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Abstract

To quantify an operational risk capital charge under Basel II, many banks adopt a

Loss Distribution Approach. Under this approach, quantification of the frequency

and severity distributions of operational risk involves the bank’s internal data, expert

opinions and relevant external data. In this paper we suggest a new approach,

based on a Bayesian inference method, that allows for a combination of these three

sources of information to estimate the parameters of the risk frequency and severity

distributions.
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1 Introduction

To meet the Basel II requirements, BIS [6], many banks adopt a Loss Distribution Ap-

proach (LDA). Under this approach, banks quantify distributions for the frequency and

severity of operational losses for each risk cell over a one year time horizon; see, e.g., Cruz

[7], McNeil et al. [19], Panjer [22]. Banks can use their own risk cell structure but they

must be able to map the losses to the relevant Basel II risk cells (eight business lines times
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seven risk types). The commonly used LDA model for an annual loss in a single risk cell

is the sum of individual losses

L =
N∑

k=1

Xk, (1.1)

where N is the annual number of events (frequency) and Xk, k = 1, . . . , N , are the sever-

ities of these events.

Several studies, e.g., Moscadelli [20] and Dutta and Perry [11], analyzed operational risk

data collected over many banks by Basel II business line and event type; see Degen et

al. [10] for a discussion and analysis of these studies. While analyses of collective data

may provide a picture for the whole banking industry, estimation of frequency and sever-

ity distributions of operational risks for each risk cell is a challenging task for a single

bank. The bank’s internal data are typically collected over several years. On the one

hand, there might be some cells with few internal data only. On the other hand, industry

data available through external databases (from vendors and consortia of banks) are often

difficult to adapt to internal processes, due to different volumes, thresholds etc.

Therefore, it is important to have expert judgments incorporated into the model. These

judgments may provide valuable information for forecasting and decision making, espe-

cially for risk cells lacking internal loss data. In the past, quantification of operational risk

was based on such expert judgments only. A quantitative assessment of risk frequency

and severity distributions can be obtained from expert opinions; see, e.g., Alderweireld

et al. [2]. By itself, this assessment is very subjective and should be combined with (sup-

ported by) the analysis of actual loss data. In practice, due to the absence of a sound

mathematical framework, ad-hoc procedures are often used to combine the three sources

of data: internal observations, external data and expert opinions. For example, the fre-

quency distribution is estimated using internal data only, while the severity distribution

is fitted to a sample combining internal and external data.

On several occasions, risk executives have emphasized that one of the main challenges in

operational risk management is to combine internal data and expert opinion with relevant

external data in an appropriate way; see, e.g., Davis [9], an interview with four industry’s

top risk executives in September 2006: “[A] big challenge for us is how to mix the internal

data with external data; this is something that is still a big problem because I don’t think

anybody has a solution for that at the moment.” Or: “What can we do when we don’t have

enough data [. . .] How do I use a small amount of data when I can have external data

with scenario generation? [. . .] I think it is one of the big challenges for operational risk

2



managers at the moment”.

A “Toy” model, based on hierarchical credibility theory, was proposed by Bühlmann et

al. [5] for low frequency high impact operational risk losses exceeding some high thresh-

old. However, this model can be too sensitive to expert opinions used to estimate scaling

factors for distribution parameters. In the present framework we introduce a model that

is more robust towards expert opinions.

We use Bayesian inference as the statistical technique to incorporate expert opinions into

data analysis. There is a broad literature covering Bayesian inference and its applications

to the insurance industry and other areas. The method allows for structural modeling

of different sources of information. Shevchenko and Wüthrich [24] described the use of

the Bayesian inference approach, in the context of operational risk, for estimation of fre-

quency/severity distributions in a risk cell, where expert opinion or external data are

used to estimate prior distributions. This allows the combining of two data sources: ei-

ther expert opinion and internal data or external data and internal data.

The novelty in this paper is that we develop a Bayesian inference model that allows for

combining three sources (internal data, external data and expert opinions) simultaneously.

To the best of our knowledge, we have not seen any similar model that copes compre-

hensively with this task. Moreover, one should note that our framework enlarges the

classical Bayesian inference models belonging to the exponential dispersion family with

its associated conjugates; see, e.g., Bühlmann and Gisler [4], Chapter 2.

In Section 2 we develop a suitable method to combine the three types of knowledge in the

context of operational risk. In Sections 3 and 4, this framework is used to quantify loss

frequency and severity, respectively. Several examples illustrate the quality and the ro-

bustness of this quantitative approach for operational risk. In Section 5 we briefly discuss

open challenges when aggregating risk cells and estimating risk capital.

2 Bayesian Inference

In order to estimate the risk capital of a bank and to fulfill the Basel II requirements, risk

managers have to take into account information beyond the (often rare) internal data.

This includes relevant external data (industry data) and expert opinions. The aim of this

section is to provide some well-founded background to combining these three sources of

information. Hereafter we consider one risk cell only.
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In any risk cell, we model the loss frequency and the loss severity by a distribution (e.g.,

Poisson for the frequency or Pareto, lognormal etc. for the severity). For the considered

bank, the unknown parameters γ0 (e.g., the Poisson parameter or the Pareto tail index)

of these distributions have to be quantified.

A priori, before we have any company specific information, only industry data are avail-

able. Hence, the best prediction of our bank specific parameter γ0 is given by the belief

in the available external knowledge such as the provided industry data. This unknown

parameter of interest is modeled by a prior distribution (also called structural distribution

or risk profile) corresponding to a random vector γ. The parameters of the prior distri-

bution (so-called hyper-parameters) are estimated using data from the whole industry by,

e.g., maximum likelihood estimation, as described in Shevchenko and Wüthrich [24]. If

no industry data are available, the prior distribution could come from a “super expert”

that has an overview over all banks.

In our terminology, we treat the true company specific parameter γ0 as a realization of

γ. The random vector γ plays the role of the underlying parameter set of the whole

banking industry sector, whereas γ0 stands for the unknown underlying parameter set of

the bank being considered. Note that γ is random with known distribution, whereas γ0 is

deterministic but unknown. Due to the variability amongst banks, it is natural to model

γ by a probability distribution.

As time passes, internal observations X = (X1, . . . , XK) as well as expert opinions

ϑ = (ϑ(1), . . . , ϑ(M)) about the underlying parameter γ0 become available. This affects

our belief in the distribution of γ coming from external data only and adjust the predic-

tion of γ0. The more information on X and ϑ we have, the better we are able to predict

γ0. That is, we replace the prior density π(γ) by a conditional density of γ given X and

ϑ.

