
 
 

Portfolio selection by dynamic stochastic programming 
compared to stochastic optimal control 

 
 
Bosch, Manuela (Universidad de Barcelona, Spain) 
Devolder, Pierre (Université Catholique de Louvain, Belgium) 
Domínguez, Inmaculada (Universidad de Extremadura, Spain) 
 
 
 
 
 
 
 
 
Abstract 
 
 
The aim of this paper is to compare optimal investment policy in a defined contribution 

pension plan when using two different techniques: dynamic stochastic programming or 

stochastic optimal control.   

 

The analysis includes assumptions related to the following aspects: 

 a) keeping constant or changing strategies in each period of the time horizon,  

 b) using different utility functions of the accumulated fund  

 c) considering single or periodical contributions. 

 

The optimal investment policy, for periods before and after retirement, is obtained 

applying both techniques; numerical results are presented and compared together with 

the main conclusions.      

 

 

Keywords: asset allocation, optimal control, stochastic programming, asset liability 

management 
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1.- Introduction 

 

This paper is an extension of Devolder et al. (2003) where the objective was to show 

how  stochastic optimal control can be applied to obtain  optimum investment policy in 

a pension fund made up of defined contribution plan. The analysis was made for periods 

before and after retirement.  The yield of the risk-free assets was constant and the price 

index of the risk-bearing asset was defined by a geometric Brownian motion process 

with given drift  and volatility.   

 

A different approach is to consider the information available about the yields on the 

risky assets as a set of scenarios { }mSSs ,,2,1, K=∈  with an associated probability sp . 

The scenarios are arranged into a tree structure for the different periods. In this case, the 

appropriate methodology for selecting the optimal strategy is dynamic stochastic 

programming.    

  

The contribution of the present paper is to focus on comparing these two techniques - 

stochastic optimal control and dynamic stochastic programming - applied to the 

selection of the portfolio of the defined contribution plan and confirming numerically 

that the optimum selection is the same when the scenarios are obtained after the 

discretization of the distribution applied in the stochastic optimal control method.  

    

The results represent a wide range of cases:  decisions taken before and after retirement, 

periodic or single one-off contributions, the use of two different utility functions, and 

investment strategies that are constant along the time horizon in some cases and change 

in others. 

   

2.- Model Assumptions   

 

Before starting to apply the different methods in the model, some assumptions will be 

described:  
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2.1.-  Two types of situation: Before and After Retirement 

 

The investment policy of the pension fund affects both the participants and the 

beneficiary of the defined contribution plan. The implication of a given decision will 

differ between the two situations, so that in this sense we shall distinguish between a 

decision maker during his or her active life (i.e., pre-retirement) and a decision maker 

who has retired (post-retirement).       

 

In both cases we shall analyze the optimal investment selection when ),0( Nt ∈ where 

N is the time horizon of simulations.  

 

2.2.- Two types of  time horizon : single period or multiple periods 

 

The decisions taken in each of two previous situations can take into account either just 

the information of the current period or an expectation of the risky yields in future 

periods. In this sense we distinguish:  

 

- Single period model:  1=N  

- Multiperiod model: 1>N  

 

2.3.- Two types of contributions: periodic or single contributions 

 

The investment policy will depend on whether a single contribution is made or there are 

periodic contributions:    

 

- Single contribution at 0=t :  )0(P  

- Periodic contributions during the active period: )(tP .  

 

2.4.- Two types of assets: riskless and risky asset 

 

The investment alternatives studied in this work are reduced to just two categories:  a 

riskless asset and a risky asset:       
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- Monetary amount allocated to the risk-free asset at the beginning of the 

period t: )(1 tX  

- Monetary amount allocated to the risky asset at the beginning of the period t: 

)(2 tX  

 

The amount corresponding to the risky asset is the proportion )(tu of the accumulated 

fund at the beginning of the each period )(tF + , and ))(1( tu−  the proportion 

corresponding to the riskless asset. 

  

2.5.- Two types of strategies: constants or varying strategies along the time horizon  

 

In this multiperiod context, the investment strategies are obtained for all the periods 

analyzed. The optimal policy obtained by the two optimization tools will then be given 

by:   

- Constant strategies along the time horizon: )()2()1( tuuu === L . 

