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A B S T R A C T  

Policyholders often decide to buy, renew, or cancel insurance based on the premmm 
charged by the insurer compared with what they expect their clmms will be It is 
important for actuaries to consnder the persistency of  polncyholders because the 
financial well-being of  the insurer depends on spreading its risk over a large hook 
of busmess We use statnstlcal decision theory to develop premmm formulas that 
account for the past expe~nence of a given polncyholder, the experience of the entire 
collection of  policyholders,  and the hkehhood of  the policyholder  renewing with or 
buying from a given insurer, that is, persistency 

We assume that the persistency of  policyholders depends on the arithmetic 
difference between the premium changed and their anticipated claims We extend 
the work of TAYLOR (1975) nn which he obtains linear cred~b]hty formulas by 
minimizing loss funcuons that incorporate the persistency of  policyholders.  We 
consider Taylor ' s  loss funcnons and other objectwe functions, including those that 
account for the amount of business the insurer writes or renews 

K E Y W O R D S  

Credtbdl ty ,  persistency, statishcal decnsnon theory 

1. INTRODUCTION 

It is important for actuaries to consider the persistency of pol,cyholders because the 
financial well-benng of the nnsurer depends upon long-term profitabnhty and upon 
spreading its task over a large book of  business An insurer also wishes to retain 
business because wrmng initial business is more expensive than renewing existing 
business. We develop premmm formulas that account for the past expernence of a 
gwen policyholder,  the expertence of the entnre collection of policyholders,  and the 
lnkehhood of  the pohcyholder  renewing wnth or buying from a gnven insurer, that is, 
persistency 

The framework under whnch we determine the effect of the persnstency of  
policyholders on premnums is stansncal decks~on theory and its application to 
crednblhty theory CredLb]hty theory seeks to find systematic methods for calculat- 
ing a pohcyholder ' s  insurance premuum based on that pohcyholder ' s  past experi- 
ence and the exper, ence of the entire group of  policyholders Current formulas 
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in cred~bihty theory often calculate premium as a weighted sum of the average 
experience of the pohcyholder  and the average experience of  the enure collection of 
pohcyholders.  In order to avoid an off-balance from the apphcation of credabdlty, 
these formulas usually require that a policyholder  wall renew no anatter what 
premaurn is charged 

We assume that the persistency of policyholders depends on the arithmeuc 
difference between the premium charged and thear anuclpated claims Cons~denng 
the arithmetic difference makes sense because we assume that the policyholders are 
the same size (see Secuon 2.1). If one washes to model the persistency of 
pohcyholders  of different sazes, one might assume that the persistency of pohcy- 
holders depends on the relative difference, instead of  the arithmetic difference. We 
develop credlblhty formulas that optimize functaons that consader the amount of 
business that an insurer writes, as well as the monetary gain of  the insurer. We, 
thus, extend the work of TAYLOR (1975) m which the obtains linear credibili ty 
formulas by mmamazing loss functaons that incorporate the persistency of  pohcy- 

holders. 
SUNDT (1983) also considers the effect of  persistency m credibili ty rating H~s 

approach differs from ours m that he assumes that the hkehhood of renewing is not 
affected by the premmm charged by the insurer. Instead, he assumes that the 
persistency of  the pohcyholder  gives the insurer information about the claim 
dastnbuuon of the pohcyholder  

We revaew the work of  BUHLMANN (1967, 1970) and TAYLOR (1975) m 
Secuon 2 Buhhnann derives a cred~bdlty formula by minimizing the expected 
value of  a squared-error loss function. Samdarly, Taylor  mmmllzes the expected 
value of  the monetary loss to the Insurer while discounting the loss by the 
persistency of pohcyholders  In Section 3, we introduce objecuves that an insurer 
maght consader optnnlzmg 

We propose an exponentml persistency function in Section 4 and develop a 
general credibil i ty formula in Section 5. In Sections 6 and 7, we calculate credlbdlty 
formulas an two parametric cases--normal-normal and Polsson-gamma Finally, we 
suggest future research in Section 8. 

2 WORK OF BUHLMANN AND TAYLOR 

2.1. Notat ion  and Assumpt ions  

Assume that the total claims of a gwen pohcyholder,  or risk, m the t th pohcy period 
(usually one year), is a random variable X, I (O = 0), or more simply, X, 10, i = 
I, , n. For a given value 69=0,  assume that the random variables X, ]0 ,  t = 
I . . . . .  n, are independently and ~dentlcally distributed according to a conditional 
probabili ty (densaty) funcuon f ( x  I 0) Assume that the value 0 is fixed for a given 
risk, although it is generally unknown For ext.stmg pohcyholders,  denote the 
probabdlty (densaty) funcuon of 69 by ~(0) ,  also called the structure fimction 
(BUHLMANN, 1970) Note that we tacatly assume that the policyholders are the same 
size because the distribution of  the total clam~s of a policyholder selected at random 
as given by the marginal dastnbuuon of X 
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Suppose the insurer has n year,, o! claim experience for a pohcyholder :  x = 
( t l ,  , r,,) ~ X" In this work, we consider credlbd~ty formulas that are not 
necessarily linear, denoted by d(x), m which d is a real-valued function on X". We 
also consider linear credtblhty formulas of the form a + bY', tn which a and b are 
constants to be determined and Y is the artthmet,c means of  the clam+s x j ,  , x,, We 
refer to d(x) as the renewal prenltum, Ol simply premmm, for year n + I. and we are 
not loading for administrative expenses 

