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Abstract

The paper considers smooth modelling of hazard functions, where dynamics is mod-

elled in both, duration time and calendar time. The model is specified with time

dynamic covariate effects to replace restrictive assumptions of proportional hazards.

Additivity of the time effects is assumed which allows for simple estimation in a

backfitting style. Penalized splines are employed, which provide the welcome bene-

fit of linking smoothing with mixed models. The model is applied to unemployment

data taken from the German socio economic panel. The hazard function, here the

chance for finding reemployment, varies with duration as well as calendar time,

which is worked out in the paper.
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1 Introduction

Survival time or duration time studies primarily focus on one time scale only, namely

the time to an event of interest. This is justifiable, if the individuals or subjects

under investigation enter the study all at the same time point or at least in a short

time interval. This implies that all subjects are under the same risk, modified by

available covariates. In some data situations, however, the risk does not only change

with survival time, expressed in the hazard function, but also with calendar time.

This is particularly the case if the duration time is long and subjects enter the

study at different timepoints. The example we consider in this paper are duration

times of unemployment with data taken from the German socio economic panel

(see www.diw.de). Subjects enter the state of unemployment at different timepoints

ranging over the years 1983 to 2000. Clearly, with this wide time range and the eco-

nomic dynamics, the success rate of finding a new job has to be modelled to depend

on calendar time. Hazard function models which incorporate both, duration as well

as calendar time, are known under the phrase two-way hazard models. A graph-

ical representation of the survival data is available by a Lexis diagram, as shown

in Figure 1 for our data at hand (see also Keiding, 1990, or Francis & Pritchard,

1998). The event of interest is defined as full time reemployment, while any other

termination of unemployment (retirement, retraining, half time job etc) is taken as

censored information. Unemployment spells longer than 36 months are truncated

and taken as censored.

Approaches to model the hazard function of duration time data in both, duration

as well as calendar time trace back to Cox (1972) and Cox & Farewell (1979), see

also Anderson (1991). Recently, Efron (2002) shows that two way hazard models
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can be fitted either by focussing on calendar time, or on duration time or on both

at the same time, the latter using a Poisson type model. Our approach uses the

Poisson approach as starting point, but instead of fitting a parametric or semipara-

metric model, like in Efron (2002), we choose a non-parametric or more suitably

called smooth model with both time scales entering the model in a smooth func-

tional form. Additionally, we allow covariate effects to vary also with both, duration

as well as calendar time. This leads to a complex varying coefficient model as in-

troduced in Hastie & Tibshirani (1993). For interpretational reasons, and in order

to keep the numerical effort feasible, we assume additivity for our hazard function.

This means, on a log scale, the functional effects of duration and calendar time

decompose additively. This leads to a Generalized Additive Model in the style of

Hastie & Tibshirani (1990) and allows with the backfitting principle a simple way

of calculating the estimates.

As smoothing technique we employ penalized spline fitting as introduced as P-spline

smoothing in Eilers & Marx (1996) (see also O’Sullivan, 1988). Spline based ap-

proaches with penalized fitting in the context of survival time models have been

suggested before, with early references given by Zucker & Karr (1990), Gray (1992)

or Gray (1994). Kooperberg, Stone & Troung (1995) provides a general approach

with flexible, low dimensional splines while Fan, Gijbels & King (1997) or Cai & Sun

(2003) use local techniques for smooth estimation. Recently Cai, Hyndman & Wand

(2002) propose P-spline smoothing for hazard modelling, which is further extended

in Kauermann (2005) towards non proportional hazard models. In all of the above

cited papers the nonparametric structure is either over duration time or over some

other exogenous metrically scaled covariate. The nonparametric inclusion of calen-
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dar time besides of duration time as proposed in this paper is new to our knowledge.