- Varying strategies along the time horizon: )()2()1( tuuu ≠≠≠ L   

 
3.- The utility function of the accumulated fund  
 
The aim of the manager is to maximize the accumulated fund at the end of the time 

horizon being analyzed. The fund is made up of the contributions and the yields 

obtained at the end of the period. We express the utility function of the fund at the end 

of the period t as ))(( tFU  which can take different expressions as will be seen in the 

following subsections. 

 

3.1.-  HARA (Hyperbolic Absolute Risk Aversion) utility functions  

 

From the Arrow-Pratt definition about the absolute risk aversion measure 

0))((',
))(('
))((''))(( ≠−= tFU

tFU
tFUtFA , the relative risk aversion measure 

)(
))(('
))((''))(( tF

tFU
tFUtFR ⋅−=  and the index of risk tolerance 

))((
1))((

tFA
tFT −=  , one 
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defines the HARA1 (hyperbolic absolute risk aversion) utility functions. This class of 

utility functions has the feature that the risk tolerance is linear or the absolute risk 

aversion is a hyperbolic function.    

)(
1))(()())((

tbFa
tFAtFbatFT

+
=→⋅+=  

That means the ))(( tFU satisfies the differential equation : 

( ) )1(0))(('))(('')( =+⋅⋅+ tFUtFUtFba   

which has the general solution: 

)2(0)(,))((
1

1))((
11

>⋅+⋅+⋅
−

=
−

tFbatFba
b

tFU b  

This class includes power-law utility functions and the negative exponential utility 

functions as limiting cases. Both types will be used in this paper to study how the  

optimal portfolio is  affected by this choice.     

 

 3.2.-  Particular Case: The negative exponential utility function 

When 0,1
== BA

α
 in (1) the solution of the differential equation is the negative 

exponential utility function:  

( ) )3(011))(( )( >−⋅= ⋅− α
α

α withetFU tF  

This function has constant absolute risk aversion: 

α=))(( tFA  

and is often called CARA utility function. 

 

3.3.- The power-law utility function 

 

When 0=A  in (1) the solution of the differential equation is the power-law utility 

function:  

)4(0)(
)1(

1))(( )1( >⋅
−

= − γ
γ

γ withtFtFU  

 

                                                 
1 Also known as LRT or Lineal risk tolerance. 
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The power-law utility has decreasing absolute risk aversion, i.e., there is less aversion 

for bearing the same amount of risk when the accumulated fund is large. However, it 

has a constant relative aversion:   

γ

γ

=

=

))((

)(
))((

tFR

tF
tFA

 

This utility function is often called CRRA or constant relative risk aversion 
 
3.4.- The objective function   
 

The problem in the two situations (pre- and post-retirement) will be to optimize the 

expected utility of the final wealth: the total fund obtained at the retirement age and the 

surplus after payment of pensions for some periods. 

 

)5(),0())(((max
)(

NtNFUE
tu

∈∀  

 
4.- Optimal portfolio: stochastic optimal control and dynamic stochastic 
programming. 
 
 
4.1- Optimal portfolio using stochastic programming  
 

In this section, it is necessary to introduce the scenario tree for the uncertain parameter, 

the budget constrains and the non-anticipativity constrains, the decision variables and 

finally the optimization model. 

 
4.1.1.- Scenario Tree  
 

In dynamic stochastic programming, the uncertainty is represented by a number of 

different realizations. Each complete realization of all the uncertain parameters is a 

scenario along the multiperiod horizon.   

 

In the dynamic stochastic programming model, the information available about the 

single uncertain parameter, the risky active yield, is a set of scenarios 
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)(2 tr s { }mSSs ,,2,1, K=∈  with an associated probability sp  and 1
1

=∑
=

m

s
sp .  The yield 

of the free-risk asset for each scenario )(1 tr s  is supposed to be constant 1r  .  

 

The scenarios are arranged into a tree structure along the succession of periods so that 

tree has a depth equal to the length of the planning horizon N . 

                                                                                    (s =1,  p1) 
)2(1

2r             )(1
2 Nr   

         (s =2, p2 ) 
            : 
                    )1(1

2r        )2(2
2r                    

                                        :            : 
  )1(2

2r                            )(2 Nr s  (s,   ps ) 
                                   
                                                                                        :  

)1(3
2r         :                                                : 

  
                           )2(2

sr                              (s=m, pm) 
                                                           )(2 Nr m  

      |             |           |                                    | 
                t= 0      t=1       t=2  ……………………t= N  
                                                 Figure 1 
 
 

Each path represents one scenario in each period ( 1r , )(2 tr s ) and each node represents 

the moment when decisions are made taking into account the scenario obtained in the 

period before )(tX s . 