The natural question that arises at this point is: How does this company specific informa-

tion X and ϑ change our view of the underlying parameter γ, i.e., what is the distribution

of γ|X,ϑ?

The Bayesian inference approach yields the canonical theory answering questions of the

above type. In order to determine γ|X,ϑ we have to introduce some notation. The joint

conditional density of observations and expert opinions given the parameter vector γ is

denoted by

h(X,ϑ|γ) = h1(X|γ)h2(ϑ|γ), (2.1)
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where h1 and h2 are the conditional densities (given γ) of X and ϑ, respectively. Thus

X and ϑ are assumed to be conditionally independent given γ.

Remarks 2.1:

• Notice that, in this way, we naturally combine external data γ with internal data

X and expert opinion ϑ.

• In classical Bayesian inference (as it is used, e.g., in actuarial science), one usu-

ally combines only two sources of information. The novelty in this paper is that

we combine three sources simultaneously using an appropriate structure, i.e., equa-

tion (2.1).

• (2.1) is quite a reasonable assumption: Assume that the true bank specific parameter

is γ0. Then (2.1) says that the experts in this bank estimate γ0 (by their opinion ϑ)

independently of the internal observations. This makes sense if the experts specify

their opinions regardless of the data observed. 2

We further assume that observations as well as expert opinions are conditionally indepen-

dent and identically distributed (i.i.d.), given γ, so that

h1(X|γ) =
K∏

k=1

f1(Xk|γ), (2.2)

h2(ϑ|γ) =
M∏

m=1

f2(ϑ(m)|γ), (2.3)

where f1 and f2 are the marginal densities of a single observation and a single expert opin-

ion, respectively. We have assumed that all expert opinions are identically distributed,

but this can be generalized easily to expert opinions having different distributions.

The unconditional parameter density π(γ) is called the prior density, whereas the con-

ditional parameter density π̂(γ|X,ϑ) is called the posterior density. Let h(X,ϑ) denote

the unconditional joint density of observations X and expert opinions ϑ. Then it follows

from Bayes’ Theorem that

h(X,ϑ|γ)π(γ) = π̂(γ|X,ϑ)h(X,ϑ). (2.4)

Note that the unconditional density h(X,ϑ) does not depend on γ and, thus, the posterior

density is given by

π̂(γ|X,ϑ) ∝ π(γ)
K∏

k=1

f1(Xk|γ)
M∏

m=1

f2(ϑ(m)|γ), (2.5)
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where “∝” stands for “is proportional to” with the constant of proportionality independent

of the parameter vector γ. For the purposes of operational risk it is used to estimate the

full predictive distribution of future losses.

Equation (2.5) can be used in a general set-up, but it is convenient to find some conjugate

prior distributions such that the prior and the posterior distribution have a similar type,

or where, at least, the posterior distribution can be calculated analytically.

Definition 2.2 (Conjugate Prior Distribution) Let F denote the class of density

functions h(X,ϑ|γ), indexed by γ. A class U of prior densities π(γ) is said to be a

conjugate family for F if the posterior density π̂(γ|X,ϑ) ∝ π(γ)h(X,ϑ|γ) also belongs

to the class U for all h ∈ F and π ∈ U . 2

Conjugate distributions are very useful in practice and will be used consistently through-

out this paper. At this point, we also refer to Bühlmann and Gisler [4], Section 2.5. In

general, the posterior distribution cannot be calculated analytically but can be estimated

numerically for instance by the Markov Chain Monte Carlo method; see, e.g., Peters and

Sisson [23] or Gilks et al. [17].

3 Loss Frequency

3.1 Combining internal data and expert opinions with external

data
Model Assumptions 3.1 (Poisson-Gamma-Gamma)

Assume that bank i has a scaling factor Vi, 1 ≤ i ≤ I, for the frequency in a specified

risk cell (e.g., it can be a product of economic indicators such as the gross income, the

number of transactions, the number of staff, etc.). We choose the following model for the

loss frequency for operational risk of a risk cell in bank i:

a) Let Λi ∼ Γ(α0, β0) be a Gamma distributed random variable with shape parameter

α0 > 0 and scale parameter β0 > 0, which are estimated from (external) market

data. That is, the density of Γ(α0, β0), xα0−1e−x/β0/(βα0
0 Γ(α0)) (x > 0), plays the

role of π(γ) in (2.5).

b) The number of losses of bank i in year k, 1 ≤ k ≤ Ki, are assumed to be conditionally

i.i.d., given Λi, Poisson distributed with frequency ViΛi, i.e., Ni,1, . . . , Ni,Ki
|Λi

i.i.d.∼
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Pois(ViΛi). That is, f1(·|Λi) in (2.5) corresponds to the density of a Pois(ViΛi)

distribution.

c) We assume that bank i has Mi experts with opinions ϑ
(m)
i , 1 ≤ m ≤ Mi, about

the company specific intensity parameter Λi with ϑ
(m)
i |Λi

i.i.d.∼ Γ(ξi,
Λi

ξi
), where ξi

is a known parameter. That is, f2(·|Λi) corresponds to the density of a Γ(ξi,
Λi

ξi
)

distribution. 2

Remarks 3.2:

• In the sequel, we only look at a single bank i and therefore we could drop the index

i. However, we refrain from doing so in order to highlight the fact that we do not

consider the whole banking industry, but only a single bank.

• The parameters α0 and β0 in Model Assumptions 3.1 a) are called hyper-parameters

(parameters for parameters); see, e.g., Bühlmann and Gisler [4], p. 38. These pa-

rameters are estimated using the maximum likelihood method or the method of mo-

ments; see for instance Shevchenko and Wüthrich [24], Section 5 and Appendix B.

• In Model Assumptions 3.1 c) we assume

E[ϑ(m)
i |Λi] = Λi, 1 ≤ m ≤ Mi, (3.1)

that is, expert opinions are unbiased. A possible bias might only be recognized by

the regulator, as he alone has the overview of the whole market. 2

Note that the coefficient of variation of the conditional expert opinion ϑ
(m)
i |Λi of company

i is Vco(ϑ(m)
i |Λi) = (var(ϑ(m)

i |Λi))1/2/E[ϑ(m)
i |Λi] = 1/

√
ξi, and thus is independent of

Λi. This means that ξi, which characterizes the uncertainty in the expert opinions, is

independent of the true bank specific Λi. For simplicity, we have assumed that all experts

have the same conditional coefficient of variation and thus have the same credibility.

