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ABSTRACT

When focusing on reserve ranges rather than point esti-
mates, the approach to developing ranges across multiple
lines becomes relevant. Instead of being able to simply
sum across the lines, we must consider the effects of cor-
relations between the lines. This paper presents two ap-
proaches to developing such aggregate reserve indications.
Both approaches rely on a simulation model. One takes
into account the actuary’s judgment as to the correlations
between the different underlying blocks of business, and
the second uses bootstrapping to eliminate the need for
the actuary to make judgment calls about the nature of the
correlations.
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1. Introduction

The bar continues to be raised for actuaries
performing reserve analyses. For example, the
approval of Actuarial Standard of Practice #36
for United States actuaries (Actuarial Standards
Board 2000) clarifies and codifies the require-
ments for actuaries producing “written statements
of actuarial opinion regarding property/casualty
loss and loss adjustment expense reserves.” A
second example in the United States is the Na-
tional Association of Insurance Commissioners’
requirement that companies begin booking man-
agement’s best estimate of reserves by line and
in the aggregate, effective January 2001. A third
example is contained in the Australian Pruden-
tial Regulation Authority’s (APRA) General In-
surance Prudential Standards (APRA 2002), ap-
plicable from July 2002 onwards. In these regu-
lations, APRA specifically states “the Approved
Actuary must provide advice on the valuation of
insurance liabilities at a given level of sufficiency
–that level is 75%.”
In this environment, it is clear that actuaries are

being asked to do more than ever before with re-
gard to reserve analyses. One set of techniques
that has been of substantial interest to the paper-
writing community for quite some time is the
use of stochastic analysis or simulation models
to analyze reserves. Stochastic methods1 are an
appealing approach to answering the questions
currently being asked of reserving actuaries. One
might ask, “Why? What makes stochastic meth-
ods more useful in this regard than the tradi-
tional reserving methods that I’ve been using for
years?”
The answer is not that the stochastic methods

are better than the traditional methods.2 Rather,

1In this paper we use the word stochastic to mean frameworks that
are not deterministic, i.e., have a random component. This is typ-
ically done by creating a framework for the reserving technique
where many previously fixed quantities are represented by ran-
dom variables. Probability distributions may then be generated for
claims reserves, either analytically or by Monte Carlo simulation.
2When we talk about “traditional methods,” we mean the time-
honored tradition of analyzing a triangle of paid or incurred loss

the stochastic methods are more informative
about more aspects of reserve indications than
traditional methods. When all an actuary is look-
ing for is a point estimate, then traditional meth-
ods are quite sufficient to the task. However,
when an actuary begins developing reserve
ranges for one or more lines of business and
trying to develop not only ranges on a by-line
basis but in the aggregate, the traditional meth-
ods quickly pale in comparison to the stochas-
tic methods. The creation of reserve ranges from
point estimate methods is often an ad hoc one,
such as looking at results using different selec-
tion factors or different types of data (paid, in-
curred, separate claim frequency and severity de-
velopment, etc.), or judgmentally saying some-
thing like “my best estimate plus or minus ten
percent.” When trying to develop a range in the
aggregate, the ad hoc decisions become even
more so, such as “I’ll take the sum of my individ-
ual ranges less X% because I know the aggregate
is less risky than the sum of the parts.”
Stochastic methods, by contrast, provide actu-

aries with a structured, mathematically rigorous
approach to quantifying the variability around a
best estimate. This is not meant to imply that all
judgment is eliminated when a stochastic method
is used. There are still many areas of judgment
that remain, such as the choice of stochastic
method and/or the shape of the distributions un-
derlying the method, and the number of years
of data being used to fit factors. What stochastic
methods do provide is (a) a consistent framework
and a repeatable process in which the analysis is
done and (b) a mathematically rigorous answer
to questions about probabilities and percentiles.
Now, when asked to set reserves equal to the

data by looking at different averages of age-to-age development
factors, selecting one for each development age and projecting paid
or incurred losses to “ultimate” using the selected factors. There are
many variations on this basic approach that can be applied, includ-
ing data adjustments (like Berquist-Sherman), factor modifications
(like Bornheutter-Ferguson), and trend removal, but at the end of
the day the traditional methods all produce one reserve indication
with no information as to how reality might differ from that single
indication.
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75th percentile, as in Australia, the actuary has
a mechanism for identifying the 75th percentile.
Moreover, when the actuary analyzes the same
block of business a year later, the actuary will be
in a position to discuss how the 75th percentile
has changed, knowing that the changes are driven
by the underlying data and not the application of
different judgmental factors (assuming the actu-
ary does not alter the assumptions underlying the
stochastic method being used).
It cannot be stressed enough, though, that sto-

chastic models are not crystal balls. Quite of-
ten the argument is made that the promise of
stochastic models is much greater than the ben-
efit they provide. The arguments typically take
one or both of the following forms:

1. Stochastic models do not work very well when
data is sparse or highly erratic. Or, to put it an-
other way, stochastic models work well when
there is a lot of data and it is fairly regular–
exactly the situation in which it is easy to ap-
ply a traditional point-estimate approach.

2. Stochastic models overlook trends and pat-
terns in the data that an actuary using tradi-
tional methods would be able to pick up and
incorporate into the analysis.

England and Verrall (2002) addressed this sort
of argument with the response:

It is sometimes rather naively hoped that sto-
chastic methods will provide solutions to
problems when deterministic methods fail. In-
deed, sometimes stochastic models are judged
on whether they can help when simple deter-
ministic models fail. This rather misses the
point. The usefulness of stochastic models is
that they can, in many circumstances, provide
more information which may be useful in the
reserving process and in the overall manage-
ment of the company.

This, in our opinion, is the essence of the value
proposition for stochastic models. They are not
intended to replace traditional techniques. There

will always be a need and a place for actuarial
judgment in reserve analysis that stochastic mod-
els will never supplant. Even so, as the bar is
raised for actuaries performing reserve analyses,
the additional information inherent in stochastic
models makes the argument in favor of adding
them to the standard actuarial repertoire that
much more compelling.
Having laid the foundation for why we be-

lieve actuaries ought to be incorporating stochas-
tic models into their everyday toolkit, let us turn
to the actual substance of this paper–using a
stochastic model to develop an aggregate reserve
range for several lines of business with varying
degrees of correlation between the lines.

2. Correlation—mathematically
speaking and in lay terms

Before jumping into the case study, we will
take a small detour into the mathematical theory
underlying correlation.
Correlations between observed sets of num-

bers are a way of measuring the “strength of re-
lationship” between the sets of numbers. Broadly
speaking, this “strength of relationship” measure
is a way of looking at the tendency of two vari-
ables, X and Y, to move in the same (or opposite)
direction. For example, if X and Y were posi-
tively correlated, then if X gives a higher than
average number, we would expect Y to give a
higher than average number as well.
It should be mentioned that there are many dif-

ferent ways to measure correlation, both para-
metric (for example, Pearson’s r) and nonpara-
metric (Spearman’s rank order, or Kendall’s tau).
It should also be mentioned that these statistics
only give a simple view of the way two ran-
dom variables behave together–to get a more
detailed picture, we would need to understand
the joint probability density function (pdf) of the
two variables.
As an example of correlation between two ran-

dom variables, we will look at the results of flip-
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ping two coins and look at the relationship be-
tween correlation coefficients and conditional
probabilities.

EXAMPLE 1. We have two coins, each with an
identical chance of getting heads (50%) or tails
(50%) with a flip. We will specify their joint dis-
tribution, and so determine the relationship be-
tween the outcomes of both coins. Note that in
our notation, 0 signifies a head, 1 a tail.