 

Scenario-dependent variables are represented after this moment with a super index s  as 

the accumulated fund at the beginning )(tF s+ , or at the end, )(tF s , of each period .   

 

When the values of some uncertain parameters are observed in a multiperiod model, 

new information that has became available is introduced into the optimization model. 

The value of the decision variable is therefore not unique for each period. Instead,  there 

is one value for each period under each scenario. 
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4.1.2.- Budget constrains and non-anticipativity constrains 
 

In order to make decisions along the planning horizon, it is necessary to first introduce, 

the budget at the beginning of  each  period t  under scenario s :     

 
{ } )6(,,2,1,0)()()()1()( 21 NttXtXtPtFtF ssss K=∀+=+−=+

  
If there is only a single contribution rather than periodic contributions, then:  
 

0)()2()1(,)0( ===== NPPPPP K  
 
If the decision maker has retired and is receiving his or her benefits, we consider:    

 
{ } )7(,,2,1,0)()()()1()( 21 NttXtXtBtFtF ssss K=∀+=−−=+

 
At the end of each period the accumulated fund is:  
 

{ } )8(,,2,1,0))(1()1()()( 2211 NttrXrtXtF ssss K=∀+⋅++⋅=   
 

In some points where the decision maker has to take a decision, the information under 

different scenarios has a common past. Scenarios with common information history up 

to a particular period must yield the same decisions up to that period, a condition known 

as non-anticipativity2.  In the Figure 1, for instance, )1()1( 2
2

1
2 XX = .  A way to 

generalize this rule is that if two different scenarios s  and 's   are indistinguishable at 

time t , then 

  )9()()( '
22 tXtX ss =  

 
4.1.3.- Decision variables 
 
The amount invested in risky assets and riskless assets are a proportion of the Fund at 

the beginning of each period.   

 

)()()(

)10()())(1()(

2

1

tFtutX

tFtutX
sss

sss

+

+

⋅=

⋅−=
 

 
In this sense, we consider as decision variables of the model the proportion invested in 

risk free assets and risky assets for the period t  under the scenario s .  

 

                                                 
2 Rockafeller, R.T. and Wets, R. J.-B. (1991) 
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4.1.4.- The optimization model   

 

If the objective function (5) is substituted by the equation (3) and the constrains (6) and 

(7) are applied conjointly with constrains of the non-negativity of the variables, the 

optimization model with exponential utility function is:  

 

( ) ( )

{ }
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m

s

sNFNF ss

K
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If , on the other hand, equation (4) is introduced into the objective function, the new 

power-law utility function model is: 

 

( ) ( )

{ }
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The solution may be obtained by making use of a software package that permits us to 

work with many scenarios and different periods. This kind of model is known as a large 

optimization problem. The decision variables  )(tu s  and (1- )(tu s ) are in concordance 

with the corresponding )(tu  and (1- )(tu ) presented in the next subsection when the 

scenarios used come from discretization of the distribution applied in the stochastic 

optimal control. 
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4.2- Optimal Portfolio using Stochastic Optimal Control 
 

The model of stochastic optimal control developed in Devolder et al.( 2003) was based 

on the following assumptions : 

 

1° continuous choice between two kinds of asset : 

 

-  riskless asset: 1X  solution of the following deterministic equation: 

dttXrtdX )()( 11 =  

 

- risky asset :    2X   solution of the following stochastic differential equation : 

 

)()()()( 222 tdwtXdttXtdX σµ +=  

where w is a standard Brownian motion. 

 

-  The proportion of the fund invested in the risky asset at time t is denoted u(t); 

1-u(t) is the proportion in the riskless asset. 

 

2° evolution equation : 

 

The fund is solution of an evolution equation : 

 

( ) )13()()()())(1()(()()( tdwtutFdtMrtututFtdF σµ ++−+=       

                               

where M is a continuous rate of external income to the fund. 

The following particular cases can be considered : 

 

-2.1 period before retirement with single contribution: 

F(0) = P ( initial single contribution) M=0 

 

-2.2 period before retirement with periodical contributions: 

F(0)=0 M= P ( constant continuous premium) 
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-2.3   period after retirement : F(0) = C ( initial amount accumulated at 

retirement age)  M= -B ( continuous rate of benefit) 

 

3° optimization problem : 

 

The problem is to find at each moment the best investment policy u(t) in order to 

optimize the expected utility of the final wealth at the end of the considered time 

horizon N: 

max E U( F(N)) 

 

4° solution: 

 

General solutions have been obtained for power law utility and exponential utility. 