Fo, a prospective pohcyholder,  d(x) ~s more acculately termed the initial 
premium based on past experience of the risk, but we blur this distraction because 
the insurance products that typically use cred~bthty premiums are annually 
renewable ones. For this reason. ,,ales personnel must often " s e l l "  the pohcy 
anmtally even ~f the pohcyholder  ts renewing and not initially buying 

2.2. Work of Biihlmann 

To estimate the future cla,ms of a risk, X,,+,l  0, w~th unknown O. BUHLMANN 
(1967, 1970) mmlrnlzes the expected value of  the squared-error loss function 

L(EIX, ,+ ,  10]. d(x) )  = (EIX,,+,  101 - d ( x ) )  z 

Under our assumptions, the resulting optmlal premium d*(x) is 

(2 1) E[X,,+, Ix] = fE[X,,+, 10] 7r(OIx)dO 

By restricting the form of  the renewal pl'emlum d(x) to be a hnear combination 
of the cla,m experience, x~, . %. and by using the same squared-etTor lots 
function, BUHLMANN (1967, 1970) obtams the lo l lowmg credlb,l l ty formula 

d*(x) = (1 - Z) EIX] +Z.?, 

m which E[X] = EoE[X]O] ts tile overall mean,  Z = n / ( n + k ) ;  and k = 
Eo [Var IX I 0 ]] / Var o [E IX I 0 I] The numerator of k ~s called the expected process 
varumce, the denominator,  the variance o/ the  hypothetmal mean~. 

In certain cases, the prem,um E[X,,+ ~lx ]  it hnear and, thus, equals the hnear 
credlbdny formula JEWt~LL (1974a, 1974b) verifies conditions under which th~s 
e.~act credtbdtty occurs Also, please refer to Wn.LMOT (1994; Chapter 4) nl which 
he clearly explains the foregomg theory and dlustrates tt by providing many 
examples 

2.3. Work of Taylor 

One of  the properties that d*(x) = E[X,,+, Jx] satisfies ~s that the sun1 of  
premiums over the portfoho of  rtsks equals the expected clamas from the portfoho 
(BUHLMANN, 1967) In confirming this property, Buhlnlann lmphc,t ly assumes that 
the structure of  the portfoho does not change as a iesult of the rating formula 
TAYLOR (1975) challenges th,s assumption and asserts that ~f a pohcyholder  tends 
to cancel when it is renewed with a premium that ~s higher than ~ts anticipated 
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claims, then the premmm income will not necessarily equal the expected clmms. He 
proposes a loss funcuon that explicitly accounts for the decision of policyholders to 
buy, cancel, or renew their insurance He suggest~ that the Insurer mmnmze its 
expected financial loss while discounting for the persistency of policyholders. 

Taylor defines a persistency ]unctton p (0, x, d(x)) to be the ratio of the exposure 
in year n + 1 to the exposure m year n for the risk class given by O = 0 with n-year 
clmm experience x and premmm d(x) for year n + 1. The exposure in year n Is the 
number of existing policyholders To be somewhat rigorous fol a conunuous 
structure parameter O, think of p as an " instantaneous" ratio or a density 
luncuon 

His loss funcuon is the financml loss, discounted by persistency, 

(2.2) L ( O , x ~ , a + b x ~ ) = p ( O , x ] , a + b x ~ )  ( E l X 2 l O l - ( a + b ~ ) ) ,  

and he finds values for a and b that mmm]lze the expected loss Note that he 
restricts n = 1 and d(x) = a + bx] 

Taylol assumes that p is a linear function of the arithmetic difference between 
what the insurer charges, a + bx I, and the amount of claims the pohcyholder 
expects to recur. He then considers two cases In the first, Taylor calls the 
pohcyholder unbtased because the policyholder expects to incur EIX2 [Ol. its 
hypothetical mean, m the second, the pohcyholder is btased and expects to incur 
.v~, its recent claun experience (Note that Taylor does not use the term btased m a 
statistical sense because the expected value of.~ I is E[X[O].) His two persistency 
functions are, thus, 

Unbiased risk p(0,.l. I , a , b )  = 1 - e ( a + b x  i - E [ X  2[0]),  

Biased risk p(0,  x I , a , b )  = 1 - e ( a + b x  I-.~l); 

in which e is a poslhve constant; Taylor calls the parameter e a ptt¢e-ela.sttctty oJ 
exposure 

The linear credibility premiums that Taylor finds are 

(2 3a) Unbiased risk: (1 - Z )  EIXI + Zxl + I/(2e), 

(2.3b) Biased risk. (1 - Z * )  E[XI + Z*xl + I/(2e); 

In these formulas, Z is the Buhlmann credibility weight, and Z* = V2(I + Z ) >  Z 
Note that in each case, the cred~blhty premmm ~s a weighted average of x~ and 
E[X], plus a flat load, l/(2e), independent of the claim dls tnbuuon or the 
pohcyholder 's experience. One can consider this load a risk charge for the 

policyholder selecting against the insurer 

3 OBJECTIVES OF THE INSURANCE COMPANY 

3.1. Maximize Underwriting Gain and Amount of Business 

One of the goals of an insurance company, as tor any company, is to earn a profit. 
The profit or underwrmng gain is the excess of income over outgo Insmance 
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premiums contain provisions for claims (including risk margins) and for the 
expenses of administering the insurance pohcy Outgo consists of  claims, expenses, 
and experience rating refunds (MOREWOOD, 1992) 

In this work, we consider the component of the underwriting gain equal to the 
excess of the provB~on for claims and risk m the premium over the claims 
themselves In other words, we ignore s e m c e  fees, investment mcolne, loadmgs for 
expenses, as well as the expenses themselves, and experience rating lefunds. 