Case 1. Joint distribution table

Coin B

0 1 Marginal
Coin A 0 0.25 0.25 0.5

1 0.25 0.25 0.5
Marginal 0.5 0.5

The joint distribution table shows the proba-
bility of all the outcomes when the two coins are
tossed. In the case of two coin tosses there are 4
potential outcomes, hence there are 4 cells in the
joint distribution table. For example, the proba-
bility of Coin A being a head (0) and Coin B
a tail (1) can be determined by looking at the 0
row for Coin A and the 1 column for Coin B,
in this example 0.25. In this case, our coins are
independent. The correlation coefficient is zero,
where we calculate the correlation coefficient by:

Correlation Coefficient

= Cov(A,B)=(Stdev(A) ¤Stdev(B))
(2.1)

and

Cov(A,B) = E[(A¡mean(A)) ¤ (B¡mean(B))]
= E(AB)¡E(A)E(B): (2.2)

We can also see that the outcomes of Coin B are
not linked in any way to the outcome of Coin A.
For example,

P(B = 1 j A= 1) = P(A= 1,B = 1)=P(A= 1)
= 0:25=0:5

= 0:50

= P(B = 1):

Case 2. Joint distribution table

Coin B

0 1 Marginal
Coin A 0 0.3125 0.1875 0.5

1 0.1875 0.3125 0.5
Marginal 0.5 0.5

From this distribution we calculate the corre-
lation coefficient to be 0.25.3

By looking at the conditional distributions, it
is clear that there is a link between the outcome
of Coin B and Coin A:

P(B = 1 j A= 1) = P(A= 1,B = 1)=P(A= 1)
= 0:3125=0:5

= 0:625:

P(B = 0 j A= 1) = 0:375:
So we can see that with the increase in corre-
lation, there is an increase in the chance of get-
ting heads on Coin B, given Coin A shows heads,
and a corresponding decrease in the chance of
getting tails on Coin B, given Coin A shows
heads.
With this 2-coin example, it turns out that if

we want the marginal distributions of each coin
to be the standard 50% heads, 50% tails, then,
given the correlation coefficient we want to
produce, we can uniquely define the joint pdf for
the coins.

3Proof that the correlation coefficient for case 2 is 0.25:

E(A,B) =

1X
i=0

1X
j=0

i ¤ j ¤P(AiBj)

= 0+0+0+1 ¤ 1 ¤ 0:3125 = 0:3125:
E(A) = 0:5 = E(B):

Cov(A,B) = E(A,B)¡E(A)E(B)
= 0:3125¡ 0:25 = 0:0625:

Var(A) =

1X
i=0

(i¡E(A))2 ¤P(Ai) = 0:25 = Var(B):

StDev(A) = 0:5 = StDev(B):

Correlation Coefficient = 0:0625=(0:5 ¤ 0:5) = 0:25:
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We find that, for a given correlation coefficient

of ½,

P(A= 1,B = 1) = P(A= 0,B = 0) = (1+ ½)=4:

P(A= 1,B = 0) = P(A= 0,B = 1) = (1¡ ½)=4:

We can then recover the conditional probabil-

ities:

P(B = 1 j A= 1) = (1+ ½)=2:
P(B = 0 j A= 1) = (1¡ ½)=2:

So, for example, we can see that

½= 0:00 gives P(B = 1 j A= 1) = 0:500:
½= 0:50 gives P(B = 1 j A= 1) = 0:750:
½= 0:75 gives P(B = 1 j A= 1) = 0:875:
½= 1:00 gives P(B = 1 j A= 1) = 1:000:

As expected, the more the correlation coeffi-

cient increases, the higher the chance of throwing

heads on Coin B, given Coin A shows heads.

In lay terms, then, we would repeat our de-

scription of correlation at the start of this section,

that correlation, or the “strength of relationship,”

is a way of looking at the tendency of two vari-

ables, X and Y, to move in the same (or opposite)

direction. As the coin example shows, the more

positively correlated X and Y are, the greater our

expectation that Y will be higher than average if

X is higher than average.

It should be noted, however, that the expected

value of the sum of two correlated variables is

exactly equal to the expected value of the sum

of the two uncorrelated variables with the same

means.
In the context of actuarial reserving work,

Brehm (2002) notes “the single biggest source
of risk in an unpaid loss portfolio is arguably the
potential distortions that can affect all open acci-
dent years, i.e., changes in calendar year trends”
(p. 8). The real-life correlation issue that we are

attempting to identify and resolve is the extent to
which, if we see adverse (or favorable) develop-
ment in ultimate losses in one line of business,
we will see similar movement in other lines of
business.

3. Significance of the existence
of correlations between lines of
business

Suppose we have two or more blocks of busi-
ness for which we are trying to calculate reserve
indications. If all we are trying to do is determine
the expected value of the reserve run-off, we can
calculate the expected value for each block sepa-
rately and add all the expectations together. How-
ever, if we are trying to quantify a value other
than the mean, such as the 75th percentile, we
cannot simply sum across the lines of business.
If we do so, we will overstate the aggregate re-
serve need. The only time the sum of the 75th
percentiles would be appropriate for the aggre-
gate reserve indication is when all the lines are
fully correlated with each other–a highly un-
likely situation! The degree to which the lines are
correlated will influence the proper aggregate re-
serve level and the aggregate reserve range. How
significant an impact will there be? That primar-
ily depends upon two factors–how volatile the
reserve ranges are for the underlying lines of
business and how strongly correlated the lines
are with each other. If there is not much volatil-
ity, then the strength of the correlation will not
matter that much. If, however, there is consid-
erable volatility, the strength of correlations will
produce differences that could be material. This
is demonstrated in the following example.

EXAMPLE 2. The impact on values at the 75th
percentile as correlation and volatility increase.

Table 1 shows some figures relating the mag-
nitude of the impact of correlations on the ag-
gregate distribution to the size of the correlation.
In this example, we have modeled two lines of
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Table 1. Comparison of values at the 75th percentile as
correlation increases

Values at 75th Percentage increase in value over
Correlation percentile the zero correlation value

0.00 223.8 n/a
0.25 226.7 1.3% (= 226:7¥223:8)
0.50 229.2 2.4% (= 229:2¥223:8)
0.75 231.5 3.4% (= 231:5¥223:8)
1.00 233.7 4.4% (= 233:7¥223:8)

Table 2. Comparison of values at the 75th percentile as both
correlation and volatility increase

Standard Deviation Value

25 50 100 200
Value for 0.00 correlation
at the 75th percentile 223.8 247.7 295.4 390.8

Correlation Ratio of values at 75th percentile (%)
0.25 1.3 2.3 3.8 5.8
0.50 2.4 4.3 7.3 11.0
0.75 3.4 6.2 10.4 15.8
1.00 4.4 8.0 13.4 20.2

business (A and B), assuming they were nor-
mally distributed with identical means and vari-
ances. The means were assumed to be 100 and
the standard deviations were 25. We are examin-
ing the 75th percentile value derived for the sum
of A and B. Table 1 shows the change in the
75th percentile value between the uncorrelated
situation and varying levels of correlation be-
tween lines A and B. Reading down the column
shows the impact of an increasing level of cor-
relation between lines A and B, namely, that the
ratio of the correlated to the uncorrelated value
at the 75th percentile increases as correlation in-
creases.
Now let’s expand the analysis to see what hap-

pens as the volatility of the underlying distri-
butions increase. Table 2 shows a comparison
of the sum of lines A and B at the 75th per-
centile as correlation increases and as volatility
increases. The ratios in each column are rela-
tive to the value for the zero correlation value
at each standard deviation value. For example,
the 5.8% ratio for the rightmost column at the
25% correlation level means that the 75th per-

Table 3. Comparison of values at the 95th percentile as both
correlation and volatility increases

Standard Deviation Value

25 50 100 200
Value for 0.00 correlation
at the 95th percentile 258.1 316.3 432.6 665.2

Correlation Ratio of values at 95th percentile (%)
0.25 2.7 4.3 6.3 8.3
0.50 5.1 8.3 12.1 15.7
0.75 7.3 11.9 17.4 22.6
1.00 9.3 15.2 22.3 29.0

centile value for lines A+B with 25% correla-
tion is 5.8% higher than the 75th percentile of
N(100,200)A+N(100,200)B with no correla-
tion. As can be seen from this table, the greater
the volatility, the larger the differential between
the uncorrelated and correlated results at the 75th
percentile.
This effect is magnified if we look at similar

results further out on the tails of the distribution,
for example, looking at the 95th percentiles, as
is shown in Table 3.
Note that these results will also depend on

the nature of the underlying distributions–
we would expect different results for lines of
business that were lognormally distributed, for
example.