 

- 4.1 Power-law utility function : 

 

If we take as utility function the formula (4) the optimal asset allocation is given 

  by: : 

)14(
.

.)(.)( 2σγ
µ r

F
tNaMFtu −−+

=     

                                                                         

where  a (N-t) is a continuous annuity computed at the riskfree rate  : 

 

r
tNrtNa )(exp(1)( −−−

=−  

 

In the particular case before retirement with single contribution this optimal 

policy is constant ( Merton ratio): 

 

)15()( 2σγ
µ
⋅
−

=
rtu         
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- 4.2 Exponential utility : 

 

If we take as utility function the formula (3) the optimal asset allocation is given 

 by: 

 

)16(
.

.))(exp()( 2σα
µ r

F
Ntrtu −−

=                             

 

which is explicitly independent of the amount M. 

 

In order to compare this model with the model of dynamic programming of section 4.1 

we can at this stage already take the following conclusions in this optimal control 

framework: 

 

 If the power-law utility is used : 

 

- Conclusion a)  in the case before retirement with a single contribution the 

optimal policy is constant and given by (15). 

 

As numerical illustration and comparison with the following section let us 

consider the special case ( we use discrete value of the parameters because of the 

comparison with the dynamic programming methodology): 

         

-     riskfree rate of 4% :  03922.0)04.1ln( ==r  

- mean return of the risky asset of 6% : 05827.0)06.1ln( ==µ  

- volatility of the return of the risky asset of  0.15: 

taking into account the distribution of the return in the Brownian model ( log 

normal distribution) the parameter of volatility is then given by : 

 

1408,0
06.1
15.01(ln 2

2

=







+=σ  

-  risk aversion :  1)1( −=− γ  
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Putting these different values of the parameters into formula (15) we obtain an 

optimal investment in risky asset of  48%. 

 

- Conclusion b) in the case before retirement with periodical contributions ( M 

positive equal to the continuous premium) the formula (14) shows that the 

optimal allocation will be bigger than in the case with single contribution . 

This optimal allocation will be a decreasing function of time starting generally at 

t=0 at 100% and converging to the Merton ratio ( 15) for t=N. 

 

- Conclusion c) in the case after retirement ( M negative equal to the continuous 

benefit) the formula (14) shows that the optimal allocation will be less than in 

the case before retirement with single contribution. 

 

This optimal allocation will be an increasing function of time converging to the 

Merton ratio ( 15) for t=N. 

 

 If the exponential utility is used : 

 

- Conclusion d) the same formal expression ( 16) has been obtained and can be 

used before or after retirement and with single or periodical contributions 

The main conclusion with exponential utility is the fact that when the fund 

increases less ( more) rapidly that the riskfree rate the proportion in risky asset 

must increase (decrease) to compensate this bad ( good) performance. 

 

 This general statement can be adapted in different situations: 

 

Conclusion e) In the case before retirement with periodical contributions the 

fund normally increases more rapidly than the riskfree rate because of the 

presence of contributions; so it can be expected that the proportion in risky asset 

must decrease over time. 

 

Conclusion f) In the case after retirement the fund normally increases less 
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rapidly than the riskfree rate because of the presence of benefits to pay;  so it can 

be expected that the proportion in risky asset must increase over time. 

 

Conclusion g)  In the case before retirement with single contribution the 

proportion in risky asset from one year to the other will decrease for a good 

economic scenario and will increase for a bad scenario. 

 

5.- Practical case 

 

In this section, we shall deal with the selection of a portfolio formed by two assets: one 

risk-free and the other risky, using the dynamic stochastic programming technique and 

looking at the eventual coherence of the results with the main conclusions presented just 

before in section 4.2 when using an optimal control framework. 

 

5.1. Initial data 

 

-Two decision makers: One pre-retirement and the other post-retirement. 

 

- Temporal horizon 3=N  periods. 

 

- Contributions: €2,292.5)3()2()1()0( ==== PPPP  made at the beginning of each 

period or €77,273.15)0( =P  in the case of only a single contribution. 