Another possible goal of an insurance company is to ,ncrease ,ts book of  
business. MORI-:WOOD (1992) notes that writing new business depends on competi-  
tive premium rates and that renewing existing bnslness depends on how tair the 
pohcyholder  perce,ves the price He points out that underwriting gain and growth 
are ,nterdependent Rapid growth and large profit margins m the premiums are 
usually inversely related. We, therefore, propose finding a function d * :  X"--+R 
such that the combination 

(3 ~) UG + h B = E [ p (0, x, d(x)) ( d ( x ) -  e l X  I Ol)] + h E [ p (0, x, d(x))] 

(3 2) = E[p(O,x, d(x)) (d(x) +h-  E[X I 0])] 

~s maximum when d = d* The parameter h is a non-negative constant, and we take 
the expectation with respect to the joint  distribution of X~ . . . .  X, ,  and O In 
Section 4, we propose a specific formula for the persistency function p, but here it 
is any real-valued function defined on O x X" x R Recall that p accounts for initial 
business as well as renewal 

The firsl term on the right hand side in equation (3.1) is the expected value of  the 
underwrmng gain discounted for the persBtency of policyholders We write UG to 
denote this first term The second term ,s h multiplied by the expected relatwe 
amount of business written, or B It is reasonable to constrain UG>--O, B > - 1, or 
both. If we let h approach 0, then by maxnnlzlng UG + h B, we maxmllze the 
expected underwriting gain UG; if we let h approach oo, then we maximize the 
expected amount of business written B. 

The parameter h converts the relative amount of business into monetary units (see 
equation (5.1) below). To choose its values, an actuary may wish to consider the 
potential loss or gain of revenue to cover fixed admm~stratwe expenses Also, one 
may choose h according to one of the following cnter,a 

• h-----0 IS the smallest value such that B>--M, for some M - -  > 1, in which B is 
evaluated at the optimal d* 

• h > 0  is the largest value such that UG>--M, for some M-----0, m which UG is 
evaluated at the optnnal d* 

In this context, one can think of h or I/h as a Lagrange multJpher in a constrained 
opt,mlzat~on problem. At the end of Section 6 2, we apply these criteria m a 
hypothetical example.  
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3.2. Optimize Properties of the Book of Business 

An insurance company may set goals concerning the structure of its book of 
business. If the structure of the company's  business is given by =(0)  during year I, 
and the credlblhty premium for year 2 is d(.~), then the expected structure of the 

business m year 2 is described by 

~2 (0) = g J" p (0, x,,  d(x,)) f (x, I O) st(O) d.,,, 

in which K IS a normahzmg constant 
One goal may be to ensure that the grand mean decreases from year to year. This 

occurrence indicates that the company Is writing risks with lower expected claims. 
The grand mean in year 2, expected at time 0, is 

,u,2 = K J',f x2 p (0, x.,  d(x,)) f (x  I O) ~(0) dx dO, 

in which x = (x~, x2) Note that/t0: is the expected value of X2, with respect to the 
distribution I f ( x  2 ] O) ~z (0) dO 

Another goal may be to ensure that the total variance decreases over ume This 
occurrence may enable actuaries to price more accurately by making claims more 
predictable The variance m year 2, expected a u m e  0, is 

E I(X 2-,u02)21 = E o(EIx~IOI-EIx 210l 2 ) + ( E  O[EIx 210l ~]-/,~,2) 

= Expected Process Variance + Variance of Hypothetical 
Means, 

m which O is distributed according to ~2(0) We examine there two goals m two 
parametric cases in Sections 6 and 7 

4. PERSISTENCY 

We assume, as does TAYLOR (1975), that persistency depends on the ar~thmeuc 
difference between premium charged and anticipated claims. Such an assumption 
may be suitable because we assume that risks are the same size. In our work, we 
explicitly account for Taylor 's  belief that policyholders most likely expect clamls 
somewhere between E[X[OI and 2 We do so by expressing the pohcyholder 's 
anticipated clauns as a linear combmauon of E[X]O] and 2, namely, 
(I - ~) E IX [ 0 ] + c 2, 0-< c-< I The difference between what the insurer charges 

and what the pohcyholder expects is, therefore, 

d = d ( x ) -  [(I - c) E I X  I 0 l  + c V] 

Note that when n =  1. the amount that the policyholder expects to incur, 
( 1 - c )  EIX2IO] +awl, includes as special cases the two that Taylor examines For 
unbiased risks, c = 0; for biased risks, c = I. 

Taylor points out one major weakness of the linear persistency functions that he 
uses. They may take on negative values, implying that the anaount of business Is 
negative We, therefore, propose an exponennal persistency function 

p(A) = c~ e x p ( - 2 A ) ,  
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in which d > 0 and/1. > 0 Such a functmn p is always positive and behaves as one 
expects, namely, ~t decreases as .d increases, and conversely. The parameter d ~s the 
relative amount of business written if the insurer charges what the pohcyholder 
expects its claims will be, and ~ measures the sensitivity of  policyholders to the 
difference A. That ~s, ,,1. ~s analogous to the parameter e of  Taylor, the price- 
elasticity of exposure. 