Moreover, this allows for the estimation of ξi within each company i, e.g., by ξ̂i = (µ̂i/σ̂i)2

with

µ̂i =
1

Mi

Mi∑
m=1

ϑ
(m)
i and σ̂2

i =
1

Mi − 1

Mi∑
m=1

(ϑ(m)
i − µ̂i)2, Mi ≥ 2. (3.2)

In a more general framework the parameter ξi can be estimated, e.g., by maximum likeli-

hood. If the credibility differs among the experts, then ϑ
(m)
i and Vco(ϑ(m)

i |Λi) should be

estimated for all m, 1 ≤ m ≤ Mi. This may often be a (too) challenging issue in practice.
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Remarks 3.3:

• Λi is the risk characteristic of a risk cell in bank i. A priori, before we have any

observations, the banks are all the same, i.e., Λi is i.i.d. Observations and expert

opinions modify this characteristic Λi according to the actual experience in company

i, which gives different posteriors Λi|Ni,1, . . . , Ni,Ki
, ϑ

(1)
i , . . . , ϑ

(Mi)
i .

• This model can be extended to a model where one allows for more flexibility in

the expert opinions. For convenience, we prefer that experts are conditionally i.i.d.,

given Λi. This has the advantage that there is only one parameter, ξi, that needs

to be estimated. 2

Using the notation from Section 2, we calculate the posterior density of Λi, given the

losses up to year Ki and the expert opinion of Mi experts. We introduce the following

notation for the loss database and the expert knowledge of bank i:

Ni = (Ni,1, . . . , Ni,Ki),

ϑi = (ϑ(1)
i , . . . , ϑ

(Mi)
i ).

Here and in what follows, we denote arithmetic means by

N i =
1

Ki

Ki∑
k=1

Ni,k, ϑi =
1

Mi

Mi∑
m=1

ϑ
(m)
i , etc. (3.3)

The posterior density π̂ is given by the following theorem.

Theorem 3.4

Under Model Assumptions 3.1, the posterior density of Λi, given loss information Ni and

expert opinion ϑi, is given by

π̂Λi
(λi|Ni,ϑi) =

(ω/φ)(ν+1)/2

2Kν+1(2
√

ωφ)
λν

i e−λiω−λ−1
i φ, (3.4)

with

ν = α0 − 1−Miξi + KiNi,

ω = ViKi +
1
β0

, (3.5)

φ = ξiMiϑi,

and

Kν+1(z) =
1
2

∫ ∞

0

uνe−z(u+1/u)/2du. (3.6)
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Kν(z) is called a modified Bessel function of the third kind; see for instance Abramowitz

and Stegun [1], p. 375.

Proof: Set αi = ξi and βi = λi/ξi. Model Assumptions 3.1 applied to (2.5) yield

π̂Λi(λi|Ni,ϑi) ∝ λα0−1
i e−λi/β0

Ki∏
k=1

e−Viλi
(Viλi)Ni,k

Ni,k!

Mi∏
m=1

(ϑ(m)
i /βi)αi−1

βi
e−ϑ

(m)
i /βi

∝ λα0−1
i e−λi/β0

Ki∏
k=1

e−Viλiλ
Ni,k

i

Mi∏
m=1

(ξi/λi)ξie−ϑ
(m)
i ξi/λi

∝ λα0−1−Miξi+KiNi

i exp
(
−λi

(
ViKi +

1
β0

)
− 1

λi
ξiMiϑi

)
. (3.7)

2

Remarks 3.5:

• A distribution with density (3.4) is referred to as the generalized inverse Gaussian

distribution GIG(ω, φ, ν). This is a well-known distribution with many applications

in finance and risk management; see McNeil et al. [19]. The GIG has been analyzed

by many authors. A discussion is found, e.g., in Jørgensen [18]. The GIG belongs to

the popular class of subexponential distributions; see Embrechts [12] for a proof and

Embrechts et al. [13] for a detailed treatment of subexponential distributions. The

GIG with ν ≤ 1 is a first hitting time distribution for certain time-homogeneous

processes; see for instance Jørgensen [18], Chapter 6. In particular, the (standard)

inverse Gaussian (i.e., the GIG with ν = −3/2) is known by financial practitioners as

the distribution function determined by the first passage time of a Brownian motion.

Algorithms for generating realizations from a GIG are provided by Atkinson [3] and

Dagpunar [8]; see also McNeil et al. [19] and Appendix A below.

• Unlike in the classical Poisson-Gamma case of combining two sources of information

(see Shevchenko and Wüthrich [24], Bühlmann and Gisler [4]), we obtain in (3.7) a

more complicated posterior distribution π̂, which involves in the exponent both λi

and 1/λi. Note that expert opinions enter via the term 1/λi only. We give some

basic properties of the GIG distribution below.

• Observe that the classical exponential dispersion family (EDF) with associated con-

jugates (see Bühlmann and Gisler [4], Chapter 2.5) allows for a natural extension

to GIG-like distributions. In this sense the GIG distributions enlarge the classical

Bayesian inference theory on the exponential dispersion family. 2
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For our purposes it is interesting to observe how the posterior density transforms when

new data from a newly observed year arrive. Let νk, ωk and φk denote the parameters for

the observations (Ni,1, . . . , Ni,k) after k accounting years. Implementation of the update

processes is then given by the following equalities (assuming that expert opinions do not

change).

Information update process. Year k → year k + 1:

νk+1 = νk + Ni,k+1,

ωk+1 = ωk + Vi, (3.8)

φk+1 = φk.

Obviously, the information update process has a very simple form and only the parameter

ν is affected by the new observation Ni,k+1. The posterior density (3.7) does not change

its type every time new data arrive and hence, is easily calculated.

The moments of a GIG cannot be given in a closed form by elementary functions. However,

for α ≥ 1, all moments are given in terms of Bessel functions:

E[Λα
i |Ni,ϑi] =

(
φ

ω

)α/2
Kν+1+α(2

√
ωφ)

Kν+1(2
√

ωφ)
. (3.9)

A useful notation is the following:

Rν(z) =
Kν+1(z)
Kν(z)

. (3.10)

Then it follows for the posterior expected number of losses

E[Λi|Ni,ϑi] =

√
φ

ω
Rν+1(2

√
ωφ), (3.11)

and for the higher moments

E[Λα
i |Ni,ϑi] =

(
φ

ω

)α/2 α∏
k=1

Rν+k(2
√

ωφ), α = 2, 3, . . . (3.12)

We are clearly interested in robust prediction of the bank specific Poisson parameter and

thus the Bayesian estimator (3.11) is a promising candidate within this operational risk

framework. The examples below show that, in practice, (3.11) outperforms other classical

estimators. To interpret (3.11) in more detail, we make use of asymptotic properties.