4. Case study

4.1. Background

The data used in this case study is fictional. It
describes three lines of business, two long-tail
and one short-tail. All three produce approxi-
mately the same mean reserve indication, but
with varying degrees of volatility around their
respective means. By having the three lines of
approximately equal size, we are able to focus on
the impact of correlations between lines without
worrying about whether the results from one line
are overwhelming the results from the other two
lines. Appendix I contains the data triangles.
The examination of the impact of correlation

on the aggregated results will be done using two
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methods. The first assumes the person doing the
analysis can provide a positive-definite correla-
tion matrix (see section 4.2 below). The rela-
tionships described in the correlation matrix are
used to convert the uncorrelated aggregate re-
serve range into a correlated aggregate range.
The process does not affect the reserve ranges of
the underlying lines of business. It just influences
the aggregation of the reserve indications by line
so that if two lines are positively correlated and
the first line produces a reserve indication that
is higher than the expected reserve indication for
that line, it is more likely than not that the second
line will also produce a reserve indication that is
higher than its expected reserve indication. This
is exactly what was demonstrated in the exam-
ples in Section 3.
The second method dispenses with what the

person doing the analysis knows or thinks he
knows. This method relies on the data alone to
derive the relationships and linkages between the
different lines of business. More precisely, this
method assumes that all we need to know about
how related the different lines of business are
to each other is contained in the historical claims
development that we have already observed. This
method uses a technique known as bootstrapping
to extract the relationships from the observed
claims history. The bootstrapped data is used to
generate reserve indications that inherently con-
tain the same correlations that existed in the orig-
inal data. Therefore, the aggregate reserve range
is reflective of the underlying relationships be-
tween the individual lines of business, without
first requiring the potentially messy step of re-
quiring the person doing the analysis to develop
a correlation matrix.

4.2. A note on the nature of the
correlation matrix used in the analysis

The entries in the correlation matrix used must
fulfill certain requirements that cause the matrix
to be what is known as positive definite. The
mathematical description of a positive definite

matrix is that, given a vector x and a matrix A,
where

x= [x1 x2 ¢ ¢ ¢xn] and

A=

2666664
a11 a12 ¢ ¢ ¢ a1n

a21 a22 ¢ ¢ ¢ a2n
...

... ¢ ¢ ¢ ...

an1 an2 ¢ ¢ ¢ ann

3777775

xTAx= [x1 x2 ¢ ¢ ¢xn]

2666664
a11 a12 ¢ ¢ ¢ a1n

a21 a22 ¢ ¢ ¢ a2n
...

... ¢ ¢ ¢ ...

an1 an2 ¢ ¢ ¢ ann

3777775

2666664
x1

x2
...

xn

3777775
= a11x

2
1 + a12x1x2 + a21x2x1 + ¢ ¢ ¢+ annx2n:

(4.1)

Matrix A is positive definite when xTAx > 0
for all x other than x1 = x2 = ¢ ¢ ¢= xn = 0:

(4.2)

In the context of this paper, matrix A is the cor-
relation matrix we want to develop and the aij
are the correlation coefficients.

4.3. Correlation matrix methodology

The methodology used in this approach is that
of rank correlation. Rank correlation is a useful
approach to dealing with two or more correlated
variables when the joint distribution of the cor-
related variables is not normal. When using rank
correlation, what matters is the ordering of the
simulated outcomes from each of the individual
distributions, or, more properly, the re-ordering
of the outcomes.

4.3.1. Rank correlation example
Suppose we have two random variables, A and

B. A and B are both defined by uniform distribu-
tions ranging from 100 to 200. Suppose we draw
five values at random from A and B. They might
look as shown in Table 4.
Now suppose we are interested in the joint dis-

tribution of A+B. We will use rank correlation to
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Table 4. Random draws from
distributions A and B

Index A B

1 155 154
2 138 125
3 164 100
4 122 198
5 107 128

Table 5. Joint distributions of A+B in perfectly correlated
situations

Perfectly Correlated Perfect Inverse Correlation
Rank to Use Rank to Use
A B A B

5 3 5 4
4 2 4 1
2 5 2 5
1 1 1 2
3 4 3 3

Resulting Joint Distribution Resulting Joint Distribution
A B A+B A B A+B

107 100 207 107 198 305
122 125 247 122 154 276
138 128 266 138 128 266
155 154 309 155 125 280
164 198 362 164 100 264

Range of Joint Distribution Range of Joint Distribution

Low 207 Low 264
High 362 High 305

learn about this joint distribution. We will use a
bivariate normal distribution to determine which
value from distribution B ought to be paired with
a value from distribution A. The easiest cases are
when B is perfectly correlated with A or per-
fectly inversely correlated with A. In the per-
fectly correlated case, we pair the lowest value
from A with the lowest value from B, the sec-
ond lowest value from A with the second lowest
value from B, and so on to the highest values for
A and B. In the case of perfect inverse correla-
tion, we pair the lowest value from A with the
highest value from B, etc. The results from these
two cases are shown in Table 5.
When there is no correlation between A and

B, the ordering of the values from distribution B
that are to be paired with values from distribution
A are wholly random. The original order of the

values drawn from distributions A and B is one
example of the no-correlation condition. When
positive correlations exist between A and B, the
orderings reflect the level of correlation, and the
range of the joint distribution will be somewhere
between the wholly random situation and the per-
fectly correlated one.

4.3.2. Application of rank correlation
methodology to reserve analysis
The application of the rank correlation method-

ology to a stochastic reserve analysis is done
through a two-step process. In the first step, a
stochastic reserving technique is used to gener-
ate N possible reserve runoffs from each data
triangle being analyzed. It is important that a rel-
atively large N value be used so as to capture the
variability inherent in each data triangle, yet pro-
duce results that reasonably reflect the infrequent
nature of highly unlikely outcomes. If too few
outcomes are produced from each data triangle,
the user risks either not producing results with
sufficient variability or overstating the variabil-
ity that does exist in the data. Examples of sev-
eral different techniques, including bootstrapping
(England 2001), application of the chain-ladder
to logarithmically adjusted incremental paid data
(Christofides 1990), and application of the chain-
ladder to logarithmically adjusted cumulative
paid data (Feldblum, Hodes, and Blumsohn
1999), can be found in articles listed in the bib-
liography to this paper. In this case study, 5,000
different reserve runoffs were produced using the
bootstrapping technique described in England
(2001). This is the end of step one.
In step two, the user must specify a correlation

matrix, in which the individual elements of the
correlation matrix (the aij described in Section 2)
describe the pair-wise relationships between dif-
ferent pairs of lines being analyzed. We do not
propose to cover how one may estimate such a
correlation matrix in this paper, as we feel this
is an important topic in its own right, the de-
tails of which would merit a separate paper. One
such paper for readers who are looking for guid-
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ance in this area is Brehm (2002). In this paper,
we will simply assume that the user has such a
matrix, either calculated analytically or estimated
using some other approach, such as a judgmental
estimation of correlation.
We generate 5,000 samples for each line of

business from a multivariate normal distribution,
with the correlation matrix specified by the user.
A discussion of how one might create these sam-
ples is contained in Appendix 2. We then sort the
samples from the reserving method into the same
rank order as the normally distributed samples.
This ensures that the rank order correlations be-
tween the three lines of business are the same as
the rank order correlations between the three nor-
mal distributions. The aggregate reserve distribu-
tion is calculated from the sum of the individual
line reserve distributions. This resulting aggre-
gate reserve range will be composed of 5,000
different values from which statistics such as the
75th percentile can be drawn. The range of ag-
gregated reserve indications is reflective of the
correlations entered into the correlation matrix
at the start of the analysis.
For example, the ranked results from the mul-

tivariate normal process might be as follows:

Line 1, Rank Line 2, Rank Line 3, Rank
528 533 400
495 607 404
995 710 904
233 325 831
733 912 551
825 33 801
325 107 331
630 210 571
653 986 51
983 730 301
130 900 782

The first of the 5,000 values in the aggregate
reserve distribution will be composed of the
528th largest reserve indication for line 1 plus
the 533rd largest reserve indication for line 2
plus the 400th largest reserve indication for line

3. The second of the 5,000 values will be com-
posed of the 495th largest reserve indication for
line 1 plus the 607th largest reserve indication for
line 2 plus the 404th largest reserve indication for
line 3. Through this process, the higher the pos-
itive correlation between lines, the more likely
it is that a value below the mean for one line
will be combined with a value below the mean
for a second line. At the same time, the mean of
the overall distribution remains unchanged and
the distributions of the individual lines remains
unchanged.