We assume that d, 2, and c (the relative weight the policyholder gives its claim 
experience) are fixed for all risks These assumptions are perhaps unreahstlc 
because one expects that for a given .d, an existing policyholder is more likely to 
renew than a prospective one to buy. One also inay argue that policyholders buy 
insurance from a particular company based on that company 's  premmm relative to 
premmms offered by other insurance companies m the market To adapt our 
persistency function to that model, one could replace the difference zl with the 
following 

A '  = d(x )  - d,,,,,~,, (x). 

in which d,,,,ru. , ~s the (lowest) premmm charged by the market. One might also use 
a dynamic version of  this model to explain the underwrmng cycle experienced In 
many lines of insurance 

5 UNCONSTRAINED MAXIMIZATION OF UG + h B 

The combination of  underwriting gain and relative amount of  business, UG + h B, 
includes UG as a special case by setting h = 0  and includes B by letting h 
approach ~ We, therefore, do not work through the details of  maximizing UG or B 
separately Instead, we maximize UG + h B as given in equation (3 2) and obtain 
the following theorem 

Theorem 5.1" Let X, 10, i =  1, ,n,  be independent and identically distributed 
random variable,; given O = 0 Let ~ be the set of functions d" X"--.->R for which the 
gain function 

G = d e x p {  - 2 ( d ( x ) - [ ( I - c )  Elxl01+~.v])} (d(x)+/,-Etxlol) 
is mtegrable with respect to the joint distribution of X I, X 2, . . ,  X ,  and O. The 
expected value of G is maximized when d =  d*, with d* given by 

(5 1) d*(x)  = I / 2 - h + D , { l n E o l , [ e x p  {tElXIOlI]} I,=x<,_,,, 
provided d a is m ~ Here D t denotes the operator of dlfferentmtlon with respect 
to  I 

Proo f :  For d in ,~, we apply Fublm'S theorem to switch the order of  integration m 
the expectation of  G. The expected value of G is, therefore, maximized when we 
m a x i m i z e  

(5 2) Eol~ [d exp { - 2 ( d ( x ) -  (1 - c )  EIXI 01-c2)} (d(x)+h-ElXI 01)l, 



60 VIRGINIA R YOUNG 

for an arbitrary sample X=x,  m which we take the expectation with respect to the 
posterior dlstrtbunon of  O Ix. Treating expression (5.2) as a function of d(x), and 
applying standard techmques from calculus, we find that the maxmmm occurs 
when 

2d*(x )  Eol,[exp{2(1 - c )  EIXI 0]}] = 

= 2d*(x) Eol , [E[XlO]exp{2( l -c )E[XlO]}]  

+(1 - 2 h )  Eolx[exp{2(l -c )  E[XIO]}], 

or, after solving for d*(x), 

d 4(x) = I / 2 -h+Eo l , [E[X lO]exp{2 ( I - c )  E[X]O]}] 

+ Eol,[exp {2(I -c)  EIXI 0]}] 

= I /2 -h+D,{ InEo l , [ exp l t e [X lOl} ] }  1,=21.- , , .  []  

One may interpret the terms m equanon (5 1) as follows'  The first, I/2, is a flat 
load slnnlar to the one found by Taylor m equations (2 3a, b), namely, I/(2e); it 
pamally accounts for the sensitivity of pohcyholders to the prenuum charged. The 
second term, - h ,  offsets ['or how much the in~urer weights the relative alnount of 
business, B Note that d*(x) decreases one umt for every unit of increase of h; 
therefore, the more we weight B, the more we decrease the optimal prelmum, as one 
might expect The third term is an Esscher premium (GERBER, 1980), It equals a(x) 
that lmnmfizes the expected value of  the following loss tunctlon 

(a(x)-EIXlO1)  2 e x p { 2 ( 1 - c )  EIX]OI}. 

6 NORMAL-NORMAL 

6.1. Unconstrained Maximization of UG + h B 

To maxmalze UG +/1B m the normal-normal case, we apply Theorem 5 1 to obtain 
the following proposmon. 

Proposition 6.1 : Let X, [ O-N(O, 02), t = 1, ., n, be independent and identically 
distributed normal random variables, with unknown mean 0 and known variance 
a - ' > 0  Let O~N(u ,T: ) ,w l th  known mean,u and v a n a n c e r 2 > 0 .  Then UG+hB 
is maximized when 

(6.1) d*(x) = l / 2 - h  + {(1 -Z)/~ +Z2} +2r2(1  - Z )  (1 - c ) ,  

in which Z=nr2/(nr2+a2), the Buhlmann cre&blhty weight 

Proof:  The posterior dlsmbutlon of  0 Ix is normal with mean 

(6 2) /l* = ( 1 - Z),u + Z2 

and variance 



CREDIBILITY AND PERSISTENCY 61 

(6.3) ( r 2 )  * = O 2 Z ' 2 / ( n  ~ 2 + 0 "2) = r 2 ( I  - Z ) .  

