
MEAN 0,3287 0,0666 29 -5,06 0,2970  0,0566 31 4,52
STD 0,0705 0,0169 17 3,76 0,0757 0,0141 19 2,94
Argentina 0,2657 0,0415 41 -4,92 0,2797  0,0583 23 5,44
Brasil 0,2541 0,0464 30 -7,96 0,2827 0,0336 71 6,22
Chile 0,2644 0,0333 63 -2,10 0,3015 0,0455 44 2,43
Colombia 0,3487 0,0532 43 -2,00 0,4259  0,0615 48 2,21
Mexico 0,3271 0,0449 53 -3,81 0,3228 0,0471 47 4,01
Peru 0,2203 0,0519 18 -4,63 0,2856  0,0457 39 3,79
Venezuela 0,3033 0,0536 32 -4,31 0,3763  0,0753 25 4,65
MEAN 0,2834 0,0464 40 -4,25 0,3249 0,052 42 411
STD 0,0449 0,0074 15 2,01 0,0559 0,014 16 1,48

Table 3: Optimal Hill estimates




Left tail Right tail
Moment 1st 2nd 3rd 4th 1st 2nd 3rd 4th
&P YES YES YES NO YES YES YES NO
Nikkei YES YES A NO YES YES NO NO
DAX YES YES A NO YES YES YES NO
CAC40 YES YES A NO YES YES YES NO
FTSE100 YES YES YES NO YES YES YES NO
China YES YES YES NO YES YES A NO
Hong Kong YES YES NO NO YES YES A NO
Indonesia YES YES NO NO YES A NO NO
Maaisia YES YES NO NO YES YES NO NO
Philippines YES YES NO NO YES YES NO NO
Singapore YES YES NO NO YES YES NO NO
South Korea YES YES NO NO YES YES NO NO
Taiwan YES YES YES NO YES YES NO NO
Thailand YES YES NO NO YES NO NO NO
Czech Rep. YES YES YES YES YES YES YES NO
Hungary YES A NO NO YES YES NO NO
Poland YES YES YES NO YES YES A NO
Russia YES YES A NO YES YES NO NO
Slovak Rep. YES YES NO NO YES YES NO NO
Slovenia YES YES A NO YES YES YES NO
Argentina YES YES YES NO YES YES YES NO
Chile YES YES YES NO YES YES YES NO
Mexico YES YES A NO YES YES YES NO
Peru YES YES YES NO YES YES YES NO
Venezuela YES YES YES NO YES YES NO NO
Brasil YES YES YES NO YES YES YES YES
Colombia YES YES NO NO YES YES NO NO

Table 4: Existence of left and right integral for moment computation



Left tail of returns

Right tail of returns

W STD Lik. LRT W STD Lik. LRT
S&P 04710 00338 -17401 006 05481 00569  -97,63 0,04
Nikkei 09090 00771 -169,70 695 08943 00890 -152,98 323
DAX 05983 00471 -23969 024 06084 00567 -14448 0,08
CAC40 06686 00564 -20682 018 05968 00649 -116,85 0,39
FTSE100 06538 00694 -13245 011| 06783 00721 -14339 0,10
MEAN 06601 00568 -18453 151| 06652 00679 -131,06 0,77
STD 01594 00173 4057 304| 01363 00134 2309 1,38
China 22348 03507 -6925 327| 27475 07785  -6638 0,36
Hong Kong 1,007 01357 -27095 094 12864 01417 -17644 141
Indonesia 14711 02370  -59,59 332| 16602 02525 -10456 681
Malaisia 1,1936 0,526 -20350 0029| 08807 00777 -31372 001
Philippines 1,3315 01551 -172,98 217| 12187 01485 -17661 0,19
Singapore 08874 00814 -23096 007 09673 01198 -141,16 0,08
South Korea 11878 01245 -186,66 361| 10362 00954 -22734 361
Taiwan 12134 01133 -18364 307| 13179 01602 -15758 0,08
Thailand 1,3073 01353 -158,76 994| 13430 01455 -14650 870
MEAN 1,3586 0,651 -171,26 296/ 13842 02133 -16781 236
STD 03683 00814 6902 295 05619 02176 71,19 3,30
Czech Rep. 05832 02092 -1053 019 06245 01090  -1590 2,69
Hungary 22200 03554  -8875 499 09589 01694  -9221 0,32
Poland 12195 02912  -3013 098] 12173 02140 -47,87 2,84
Russia 39507 10971  -3423 138 38757 08504  -47,19 212
Slovak Rep. 08938 01203 -12424 033| 13305 04306 -57,46 253
Slovenia 11359 02712  -3681 079 09558 01756  -22,81 245
MEAN 16672 03907  -5411 144| 14938 03248  -4724 216
STD 12471 03551 4310 1,79 11923 02803 2722 0,93
Argentina 13174 02594  -6154 001| 17929 02560 -3326 3,17
Brasil 20153 03250 -70,82 206| 17445 03265 -71,33 0,02
Chile 05598 00831  -4522 000 07633 01325  -4336 1,95
Colombia 07324 01395  -4191 110, 10060 0,846  -5528 1,30
Mexico 12962 02099  -8049 106/ 13124 02665 -7349 001
Peru 1,0897 02032  -3891 227| 11966 01696  -6348 489
Venezuela 1,1270 02807  -51,99 069| 16622 04547  -4879 0,02
MEAN 11625 02144 5584 103| 13540 02558  -5557 1,62
STD 04697  0,0833 1567 090 03951  0,1098 14,86 1,87