4.4. Rank correlation results
To show the impact of the correlations between

the lines on the aggregate distribution, we ran
the model five times, each time with different
correlation matrices: zero correlation, 25% cor-
relation, 50% correlation, 75% correlation, and
100% correlation. Specifically, the five correla-
tion matrices were as follows:

1. Zero correlation:

1 0 0
0 1 0
0 0 1

2. Twenty-five percent correlation:

1.00 0.25 0.25
0.25 1.00 0.25
0.25 0.25 1.00

3. Fifty percent correlation:

1.00 0.50 0.50
0.50 1.00 0.50
0.50 0.50 1.00

4. Seventy-five percent correlation:

1.00 0.75 0.75
0.75 1.00 0.75
0.75 0.75 1.00
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Table 6. Case study results: aggregated reserve indication at different levels of correlation between underlying lines of business
(all values are in thousands)

Correlation (%)

0 25 50 75 100

Mean 4,330,767 4,330,767 4,330,767 4,330,767 4,330,767
Standard Deviation 1,510,033 1,596,840 1,705,469 1,829,748 1,998,140
Minimum 2,587,213 2,293,224 2,084,841 2,086,531 1,930,725
Maximum 72,366,202 72,771,841 73,474,899 75,564,417 81,277,681

Percentile
1 2,995,943 2,861,958 2,695,429 2,510,514 2,408,319
5 3,247,847 3,087,062 2,956,837 2,867,115 2,762,663

10 3,384,401 3,241,518 3,143,080 3,033,779 2,987,948
20 3,588,011 3,500,438 3,424,399 3,358,196 3,277,806
30 3,782,986 3,681,105 3,615,534 3,574,383 3,522,031
40 3,942,032 3,897,816 3,820,380 3,790,977 3,745,674
50 4,113,146 4,078,681 4,071,349 4,027,615 3,973,908
60 4,278,521 4,279,869 4,292,852 4,267,561 4,232,721
70 4,493,139 4,518,971 4,547,255 4,558,175 4,560,471
80 4,786,940 4,876,233 4,931,662 5,031,358 5,111,862
90 5,378,096 5,475,577 5,604,519 5,679,109 5,842,125
95 6,008,476 6,230,885 6,371,310 6,436,050 6,836,095
99 8,286,504 8,687,785 9,310,024 10,075,891 10,322,456
Estimated 75 4,640,039 4,697,602 4,739,459 4,794,767 4,836,166

5. One hundred percent correlation:

1 1 1
1 1 1
1 1 1

The correlations were chosen to highlight the
range of outcomes that result for different lev-
els of correlation, not because the data necessar-
ily implied the existence of correlations such as
these. The results are shown both numerically
in Table 6 and graphically in Figure 1 and Fig-
ure 2.
As expected, the higher the positive correla-

tion, the wider the aggregated reserve range. With
increasingly higher positive correlations, it is less
likely that a better-than-expected result in one
line will be offset by a worse-than-expected re-
sult in another line. This causes the higher posi-
tive correlated situations to have lower aggregate
values for percentiles below the mean and higher
aggregate values for percentiles above the mean.
The results of the table and graph show just this
situation. For information purposes, the differ-
ence between the zero correlation situation and

the perfectly correlated situation at the 75th per-
centile have been displayed in Figure 2.

4.5. Bootstrap methodology

Bootstrapping is a sampling technique that is
an alternative to traditional statistical methodolo-
gies. In traditional statistical approaches, one
might look at a sample of data and postulate the
underlying distribution that gave rise to the ob-
served outcomes. Then, when analyzing the range
of possible outcomes, new samples are drawn
from the postulated distribution. Bootstrapping,
by comparison, does not concern itself with the
underlying distribution. The bootstrap says that
all the information needed to create new samples
lies within the variability that exists in the already
observed historical data. When it comes time to
create the new samples, different observed vari-
ability factors are combined with the observed
data to create “pseudodata” from which the new
samples are generated.
So what is bootstrapping, then, as it is applied

to reserve analysis? Bootstrapping is a resam-
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Figure 1. Graph of case study results showing aggregated reserve indication at different levels of correlation
between underlying lines of business

Figure 2. Graph of case study results showing aggregated reserve indication at different levels of correlation
between underlying lines of business, focusing on area around 75th percentile

pling method that is used to estimate in a struc-
tured manner the variability of a parameter. In
reserve analysis, the parameter is the difference
between observed and expected paid amounts for
any given accident year/development year com-

bination. During each iteration of the bootstrap-
ping simulation, random draws are made from all
the available variability parameters. One random
draw is made for each accident year/development
year combination. The variability parameter is
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combined with the actual observation to develop
a “pseudohistory” paid loss triangle. A reserve
indication is then produced from the pseudohis-
tory data triangle by applying the traditional
cumulative chain-ladder technique to “square
the triangle.” A step-by-step walkthrough of the
bootstrap process is included in Appendix 2.
Note that this example is using paid amounts.

The bootstrap approach can equally be applied
to incurred data, to generate “pseudohistory” in-
curred loss triangles, which may be developed
to ultimate in the same manner as the paid data.
Also, the methodology is not limited to working
with just positive values. This is an important
capability when using incurred data, as negative
incrementals will be much more common when
working with incurred data.
This approach is extended to multiple lines in

the following manner. Instead of making ran-
dom draws of the variability parameters indepen-
dently for each line of business, the same draws
are used across all lines of business. The vari-
ability parameters will differ from line to line,
but the choice of which variability parameter to
pick is the same across lines.
The example of Table 7 through Table 9 should

clarify the difference between the uncorrelated
and correlated cases. The example shows two
lines of business, Line A and Line B. Both are
4£ 4 triangles. Table 7 shows the variability pa-
rameters calculated from the original data. We
start by labeling each parameter with the acci-
dent year, development year, and triangle from
which the parameters are derived.
Table 8 shows one possible way the variability

parameters might be reshuffled to create an un-
correlated bootstrap. For each Accident/Develop-
ment year in each triangle A and B, we select
a variability parameter from Table 7 at random.
For example, Triangle A, Accident Year 1, De-
velopment Year 1 has been assigned (randomly)
the variability parameter from the original data in
Table 7, Accident Year 2, Development Year 1.

Note that each triangle uses the variability pa-
rameters calculated from that triangle’s data, i.e.,
none of the variability parameters from Triangle
A are used to create the pseudohistory in Triangle
B. Also note that the choice of variability param-
eters for each Accident Year/Development Year
in Triangle A is independent of the choice of
variability parameter for the corresponding Ac-
cident Year/Development Year in Triangle B.
For the correlated bootstrap shown in Table 9,

the choice of variability parameter for each Acci-
dent Year/Development Year in Triangle A is not
independent of the choice of variability parame-
ter for the corresponding Accident Year/Develop-
ment Year in Triangle B. We ensure that the vari-
ability parameter selected from Triangle B comes
from the same Accident Year/Development Year
used to select a variability parameter from
Triangle A.
The process shown in Table 9 implicitly cap-

tures and uses whatever correlations existed in
the historical data when producing the pseudo-
histories from which the reserve indications will
be developed. The resulting aggregated reserve
indications will reflect the correlations that ex-
isted in the actual data, without requiring the
analyst to first postulate what those correlations
might be. This method also does not require the
second stage reordering process that the corre-
lation matrix methodology required. The corre-
lated aggregate reserve indication can be derived
in one step.