Because E [ x J o I = O ,  substitute the moment generating function of  O Jx into 
equation (5 I) The moment generating function of  a normal random variable 
O ~ N (  B, r 2) Is 

(6.4) M o (t) = EO [exp { Ot } 1 = exp /a + r 2 t 2/2 } 

The denvatwe,  with respect to t, of  the natural logarithm of this moment generating 
function is 

(6 5) ,u + 'r2t 

To calculate the crechblhty formula m 
(6 2) for,u, ( r2)  * from equation (6 3) for 
obtain 

d*(x) = I / R - h +  

= l / 2 - h +  

equation (5.1), substitute/~* from equation 
r 2, and 3.(1 - c )  for t m equauon (6 5) We 

(u*+(r2) .2(1 -c)) 
{ ( 1 - Z ) / l + Z i : J + A r 2 ( I - Z )  (1 - c ) .  []  

Note that d*(x) is a hnear function of the average clann experience 2, therefore, 
we have a type of  exact credibili ty in this case This credibil i ty p lemmm is the sum 
of five interesting terms. We dmcuss the fixst two at the end of Section 5, they 
occur m d*(x) m general The sum of  the third and fourth terms Is the standard 
Buhlmann credibili ty esnmate m the normal-normal case. The fifth expresslon, 
depends on how much the policyholders weight their own claim experience relauve 
to their true mean 

To see how the opmnal premium d* (x) changes when the parameter 2 changes, 
examine 

D2 d*(x) = -1 /2  2 + r2(l - Z )  (l - c ) .  

Observe that if c is sufficiently close to I (that is, the policyholders weight their 
claim experience heavily) or if n is sufficiently lalge, then d*(x) decreases as 2 
increases In this case, as the pohcyholders  become more sensitive to the arithmetic 
difference zl, the lower the optnnal premmm. 

6.2. Constrained Maximization of UG + h B 

Up to this point, we have not constrained the values of  UG and B It is reasonable to 
reqmre that UG->O, B_> 1, or both, in other words, the insurer does not lose money, 
business, or both. We examine two sets of constraints and obtain the to l lowmg 
propositions 

Proposition 6.2: Given the assumptions In Proposition 61 and the restrlctNons 
UG->O and d ( x ) = a + b 2 ,  we maxlnnze U G + h B  when d = d * ,  with d* given 
by 

(6 6) d * ( x ) =  l / A - h +  {(1 - Z)fl + Z.~} +,~r2 (I - Z )  (l - c ) ,  
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for h-< I/)1., and 

(6 7) 

for h > I/3. 

d*(x)  = {(1 - Z ) u + Z . r }  + 3.r2(I - Z ) ( I  - c ) ,  

P roof :  UG + h B  = E [ 6 e x p {  - 2 ( a  + b Y ) - ( l  - c ) O - c x }  ( a + h + b 2 - O ) ]  

(6 8) = 6 5 e x p { - 2 a } ( a + h )  E o [ e x p { 0 3 . ( I - c ) } E x 1 0 [ e x p { - 2 ( b - c ) 2 } ] ]  

+6 exp{ - 2 a }  b E0[exp {02(I - c ) }  ExlolX exp{ - 3 . ( b -  c) 2}]] 

-65 exp { - 2 a }  Eo [0 exp {03.(1 - c)} Exlo[exp  { - 3 . ( b -  c) 2}]] .  

Use M x l o ( t )  and E x l o [ x e x  p {xt }] to calculate the expected values m UG + hB  
More specifically, 

E x l o [ e x p { 2 t  ] = {Mx[o(t /n)}" 

= exp { Ot + o 2 t 2/(217) }, 

Substitute these 

U G + h B  = 

E x l o [ x e x p  {Yt }l = {Mxlo( t /n ) }" - I  Exlol, t  exp{x t /n I]  

= exp {Ot + ~5 2! 2/(2n)} [0 + ~r z ritz] 

expressions into UG + It B, equation (6 8), to obtain 

d exp { - 2 a }  (a + h) E[exp{3.( l  - b ) 0 + 2  2 ( b -  c) 2 ~r2/(2n)}] + 

+65 exp { -3.a} b E  [exp {2(1 - b)O+3.Z(b - c) 2 02/(2n)} x 

x [ 0 - 3 . ( b -  c) o2 /n J ] -d  exp { - 2 a } x  

x E [0 exp { 2 ( 1 - b) 0 + 2"- (b - c)-~ o z/(2,7) } ] 

= d exp { - 2 a  + 2 2 ( b -  c) 2 cr2/(2n)}x 

x {(a + h -  2 b ( b -  c) o2/n) E[exp {02(I - b ) } ] - ( 1  - b ) x  

xE[O exp 102 (I - b)}] } 

(69)  = 6 5 e x p { - 2 a + X 2 ( b - c f a 2 / ( 2 n ) + 2 ( l - b ) , u + X 2 ( l - b f r 2 / 2 }  

x { a  + 17 - 2b(b - c) 02171 - (1 - b),u - 2 ( 1  - b) 2 r 2 } 

By semng h = 0  m equauon (6 9), we see that 

(6 10) UG>-O f f and  only I f a > - 2 b ( b - c )  c r z / n + ( I - b ) ¢ t + ( l - b ) 2 r  2 

The values of the parameters a and b that appear m d*(x )  m equation (6.1) satisfy 
the mequahty (6.10) ff and only if h -  < I/3.. Therefore, if h -  < 1/2, then the insurance 
company does not expect to lose money by using the cre&blhty formula d*(x)  m 
equation (6 1). 

and 
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On the other hand, if h >  I/2,  then invoke the constraint  and set 

a = al = 2 b ( b  - c) ~2/n + (1 - b)/~ +Z(1  - b )  2 r 2, 

that is, set UG=O In th.s instance, 

U G + h B = h B  

(6 1 I) = h6 exp { - 2 a  + )~2(b  - c )  2 o 2 / ( 2 , ' 7 )  + 2  (l - b )  /~l +2.2(1 - b) 2 r~/2} 

The value b~ of  b that maximizes  h B also maximizes  the exponent  in the braces in 
equation (6 I I ) .  The max imum ot the exponent  occurs at 

bj = n TZ/ (nT z + O 2) = Z 

In this case, a ~ = ( I - Z ) t l + 2 r 2 ( l - Z ) ( I - c ) ,  and we are done Note that the 
formula m equat ion (6 7) is the one we obtain when we maximize  B subject to 
UG >--O. [] 

We offer the fol lowing proposit ion without ploof, thereby sparing the reader of 
the messy details that are smaflar to the ones m the p loof  of  Proposit ion 6.2. 