Table5: GPD on filtered returnswith optimal t* (from Hill-bootstr ap)



Left tail of returns

Right tail of returns

X999 X9999 Sample min X999 X9999 Sample max
S&P -4,78 -9,80 -22,83 4,23 8,21 8,71
Nikkei -7,03 -15,29 -16,14 6,69 14,64 12,43
DAX -5,99 -12,89 -13,71 5,29 11,18 8,87
CAC40 -6,13 -13,27 -13,91 5,56 11,82 8,23
FTSE100 -5,30 -10,55 -13,03 5,20 10,50 8,94
MEAN -5,85 -12,36 -15,92 5,40 11,27 9,44
STD 0,86 2,21 4,03 0,88 2,32 1,70
China -17,72 -36,98 -17,90 19,08 37,20 28,86
Hong Kong -12,54 -30,64 -40,54 11,24 27,12 17,25
Indonesia -10,40 -24,17 -12,73 11,31 27,34 13,13
Malaisia -11,01 -28,01 -24,15 13,42 35,51 20,82
Philippines -12,81 -30,58 -15,79 13,25 31,50 15,66
Singapore -8,38 -19,62 -30,04 7,45 16,71 15,87
South Korea -9,55 -22,84 -17,37 10,56 25,44 10,02
Talwan -10,07 -19,04 -19,66 9,49 17,82 19,91
Thailand -9,70 -22,17 -10,03 9,65 21,73 11,35
MEAN -11,35 -26,00 -20,91 11,72 26,71 16,98
STD 2,77 5,96 9,45 3,33 7,22 5,73
Czech Rep. -4,93 -8,06 -7,08 4,63 8,04 4,74
Hungary -19,09 -62,08 -18,03 24,02 79,45 13,62
Poland -10,01 -18,99 -10,29 10,69 20,89 7,89
Russia -25,22 -56,83 -26,25 27,25 62,57 2351
Slovak Rep. -12,54 -32,65 -20,57 9,36 22,05 29,02
Slovenia -9,21 -19,58 -9,85 8,56 18,07 7,46
MEAN -13,50 -33,03 -15,34 14,09 35,18 14,37
STD 6,75 20,05 6,80 8,42 26,19 8,96
Argentina -12,02 -22,20 -14,76 10,51 18,86 12,07
Brasil -16,69 -30,95 -17,23 17,25 31,81 22,81
Chile -4,75 -9,05 -12,30 4,63 8,50 6,47
Colombia -6,18 -13,91 -5,29 6,48 14,15 9,92
Mexico -10,08 -21,57 -14,31 9,88 20,92 12,15
Peru -7,99 -14,98 -8,80 8,70 16,47 8,91
Venezuela -10,53 -20,17 -10,80 9,97 18,75 20,06
MEAN -9,75 -18,98 -11,93 9,63 18,49 13,20
STD 3,98 7,10 4,02 3,98 7,15 6,00

Table 6: High quantiles estimated




Left tail Right tail
U STD P STD £ STD  Lik. U STD P STD g STD  Lik.