4.6. Bootstrap results

The model was run one final time using the
bootstrap methodology to develop an aggregated
reserve range. The bootstrap results have been
added to the results shown in Table 6 and Fig-
ures 1 and 2. The revised results are shown in
Table 10 and Figures 3 and 4, where we can
compare the aggregate reserve distributions gen-
erated from the two different approaches.
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Table 7. Variability parameters calculated from original data

Triangle A Triangle B
Development Year Development Year

AY 1 2 3 4 1 2 3 4

1 A11 A12 A13 A14 B11 B12 B13 B14
2 A21 A22 A23 B21 B22 B23
3 A31 A32 B31 B32
4 A41 B41

Note: Each triangle’s variability parameters are calculated based on
that triangle’s data.

Table 8. Uncorrelated bootstrapping: reshuffling of variability
parameters in Triangle B is independent of the reshuffling in
Triangle A

Triangle A Triangle B
Development Year Development Year

AY 1 2 3 4 1 2 3 4

1 A12 A23 A13 A31 B22 B32 B31 B22
2 A22 A23 A12 B31 B23 B23
3 A31 A11 B13 B11
4 A11 B21

Note: In the uncorrelated bootstrapping approach, each
bootstrapping iteration randomly shuffles and assigns the variability
parameters from Table 7 to each accident year x development year
cell. This is done independently for the data in Triangles A and B.

Table 10. Case study results: aggregated reserve indication at different levels of correlation between underlying lines of
business—including bootstrap method (all values are in thousands)

Correlation (%)

0 25 50 75 100 Bootstrap

Mean 4,330,767 4,330,767 4,330,767 4,330,767 4,330,767 4,335,587
Standard Deviation 1,510,033 1,596,840 1,705,469 1,829,748 1,998,140 1,601,469
Minimum 2,587,213 2,293,224 2,084,841 2,086,531 1,930,725 2,250,401
Maximum 72,366,202 72,771,841 73,474,899 75,564,417 81,277,681 67,405,104

Percentile
1 2,995,943 2,861,958 2,695,429 2,510,514 2,408,319 2,708,420
5 3,247,847 3,087,062 2,956,837 2,867,115 2,762,663 3,014,557

10 3,384,401 3,241,518 3,143,080 3,033,779 2,987,948 3,194,731
20 3,588,011 3,500,438 3,424,399 3,358,196 3,277,806 3,443,479
30 3,782,986 3,681,105 3,615,534 3,574,383 3,522,031 3,653,888
40 3,942,032 3,897,816 3,820,380 3,790,977 3,745,674 3,849,489
50 4,113,146 4,078,681 4,071,349 4,027,615 3,973,908 4,043,971
60 4,278,521 4,279,869 4,292,852 4,267,561 4,232,721 4,271,588
70 4,493,139 4,518,971 4,547,255 4,558,175 4,560,471 4,554,548
80 4,786,940 4,876,233 4,931,662 5,031,358 5,111,862 4,957,356
90 5,378,096 5,475,577 5,604,519 5,679,109 5,842,125 5,691,814
95 6,008,476 6,230,885 6,371,310 6,436,050 6,836,095 6,471,699
99 8,286,504 8,687,785 9,310,024 10,075,891 10,322,456 9,116,338
Estimated 75 4,640,039 4,697,602 4,739,459 4,794,767 4,836,166 4,755,952

Table 9. Correlated bootstrapping: reshuffling of variability
parameters in Triangle B is identical to the reshuffling in
Triangle A

Triangle A Triangle B
Development Year Development Year

AY 1 2 3 4 1 2 3 4

1 A12 A23 A13 A31 B12 B23 B13 B31
2 A22 A23 A12 B22 B23 B12
3 A31 A11 B31 B11
4 A11 B11

Note: In contrast, in the correlated bootstrapping approach, the
variability parameters being used in each of Triangle A’s
bootstrapping iterations are randomly shuffled and assigned to each
accident year x development year cell. Triangle B’s variability
parameters are then assigned so as to mimic the assignment being
done in Triangle A.

The results shown in the preceding figures and
tables provide us with the following information:

1. If we wanted to hold reserves at the 75th per-
centile, the smallest reserve that ought to be
held is $4.640 billion and the largest ought to
be $4.836 billion.

2. The maximum impact on the 75th percentile
of indicated reserves due to correlation is
4.5% of the mean indication ($196 million/
$4.331 billion).
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Figure 3. Graph of case study results, adding bootstrapped correlation to aggregated reserve indication at
different levels of correlation between underlying lines of business

Figure 4. Graph of case study results—adding bootstrapped correlation to aggregated reserve indications at
different levels of correlation between underlying lines of business—focusing on area around 75th percentile

3. There does appear to be correlation between
at least two of the lines. The observed level
of correlation is similar to what would be dis-
played were there to be a 50% correlation be-
tween each of the lines. It could be that two

of the lines exhibit a stronger than 50% cor-
relation with each other and a weaker than
50% correlation with the third line, so that
the overall results produce values similar to
what would exist at the 50% correlation level.
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4. The reserve to book, assuming the 50% cor-
relation is correct, is $4.739 billion. Alterna-
tively, if we were to select the booked reserve
based on the bootstrap methodology, the re-
serve to book is $4.755 billion.

Some level of correlation between at least two
of the lines is indicated by the bootstrapped re-
sults. This is valuable information to know, even
beyond the range of reserves indicated by the
bootstrap methodology. With this information,
company management can assess prospective un-
derwriting strategies that recognize the interre-
lated nature of these lines of business, such as
how much additional capital might be required
to protect against adverse deviation. If the lines
were uncorrelated, future adverse deviation in
one line would not necessarily be reflected in
the other lines. With the information at hand, it
would be inappropriate to assume that adverse
deviation in one line will not be mirrored by ad-
verse deviation in one or both of the other lines.
Continuing with this thought, the bootstrapped
results would have been valuable even if they
had shown there to be little or no correlation be-
tween the lines–because then company manage-
ment could comfortably assume independence
between the lines of business and make their
strategic decisions accordingly.

5. Summary and conclusions

Let us move beyond the numbers of the case
study to summarize what we feel to be the im-
portant general conclusions that can be drawn.
To begin, calculating an aggregate reserve dis-
tribution for several lines of business requires
not only a model for the distribution of reserves
for each individual line of business, but also an
understanding of the dependency of the reserve
amounts between each of the lines of business.
To get a feel for the impact of these dependen-
cies on the aggregate distribution, we have pro-
posed two different methods. One can use a rank

correlation approach with correlation parameters
estimated externally. However, this approach re-
quires either calculating correlations using a
method such as has been proposed by Brehm
(2002) or by judgmentally developing a corre-
lation matrix. Alternatively, one can use a boot-
strap method that relies on the existing depen-
dencies in the historic data triangles. This re-
quires no external calibration, but may be less
transparent in providing an understanding of the
data. It also limits the calculations to reflecting
only those relationships that have existed in the
past in the projection of reserve indications.
Additionally, a user of either method is cau-

tioned to understand actions taken by the com-
pany that might create a false impression of
strong correlation across lines of business. For
example, if a company changes its claim reserv-
ing or settlement philosophy, we would expect to
see similar impacts across all lines of business.
To a user not aware of this change in company
philosophy, it could appear that there are strong
underlying correlations across lines of business
when in reality there might not be.
Furthermore, it would appear that the corre-

lation issue is not important for lines of busi-
ness with nonvolatile reserve ranges. However,
for volatile reserves, the impact of correlations
between lines of business could be significant,
particularly as one moves towards more extreme
ends of the reserve range. If so, either correlation
approach can provide actuaries with a way of
quantifying the effect of correlations on the ag-
gregate reserve range. Overall, the use of stochas-
tic techniques adds value, as such techniques can
not only assess the volatility of reserves, but also
identify the significance of correlations between
lines of business in a more rigorous manner than
is possible with traditional techniques.
To conclude, we believe that stochastic quan-

tification of reserve ranges, with or without an
analysis of correlations between lines of busi-
ness, is a valuable extension of current actuarial
practice. Regulations such as those recently pro-
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mulgated by APRA will accelerate the general

usage of stochastic techniques in reserve analy-

sis. An accompanying benefit to the use of sto-

chastic reserving techniques is the ability to

quantify the effects of correlations between lines

of business on overall reserve ranges. This will

help actuaries and company management to bet-

ter understand how variable reserve develop-

ment might be, both by line and in the aggregate,

allowing companies to make better-informed

decisions on the booking of reserves and the

amount of capital that must be deployed to pro-

tect the company against adverse reserve devel-

opment.
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Appendix 1. Data sets

The data used in this case study is fictional.
It describes three lines of business, two long-
tail and one short-tail. All three produce approx-
imately the same mean reserve indication, but
with varying degrees of volatility around their
respective means. The data triangles are shown
in Tables 11 to 13. The data is all in the format of
incremental paid losses, with all dollar amounts
in thousands.
When calculating ultimate indications from

the commercial automobile data set, a tail extrap-
olation allowing for development up to 30 years
was included in the calculations.
When calculating ultimate indications from

the homeowners data set, no tail extrapolation
was used. Development was assumed to end at
ten years.
When calculating ultimate indications from

the workers compensation data set, a tail extrap-
olation allowing for development up to 30 years
was included in the calculations.