Whenever smoothing techniques are applied for fitting, there is a tuning parameter,

commonly called bandwidth or smoothing parameter, to be chosen adequately. This

should be done data driven based on some optimality criterion (see e.g. Hastie &

Tibshirani, 1990). If P-spline smoothing is applied, the penalized estimation is found

to be equivalent to estimation and prediction in Linear Mixed Models, as has been

demonstrated in Wand (2003). This link has been further exploited in Ruppert,

Wand & Carroll (2003) and Kauermann (2004). The same idea is also used in this

paper, building up a connection between P-spline fitting of a two-way hazard model

and a Generalized Linear Mixed Model (GLMM). Smoothing parameter selection

then corresponds to multivariate variance component estimation in a GLMM. This

has the important advantage that multidimensional smoothing parameter selection

can be easily carried out without complicated grid searching. This is an essential

point for our model, since the number of smoothing parameters to be chosen is 2

for the baseline and for each covariate under investigation. Moreover, software de-

veloped for estimation of GLMMs can be used for fitting our model.

This paper is organized as follows. In Section 2 we describe the model and how this

is fitted. In particular a penalized backfitting is presented and linked to Generalized

Linear Mixed Models. Section 3 provides simulations and the data example. An

outlook is given in Section 4.
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2 Nonparametric Two Way Hazard Model

2.1 P-spline estimation of Hazard Function

Assume we collect survival data having survival time t and calendar time c as quanti-

ties of interest. For each individual we have the independent data pairs (ti, ci, δi, xi)

with ti the observed survival time, δi as censoring indicator and ci denoting the

timepoint of failure. With xi we denote a set of covariates. For simplicity of presen-

tation we omit covariates xi for the moment and present our approach first for pure

hazard function modelling. Based on the data we have bi = ci − ti as timepoint of

”birth” and the hazard function is modelled as

h(t, b) = exp{α0(t, b)} (1)

with α0(.) as some smooth but otherwise unspecified function. Assuming additivity,

we decompose α0(.) to α0(t, b) = αt0(t) + αb0(b). Based on hazard function (1) the

log likelihood results to

n∑

i=1

[
δi{αt0(ti) + αb0(bi)} − exp{αb0(bi)}

∫ ti

0

exp{αt0(u)}du

]
. (2)

In classical proportional hazard models one now replaces the cumulated hazard func-

tion, that is the last component in (2), by a step function with steps at the observed

timepoints and step heights as unknown parameters. This leads to Breslow’s (1972)

estimate and justifies the partial likelihood introduced by Cox (1972) as principle

likelihood. We go a similar route, but replace the integral by a trapezoid approxima-

tion with trapzoids constructed over the observed failure time points. Let therefore

0 = k0, k1, . . . , kK be the observed failure times and define Ji as the index defined

such that kJi
is the smallest knot larger than or equal to ti, that is kJi−1 < ti ≤ kJi

.
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We then approximate

∫ ti

0

exp{αt0(u)du} ≈ exp{αt0(0)}(k1 − k0)/2

+

Ji−1∑

j=1

exp{αt0(kj)}(kj+1 − kj−1)/2

+ exp{αt0(kJi
)}(ti − kJi−1)/2

=

Ji∑

j=0

exp{αt0(kj) + o
(i)
j } (3)

where o
(i)
0 = log{(k1 − k0)/2}, o

(i)
j = log{(kj+1 − kj−1)/2} for 1 ≤ j ≤ Ji − 1 and

o
(i)
Ji

= log ((ti − kJi−1)/2). Since usually no information is available prior to the first

event, we can also set the early hazard to zero and start the trapezoid integration

at the first event time, that is at k1 = min(ti, δi = 1). The number K of trape-

zoids used in approximation (3) clearly has an influence on the correctness of the

fit, but if knots kl are placed at every observed failure time point, we take satu-

rated information of our data. This is in particular a reasonable strategy, if survival

times are clustered or measured on a discrete grid, like in our example where dura-

tion times are given in a months. Inserting (3) in (2) provides an approximation for

the likelihood which should now be maximized with respect to both αt0(.) and αb0(.).

For fitting we replace the two functions by high dimensional parametric curves,

which are subsequently estimated in a penalized manner. This means we replace

αt0(t) by

αt0(t) = Zt0(t)βt0 + Bt0(t)ut0

with Zt0(t) as a low dimensional basis in t. In the application below we set Zt0(t) =

(1, t). This means we allow for a linear shape of the baseline hazard in an unpenalized

form. In contrast, Bt0(t) is a high-dimensional spline basis built e.g. from truncated
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polynomials. In our example we use truncated lines, i.e. Bt0(t) = ((t−τt1)+, . . . , (t−

τtm)+) with knots τt1 < . . . < τtm covering the range of observed failure times and