 

- The benefit is perceived in the form of a pension at the end of each of the periods 

€3000)3()2()1( === BBB , with the accumulated fund at retirement age being 

€77,273.15)0( =F  

 

- The exponential and power-law utility functions will be used in the search for the 

optimal investment portfolio for both the pre- and the post-retirement cases. 

 

- The risk aversion coefficients taken for the exponential utility function are: 

 

{ }009,0;004,0;0001,0;00008,0;00004,0=α  
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- The risk aversion coefficients taken for the power-law utility function are: 

 

{ }25,0;25,0;5,0;1;5,1;2)1( −−−−−=− γ  

 

- In the application of dynamic stochastic programming, one starts from 3 scenarios for 

each of the three periods – a pessimistic, a neutral, and an optimistic scenario – with 

mean value  6% and  volatility 0,15. 

 

N=1 

                                sr1 (1)  sr2 (1)       sp  

                              Optimistic scenario:        4%            24,37 %        0,33     

                                  Neutral scenario:      4%               6 %             0,33        

                                  Pessimistic scenario:       4%           -12,37 %        0,33 

 

  N=3 
 

The combination of the three scenarios for the remaining periods generates a total of 27 

scenarios, structured in the form of a tree, each with a 03704,0=sp , as  shown in the 

following scenario tree: 
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 )1(2
sr  )2(2

sr  )3(2
sr  

    

Figure 2 

 

 

We are working with a scenario tree of 27 scenarios, with the same amount invested at 

the beginning of  t=2 for the first nine scenarios since they have the information up to 

that moment in common. The same is the case for the following group of nine scenarios 

and for the last nine. Hence, for t= 2 the following groups are established: 

 

and for t= 3: 

 

{ } { } { }
{ } { } { }
{ } { } { }25,26,27  G             22,23,24  G         19,20,21  G

16,17,18  G             13,14,15  G         10,11,12  G

7,8,9  G                   4,5,6  G              1,2,3   G

9
3

8
3

7
3

6
3

5
3

4
3

3
3

2
3

1
3

===

===

===

 

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7
Scenario 8
Scenario 9

Scenario 10
Scenario 11
Scenario 12
Scenario 13
Scenario 14
Scenario 15
Scenario 16
Scenario 17
Scenario 18
Scenario 19
Scenario 20
Scenario 21
Scenario 22
Scenario 23
Scenario 24
Scenario 25
Scenario 26
Scenario 27

24,37%
24,37%
24,37%
6,00%
6,00%
6,00%

-12,37%
-12,37%
-12,37%
24,37%
24,37%
24,37%
6,00%
6,00%
6,00%

-12,37%
-12,37%
-12,37%
24,37%
24,37%
24,37%
6,00%
6,00%
6,00%

-12,37%
-12,37%
-12,37%

24,37%
24,37%
24,37%
24,37%
24,37%
24,37%
24,37%
24,37%
24,37%
6,00%
6,00%
6,00%
6,00%
6,00%
6,00%
6,00%
6,00%
6,00%

-12,37%
-12,37%
-12,37%
-12,37%
-12,37%
-12,37%
-12,37%
-12,37%
-12,37%

24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%
24,37%
6,00%

-12,37%

{ } 27  ,6,7,8,1,2,3,4,5,  G1
1 L=

{ } { } { },26,272,23,24,2519,20,21,2  G     ,17,183,14,15,1610,11,12,1  G    6,7,8,91,2,3,4,5,  G 3
2

2
2

1
2 ===
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The non-anticipativity constraints are: 

 
 t=1 

 

 
 
 t=2 

 
 
 t=3 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

The Figure 3 summarizes the calculations that were made using the dynamic stochastic 

programming. 
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Figure 3 

 

A wide range of cases were analysed with the aim of achieving conclusions with respect 

to the application of the two methods in three major blocks: 

 

(i) Differences in the investment policy of a pre-retirement individual with respect to a 

post-retirement individual, taking into account the two types of utility functions in the 

assumption of strategies that are variable along the temporal horizon and a single 

contribution. 

 

(ii) Differences between starting from constant or variable investment strategies in 

dynamic stochastic  programming, and implicit variable strategies in stochastic optimal 

control. 

 

(iii) Differences between making a single contribution or periodic contributions during 

the pre-retirement period. 
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5.2. Optimal portfolio pre- and post-retirement for the two utility functions 

 

Though a sensitivity analysis of the aversion coefficients of the CARA utility function 

or exponential function α    and of the CRRA utility or power-law function  )1( γ− , in 

this subsection we shall start from certain particular values, for instance, 0001,0=α  

and 1)1( −=− γ . 