Appendix 2. An approach to
simulating correlated multivariate
normal random draws

An approach to producing correlated multi-
variate normal random draws is described in
Wikipedia (2007) as follows:
A widely used method for drawing a random

vector X from the n-dimensional multivariate
normal distribution with mean vector ¹ and co-
variance matrix § (required to be symmetric and
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Table 11. Line 1 (derived from Commercial Automobile business)

1 2 3 4 5 6 7 8 9 10

1 20,513 78,579 65,886 57,537 59,293 11,338 10,815 7,811 1,117 11,792
2 13,847 39,035 39,375 29,884 32,754 10,298 6,276 6,924 3,835 0
3 15,785 49,135 42,672 27,920 36,399 27,828 9,596 6,781 0 0
4 20,784 62,266 47,120 59,331 41,672 20,726 16,790 0 0 0
5 108,531 115,103 187,886 90,515 149,616 86,813 0 0 0 0
6 26,097 59,195 1,786 19,780 22,835 0 0 0 0 0
7 64,819 142,577 100,694 34,304 0 0 0 0 0 0
8 44,065 53,039 8,975 0 0 0 0 0 0 0
9 20,022 39,276 0 0 0 0 0 0 0 0

10 37,163 0 0 0 0 0 0 0 0 0

Table 12. Line 2 (derived from Homeowners business)

1 2 3 4 5 6 7 8 9 10

1 761,590 327,920 53,290 16,280 8,400 11,900 9,070 10,140 2,010 80
2 784,590 309,150 64,120 34,990 26,540 30,320 5,640 320 290 0
3 1,077,950 331,980 53,160 44,020 23,170 15,420 8,990 5,780 0 0
4 1,065,310 370,910 52,660 47,320 27,000 12,700 (800) 0 0 0
5 1,055,040 372,020 62,250 51,310 18,710 16,970 0 0 0 0
6 1,654,920 413,100 59,920 56,950 38,050 0 0 0 0 0
7 1,326,870 440,340 129,070 58,860 0 0 0 0 0 0
8 1,875,230 465,410 96,290 0 0 0 0 0 0 0
9 1,572,510 419,950 0 0 0 0 0 0 0 0

10 1,902,050 0 0 0 0 0 0 0 0 0

Table 13. Line 3 (derived from Workers Compensation business)

1 2 3 4 5 6 7 8 9 10

1 36,212 115,053 140,789 115,705 111,334 26,366 20,877 19,788 6,117 16,618
2 40,885 139,674 129,071 109,117 89,906 43,988 20,551 21,526 18,368 0
3 40,322 113,355 100,782 61,491 64,420 40,803 20,580 25,214 0 0
4 38,013 69,213 56,892 75,435 49,984 29,359 25,466 0 0 0
5 37,810 60,405 85,602 33,211 53,347 35,643 0 0 0 0
6 37,159 67,486 34,465 33,121 41,478 0 0 0 0 0
7 34,415 68,634 34,427 18,653 0 0 0 0 0 0
8 37,786 40,462 24,049 0 0 0 0 0 0 0
9 35,380 73,641 0 0 0 0 0 0 0 0

10 39,866 0 0 0 0 0 0 0 0 0

positive definite) works as follows:

1. Compute the Cholesky decomposition (ma-
trix square root) of §, that is, find the unique
lower triangular matrix A such that AAT = §.

2. Let Z = (z1, : : : ,zn)
T be a vector whose compo-

nents are n independent standard normal vari-
ates (which can be generated, for example, by
using the Box-Muller transform).

3. Let X be ¹+AZ.

This approach first requires the user to com-
pute the Cholesky decomposition of the corre-
lation matrix associated with the different lines
of business. Wikipedia provides several links to
web sites containing tools that can be used to
compute Cholesky decompositions.
The second step is to generate however many

independent random draws from a standard nor-
mal distribution. In Excel, this can be performed
by repeatedly using the NORMINV() function,

VOLUME 2/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 31



Variance Advancing the Science of Risk

where the probability value in the NORMINV
function is a random value generated by
the RAND() function.
The third step is to combine the Cholesky de-

composition of the correlation matrix with the
random draws from the standard normal distri-
bution. If we are working with the standard nor-
mal distribution, the value of the mean vector ¹
is zero, so the correlated random draws are the
result of multiplying the matrix A with the vec-
tor Z.

Appendix 3. A step-by-step
walkthrough of the bootstrap
process used for reserve
simulation

Bootstrapping is a technique broadly accepted
within the statistical community. It uses the noise
within the historical data to make inferences
about both the noise in the future and about the
parameter uncertainty. Since it uses the historical
noise, it is not restricted to normal error struc-
tures, but rather uses the error structure implicit
within the historical data. The method used is
based upon the approach outlined by England
and Verrall (1999) and expanded upon by Eng-
land (2001). We encourage readers who want
further explanation of the theory or other exam-
ples of the methodology to read both of these
papers.
The theoretical model to which this bootstrap-

ping technique is compared is a model of in-
cremental losses known as an “over-dispersed”
Poisson distribution. This model is described by
Renshaw and Verrall (1998). Using the notation
from England and Verrall (1999), in which in-
cremental losses for origin year i in development
year j are denoted Cij , we have:

E[Cij] =mij and

Var[Cij] = ÁE[Cij] = Ámij ,

(App 3.1)

log(mij) = ´ij , (App 3.2)

and
´ij = c+®i+¯j: (App 3.3)

These equations define a generalized linear
model in which the calculated value is modeled
with a logarithmic link function and the variance
is proportional to the mean. The model is de-
scribed as an “over-dispersed” Poisson because
the variance is proportional to the mean instead
of equal to the mean. The parameter Á is an un-
known scale parameter that is estimated as part
of the fitting procedure. England (2001) notes
that “with certain positivity constraints, predicted
values and reserve estimates from this model are
exactly the same as those from the chain ladder
model” (p. 3). This is important to the bootstrap-
ping algorithm described below–it means that
ultimate loss projections can be calculated using
a traditional chain ladder approach that is more
easily programmed than an over-dispersed Pois-
son generalized linear model.
The bootstrapping methodology described be-

low follows what England and Verrall (1999)
identify as the commonly used approach when
applying bootstrapping to regression-type prob-
lems, namely bootstrapping the residuals as op-
posed to the data itself (p. 285). In this con-
text, bootstrapping refers to the resampling of
the residuals, as described in Step 6 below, and
not the entire process described in Steps 1—12.
England and Verrall (1999) identify three pos-

sible formulas that could be used to calculate the
residuals. They identify one, the unscaled Pear-
son residual, as being the preferred formula due
to (a) the practical simplicity with which it can
be incorporated programmatically into a simula-
tion process and (b) its more common usage than
one of the other options (p. 285).
The formula of the unscaled Pearson residual

rP is:

rP =
C¡mp
m
: (App 3.4)

This equation can be rearranged into the equa-
tion:

C = rP
p
m+m: (App 3.5)
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The bootstrap process described below will gen-
erate a series of resampled Pearson residuals r¤P
and will calculate the fitted value m, enabling the
straightforward calculation of a series of incre-
mental claim amounts C¤.
As noted above, the over-dispersed Poisson

distribution model includes a scale parameter Á
that is estimated as part of the fitting procedure.
The bootstrapping methodology does not implic-
itly include this scale parameter, so it must be in-
corporated as an additional step in the mechan-
ical process. From England and Verrall (1999),
the scale parameter equation that corresponds to
the Pearson residual in formula (App 3.4) is de-
rived from the equation:

ÁP =
P
r2P

n¡p: (App 3.6)

where n is the number of data points in the sam-
ple, p is the number of parameters being esti-
mated, and the summation is over the number
(n) of the residuals (p. 286).
England (2001) adjusts the Pearson residuals

from formula (App 3.6) to take into account the
number of degrees of freedom in the bootstrap
equation. England’s adjustment replaces rP with
r0P , where

r0P =
s

n

n¡p £
C¡mp
m
: (App 3.7)

The steps undertaken to calculate the reserve
runoff using the bootstrapping method are:

1. Begin with a triangle of cumulative histori-
cal payments. We will use the data from Ta-
ble 12, Line 2 (derived from Homeowners
business). This is shown in Triangle 1.