Here and throughout the paper, f(x) ∼ g(x), x → a, means that lim
x→a

f(x)
g(x)

= 1. Lemma
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B.1 in Appendix B basically says that Rν2(2ν) ∼ ν is asymptotically linear for ν → ∞.

This is the key in the proof of Theorem 3.6 and yields a full asymptotic interpretation of

the Bayesian estimator (3.11).

Theorem 3.6

Under Model Assumptions 3.1, the following asymptotic relations hold P-almost surely:

a) Assume, given Λi = λi, Ni,k
i.i.d.∼ Pois(Viλi) and ϑ

(m)
i

i.i.d.∼ Γ(ξi, λi/ξi).

For Ki →∞ : E[Λi|Ni,ϑi] → E[Ni,k|Λi = λi]/Vi = λi.

b) For Vco(ϑ(m)
i |Λi) → 0 : E[Λi|Ni,ϑi] → ϑ

(m)
i , m = 1, . . . ,Mi.

c) Assume, given Λi = λi, Ni,k
i.i.d.∼ Pois(Viλi) and ϑ

(m)
i

i.i.d.∼ Γ(ξi, λi/ξi).

For Mi →∞ : E[Λi|Ni,ϑi] → E[ϑ(m)
i |Λi = λi] = λi.

d) For Vco(ϑ(m)
i |Λi) →∞, m = 1, . . . ,Mi :

E[Λi|Ni,ϑi] → 1
ViKiβ0+1E[Λi] +

(
1− 1

ViKiβ0+1

)
N i/Vi.

e) For E[Λi] = constant and Vco(Λi) → 0 : E[Λi|Ni,ϑi] → E[Λi].

Proof: See Appendix C. 2

Theorem 3.6 yields a natural interpretation of the posterior density (3.4) and its expected

value (3.11). As the number of observations increases, we give more weight to them and

in the limit Ki → ∞ (case a) we completely believe in the observations Ni,k and we

neglect a priori information and expert opinion. On the other hand, the more the co-

efficient of variation of the expert opinions decreases, the more weight is given to them

(case b). In Model 3.1, we assume experts to be conditionally independent. In practice,

however, even for Vco(ϑ(m)
i |Λi) → 0, the variance of ϑi|Λi cannot be made arbitrarily

small when increasing the number of experts, as there is always a positive covariance

term due to positive dependence between experts. Since we predict random variables, we

never have “perfect diversification”, that is, in practical applications we would probably

question property c.

Conversely, if experts become less credible in terms of having an increasing coefficient of

variation, our model behaves as if the experts do not exist (case d). The Bayes estimator

is then a weighted sum of prior and posterior information with appropriate credibil-

ity weights. This is the classical credibility result obtained from Bayesian inference on
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the exponential dispersion family with two sources of information; see Shevchenko and

Wüthrich [24], Formula (12).

Of course, if the coefficient of variation of the prior distribution (i.e., of the whole banking

industry) vanishes, the external data are not affected by internal data and expert opinion

(case e).

In this sense, Theorem 3.6 shows that our model behaves exactly as we would expect and

require in practice. Thus, we have good reasons to believe that it provides an adequate

model to combine internal observations with relevant external data and expert opinions,

as required by many risk managers.

Note that one can even go further and generalize the results from this section in a natural

way to a Poisson-Gamma-GIG model, i.e., where the prior distribution is a GIG. Then

the posterior distribution is again a GIG (see also Model Assumptions 4.6 below).

3.2 Implementation and practical application

In this section we apply the above theory to a concrete example. The Bayesian estimator

(3.11) derived above is easily implemented in practice. The following example extends

the example displayed in Figure 1 in Shevchenko and Wüthrich [24].

Example 3.7 Assume that external data (e.g., provided by external databases or regu-

lator) estimate the parameter of the loss frequency (i.e., the Poisson parameter Λ) which

has a Gamma distribution Λ ∼ Γ(α0, β0) as E[Λ] = α0β0 = 0.5 and P[0.25 ≤ Λ ≤

0.75] = 2/3. Then, the parameters of the prior Gamma distribution are α0 ≈ 3.407 and

β0 ≈ 0.147; see Shevchenko and Wüthrich [24], Section 4.1.

Now, we consider one particular bank i:

i) One expert says that ϑ is estimated by ϑ̂ = 0.7. For simplicity, we consider

in this example one single expert only and hence, the coefficient of variation is

not estimated using (3.2), but given a priori, e.g., by the regulator: Vco(ϑ|Λ) =

(var(ϑ|Λ))1/2/E[ϑ|Λ] = 0.5, i.e., ξ = 4.

ii) The observations of the annual number of losses are given as follows (sampled from a

Poisson distribution with parameter λ = 0.6; this is the dataset used in Shevchenko

and Wüthrich [24]):
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Year i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ni 0 0 0 0 1 0 1 1 1 0 2 1 1 2 0

This means that a priori we have a frequency parameter distributed as Γ(α0, β0) with mean

α0β0 = 0.5. The true parameter for this institution is λ = 0.6, i.e., it does worse than

the average institution. However, our expert has an even worse opinion of his institution,

namely ϑ̂ = 0.7.
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Figure 1: The Bayes estimator (λk)k=0,...,15 includes internal data simulated

from Poisson(0.6), external data Λ with E[Λ] = 0.5 and expert opinion ϑ̂ = 0.7

(◦). It is compared with the Bayes estimator λSW
k proposed in Shevchenko and

Wüthrich [24] (4) and the classical maximum likelihood estimator (+).