XkP 1,1746 0,0285 05111 0,0215 0,1892 0,0387 -404,57| 1,2468 0,0317 055435 0,0233 0,1517 0,0399 -412,43
Nikkei 1,1299 0,0432 0,7222 0,0376 0,3272 0,0411 -56321| 1,1632 0,0393 0,6434 0,0324 0,3703 0,0426 -527,16
DAX 1,2681 0,0341 0,5820 0,0261 0,2748 0,0450 -466,54| 1,3147 0,0318 0,5603 0,0261 0,2233 0,0416 -440,51
CAC40 1,2444 0,0380 0,6369 0,0287 02542 0,0457 -497,14| 1,3324 0,0358 0,6544 0,0279 0,1136 0,0359 -47574
FTSE100 1,3047 0,0290 0,5451 0,0267 0,1983 0,0396 -424,06| 1,2767 0,0250 04556 0,0227 0,2710 0,0413 -370,88
MEAN 1,2243 0,0346 0,5995 0,0281 0,2487 0,0420 -471,11| 1,2668 0,0327 055714 0,0265 0,2260 0,0403 -44535
STD 0,0710 0,0062 0,0830 0,0059 0,0569 0,0032 62,89| 0,0668 0,0053 0,0812 0,0039 0,1013 0,0026 59,73
China 35008 0,2737 1,9383 0,2029 0,2749 0,0909 -206,14| 32827 0,2847 2,0503 0,2491 05211 0,1004 -222,57
HongKong | 1,8625 0,0717 1,0071 0,0575 0,3885 0,0517 -570,67| 2,0535 0,0624 0,9801 0,0529 0,2938 0,0447 -546,40
Indonesia 1,1933 0,0892 0,8423 0,0797 0,4396 0,0716 -197,31| 1,3051 0,0907 0,8827 0,0828 0,4653 0,0720 -204,84
Malaisia 1,5192 0,0668 0,9306 0,0570 0,3382 0,0561 -420,02| 1,7084 0,0603 0,8664 0,0520 0,3187 0,0545 -399,70
Philippines | 2,0614 0,0964 1,1383 0,0860 0,3026 0,0560 -318,23| 2,2731 0,1123 12857 0,0891 0,2637 0,0594 -334,76
Singapore | 1,5243 0,0524 0,7640 0,0391 0,2850 0,0457 -466,95| 1,6464 0,0477 0,7729 0,0389 0,2455 0,0425 -456,00
South Korea | 1,3959 0,0585 0,8560 0,0461 0,3338 0,0495 -50324| 1,7141 0,0652 0,9499 0,0452 0,2053 0,0460 -512,93
Taiwan 2,1648 0,0793 1,1658 0,0603 0,2092 0,0476 -577,78| 2,2774 0,0749 1,1969 0,0582 0,1879 0,0420 -581,93
Thailand 1,1769 0,0622 0,8397 0,0534 04711 0,0489 -51356| 1,3333 0,0740 1,0035 0,0555 0,3220 0,0473 -543,49
MEAN 1,8221 0,0945 1,0536 0,0758 0,3381 0,0576 -419,32| 1,9549 0,0969 1,1098 0,0804 0,3137 0,0565 -422,51
STD 0,7218 0,0687 0,3594 0,0499 0,0831 0,0147 146,27| 0,6124 0,0729 0,3875 0,0654 0,1125 0,0191 141,54

Table 7.a: Parameter estimates of the gev distribution (20-histories)



Left tail Right tail
U STD P STD £ STD  Lik. U STD P STD g STD  Lik.

CzechRep. | 1,2007 0,1206 0,7445 0,0798 0,1416 0,0976 -75,08| 1,2930 0,1235 0,7057 0,0717 0,0065 0,1234 -67,98
Hungary 1,6541 0,1089 1,0314 0,1120 0,4487 0,0803 -194,56| 1,5905 0,1208 1,0057 0,0914 0,3295 0,0908 -184,19
Poland 24589 0,2014 1,3056 0,1490 0,1298 0,0873 -10565| 2,6681 0,1931 1,2200 0,1428 0,1468 0,0927 -102,47
Russia 35729 0,3834 2,5851 0,3327 0,3329 0,0850 -15506| 4,0370 0,4550 2,7855 0,3766 0,3755 0,0941 -160,51
Slovak Rep. | 2,0056 0,1437 0,9973 0,1129 0,3632 0,1036 -121,22| 1,9025 0,1322 0,9645 0,0976 0,2617 0,1160 -114,84
Slovenia 2,1934 0,1431 1,1029 0,1131 0,0752 0,0680 -109,89| 1,9895 0,1558 1,0219 0,1216 0,0768 0,0968 -10551
MEAN 2,1809 0,1835 1,2945 0,1499 0,2486 0,0870 -126,91| 2,2468 0,1967 1,2839 0,1503 0,1995 0,1023 -122,58
STD 0,8104 0,1030 0,6577 0,0922 0,1523 0,0126  42,02| 0,9907 0,1294 0,7538 0,1136 0,1462 0,0138 42,36
Argentina | 2,9254 0,2515 1,7467 0,1706 0,1615 0,0888 -156,02| 2,5518 0,1465 1,0514 0,1314 0,3555 0,0875 -128,27
Brasil 4,1765 0,2843 2,1256 0,1924 0,1717 0,0835 -221,30| 4,1307 0,3544 24530 0,2223 0,1115 0,1133 -231,14
Chile 1,1352 0,0518 0,5770 0,0435 0,2364 0,0703 -181,47| 1,1663 0,0640 0,6355 0,0484 0,2687 0,0663 -199,48
Colombia | 1,2858 0,0786 0,6224 0,0581 0,2330 0,0797 -112,66| 1,3993 0,1016 0,8460 0,0772 0,2768 0,0756 -142,85
Mexico 1,9800 0,1094 1,0153 0,0805 0,2949 0,0780 -251,81| 2,1945 0,0937 1,0411 0,0891 0,2518 0,0668 -252,35
Peru 1,0487 0,1381 1,0301 0,1014 0,1940 0,0901 -178,97| 2,0600 0,1544 1,1561 0,1126 0,2031 0,0857 -191,50
Venezuela | 2,3301 0,2464 1,3645 0,1688 0,2367 0,1273 -129,55| 2,4183 0,2066 1,3668 0,1563 0,2333 0,0969 -129,60
MEAN 2,2545 0,1657 1,2117 0,1165 0,2183 0,0882 -17597| 2,2744 0,1602 1,2214 0,1196 0,2430 0,0846 -182,17
STD 1,0416 0,0935 0,5725 0,0601 0,0461 0,0185 49,00/ 0,9652 0,0976 05899 0,0576 0,0747 0,0169 49,88