2. Calculate factors based upon historical pay-
ments. The factors calculated are based on
the cumulative chain ladder method. The fac-
tors are weighted averages.

3. Using the cumulative factors calculated in
Step 2, refit the original payments.
Most recent payment period equals most

recent payment period cumulated payments
in the actual data.

Fitted payments (accident year r, calendar
year c) all other payment periods=

Fitted Payment (r,c+1)
Chain Ladder Factor (r,c+1)

:

(App 3.8)

The results of the refitting are shown in
Triangle 2.
For example, the derivation of the row 8,

column 2 value of 2,331,583=the row 8, col-
umn 3 value of 2,436,930 from Triangle 2
divided by the column 3 average of 1.0452.
The derivation of the row 8, column 1 value
of 1,781,437 equals the row 8, column 2
value of 2,331,583 from Triangle 2 divided
by the column 2 average of 1.3088.

4. Calculate unscaled Pearson residuals. This
is the residual definition chosen by England
and Verrall (1999) as being suitable for a
generalized linear model of the type describ-
ed by formulas (App 3.1) through (App 3.3).
The formula for the Pearson residual is given
by formula (App 3.4), and is shown again
in the context of this example in (App 3.9).
The calculated unscaled residuals are shown
in Triangle 3.

Pearson Residual(r,c) =

Actual Payment(r,c)¡Fitted Payment(r,c)p
Fitted Payment(r,c)

:

(App 3.9)

The values are unscaled in the sense that
they do not include the scale parameter Á.
The scale parameter is not needed when per-
forming the bootstrap calculations, but it will
be needed to incorporate an estimate of pro-
cess error in the final results. The scale pa-
rameter will be incorporated into the calcu-
lations beginning with Step 11.
For example, the derivation of the row 8,

column 1 value is:

Pearson Residual(8,1) = 70:27 =

1,875,230¡ 1,781,437p
1,781,437

:
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Triangle 1. Cumulative historical data

1 2 3 4 5 6 7 8 9 10

1 761,590 1,089,510 1,142,800 1,159,080 1,167,480 1,179,380 1,188,450 1,198,590 1,200,600 1,200,680
2 784,590 1,093,740 1,157,860 1,192,850 1,219,390 1,249,710 1,255,350 1,255,670 1,255,960
3 1,077,950 1,409,930 1,463,090 1,507,110 1,530,280 1,545,700 1,554,690 1,560,470
4 1,065,310 1,436,220 1,488,880 1,536,200 1,563,200 1,575,900 1,575,100
5 1,055,040 1,427,060 1,489,310 1,540,620 1,559,330 1,576,300
6 1,654,920 2,068,020 2,127,940 2,184,890 2,222,940
7 1,326,870 1,767,210 1,896,280 1,955,140
8 1,875,230 2,340,640 2,436,930
9 1,572,510 1,992,460

10 1,902,050

Development Factors

1 2 3 4 5 6 7 8 9 10

Ave n/a 1.3088 1.0452 1.0288 1.0156 1.0124 1.0041 1.0041 1.0009 1.0001

Triangle 2. Cumulative fitted values

1 2 3 4 5 6 7 8 9 10

1 822,235 1,076,160 1,124,783 1,157,142 1,175,141 1,189,716 1,194,624 1,199,476 1,200,600 1,200,680
2 860,149 1,125,782 1,176,647 1,210,498 1,229,327 1,244,574 1,249,708 1,254,784 1,255,960
3 1,069,695 1,400,040 1,463,298 1,505,395 1,528,811 1,547,772 1,554,158 1,560,470
4 1,084,109 1,418,906 1,483,016 1,525,680 1,549,412 1,568,628 1,575,100
5 1,089,411 1,425,845 1,490,269 1,533,142 1,556,989 1,576,300
6 1,555,371 2,035,703 2,127,682 2,188,893 2,222,940
7 1,389,272 1,818,310 1,900,466 1,955,140
8 1,781,437 2,331,583 2,436,930
9 1,522,331 1,992,460

10 1,902,050

Triangle 3. Unscaled Pearson residuals

1 2 3 4 5 6 7 8 9 10

1 ¡66:88 146.84 21.16 ¡89:38 ¡71:55 ¡22:16 59.40 75.92 26.42 0.00
2 ¡81:47 84.43 58.77 6.19 56.20 122.07 7.05 ¡66:75 ¡25:83
3 7.98 2.84 ¡40:15 9.37 ¡1:61 ¡25:72 32.59 ¡6:70
4 ¡18:06 62.41 ¡45:22 22.54 21.22 ¡47:01 ¡90:39
5 ¡32:93 61.35 ¡8:56 40.75 ¡33:27 ¡16:84
6 79.82 ¡97:01 ¡105:71 ¡17:22 21.69
7 ¡52:94 17.25 163.68 17.90
8 70.27 ¡114:24 ¡27:90
9 40.67 ¡73:18

10 0.00

5. One adjustment must be made to the un-
scaled Pearson residuals before they can be
used in the bootstrap algorithm. This is to
adjust the residuals to account for the num-
ber of degrees of freedom in the original data
triangle. This step is done so as to allow the

process variances derived from the bootstrap
model to be compared to the process vari-
ances that can be obtained from the over-
dispersed Poisson generalized linear model.
The degree of freedom adjustment is accom-
plished by multiplying each residual by an
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adjustment factor equal tos
n

n¡p (App 3.10)

where n= number of data points (55 in a
10£ 10 triangle) and p= number of param-
eters being estimated = (2 ¤ number of acci-
dent years)¡ 1.
The degrees of freedom adjustment for this

data triangle =
p
55=(55¡ 19) = 1:236. The

adjusted residuals are shown in Triangle 4.
This is the end result of the application of
formula (App 3.7) to this bootstrapping ex-
ample.

6. Randomly select from the adjusted Pearson
residuals, excluding the cells in the top right
and bottom left, as these will always be zero.
An example of one possible random selec-
tion of residuals is shown in Triangle 5.

7. Calculate a “false history” based on the ran-
domly selected residuals from Step 6.

False History(r,c) = Random Residual(r,c)

¤
p
Fitted Payment(r,c) +Fitted Payment(r,c):

(App 3.11)

An example of a false history is shown
in Triangle 6, using the residuals shown in
Triangle 5. For example, the derivation of the
row 8, column 1 value is:

False History(8,1) = 1,906,677

= 93:83 ¤
p
1,781,437+1,781,437:

8. Recalculate the weighed average cumulative
chain ladder factors using cumulated false
history from Triangle 6.

9. Use the development factors from Step 8
to square the triangle from Step 7 using the
traditional cumulative chain ladder method,
as is shown in Triangle 7.
To the left of the heavy black line is the

false history data from Triangle 6, to the right

is the squaring of the false history data using
the link ratios from Step 8.

At this point, the bootstrapping methodology
has quantified a measure of the parameter uncer-
tainty, but not the process uncertainty. In order
to obtain the full prediction error, a measure of
process variance must be included in the simu-
lation process. To incorporate process variance
in the calculations, England proposes the simu-
lation of incremental payments from a series of
gamma distributions. Each projected incremen-
tal payment is assumed to have its own gamma
distribution with mean equal to the incremental
projected payments that can be derived from Step
9. The variance is equal to the incremental pro-
jected payment multiplied by the scale parameter
Á that was previously mentioned in Step 4. As a
practical measure we have extended this method
to allow negative incrementals by modeling the
absolute incremental projected payment with the
gamma, and then applying the appropriate sign.