Proposition 6.3: Given  the assulnpt lons in Proposit ion 61  and the restrictions 
B ~ I  and d ( x ) = a  + bY, we maximize  UG + liB when d = d* ,  with d*  given by 

d * ( x ) =  l / 2 - h  + {(1 - Z ) u  +ZY} + 2 r 2 ( I  - Z )  (I - c ) ,  

for h z 1/2 - (In d)/2 + 2r  ~- (I - Z)/2  - 2c 2 o2/(2n) ,  and 

d * ( x )  = {(I - Z ) u + Z f }  +(In ¢5)/2 + 2 r 2 ( I  - Z )  (I -2c)/2+2c~-cI2/(2n),  

for h otherwise. [] 

To illustrate how one might choose the parameter  h, we offer the fol lowing 
e x a m p l e '  

Example : In the nornlal-nornaal case, let ~. = 0 01, c~ 2 = 250, ,u = 1000, r 2 = 250, 

d = 1.5, and n = 1. Therefore,  Z = 0 . 5 0 ,  so let c = 0  75. As h increases from 0 to 
1/2= 100, UG decreases from about 55 to 0. As h increases beyond 59 375, as 
determined in Proposit ion 6 3, B increases from 1 upward. 

Suppose we target an underwri t ing gain of  at least 25 The largest value of h is, 
therefore, 79.571 If we use this value of h, then we maxnn lze  the relative amount  
of  business  B, subJect to the constraint  that UG>--25. Also, suppose we taiget a 
relative amount  of  business  of at least 1 1 The smallest  value of h ~s, therefore, 
68 939. If we use this value of  h, then we maximize  the underwri t ing gain UG, 
subJect to the constraint  that B -  > I I. To achieve both UG>25 and B - -  > 1 1, use any 
value of  h between 68 939 and 79 571 []  
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6.3. Optimize Properties of the Book of Business 

An insurance company may set goals concerning the structure of its book of 
business. We obtain the following lemma that we use to rninmllze the future grand 
mean and the future total variance. 

Lemma  6.4: Assume the condmons in Theorem 6.1. If the structure of the 
company's  business is gwen by ~r(0) during year I, and the credibility premium for 
year 2 is a + br~, then the expected structure of the business in year 2 is distributed 
normally with mean u +J.~2(l-  b) and variance r 2 

Proof: zt2(0) ~ J" p(O,  a I , a + ba I ) J (x I J O) sz(O) dx I 

exp { - {0 2 -  20(/~ +2r2(1  - b ) ) ] / ( 2 r 2 ) } .  

It follows that the structure parameter O is expected to be distributed normally with 
mean ,u + 2r 2 (i - b) and variance r 2 [] 

The density ~z will be independent of the rating parameter a in every case because 
the term e - 2 a  factors In the normal-normal case, the distribution ~s also indepen- 
dent of c. 

Proposition 6.5: Given the conditions in Lemma 6 4, the grand mean in year 2, 
expected at tune 0. is minimized when the insurer gives full weight to the 

pohcyholder 's experience 

Proof: The tuture grand mean is /q)2 =EOEIX 2 ] 0 ] = E [ 0 l = u + 2 r 2 ( I - b ) ,  in 
which 0--<b-- < 1 In order to minimize this mean, set b equal to 1 In other words, 
give full weight to the policyholder's experience in calculating its second-year 
premium [] 

Proposition 6.6:  Given the conditions in Lemma 6 4, the variance in year 2, 
expected at time 0, is constant, independent of the premium paraineters a and b 

Proof: The future total variance is 

E[(X2-/ t02)  2 ] =Eo[Var[X2[O] ] + V a r o [ E I X 2  ]0 l ]  = E [ 0 2  ] + Var[O]-- 02.4.- z -2, 

a constant [] 

7 POISSON-GAMMA 

To maximize UG + h B m the Polssion-gamma case, we apply Theorem 5.1 to 
obtain the following proposmon. 

Proposition 7.1:  Let X , ] 0 ~ P ( 0 ) ,  i = l  . . . .  n, be independent and identically 
distributed Polsson random variables, with unknown mean 0. Let O ~ G ( c ~ , / 3 )  be 
gamma distributed, with known mean et/fl  and variance cx/fl 2. Then UG + h B  is 
maxmuzed when 
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(7 1) d * ( x ) =  I / 2 - h + ( e t + n £ ) / ( f l + n - 2 ( l - c ) ) ,  

for f l + n > 2 ( l  - c ) .  