Table 7.b: Parameter estimates of the gev distribution (20-histories)



Early USindex| Recent S&P  Recent Nikkel ~ Recent DAX  Recent CAC40 Recent FTSE100
Beg. date 18850217 19930402 19930402 19930402 19930402 19930402
Ending date 19110302 19981231 19981231 19981231 19981231 19981231
Nobs 7826 1500 1500 1500 1500 1500
Mean 0,0135 0,0670 0,0655 -0,0202 -0,0215 0,0731
Median 0,0380 0,0469 0,0534 0,0000 0,0000 0,0890
Std 0,8704 0,8534 0,8702 1,1304 1,3782 1,2114
min -8,5161 -7,1127 -7,4549 -5,3389 -5,9571 -8,3822
max 6,6109 4,9887 4,8605 6,5993 7,6605 6,1057
Sk -0,3004 -0,6576 -0,7409 0,2219 0,1717 -0,7129
Sk* -10,8502 -10,3979 -11,7148 3,5087 2,7153 -11,2726
Ku 7,0423 9,4405 8,4680 4,2370 3,1920 4,6815
Ku* 127,1677 74,6340 66,9453 33,4962 25,2351 37,0101
JB 16289,35 5678,34 4618,91 1134,30 644,18 1496,82
TR1 111,23 100,44 91,06 30,21 29,32 154,73
TR5 1276,44 124,81 128,13 101,56 80,51 215,66
Table 8 Summary statisticsfor the early days of a USindex and recent mature marketsindices

Optimal Hill estimation gpd estimation
13 STD t* threshold U] STD

L eft tail of distribution
Early USindex 0,3401 0,0182 351 -0,0265 0,4975 0,0306
Recent S& P 0,3318 0,0489 46 -1,6551 0,5624 0,1061
Recent Nikkei 0,2851 0,0399 51 -2,5356 0,7653 0,1240
Recent DAX 0,3242 0,0725 20 -3,4210 1,1114 0,2433
Recent CAC40 0,2787 0,0581 23 -2,8126 0,8541 0,1580
Recent FTSE10( 0,2446 0,0471 27 -2,0318 0,5595 0,0855
Right tail of distribution
Early USindex 0,4181 0,0188 494 0,0204 0,4136 0,0218
Recent S& P 0,3039 0,0493 38 1,6185 0,4972 0,1064
Recent Nikkei 0,2763 0,0532 27 3,1945 0,8944 0,2135
Recent DAX 0,2855 0,0404 50 1,9540 0,5889 0,0932
Recent CAC40 0,2499 0,0361 48 2,1798 0,5197 0,0952
Recent FTSE10( 0,3162 0,0294 116 1,1162 0,3624 0,0417

Table 9: Resultsfor the early days of a USindex and recent mature marketsindices




Figure 1: Plot of the Gumbel, Frechet, and Weibull densities
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Figure 3: Plot of various Generalized Pareto Distributions
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Hill—plot for left tail of Russian returns
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7 Frequency

7. Frequency
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Comparison of tail observations and fitted GPD
Left tail for Global US index returns (early years)

Comparison of tail observations and fitted GPD
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