(t)+ = t for t > 0 and zero otherwise. The number of knots m is chosen in a lush

and generous way, but apparently m should be less than or equal to the number of

observed failure time points. A more thorough investigation of how knots should be

chosen in general is found in Ruppert (2002). In our example we worked with 15 to

20 dimensional basis. In the same way we fit αb0(·) by setting

αb0(b) = Zb0(b)βb0 + Bb0(b)ub0

Again Zb(.) is low dimensional, where we set Zb(b) = b. This means we allow for a

linear change in an unpenalized form. Note that we attach the intercept to matrix

Zt0(·) and leave therewith αb0(·) without intercept. The spline basis Bb0(.) is again

chosen high dimensional. We employ truncated linear lines in the example below,

that is Bb0(b) = ((b − τb1)+, . . . , (b − τbq
)+). Again, dimension q should be chosen

generously and knots τbl
, l = 1, . . . , q, should cover the range of observed birth dates.

In our example we use like above a 15 to 20 dimensional basis of truncated lines.

The log likelihood (2) is now approximated by

n∑

i=1

Ji∑

j=1

[
δij(Zij0β0 + Bij0u0) − exp{Zij0β0 + Bij0u0 + o

(i)
j }

]
(4)

where Zij0 = (Zt0(tij), Zb0(bi)), where Bij0 = (Bt0(tij), Bb0(bi)) and tij = kj for

j = 1, . . . , Ji − 1 and tiJi
= ti. Coefficients are stacked to β0 = (β00, βt0, βb0) and

u0 = (ut0, ub0) and the censoring indicator δij takes values 1 if both, j = Ji and

δi = 1, while δij equals 0 otherwise. Note that (4) is the likelihood for Poisson

variables δij with intensity λ(t, b) = exp(α0(t, b)) and given offset o
(i)
j .
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Model (2) is now extended to incorporate smooth covariate effects. Let therefore

Xi = (1, xi) = (xi0, xi1, . . . , xip) denote the design matrix built from the intercept

and p covariates. The hazard function is modelled additively as

h(t, b, xi) = exp{Xi[αt(t) + αb(b)]}

where αt(t) = (αt0(t), αt1(t), . . . , αtp(t))
T contains the smooth baseline and time dy-

namic covariate effects and analogous decomposition for αb(b) = (αb0(b), αb1(b), . . . ,

αbp(b))
T compensating for calendar time effects. As before, αt0(·) and αb0(·) rep-

resent baseline smooth duration time and calendar time effects, respectively, while

αtl(t) mirrors the covariate effect of the l-th covariate which varies with duration

time, l = 1, . . . , p. Accordingly, αbl(·) expresses smooth dynamics with calendar

time. Like above we replace the smooth components for estimation by spline func-

tions. This means we set

αtl(t) = Ztl(t)βtl + Btl(t)utl.

Like above we assume a linear structure for Ztl(t) = (1, t) and let basis Btl(.) be

constructed from truncated polynomials, in its most simple form resulting as trun-

cated linear lines Btl(t) = ((t− τt1)+, . . . , (t− τtm)+). Similarly, we replace αbl(b) by

αbl(b) = Zbl(b)βbl+Bbl(b)ubl where Zbl(.) is low dimensional and does not include the

intercept, since this is contained in Ztl(.). In our application we chose Zbl(.) = b so

that αbl(b) = bβbl + Bbl(b)ubl. If now ubl is set to zero, a linear trend in time results,

that is covariate effects vary linearly with calendar time. The complete model leads

now to the log likelihood

l(β,u) =
n∑

i=1

Ji∑

j=1

δij{Xi[Wt(tij)θt + Wb(bi)θb]}

− exp{Xi[Wt(tij)θt + Wb(bi)θb] + o
(i)
j ]} (5)

8



where Wt(t) is a block diagonal matrix with row matrices (Ztl(tij), Btl(tij)) on its di-

agonal, l = 0, 1, . . . , p. Accordingly Wb(b) is block diagonal with rows (Zbl(b), Bbl(b)),

l = 1, . . . , p, on the diagonal. Parameter vector θt decomposes to elements θt =

(βt0, ut0, βt1, ut1, . . . , βtp, utp)
T and θb = (βb0, ub0, βb1, ub1, . . . , βbp, ubp)

T .