Proof:  The posterior dlsmbutlon of O Ix l~, gamma, G(c~ + n£, f l+  n). Because 
E[X210]=O, substitute the moment generating function of  O Ix into equation 
(5 1) The moment generating function of a gamma random variable O~G(a,  fl) 
IS 

Mo(t) = Eo lexp {0t}] = f l~/(f l  - t )" ,  

for f l>t  The denvauve,  with respect to t, of the natural logarithm of  this moment 
generating function is 

(7 2) c~l(f l-  t) 

To calculate the c ledlbdl ty  formula m equation (5.1), substitute a + nX for a ,  fl + n 
for fl, and 2 ( I  - c )  for t in equation (7.2) We obtain 

d * ( x ) = l / 2 - h + ( a + n £ ) / ( f l + n - 2 ( I - c ) ) .  [] 

Note that d*(x) Is a linear function of the average clam1 experience £, therefore, 
we have a type of exact credlbd~ty m this case, as m the normal-normal case. The 
third term in equation (7.1) is smldar  to the Buhlmann credibdl ty formula, 
(a+n~) / ( f l+n) ,  except for - 2 ( I - c ) .  

To see how the opumal premium d*(x) changes when the parameter 2 changes, 
examine 

D2 d ~ (x) = - 1 / 2 2 + ( I - c ) ( o L + n £ ) / ( f l + n - 2 ( I - c ) )  2 

As In the normal-normal case, observe that if c ~s sufficiently close to 1 or ~f n is 
sufficiently large, then d* (x) decreases as 2 increases; therefore, as the policyhold- 
ers become more sensmve to the anthmettc difference A, the lower the optnnal 
premium will be 

7.2. Constrained Maximization of UG + h B 

As in Section 6 2, we examine two sets of constraints and obtain the following 
proposmons 

Proposition 7.2: Given the assumptions m Proposmon 7 1 and the restrictions 
UG-->O and d(x )=a+bY ,  we maxmllze U G + h B  when d=d* ,  with d* given 
by 

(7 3) d*(x )  = 1 / 2 -  h + (c~ + n Y ) l ( f l + n - 2 ( I  - c ) ) ,  

for h--< I/2, and 

(7.4) 

for h >  1/3.. 

d*(x) = (c~ + ,zY)/(fl  + ,1 - 2 (I - c)) 
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Proof :  The moment generating function of a Poisson random variable P(O) is 

Mxlo( t )  = E x l o l e x p{ r t  }1 =exp  { 0 (exp {t} - 1)}, 

and similarly 

E x l o [ x e x  p {xt }l =exp  { 0(exp {t } - 1)} [0 exp It II- 

Use Mxlo( t )  and Evlo[-~ exp{.~t }1 to calculate some of the expected values m 
UG + h B More specifically, 

Exlo[ex  p { y t  }1 = mxlo( t /n )}"  

= exp {nO(exp {t/n} - 1)}, 

and 

Exlo[2  exp {xt }l = Mxlo( t /n ) }" - l  ExloI r  exp {xt/n}] 

= exp {nO(exp{t /n}  - I)} 10exp {t/n}l 

Also we have ['or a galnlna landom variable, O~G(e~,13), 

E[O exp {0t}] = o~t3'~ /([3 - t) ~ + i 

Assume that / ' : 3 > 2 ( I - c ) + n ( e x p { - J . ( b - c ) / n } - l ) ,  for all b ~  [0,1].  
Substitute these expressions into UG + h B, equation (6.8), to obtain 

UG + h B = 
= d exp { - 2 a }  (a + h) E[exp  {0(2(1 - c )  + n ( e x p  { - 2 ( b -  c)/n} - l ) )}]  + 

+d exp{ - 2 a }  b E [ e x p  {0(2.(I - c ) + n ( e x p  { - 2 ( b -  c)/n} - 1))} x 

x [0  exp { - 2 ( b -  c / n } ] ] -  c5 exp { - 2 a }  x 

xE[O exp {0(2(1 - c ) + n ( e x p {  - 2 ' ( / , -  c)/n} - I))}]  

= d exp{ -2'a} {(a +/7) E[exp {0(2( I  - c ) + n ( e x p {  - 2 ( b  - c)/,,} - I)) ] + 

+(b exp{ - 2 ( b -  c)/n} - 1) E[O exp {0(2( I  - c ) +  

+,1 (exp{ -2 ' (b  - c)/n} - ~))}1 } 
(75)  = d e x p { - 2 ' a } / 3 ' V ( / 3 + n - 2 ' ( 1 - c ) - n e x p { - 2 ( b - c ) / n } )  ~+ 

x{ (a  + h) ( ~ + n - 2 ' ( 1  - c ) - , 1  exp{ - 2 ( b -  c) /n})  

+e~(b exp { - 2 ( b -  ~)/ ,1) -  1}. 

By setting h = 0 m equation (75),  we see that 

(76)  UG->O if and only if 

a > - ~ ( I  - b  exp{ -2 ' (b  - c ) l n } ) / ( [ 3 + n - 2 ( I  - c ) - n  exp{ - 2 ( b  - c) /n})  

The values of the parameters a and b that appear m d~(x)  m equation (7 I) satisfy 
the inequality (7.6) if and only ff h-~ 1/2'. Therefore, ff 11- < 1/2, then the insurance 
company does not expect to lose money by using the credibility formula d ' ( x )  m 
equation (7. I) 
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On the other hand, ~f h >  l/it, then revoke the constraint and set 

a = a~ =c~(I  - b e x p {  - i t ( b -  c ) / n } ) / ( / 3 + n - 2 ( l  - c ) - n  exp{ - i t ( b -  c) /n}) ;  

that 1% set U G = O .  in this instance, 

U G + h B  = h B  

= h 6  exp{ - 2 a }  /3'*/(/3 + n - 2 ( 1  - c ) - n  exp { - i t ( b -  c) /n})  '~ 

The function h B attains ~ts maximum at 

bl = n / ( / 3  + n - it (I  -c)). 
In this case, al = e ~ / ( f l + n - i t ( l  - c ) ) ,  and we are done []  

We offer the following proposition without provJd,ng a proof. 