10. Calculate incremental projected payments
from the squared triangle. The absolute val-
ues of these incremental projected payment
amounts will be used as the mean values in
each gamma distribution.

11. Calculate the scale parameter Á. The scale
parameter is estimated as the Pearson chi-
squared statistic divided by the degrees of
freedom, as described in formula (App 3.6).
The Pearson chi-squared statistic is equal to
the sum of the squares of the unscaled Pear-
son residuals that were calculated in Step 4.
The degrees of freedom equal n¡p, where
n and p were calculated in Step 5. The scale
parameter is the same for all projected incre-
mental payment periods.
For the example shown here, the scale pa-

rameter Á is calculated as follows:

Pearson chi-squared statistic
Number of degrees of freedom

=
203,397
55¡ 19

= 5,650:

12. For each incremental future payment, draw
a random sample from a gamma distribution
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Triangle 4. Unscaled Pearson residuals, adjusted for degrees of freedom in original data triangle

1 2 3 4 5 6 7 8 9 10

1 ¡82:67 181.50 26.16 ¡110:48 ¡88:44 ¡27:38 73.42 93.83 32.66 0.00
2 ¡100:70 104.36 72.64 7.65 69.46 150.89 8.72 ¡82:51 ¡31:93
3 9.87 3.52 ¡49:62 11.58 ¡1:99 ¡31:79 40.29 ¡8:28
4 ¡22:32 77.14 ¡55:89 27.86 26.23 ¡58:11 ¡111:73
5 ¡40:70 75.83 ¡10:58 50.36 ¡41:12 ¡20:82
6 98.66 ¡119:91 ¡130:65 ¡21:29 26.81
7 ¡65:44 21.33 202.31 22.13
8 86.86 ¡141:21 ¡34:49
9 50.27 ¡90:46

10 0.00

Triangle 5. One possible random selection of residuals

1 2 3 4 5 6 7 8 9 10

1 50.27 ¡55:89 ¡119:91 ¡31:93 ¡1:99 ¡31:93 86.86 ¡49:62 -22.32 69.46
2 ¡58:11 9.87 ¡119:91 ¡141:21 ¡40:70 8.72 ¡82:51 50.27 77.14
3 104.36 3.52 ¡31:93 ¡40:70 ¡34:49 21.33 ¡10:58 75.83
4 ¡31:93 21.33 75.83 69.46 21.33 ¡65:44 ¡130:65
5 93.83 3.52 181.50 ¡27:38 ¡10:58 ¡41:12
6 ¡111:73 7.65 8.72 ¡31:93 ¡31:93
7 32.66 ¡41:12 ¡119:91 150.89
8 22.13 ¡27:38 69.46
9 ¡100:70 75.83

10 73.42

Triangle 6. False history based on random residuals in Triangle 5

1 2 3 4 5 6 7 8 9 10

1 867,818 225,759 22,183 26,615 17,732 10,720 10,994 1,395 376 701
2 806,259 270,717 23,823 7,870 13,244 16,323 (778) 8,657 3,821
3 1,177,634 332,366 55,226 33,746 18,138 21,898 5,540 12,337
4 1,050,861 347,137 83,310 57,012 27,017 10,145 (4,039)
5 1,187,350 338,473 110,492 37,203 22,213 13,596
6 1,416,033 485,637 94,622 53,311 28,155
7 1,427,768 402,103 47,787 89,955
8 1,810,969 529,835 127,892
9 1,398,085 522,125

10 2,003,312

Development factors from false history in Triangle 6

1 2 3 4 5 6 7 8 9 10

Ave n/a 1.310 1.045 1.028 1.014 1.010 1.002 1.006 1.002 1.001

whose mean is equal to the absolute value of
the incremental payment calculated in Step
10 and whose variance equals the product
of Á (as calculated in Step 11) and the abso-
lute value of the incremental payment calcu-
lated in Step 10. Set the sign of the random

sample so as to be the same as the original
incremental payment calculated in Step 10.
In this example, the value for row 9, col-

umn 3 was drawn from a gamma distribution
with a mean of 85,634 and a variance equal
to 5,650 ¤ 85,634. The value for row 10, col-
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Triangle 7. Squaring the false history triangle

1 2 3 4 5 6 7 8 9 10

1 867,818 1,093,577 1,115,760 1,142,375 1,160,107 1,170,827 1,181,821 1,183,216 1,183,592 1,184,293
2 806,259 1,076,977 1,100,800 1,108,670 1,121,914 1,138,237 1,137,459 1,146,116 1,149,938 1,150,619
3 1,177,634 1,510,000 1,565,226 1,598,972 1,617,110 1,639,008 1,644,548 1,656,885 1,659,871 1,660,854
4 1,050,861 1,397,998 1,481,309 1,538,321 1,565,338 1,575,483 1,571,444 1,580,320 1,583,168 1,584,106
5 1,187,350 1,525,824 1,636,315 1,673,518 1,695,732 1,709,328 1,712,954 1,722,629 1,725,733 1,726,756
6 1,416,033 1,901,670 1,996,292 2,049,602 2,077,757 2,098,848 2,103,301 2,115,181 2,118,992 2,120,248
7 1,427,768 1,829,872 1,877,659 1,967,614 1,994,932 2,015,182 2,019,457 2,030,864 2,034,523 2,035,728
8 1,810,969 2,340,804 2,468,695 2,538,749 2,573,996 2,600,124 2,605,639 2,620,357 2,625,079 2,626,634
9 1,398,085 1,920,209 2,005,844 2,062,763 2,091,401 2,112,631 2,117,112 2,129,071 2,132,907 2,134,171

10 2,003,312 2,624,319 2,741,354 2,819,144 2,858,284 2,887,298 2,893,423 2,909,766 2,915,009 2,916,737

Triangle 8. Calculating incremental projected payments from the squared triangle

1 2 3 4 5 6 7 8 9 10

1
2 681
3 2,986 983
4 8,876 2,848 938
5 3,626 9,676 3,104 1,022
6 21,091 4,452 11,881 3,811 1,255
7 27,318 20,250 4,275 11,407 3,659 1,205
8 70,053 35,247 26,128 5,515 14,718 4,722 1,555
9 85,634 56,919 28,639 21,230 4,481 11,959 3,836 1,264

10 621,007 117,035 77,790 39,140 29,014 6,125 16,344 5,243 1,727

Triangle 9. One possible example of random draws from gamma distributions to simulate payments that include process error
as well as parameter error

1 2 3 4 5 6 7 8 9 10

1
2 145
3 95 22
4 5,961 683 637
5 3,853 3,621 2,558 599
6 11,919 2,636 38,594 2,461 96
7 32,750 6,270 10,371 17,807 3,472 0
8 55,382 34,696 19,754 3,525 12,698 1,055 1,674
9 98,708 77,614 34,395 20,533 4,794 190 1,214 0

10 624,837 136,808 80,000 63,599 30,370 217 20,878 1,773 9,111

umn 3 was drawn from a gamma distribution
with a mean of 117,035 and a variance equal
to 5,650 ¤ 117,035.

13. Sum the incremental future payments calcu-
lated in Step 12 to arrive at the final reserve
estimate for this particular simulation. In the
example shown in Triangle 9, this equals
1,478,376.

14. Repeat Steps 5 through 12 N times, produc-
ing a different simulated reserve indication
each time. At the end of the N simulations,
examine the resulting distribution of reserves
to arrive at the overall reserve range and re-
serve indications at different percentiles.
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Results from 5,000 simulations

Mean 1,425,665
Standard Deviation 136,233

Minimum 970,631
Maximum 2,055,375

Percentile
1 1,125,108
5 1,206,925
10 1,253,563
20 1,308,459
30 1,353,153
40 1,389,518
50 1,424,384
60 1,457,631
70 1,492,174
80 1,535,347
90 1,596,733
95 1,656,242
99 1,760,099

Indicated reserve, based on squaring the original
data triangle

1,416,460
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