Direct maximization of (4) would provide unsatisfactory results βbp since the dimen-

sion of the basis matrices Bt(.) and Bb(.) is large, which is necessary to capture the

unknown underlying functional structure. The idea is now to penalize spline coef-

ficients u so that smooth, unwiggled estimates result for α(.). This is achieved by

penalizing coefficients utl with 1/2 λtlutlDtlutl, where Dtl is a penalty matrix chosen

appropriately to spline basis Btl(.). For truncated polynomials a suitable choice for

Dtl is the identity matrix, as suggested in Ruppert, Wand & Carroll (2003). After

some calculation it can be shown that this choice is similar to the difference based

proposal by Eilers & Marx (1996). The parameter λtl steers the amount of penalty

and is therewith playing the role of a smoothing parameter. Apparently, λtl should

be chosen adequately, which is discussed in the next section. Extending the idea to

the remaining coefficients ubl, l = 0, 1, . . . , p, we get the penalized likelihood written

in matrix notation as

lp(β,u,λt,λb) = l(β,u) −
1

2
θT

t ΛtDtθt −
1

2
θT

b ΛbDbθb. (6)

where Dt = diag(0, Dtl) and Db = diag(0, Dbl) and λ = (λtl, λbl), l = 1, . . . , p. Ac-

cordingly, Λt is a diagonal matrix containing the penalty parameters λtl in matching

dimension to θtl, l = 0, 1, . . . , p. In the same way we construct Λb.
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2.2 Penalized Backfitting

In principle, estimation of (6) can be carried out in a straightforward manner by

differentiating (6) with respect to β and u. This may however be numerically

expensive, in particular if the number of covariates is large. We therefore propose

a backfitting routine as alternative. Assume first that αt(·) = Wt(·)θt is given and

estimation is supposed to be carried out over αb(·) = Wb(·)θb only. Then, the

penalized likelihood equals

lpb(θb,λb) =
n∑

i=1

δiXiWb(bi)θb − exp{XiWb(bi)θb + obi} −
1

2
θT

b ΛbDbθb (7)

with obi = log
∑Ji

j=1 exp{XiWt(tij)θt+o
(i)
j }. Note that (7) equals a simple penalized

likelihood for the n Poisson data δi, i = 1, . . . , n. Differentiation with respect to θb

provides the estimating equation

0 = spb(θb,λb) =
n∑

i=1

WT
b (bi)X

T
i {δi − exp(XiWb(bi)θb + obi)} − ΛbDbθb (8)

and the Fisher type matrix with respect to θb is defined through

Ipb(θb,λb) =
n∑

i=1

WT
b (bi)X

T
i XiWb(bi) exp(XiWb(bi)θb + obi) + ΛbDb. (9)

Solving (8) gives the first step in the backfitting procedure. Exchanging the role

of αt(·) and αb(·) leads to the second backfitting step. We now consider αb(·) =

Wb(·)θb as given leading to the penalized likelihood

lpt(θt,λt) =
n∑

i=1

Ji∑

j=1

[δijXiWt(tij)θt − exp{XiWt(tij)θt + otij)] −
1

2
θT

t ΛtDtθt (10)

with otij = XiWb(bi)θb+o
(i)
j . In this case, (10) is the penalized likelihood for Poisson

data δij with offset otij, j = 1, . . . , Ji, i = 1, . . . , n. Estimating equations are found

via

0 = spt(θt,λt) =
n∑

i=1

Ji∑

j=1

WT
t (tij)X

T
i {δij − exp(XiWt(tij)θt + otij)} − ΛtDtθt (11)
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with Fisher matrix

Ipt(θt, λt) =
n∑

i=1

Ji∑

j=1

WT
t (tij)X

T
i XiWt(tij) exp(XiWt(tij)θt + otij) + ΛtDt.

The backfitting algorithm results now by solving (8) and (11) gradually. In partic-

ular, the procedure is as follows

(a) Start with an initial estimate for θt and θb, obtained e.g. by setting ut ≡ 0

and ub ≡ 0 and estimating βt and βb parametrically using a generalized linear

model fitted to data δij. We denote the resulting estimates by θ̂
(0)

t and θ̂
(0)

b .