Proposition 7.3:  Given the assumptions m Proposition 7.1 and the restrictions 
B>-0  and d ( x ) = a  + b.r, we maxmvze UG + h B when d = d*,  with d* given by 

d*(x)  = I / i t -  h + (e~ + n Y ) / ( f l  + n - it ( l - c )  ) ,  

for 17>-- l/it - (In 6)12 + oLl(fl + n - it (I - c)) - 

- ( a / i t )  In( /3 / ( /3  + n -  it (l  - c ) - , 7  e x p { - i t ( h i - c ) / n } ) ) ,  
m which b I = n / ( f l + n - 2 ( l - c ) ) ,  and 

d* (x) = (ln 6 )/it + (ct/it) In (/3/(/3 + n - it (I - c) - n exp { - it (b, - c)/n })) 

+n V/( /3  + n -  it ( I - c ) ) .  

for h otherwise []  

7.3. Optimize Properties of the Book of Business 

An insurance company may set goals concerning the structt,re of  its book of  
business We obtain the following lemma that we use to m,mmlze the future grand 
mean and the future total var,ance 

L e m m a  7.4:  Assume the cond~tions m Theorem 71 If the structure of  the 
company ' s  business is g,ven by 7r(0) during year 1, and the cred,bill ty prem,um for 
year 2 is a + bXl, then the expected structure of  the business m year 2 ,s gamma 
distributed G(cq  f l + l - 2 ( I - c ) - e x p { - 2  ( b - c ) } )  

Proof: 
0,2(0 ) o~ f p(O, Xl, a + bxl ) J(Xll0) ~(0)dXl 

oc 0 " - '  exp{ - 0 [ / 3 +  I - 2 ( I  - c ) - e x p  { - 2 ( b -  c)}]}.  

It follows that the structure parameter 6) ~s expccted to be gamma d~str,buted 
G ( o t , / 3 + l - 2 ( l - c ) - e x p { - i t ( b - c ) } )  []  

Proposition 7.5:  Given the condmons m Lemma 7.4, the grand mean in year 2, 
expected at tmle O, is mmumzed when the Insurer gives full weight to the 
pohcyholder ' s  experience 
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Proo f :  The future grand mean Is Uo2=EoE[X, IOI=EIOI=oH([3+I 
- 2 ( I - c ) - e x p { - A ( b - c ) } ) , l n  whmh0--<b-<l  In order t o m m m u z e t h l s r n e a n ,  
set b equal to I ,  that ~s, give full wmght to the pohcyholder 's  experience [] 

Proposi t ion 7.6:  Given the condmons m Lemma 74 ,  the variance m year 2, 
expected at urne 0, is mlmm~zed when the insurer g~ves full wetght to the 
pohcyholder 's  experience. 

P roo f :  The future total varmnce ~s 

El(X2 -1102) 2 ] = Eo [Var IX2101] + Var 0 [EIX2]OI ] 

= E l 0 ]  + VarlOl=a/(/3+ 1 - 2 ( I  - c ) - e x p {  - 2 ( b -  c)}) 

+a/(l?+ I - 2 ( 1  - c ) - e x p {  - 2 ( b -  c)}) 2. 

This variance ~s mmmatzed when b equals 1 []  

8 FUTURE RESEARCH 

Credibility theory continues to be an m~portant and dynatmc area of research m 
actuarial scmnce as witnessed by the recent work of NORBERG (1992) and PANJLR 
and LI (1994) An aspect of cred~bflny theory that has not been considered very 
extensively is persistency, which we have addressed here The,, work only begins to 
deal with the problem of cre&bd~ty and persistency, and we intend to explore this 
~ssue further Some of the outstanding problems are. 

Long-term effects 

We have optumzed gain functions that span only one year or pohcy period Because 
actuaries constder longer lengths of  time, it may be more appropriate to consider the 
following objecuves.  
• Maximize the present value of  underwriting gain 
• Maximize the stabd~ty of the number of msureds; for example, one could 

mtmmlze the change in the expected number of msureds from year to year 
• Opumtze propemes of the long-term structure of the book of business. 
Another time effect to mvesugate ~s the change, or trend, m the number or amount 
of clauns from year to year. Such work could follow the models gwen by KREMER 
(1982) or LEDOLTER, KLUGMAN and LEE (1991) 

Different risk sizes and empirical study 

We have not considered different risk sizes. Thts factor ~s an ~mportant one to 
include m future models because, m reality, policyholders are not the same size. In 
future work, we will consider the Buhlmann-Straub model (BUHLMANN and 
STRAUB, 1970) and other models that allow for varying risk size (VENTER, 1990), 
(GOOVAERTS and HOOGSTAD, 1987). 
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Such models could be used to fit emptrtcal data m practical research, as m 
KLUGMAN (1992) An emp~rtcal study may also test the vahdtty of the model 
proposed m thts paper with the one mentioned at the end of  Sectton 4 
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