We compare the pure maximum likelihood estimator λMLE
k = 1

k

∑k
i=1 Ni and the Bayesian

estimator

λSW
k = E[Λ|N1, . . . , Nk], (3.13)

proposed in Shevchenko and Wüthrich [24] (without expert opinion) with the Bayesian
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estimator derived in formula (3.11), including expert opinion:

λk = E[Λ|N1, . . . , Nk, ϑ]. (3.14)

The results are plotted in Figure 1. The estimator (3.11) shows a much more stable

behavior around the true value λ = 0.6, due to the use of the prior information (market

data) and the expert opinions. Given adequate expert opinions, the Bayesian estimator

(3.11) clearly outperforms the other estimators, particularly if only a few data points are

available.
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Figure 2: The same estimators as in Figure 1 are displayed, but where the

expert underestimates the true λ = 0.6 by ϑ̂ = 0.4.

One could think that this is only the case when the experts’ estimates are appropriate.

However, even if experts fairly under- (or over-) estimate the true parameter λ, the method

presented in this paper performs better for our dataset than the other mentioned methods,

when a few data are available. In Figure 2 we display the same estimators, but where the

experts’ opinion is ϑ̂ = 0.4, which clearly underestimates the true expected value 0.6.
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In Figure 1 λk gives better estimates when compared to λSW
k . Observe that also in Figure

2 λk gives more appropriate estimates than λSW
k . Though the expert is too optimistic, λk

manages to correct λMLE
k (k ≤ 10), which is clearly too low. 2

This example yields a typical picture observed in numerical experiments that demonstrates

that the Bayes estimator (3.11) is often more suitable and stable than maximum likelihood

estimators based on internal data only.

Remark 3.8 Note that in this example the prior distribution as well as the expert

opinion do not change over time. However, as soon as new information is available or

when new risk management tools are in place, the corresponding parameters may be

easily adjusted. 2

3.3 Alternative estimator using the mode

Instead of calculating the mean of the GIG(ν, ω, φ) as we did in the estimator (3.11),

we could use the mode of the distribution, i.e., the point where the density function is

maximum. The mode of a GIG differs only slightly from the expected value for large |ν|.

In particular, one proves, e.g., that for X ∼ GIG(ν, ω, φ) we have

mode(X) ∼ E[X] for ν →∞. (3.15)

The mode of a GIG(ν, ω, φ) is easily calculated by

∂

∂x
xνe−(ωx+φ/x) = 0. (3.16)

Hence,

mode(X) =
1
2ω

(ν +
√

ν2 + 4ωφ), (3.17)

which gives us a good approximation to the mean for large ν. Thus, we have

mode(Λi|Ni,ϑi) =
ν

2ω

(
1 + sign(ν)

√
1 +

4ωφ

ν2

)
, (3.18)

where ν, ω, and φ are given by equations (3.5). Due to 4ωφ
ν2 → 0 for Ki →∞, Mi →∞,

Mi → 0 or ξ → 0, we approximate
√

1 + 2x ≈ 1 + x, x → 0, and hence

mode(Λi|Ni,ϑi) ≈
ν

2ω
1{ν≥0} +

φ

|ν|
. (3.19)

With (3.19) we again get the results from Theorem 3.6 in an elementary manner avoiding

Bessel functions.
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4 Loss Severities

In the previous section we presented a method to quantify the operational risk loss fre-

quency. We now turn to quantification of the severity distribution for operational risk.

This is done in this section for different types of subexponential models.

4.1 Lognormal model (Model 1 for severities)
Model Assumptions 4.1 (Lognormal-normal-normal)

Let us assume the following severity model for operational risk of a risk cell in bank i,

1 ≤ i ≤ I:

a) Let ∆i ∼ N (µ0, σ0) be a normally distributed random variable with parameters

µ0, σ0, which are estimated from (external) market data, i.e., π(γ) in (2.5) is the

density of N (µ0, σ0).

b) The losses k = 1, . . . ,Ki from institution i are assumed to be conditionally (on

∆i) i.i.d. lognormally distributed: Xi,1, . . . , Xi,Ki
|∆i

i.i.d.∼ LN(∆i, σi), where σi is

assumed known. That is, f1(·|∆i) in (2.5) corresponds to the density of a LN(∆i, σi)

distribution.

c) We assume that bank i has Mi experts with opinions ϑ
(m)
i , 1 ≤ m ≤ Mi, about

the parameter ∆i with ϑ
(m)
i |∆i

i.i.d.∼ N (µi = ∆i, σ̃i = ξi), where ξi is a parameter

estimated using expert opinion data. That is, f2(·|∆i) corresponds to the density

of a N (∆i, ξi) distribution. 2

Remarks 4.2:

• For Mi ≥ 2, the parameter ξi is, e.g., estimated by the standard deviation of ϑ
(m)
i :

ξi =

(
1

Mi − 1

Mi∑
m=1

(ϑ(m)
i − ϑi)2

)1/2

. (4.1)

• The hyper-parameters µ0 and σ0 are estimated from market data, e.g., by maximum

likelihood estimation or by the method of moments.

• In practice one often uses an ad hoc estimate for σi, 1 ≤ i ≤ I, which usually is

based on expert opinion only. However one could think of a Bayesian approach for

σi, but then an analytical formula for the posterior distribution in general does not

16



exist. The posterior distribution needs then to be calculated for example by the

Markov Chain Monte Carlo method; see again Peters and Sisson [23] or Gilks et

al. [17]. 2

Under Model Assumption 4.1, the posterior density is given by

π̂∆i(δi|Xi,ϑi) ∝ 1
σ0

√
2π

exp
(
− (δi − µ0)2

2σ2
0

) Ki∏
k=1

1
σi

√
2π

exp
(
− (log Xi,k − δi)2

2σ2
i

)
Mi∏

m=1

1
σ̃i

√
2π

exp

(
− (ϑ(m)

i − δi)2

2σ̃2
i

)

∝ exp

[
−

(
(δi − µ0)2

2σ2
0

+
Ki∑
k=1

1
2σ2

i

(log Xi,k − δi)2

+
Mi∑

m=1

1
2ξ2

i

(ϑ(m)
i − δi)2

)]

∝ exp
[
− (δi − µ̂)2

2σ̂2

]
, (4.2)

with

σ̂2 =
(

1
σ2

0

+
Ki

σ2
i

+
Mi

ξ2
i

)−1

, (4.3)

and

µ̂ = σ̂2 ·

(
µ0

σ2
0

+
1
σ2

i

Ki∑
k=1

log Xi,k +
1
ξ2
i

Mi∑
m=1

ϑ
(m)
i

)
. (4.4)

In summary we have the following theorem.