 

The said aversion coefficients are substituted into the optimization models developed in 

(12) and (13), incorporating the non-anticipativity constraints specified in the data 

subsection. 

 

The analysis is performed for single contributions and when the investment strategies 

are allowed to vary along the planning horizon. 

 

The results  are summarized in Table 1: 
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Table 1: Percentage invested in risky assets with variable strategies. 

Before retirement(*)  After retirement  
 
         
        T = 3 

Stochastic 
optimal 
control 

Dynamic 
stochastic 

programming 

Dynamic 
stochastic 

programming 

 
Exponential 

utility 
function 

0001,0=α  
 

 
 
 
 
 
 
 
 
 
 
 

%05,54)1(
1
1 =Gu  

%87,48)2(
1
2 =Gu   

%49,53)2(
2
2 =Gu  

 %09,59)2(
3
2 =Gu  

%60,44)3(
1
3 =Gu    

%58,48)3(
2
3 =Gu     

%95,52)3(
3
3 =Gu     

%42,48)3(
4
3 =Gu    

%95,52)3(
5
3 =Gu     

%41,58)3(
6
3 =Gu     

%95,52)3(
7
3 =Gu     

%41,58)3(
8
3 =Gu     

%13,65)3(
9
3 =Gu  

     %84,53)1(
1
1 =Gu  

     %96,58)2(
1
2 =Gu   

     %79,65)2(
2
2 =Gu  

     %68,73)2(
3
2 =Gu  

%27,64)3(
1
3 =Gu         

%51,72)3(
2
3 =Gu  

%16,83)3(
3
3 =Gu  

%47,72)3(
4
3 =Gu  

%11,83)3(
5
3 =Gu  

%41,97)3(
6
3 =Gu  

%20,83)3(
7
3 =Gu  

%37,97)3(
8
3 =Gu  

%100)3(
9
3 =Gu  

 
Power-law 

utility 
function 

1)1( −=− γ  
 

 
 
 

%48)( =tu  
 
 

 %64,46)1(
1
1 =Gu  

%64,46)2(
1
2 =Gu    

%67,46)2(
2
2 =Gu  

%61,46)2(
3
2 =Gu  

 %85,46)3(
1
3 =Gu    

%74,46)3(
2
3 =Gu    

%63,46)3(
3
3 =Gu   

%47,46)3(
4
3 =Gu    

%64,46)3(
5
3 =Gu     

%55,46)3(
6
3 =Gu     

%64,46)3(
7
3 =Gu    

%55,46)3(
8
3 =Gu     

%47,46)3(
9
3 =Gu  

%36,29)1(
1
1 =Gu  

%89,36)2(
1
2 =Gu  

%27,36)2(
2
2 =Gu  

%57,35)2(
3
2 =Gu  

%65,46)3(
1
3 =Gu         

%64,46)3(
2
3 =Gu        

%64,46)3(
3
3 =Gu  

%64,46)3(
4
3 =Gu        

%64,46)3(
5
3 =Gu         

%64,46)3(
6
3 =Gu         

%64,46)3(
7
3 =Gu  

%64,46)3(
8
3 =Gu  

%64,46)3(
9
3 =Gu  

(*) Single contribution 
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5.3. Constant and temporally variable strategies 

 

In the method of stochastic control theory, one starts from a percentage allocated to 

risky assets that varies over time. In dynamic stochastic programming, however, one 

fixes beforehand whether the strategies will remain constant or be variable. In Table 1, 

the strategies were variable over time. 

 

The common information of certain scenarios in the past is irrelevant for the 

determination of the constant percentages, so that the non-anticipativity constraints are 

not applied. 

 

Table 2 gives the above scheme for the case of dynamic stochastic programming with 

constant coefficients. 

 

 

Table 2: Percentage invested in risky assets with constant strategies. 

Before retirement(*) After retirement  
 
         
        T = 3 

              Dynamic 
stochastic 

programming 

Dynamic 
stochastic 

programming 

 
Exponential

utility 
function 

0001,0=α  

 
 

%53)3()2()1( === uuu

 
 

%63)3()2()1( === uuu  
 

 
Power-law 

utility 
function 

1)1( −=− γ  

 
 

%47)3()2()1( === uuu  

 
 

%35)3()2()1( === uuu  

(*) Single contribution 
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5.4. Single contribution versus periodic contributions 

 

In this subsection, the objective consists of analysing how the investment policy varies 

when periodic contributions are made instead of a single contribution. The results are 

summarized in Table 3. 