(b) In the r-th loop of the algorithm we update the estimate for θb by the one step

Fisher scoring

θ̂
(r)

b = θ̂
(r−1)

b + I−1
pb

(
θ̂

(r−1)

b ,λb

)
spb

(
θ̂

(r−1)

b ,λb

)

with offset obi in (8) calculated from θ
(r−1)
t .

(c) Exchanging the roles of t and b we update θ
(r−1)
t by

θ̂
(r)

t = θ̂
(r−1)

t + I−1
pt

(
θ̂

(r−1)

t ,λt

)
spt

(
θ̂

(r−1)

t ,λt

)

where offset otij in (11) is now calculated from θ
(r)
b .

(d) Iterating between (b) and (c) leads to the backfitting routine.

For the final estimate we can calculate the variance of our fitted smooth curve in

the following way. With standard asymptotic arguments, assuming the number of

individuals to grow but leaving the number of knots to be finite, we obtain the

asymptotic behavior for θ̂ as solution of (8) and (11) as

θ̂ − θ ∼ N
(
0, Ip(θ,λ)−1Ip(θ,λ = 0)I−1

p (θ,λ)
)

(12)
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with Ip(θ,λ) is the joint Fisher matrix defined through

Ip(θ,λ) =
n∑

i=1

Ji∑

j=1

WT
ijX

T
i XiWij exp(XiWijθ + o

(i)
j ) + diag(ΛtDt,ΛbDb)

where Wij = (Wt(tij),Wb(bi)) and θ = (θt,θb). Note that the variance in (12) can

be rewritten as

Var(θ̂) = I−1
p (θ,λ) − I−1

p (θ,λ)diag(ΛtDt,ΛbDb)I
−1
p (θ,λ).

Note that since we are interested in variance estimates for estimates α̂tl(.) or α̂bl(.)

we are only interested in the two block diagonals of the Fisher matrix refering to

elements in θt and θb. It is now a simple step to obtain pointwise confidence intervals

for α̂tl(t) via the variance estimate

Var(α̂tl(t)) = (Ztl(t), Btl(t)) Var
(
(β̂tl, ûtl)

T
) (

ZT
t,l(t), B

T
tl (t)

)T
. (13)

In the same way we get the variance for αb(·).

2.3 Mixed Model Representation

We can rewrite the penalized estimation above as prediction in a Generalized Linear

Mixed Model by formulating the penalty as a priori distribution on the spline coef-

ficients. This link has been worked out in Wand (2003) for normal response data,

and has been explored further in Ruppert, Wand & Carroll (2003) (see also Kauer-

mann, 2004). In particular, the connection between smoothing and mixed models is

advantageous, since the smoothing parameter is playing the role of a random effect

variance in the mixed model formulation. This in turn allows for maximum like-

lihood estimation and a simple way to obtain data driven smoothing parameters.

This approach is also employed here. Additionally, we use the backfitting idea to

simplify the numerical effort. This means for fitting αb(.) we assume that αt(.) is
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given or fixed at its current estimate. Assuming spline coefficients as given, the first

component in the penalized likelihood (7) equals the likelihood for the mixed model

δi|ub, αt(·) ∼ Poisson(exp{XiW(bi)θb + obi})

Assuming now that ub is random induces the penalty as a priori distribution

ubl ∼ N(0, λ−1
bl D−

bl), l = 0, . . . , p (14)

with D−
bl as the (generalized) inverse of Dbl. Following Breslow & Clayton (1993) we

integrate out ub by Laplace approximation leading to the marginal likelihood, here

conditioned on αt(·). It is not difficult to see that this marginal likelihood resembles

(7) and maximizing this with respect to βb and ub leads to the estimate defined

as solution of (8). The maximized approximate marginal likelihood, based on the

Laplace approximation, results now to

lmb|t(λb) ≈ −
1

2
log

∣∣∣Λ̃−1

b D̃−
b

∣∣∣ + lpb(θ̂b,λb) −
1

2
log

∣∣∣∣∣−
∂2lpb(θ̂b,λb)

∂ub∂uT
b

∣∣∣∣∣

= lpb(θ̂b,λb) −
1

2
log

∣∣∣Ĩpb(θ̂b,λb)Λ̃
−1

b D̃−
b

∣∣∣ (15)

where θ̂b is the maximizer of lpb(θb,λb) and D̃b taken those columns and rows of

Db is the submatrix of Db with non zero diagonal elements. Note that these are

the elements matching to coefficients ub. Accordingly Λ̃b results as submatrix of Λb

built from components λb. In the same way Ĩpb(.) is the submatrix of the Fisher

matrix given in (9) with elements corresponding to ub. Observing the structure of

Λ̃b, we can now maximize (15) to obtain an estimate for the l-th component of λb.