Theorem 4.3

Under Model Assumptions 4.1 and with the notation log Xi = 1
Ki

∑Ki

k=1 log Xi,k, the pos-

terior distribution of ∆i, given loss information Xi and expert opinion ϑi, is a normal

distribution N (µ̂, σ̂) with

σ̂2 =
(

1
σ2

0

+
Ki

σ2
i

+
Mi

ξ2
i

)−1

, (4.5)

and

µ̂ = E[∆i|Xi,ϑi] = ω1µ0 + ω2log Xi + ω3ϑi. (4.6)

The credibility weights are ω1 = σ̂2/σ2
0, ω2 = σ̂2Ki/σ2

i and ω3 = σ̂2Mi/ξ2
i .

This theorem yields a natural interpretation of the considered model. The estimator µ̂ in

(4.6) weights the internal and external data as well as the expert opinion in an appropriate

manner. Observe that under Model Assumptions 4.1 we can explicitly calculate the mean
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of the posterior distribution. This is different from the frequency model in Section 3.

That is, we have an exact calculation and for the interpretation of the terms we do not

rely on an asymptotic theorem as in Theorem 3.6. However, interpretation of the terms is

exactly the same as in Theorem 3.6. The more credible the information, the higher is the

credibility weight in (4.6). Hence, again, this theorem shows that our model is appropriate

for combining internal observations, relevant external data and expert opinions.

4.2 Pareto model (Model 2 for severities)
Model Assumptions 4.4 (Pareto-Gamma-Gamma)

Let us assume the following severity model for a particular operational risk cell of bank

i, 1 ≤ i ≤ I:

a) Let Γi ∼ Γ(α0, β0) be a Gamma distributed random variable with parameters α0, β0,

which are estimated from (external) market data, i.e., π(γ) in (2.5) is the density

of a Γ(α0, β0) distribution.

b) The losses k = 1, . . . ,Ki from institution i are assumed to be conditionally (on Γi)

i.i.d. Pareto distributed: Xi,1, . . . , Xi,Ki
|Γi

i.i.d.∼ Pareto(Γi, Li), where the threshold

Li ≥ 0 is assumed to be known and fixed. That is, f1(·|Γi) in (2.5) corresponds to

the density of a Pareto(Γi, Li) distribution.

c) We assume that bank i has Mi experts with opinions ϑ
(m)
i , 1 ≤ m ≤ Mi, about

the parameter Γi with ϑ
(m)
i |Γi

i.i.d.∼ Γ(αi = ξi, βi = Γi/ξi), where ξi is a parameter

estimated using expert opinion data; see (3.2). That is, f2(·|Γi) corresponds to the

density of a Γ(ξi,Γi/ξi) distribution. 2

Under Model Assumptions 4.4, the posterior density is given by

π̂Γi
(γi|Xi,ϑi) ∝ γα0−1

i e−γi/β0

Ki∏
k=1

γi

Li

(
Xi,k

Li

)−(γi+1) Mi∏
m=1

(ϑ(m)
i /βi)αi−1

βi
e−ϑ

(m)
i /βi

∝ γα0−1−Miξi+Ki

i exp

[
−γi

(
1
β0

+
Ki∑
k=1

log
Xi,k

Li

)
− 1

γi
ξiMiϑi

]
. (4.7)

Hence, again, the posterior distribution is a GIG and it has the nice property that the

term γi in the exponent in (4.7) is only affected by the internal observations, whereas the

term 1/γi is driven by the expert opinions.
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Theorem 4.5

Under Model Assumptions 4.4, the posterior density of Γi, given loss information Xi and

expert opinion ϑi, is given by

π̂Γi(γi|Xi,ϑi) =
(ω/φ)(ν+1)/2

2Kν+1(2
√

ωφ)
γν

i e−γiω−γ−1
i φ, (4.8)

with

ν = α0 − 1−Miξi + Ki,

ω =
1
β0

+
Ki∑
k=1

log
Xi,k

Li
, (4.9)

φ = ξiMiϑi.

It seems natural to generalize this result by substituting the prior Gamma distribution

by a GIG as follows.

Model Assumptions 4.6 (Pareto-Gamma-GIG)

Let us assume the following severity model for a particular operational risk cell of bank

i, 1 ≤ i ≤ I:

a) Let Γi ∼ GIG(ν0, ω0, φ0) be a generalized inverse Gaussian distributed random

variable with parameters ν0, ω0, φ0, which are estimated from (external) market

data, i.e., π(γ) in (2.5) is the density of a GIG(ν0, ω0, φ0) distribution.

b) The losses k = 1, . . . ,Ki from bank i are assumed to be conditionally (on Γi)

i.i.d. Pareto distributed: Xi,1, . . . , Xi,Ki
|Γi

i.i.d.∼ Pareto(Γi, Li), where the threshold

Li ≥ 0 is assumed to be known and fixed. That is, f1(·|Γi) in (2.5) corresponds to

the density of a Pareto(Γi, Li) distribution.

c) We assume that bank i has Mi experts with opinions ϑ
(m)
i , 1 ≤ m ≤ Mi, about

the parameter Γi with ϑ
(m)
i |Γi

i.i.d.∼ Γ(αi = ξi, βi = Γi/ξi), where ξi is a parameter

estimated using expert opinion data. That is, f2(·|Γi) corresponds to the density of

a Γ(ξi,Γi/ξi) distribution. 2
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Under Model Assumptions 4.6, the a posteriori density π̂Γi
(γi|Xi,ϑi) is given by (4.8)

with

ν = ν0 −Miξi + Ki,

ω = ω0 +
Ki∑
k=1

log
Xi,k

Li
, (4.10)

φ = φ0 + ξiMiϑi.

Hence, again, the posterior distribution is given by a GIG. Note that for φ0 = 0, the GIG

is a Gamma distribution and hence we are in the Pareto-Gamma-Gamma situation of

Model 4.4.

The following theorem gives us a natural interpretation of the Bayesian estimator

E[Γi|Xi,ϑi] =

√
φ

ω
Rν+1(2

√
ωφ). (4.11)

Denote the maximum likelihood estimator of the Pareto tail index Γi by

γMLE
i =

Ki∑Ki

k=1 log Xi,k

Li

. (4.12)

Then, completely analogous to Theorem 3.6 we obtain the following theorem.

Theorem 4.7

Under Model Assumptions 4.4 and 4.6, the following asymptotic relations hold P-almost

surely:

a) Assume, given Γi = γi, Xi,k
i.i.d.∼ Pareto(γi, Li) and ϑ

(m)
i

i.i.d.∼ Γ(ξi, γi/ξi).