 

 

Table 3: Percentage invested in risky assets with variable strategies. 

Before retirement(*)  
 
        T = 3 

 
Dynamic stochastic programming 

 
Exponential 

utility 
function 

0001,0=α  
 

%100)1(
1
1 =Gu   

%30,72)2(
1
2 =Gu  %75,78)2(

2
2 =Gu  %46,86)2(

3
2 =Gu  

%05,46)3(
1
3 =Gu    %12,50)3(

2
3 =Gu    %49,54)3(

3
3 =Gu     

%58,48)3(
4
3 =Gu    %14,53)3(

5
3 =Gu     %14,58)3(

6
3 =Gu     

%41,51)3(
7
3 =Gu    %54,56)3(

8
3 =Gu     %82,62)3(

9
3 =Gu  

 
Power-law 

utility 
function 

1)1( −=− γ  
 

%100)1(
1
1 =Gu  

%62,66)2(
1
2 =Gu     %41,68)2(

2
2 =Gu   %54,70)2(

3
2 =Gu   

%64,46)3(
1
2 =Gu    %64,46)3(

2
2 =Gu   %64,46)3(

3
2 =Gu   

%64,46)3(
4
2 =Gu   %64,46)3(

5
2 =Gu     %64,46)3(

6
2 =Gu    

%64,46)3(
7
2 =Gu   %64,46)3(

8
2 =Gu     %64,46)3(

9
2 =Gu  

(*) Periodic contributions 
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Table 4 gives the optimal percentages if the strategies were constant. 

 

Table 4: Percentage invested in risky assets with constant strategies. 

Before Retirement (*)  
      
        T = 3 

 
Dynamic stochastic programming 

 
Exponential 

utility 
function 

0001,0=α  

 
 

%69)3()2()1( === uuu  

 
Power-law 

utility 
function 

1)1( −=− γ  

 
 

%60)3()2()1( === uuu  

(*) Periodic contributions 
 

 

6. Comparative results using the two techniques and the main conclusions 

 

The principal conclusions drawn from the numerical example refer both to the 

calculations performed using the two optimization techniques and to the additional 

results using exclusively dynamic stochastic programming since, once programmed, this 

method has greater flexibility in increasing the range of cases that it is feasible to 

analyse.  These conclusions are:.  

 

Conclusion h)  For the pre-retirement period with single contribution, assuming 

that the strategies may vary along the temporal horizon, if one works with the power-

law function the percentage invested in risky assets remains constant independently of 

the scenario, while for the exponential function this percentage decreases as retirement 

age is approached. Also, in this latter case, for pessimistic scenarios there is a tendency 

to increase the assets that have a greater profitability at the same time as a greater level 

of risk. 

 

This conclusion  obtained by using the dynamic stochastic programming is exactly the 
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same as conclusion a) and conclusion g) obtained in section 4.2  in stochastic optimal 

control. 

 

Conclusion i )  The post-retirement individual, as his or her initial fund diminishes as 

a consequence of the pension payments, is converted into a riskier investor for an 

exponential utility. If we consider the scenario level, for pessimistic scenarios  the 

investment in risky assets is greater than for optimistic scenarios. 

 With the power law utility, the case is precisely the opposite : the pre-retirement 

investor is riskier. 

 

This conclusion  obtained by using the dynamic stochastic programming is exactly the 

same as conclusion a) and conclusion g) obtained in section 4.2 in  stochastic optimal 

control. 

 

Conclusion j)  In the case of periodical contributions before retirement, the investor 

has a riskier attitude than in the case of a single contribution. 

 

This conclusion  obtained by using the dynamic stochastic programming is exactly the 

same as conclusion b) and conclusion e) obtained in section 4.2 in stochastic optimal 

control. 

 

Conclusion k)  For strategies that are constant over time, the post-retirement 

investor is riskier than the pre-retirement investor for the exponential utility function. 

For the power-law utility function, the result is the contrary: the pre-retirement investor 

is riskier. 

 

This conclusion was reached by applying the dynamic stochastic programming model. 

The methodological philosophy of stochastic optimal control theory makes that method 

inapplicable to this case. 
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