Differentiation yields

1

λ̂bl

=
tr{(Ĩpb(θ̂b, λb)

−1)llDbl} + ûT
blDblûbl

mbl

(16)
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with mbl as dimension of spline basis Bbl(·) and subscript ll indicating the l-th block

diagonal of the inverse Fisher matrix. Note that (16) is not an analytic solution by

itself, since the right hand side depends on λb as well, explicitly through Ĩpb(·) as

well as implicitly through θ̂b. However (16) can be used in an interactive manner

keeping the components on the right hand side as fixed and updating λ̂bl on the left

hand side. It can be shown that this corresponds to a Newton type algorithm as

motivated in Krivobokova & Kauermann (2005).

In complete analogy we obtain a Generalized Linear Mixed Model for αt(·), now

keeping θb as fixed. This means, with the backfitting idea we obtain the GLMM

corresponding to (14) which is

δij|ut, αb(·) ∼ Poisson(exp{XiWt(tij)θt + otij})

utl ∼ N(0, λ−1
tl D−

tl ), l = 1, . . . , p. (17)

Applying Laplace approximation we obtain the marginal likelihood

lmt|b(λt) ≈ lpt(θ̂t,λt) −
1

2
log

∣∣∣̃Ipt(θ̂t,λt)Λ̃tD̃t

∣∣∣

with obvious definition for the tilde notation. Like above this suggests the approxi-

mate likelihood estimates

1

λ̂tl

=
tr{(Ĩpt(θ̂t, λt)

−1)llDtl} + ûT
tlDtlûtl

mtl

(18)

with mtl as dimension of Btl(·). The backfitting algorithm from above can now be

extended by updating the estimates for λt and λb in each step. This is achieved by

supplementing (16) to step (b) and (16) to step (c).
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3 Data Example and Simulations

3.1 Simulation

We run a small simulation study to explore the performance of our routine. We

therefore simulate survival data, where we use discrete survival times as they occur

in our data example. Based on the Poisson type model we simulate data with hazard

function exp {αt0(t) + αb0(b) + x (αt1(t) + αb1(b))} with x as a binary covariate with

P(x = 1) = 0.7 and P(x = 0) = 0.3. The explicit functions are specified to αt0(t) =

−2.5 − t/30, αb0(b) = 3(b/50)2 − 2.5b/50, αt1(t) = 0.5 + (t/25)2, αb1(b) = −b/60,

where t ranges from 1 to 30, with survival times beyond 30 taken as censored. The

birth time is drawn uniform on [0, 50] and censoring is applied for survival times

exceeding t > 30 and calender time exceeding 80, that is if t + b > 80. We simulate

n = 1000 observations and fit the model with the backfitting procedure described

above. In each simulation, the smoothing parameter is chosen data driven exploiting

the link to generalized linear mixed models. Figure 2 shows the true function and

simulated coverage intervals showing pointwise, that is for each timepoint t and b,

respectively, the 5, 50 and 95 percent quantile of the simulated estimates based on

200 simulations. Apparently, the estimates are unbiased and reproduce the true

function. For each simulation we can calculate confidence bands based on (13) and

corresponding formula of αbl(·). To assess the goodness of the variance estimate we

investigate the simulated coverage probability of estimated confidence intervals. To

do so we check in each simulation whether the estimated confidence interval covers

the true underlying function. Figure 3 shows the simulated coverage probability,

that is the proportion of simulation in which at a fixed point t or b, respectively,

the estimated confidence interval contains the true function. The nominal value is
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95% based on plus/minus two times the standard deviation. Overall, the variance

estimation seems acceptable, even though for αb0(·) there is undercoverage at for

small values of b. We think that this is due to a small bias for small values of b

occurring due to the spline basis used. We worked with truncated lines while the

function is quadratic. The functional shape of αb0(·) is however well captured so that

we do feel not too discouraged by the poor performance of the variance estimates

for α̂b0(·). Note also that αb0(0) = 0 by construction and therewith Var(α̂b0(0)) = 0.