For Ki →∞ : E[Γi|Xi,ϑi] → E[Xi,k|Γi = γi]/Vi = γi.

b) For Vco(ϑ(m)
i |Γi) → 0 : E[Γi|Xi,ϑi] → ϑ

(m)
i , m = 1, . . . ,Mi.

c) Assume, given Γi = γi, Xi,k
i.i.d.∼ Pareto(γi, Li) and ϑ

(m)
i

i.i.d.∼ Γ(ξi, γi/ξi).

For Mi →∞ : E[Γi|Xi,ϑi] → E[ϑ(m)
i |Γi = γi] = γi.

d) For Vco(ϑ(m)
i |Γi) →∞, m = 1, . . . ,Mi :

E[Γi|Xi,ϑi] →
(
1− Kiβ0

γMLE
i +Kiβ0

)
E[Γi] + Kiβ0

γMLE
i +Kiβ0

γMLE
i .

e) For E[Γi] = constant and Vco(Γi) → 0 : E[Γi|Xi,ϑi] → E[Γi].

Remarks 4.8:

• Theorem 4.7 basically says that the higher the precision of a particular source of

risk information, the higher its corresponding credibility weight. This means that

we obtain the same interpretations as for Theorem 3.6 and Formula (4.6).
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• Observe that in Section 3 and Section 4.1 we have applied Bayesian inference to

the expected values of the Poisson and the normal distribution, respectively. How-

ever, Bayesian inference is much more general, and basically, can be applied to any

reasonable parameter. In this Section 4.2 it is, e.g., applied to the Pareto tail index.

• Observe that Model Assumptions 4.4 and 4.6 lead to an infinite mean model because

the Pareto parameter Γi can be less than one with positive probability. For finite

mean models, the range of possible Γi has to be restricted to Γi > 1. This does not

impose difficulties; for more details we refer the reader to Shevchenko and Wüthrich

[24], Section 3.4. 2

4.3 Implementation and practical application

Note that the update process of (4.9) and (4.10) has again a simple linear form when new

information arrives. The posterior density (4.8) does not change its type every time a new

observation arrives. In particular, only the parameter ω is affected by a new observation.

Information update process. Loss k → loss k + 1:

νk+1 = νk + 1,

ωk+1 = ωk + log
Xi,k+1

Li
, (4.13)

φk+1 = φk.

The following example shows the simplicity and robustness of the estimator developed.

Example 4.9 Assume that a bank would like to model its risk severity by a Pareto

distribution with tail index Γ. The regulator provides external prior data, saying that

Γ ∼ Γ(α0, β0) with α0 = 4 and β0 = 9/8, i.e., E[Γ] = 4.5 and Vco(Γ) = 0.5. The bank

has one expert opinion ϑ̂ = 3.5 with Vco(ϑ|Γ) = 0.5, i.e., ξ = 4. We then observe the

following losses (sampled from a Pareto(α = 4, L = 1) distribution); see also Figure 3:

Loss index i 1 2 3 4 5 6 7 8 9 10

Severity Xi 1.17 1.29 1.00 1.55 2.66 1.02 1.28 1.10 1.06 1.02

Loss index i 11 12 13 14 15

Severity Xi 1.59 1.35 1.91 1.23 1.03
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Figure 3: 15 loss severities sampled from a Pareto(α = 4, L = 1) distribution.

In Figure 4 we compare the Bayes estimator

γk = E[Γ|X1, . . . , Xk, ϑ], (4.14)

given by (4.11) with the estimator proposed in Shevchenko and Wüthrich [24] without

expert opinions

γSW
k = E[Γ|X1, . . . , Xk], (4.15)

and the classical maximum likelihood estimator

γMLE
k =

k∑k
i=1 log Xi

L

. (4.16)

Figure 4 shows the high volatility of the maximum likelihood estimator, for small numbers

k. It is very sensitive to newly arriving losses. However, the estimator proposed in this

paper shows a much more stable behavior around the true value α = 4, most notably

when a few data points are available. 2
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Figure 4: The Bayes estimator including expert opinions (◦) is compared with

the Bayes estimator without expert opinions (4) and with the maximum like-

lihood estimator (+).

This example also shows that when modeling severities of operational risk, Bayesian infer-

ence is a suitable method to combine different sources of information. The consideration

of relevant external data and well-specified expert opinions stabilizes and smoothens the

estimator in an appropriate way.

5 Total loss distribution and risk capital estimates

In the preceding sections we have described how the parameters of the distributions are

estimated. According to the Basel II requirements (see BIS [6]) the final bank capital

should be calculated as a sum of the risk measures in the risk cells if the bank’s model

cannot account for correlations between risks accurately. If this is the case, then one needs

to calculate VaR for each risk cell separately and sum VaRs over risk cells to estimate
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the total bank capital. Adding quantiles over the risk cells to find the quantile of the

total loss distribution is sometimes too conservative. It is equivalent to the assumption

of perfect dependence between risks.

The calculation of VaR (taking into account parameter uncertainty) for each risk cell can,

in view of the previous sections, easily be done using a simulation approach described

in Shevchenko and Wüthrich [24], Section 6. Simulation procedures for independent risk

cells and in the case of dependence between risks are also described in Shevchenko and

Wüthrich [24] and thus we refrain from commenting further on this issue.

However, reasonable aggregation is still an open challenging problem that needs further

investigation. The choice of appropriate dependence structures is crucial and determines

the amount of diversification. In the general case, when no information about the depen-

dence structure is available, Embrechts and Puccetti [15] work out bounds for aggregated

operational risk capital; for further issues regarding aggregation we would like to refer to

Embrechts et al. [14].

6 Conclusion

In this paper we propose a novel approach that allows for combining three data sources:

internal data, external data and expert opinions. The approach is based on the Bayesian

inference method. It is applied to the quantification of the frequency and severity distri-

butions in operational risk, where there is a strong need for such a method to meet the

Basel II regulatory requirements.

The method is based on specifying prior distributions for the parameters of the frequency

and severity distributions using industry data. Then, the prior distributions are weighted

by the actual observations and expert opinions from the bank to estimate the posterior

distributions of the model parameters. These are used to estimate the annual loss distri-

bution for the next reporting year. Estimation of low frequency risks using this method

has several appealing features such as: stable estimators, simple calculations (in the case

of conjugate priors), and the ability to take expert opinions and industry data into ac-

count. This method also allows for calculation of VaR with parameter uncertainty taken

into account.