We also experimented with different functions for αb0(·) as well as different splines.

We observed that the coverage probability of αbl(·) can be improved if the spline

used naturally captures the true shape of the function. This holds for αtl(·) as well,

but by far weaker. Given the fact however that trends over calender time are usually

less strong than trends over survival time, we still feel most comfortable with the

truncated linear basis we used, even though, of course, this issue can be further

disputed.

3.2 Unemployment data

We now analyze the unemployment data referred to in the introduction. Based on

the German socio economic panel we consider unemployment spells from 4020 in-

dividuals who became unemployed between 1983 and 2000 and were domiciled in

West Germany. Generally, for individuals in the panel with more spell of unemploy-

ment we randomly chose one of their spells and ignored the others. This guarantees

independence of our observations. The empirical distribution of the beginning of

unemployment is shown in Figure 4. As covariates we consider

• x1: Foreigner (1 for Foreigner, 0 for German)

• x2: Female (1 for female, 0 for male)
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• x3: Age ≤ 25 (1 if younger than 25, 0 otherwise)

• x4: Age ≥ 50 (1 if older than 50, 0 otherwise)

• x5: no education (1 if individual has no professional education, 0 otherwise)

• x6: higher education (1 if person has university or comparable degree, 0 oth-

erwise)

Based on coding of variables ’no education’ and ’high education’ the reference cate-

gory are individuals with apprenticeship or comparable education but without uni-

versity degree. Figures 5 and 6 show baseline and covariate effects for the data

at hand. The upper left plot in Figure 5 shows the baseline αb0(t). Clearly, the

chances of returning to professional life decrease with duration of unemployment.

Moreover, over the years, the chances reduce even though this effect does not occur

to be significant. The effect of nationality varies with duration of unemployment,

as can be seen from the plot in the second row, first column in Figure 5. In the

first months of unemployment, Foreigners have lower probability of finding a new

job. This effect vanishes however and changes signs, even though it does not show

significant behavior later on. Moreover, there is no evidence that the effect of na-

tionality changes with calendar time. Looking now at gender we see that females

generally have less chances of finding a new job, regardless of their unemployment

duration. Hence, gender has a proportional effect on the hazard. However, over

the years, the negative effect of gender has reduced. Next we consider the effect of

age. As can be seen, younger unemployed people have higher chances of finding a

new job while individuals aged 50 or higher reduce their chances. For young unem-

ployed workers the positive age effect increased in the eighties but decreased and

changed sign in the nineties. The latter effect is however not significant. Moreover,
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for older individuals the chance for reemployment decreases over the years but in

no significant manner. Finally education has a positive effect on finding a new job

regardless of the duration of unemployment. This can be shown from the bottom

left plots in Figure 6. A significant variation with calendar time was not observed

for the education effects. Overall it seems necessary to allow the covariate effects to

vary with calender time as well as duration time of unemployment.

4 Discussion

The paper demonstrates the importance of including calendar time in duration time

modelling if the observed birth times have a wide range compared to the duration

time. The nonparametric approach based on penalized splines easily allows to fit

such data with flexible smooth structures in both, calender time and survival time.

The delicate issue of smoothing parameter selection can be elegantly solved by link-

ing penalized spline smoothing to mixed models. This shows advantageous given

the number of smoothing parameters to be chosen. Fitting can numerically benefit

from a backfitting idea so that the model is fitted easily.
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Lexis.Diagram (+ for event and o for censored observations)

Figure 1: Lexis diagram for unemployment data. Shown are the time individuals

spend in unemployment. Observations are censored at 36 months.
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Figure 2: Simulated confidence intervals with pointwise 5, 50 and 95 percent quan-

tiles based on 200 simulations. The function is shown as thick line
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Figure 3: Simulated coverage probability
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Figure 4: Histogram for start of unemployment and Kaplan-Meier estimates for

duration of unemployment grouped in three time intervals.
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Figure 5: Functional shape of αtl(·) (left hand side) and αbl(·) (right hand side) for

unemployment data
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Figure 6: Continuation of Figure 5
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