For convenience we have assumed that expert opinions are i.i.d. but all formulas can easily

be generalized to the case of expert opinions modeled by different distributions.
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It would be ideal if the industry risk profiles (prior distributions for frequency and severity

parameters in risk cells) are calculated and provided by the regulators to ensure consis-

tency across the banks. Unfortunately this may not be realistic at the moment. Banks

might thus estimate the industry risk profiles using industry data available through ex-

ternal databases from vendors and consortia of banks. The data quality, reporting and

survival biases in external databases are the issues that should be considered in practice

but go beyond the purposes of this paper.

The approach described is not too complicated and is well suited for operational risk

quantification. It has a simple structure, which is beneficial for practical use and can

engage the bank risk managers, statisticians and regulators in productive model develop-

ment and risk assessment. The model provides a framework that can be developed further

by considering other distribution types, dependencies between risks and dependence on

time.

One of the features of the described method is that the variance of the posterior distri-

bution π̂(γ|·) will converge to zero for a large number of observations. That is, the true

values of the risk parameters will be known exactly. However, there are many factors (for

example, political, economical, legal, etc.) changing in time that will not permit for the

precise knowledge of the risk parameters. One can model this by limiting the variance

of the posterior distribution by some lower levels (say, e.g., 5%). This has been done in

many solvency approaches for the insurance industry; see, e.g., the Swiss Solvency Test,

FOPI [16], formulas (25)-(26).

Although the main impetus motivation for the present paper is an urgent need from op-

erational risk practitioners, the proposed method is also useful in other areas (such as

credit risk, insurance, environmental risk, ecology etc.) where, mainly due to lack of inter-

nal observations, a combination of internal data with external data and expert opinions

is required.

A Generating realizations from a GIG random variable

For practical purposes it is required to generate realizations of a random variable X ∼

GIG(ω, φ, ν) with ω, φ > 0. Observe that we need to construct a special algorithm since

we can not invert the distribution function analytically. The following algorithm can be

found in Dagpunar [8]; see also McNeil et al. [19]:
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Algorithm A.1 (Generalized inverse Gaussian)

1. α =
√

ω/φ; β = 2
√

ωφ,

m = 1
β

(
ν +

√
ν2 + β2

)
,

g(y) = 1
2βy3 − y2( 1

2βm + ν + 2) + y(νm− β
2 ) + 1

2βm.

2. Set y0 = m,

While g(y0) ≤ 0 do y0 = 2y0,

y+: root of g in the interval (m, y0),

y−: root of g in the interval (0,m).

3. a = (y+ −m)
(y+

m

)ν/2 exp
(
−β

4 (y+ + 1
y+
−m− 1

m )
)
,

b = (y− −m)
(y−

m

)ν/2 exp
(
−β

4 (y− + 1
y−
−m− 1

m )
)
,

c = −β
4

(
m + 1

m

)
+ ν

2 log(m).

4. Repeat U, V ∼ Unif(0, 1), Y = m + aU
V + b 1−V

U ,

until Y > 0 and − log U ≥ −ν
2 log Y + 1

4β(Y + 1
Y ) + c,

Then X = Y
α is GIG(ω, φ, ν); see Dagpunar [8].

To generate a sequence of n realizations from a GIG random variable, step 4 is repeated

n times. 2

B Asymptotic results for modified Bessel functions

Let Kγ(z) denote the modified Bessel function of the third kind as defined in (3.6).

Lemma B.1 With notation (3.10), we have the following asymptotic relation for ν →

∞, for all a, b > 0:

Rbν(a
√

ν) ∼ 2b
√

ν

a
. (B.1)

Proof: From Abramowitz and Stegun [1], Paragraph 9.7.8 and Olver [21], Chapter 4,

we may deduce for large ν and z ≥ 0

Kν(νz) =
√

π

2ν

exp(−ν
√

1 + z2)
(1 + z2)1/4

(
z

1 +
√

1 + z2

)−ν

(1 + ε(ν, z)) , (B.2)

where the error term ε(ν, z) is bounded by

|ε(ν, z)| ≤ 1
ν − ν0

∫ 1/
√

1+z2

0

|u′1(s)|ds, (B.3)
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with ν0 = 1
6
√

5
+ 1

12 and u1(s) = (3s−5s3)/24; see Abramowitz and Stegun [1] for details.

In (B.2) we replace ν by bν and z by z1 = a/
√

ν. The error term ε(bν, a/
√

ν) in (B.2) is

then vanishing for ν →∞, because the right-hand side of (B.3) tends to 0. Analogously,

we replace ν by bν+1 and z by z2 = a
√

ν/(bν+1) and observe that ε(bν+1, a
√

ν/(bν+1))

tends to 0. Thus, (B.2) gives us asymptotic expressions for Kbν(a
√

ν) and Kbν+1(a
√

ν).

Straightforward calculations then yield

Rbν(a
√

ν) =
Kbν+1(a

√
ν)

Kbν(a
√

ν)
∼ 2

z2
∼ 2b

√
ν

a
, ν →∞. (B.4)

This completes the proof. 2

C Proof of Theorem 3.6

Proof: With (3.11) the proof of this theorem is straightforward, using Lemma B.1 in

Appendix B. The following statements hold P-almost surely.

a)
√

φ
ω Rν+1(2

√
ωφ) ∼

√
φ
ω RKiNi

(2
√

ViKiφ) ∼
√

Ki

Viω
Ni ∼ E[Ni,k|Λi]/Vi.

b,c)
√

φ
ω Rν+1(2

√
ωφ) ∼

√
φ
ω R−Miξi

(2
√

ωξiMiϑi) ∼
√

φ
ω

1

RMiξi
(2
√

ωξiMiϑi)

∼
√

φϑi

ξiMi
= ϑi = ϑ

(m)
i , m = 1, . . . ,Mi.

d) If ξ = 0, we are in the Gamma case Γ(α, β) with α = α0 + KiN i and β =

β0/(ViKiβ0 + 1). Hence,

E[Λi|Ni,ϑi] = αβ = 1
ViKiβ0+1E[Λi] +

(
1− 1

ViKiβ0+1

)
N i/Vi.

e)
√

φ
ω Rν+1(2

√
ωφ) ∼

√
φE[Λi]

α0
Rα0(2

√
α0φ
E[Λi]

) ∼ E[Λi]. 2
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