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Lipschitzian Optimization 
Without the Lipschitz Constant 
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Communicated by L. C. W. Dixon 

Abstract. We present a new algorithm for finding the global minimum 
of a multivariate function subject to simple bounds. The algorithm is a 
modification of the standard Lipschitzian approach that eliminates the 
need to specify a Lipschitz constant. This is done by carrying out 
simultaneous searches using all possible constants from zero to infinity. 
On nine standard test functions, the new algorithm converges in fewer 
function evaluations than most competing methods. 

The motivation for the new algorithm stems from a different way 
of looking at the Lipschitz constant. In particular, the Lipschitz 
constant is viewed as a weighting parameter that indicates how 
much emphasis to place on global versus local search. In standard 
Lipschitzian methods, this constant is usually large because it must 
equal or exceed the maximum rate of change of the objective function. 
As a result, these methods place a high emphasis on global search and 
exhibit slow convergence. In contrast, the new algorithm carries out 
simultaneous searches using all possible constants, and therefore 
operates at both the global and local level. Once the global part of the 
algorithm finds the basin of convergence of the optimum, the local part 
of the algorithm quickly and automatically exploits it. This accounts 
for the fast convergence of the new algorithm on the test functions. 
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1. Introduction 

From a theoretical point of view, the Lipschitzian approach to global 
optimization has always been attractive. By assuming knowledge of a 
Lipschitz constant (i.e., a bound on the rate of change of the objective 
function), global search algorithms can be developed and convergence 
theorems easily proved. Since Lipschitzian methods are deterministic, there 
is no need for multiple runs. Lipschitzian methods also have few 
parameters to be specified (besides the Lipschitz constant), and so the need 
for parameter finite-tuning is minimized. Finally, Lipschitzian methods can 
place bounds on how far they are from the optimum function value, and 
hence can use stopping criteria that are more meaningful than a simple 
iteration limit. 

In practice, however, Lipschitzian optimization has three major 
problems: (i) specifying the Lipschitz constant; (ii) speed of convergence; 
and (iii) computational complexity in higher dimensions. This paper shows 
how these problems can be eliminated by modifying the standard 
approach. 

Specifying a Lipschitz constant is a practical problem because a 
Lipschitz constant may not exist or be easily computed. For example, in 
optimizing a nonlinear control system, the objective function may be based 
on a time-consuming simulation or, perhaps, an experiment on the real 
system (Ref. 1). Similarly, in mechanical engineering applications, designs 
are often evaluated by a lengthy finite-element analysis. In these cases, no 
closed-form expression for the objective function is available, and so 
computing a Lipschitz constant is usually difficult or impossible. The new 
algorithm eliminates the need to specify the Lipschitz constant by carrying 
out simultaneous searches using all possible constants from zero to infinity. 
The exact sense in which this is done will become clear later. 

The second problem--speed of convergence--is closely related to the 
first. As we describe later, the Lipschitz constant can be viewed as a 
weighting parameter that indicates how much weight to place on global 
versus local exploration. In standard Lipschitzian methods, this constant is 
usually large because it must equal (or exceed) the maximum rate of 
change of the objective function. As a result, these methods place a high 
emphasis on global search and exhibit slow convergence. In contrast, the 
new algorithm uses all possible constants, and therefore operates at both 
the global and local level. Once the global part of the algorithm finds the 
basin of convergence of the optimum, the local part of the algorithm 
quickly and automatically exploits it. This is why the new algorithm can 
converge more quickly than the standard approach. 

The third and final problem has to do with computational complexity. 
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When optimizing a function of n variables subject to simple bounds, the 
search space is a hyperrectangle in n-dimensional Euclidean space. Most 
previous Lipschitzian algorithms (Refs. 2-4) partition this search space into 
smaller hyperrectangles whose vertices are sampled points. Horst and Tuy 
(Ref. 5) review several such methods. To initialize the search, these algo- 
rithms must evaluate all 2 ~ vertices of the search space. The new algorithm 
cuts through this computational complexity by sampling the midpoint of 
each hyperrectangle as opposed its vertices. Whatever the number of 
dimensions, a rectangle can have only one midpoint. 

As mentioned above, the new algorithm does not need a Lipschitz 
constant to determine where to search. But knowledge of a Lipschitz 
constant can be helpful in determining when to stop searching (e.g., stop 
when one is certain to be within e of the optimum function value). When 
a Lipschitz constant is not known, the algorithm stops after a prespecified 
number of iterations. 

The new algorithm has only one parameter that must be specified in 
addition to the iteration limit. Empirical results suggest that the algorithm 
is fairly insensitive to this parameter, which can be varied by several orders 
of magnitude without substantially affecting performance. In contrast, 
many global search methods have several algorithmic parameters that must 
be carefully adjusted to ensure good results. One of our goals in developing 
the new algorithm was to eliminate the need to experiment with such 
algorithmic parameters. 

We call the new algorithm DIRECT. This captures the fact that it is a 
direct search technique and also is an acronym for dividing rectangles, a 
key step in the algorithm. We will introduce DmECT as a modification and 
extension of a one-dimensional Lipschitzian algorithm due to Shubert 
(Ref. 2). We begin in Section 2 by reviewing Shubert's method and dis- 
cussing why it is hard to extend it to more than one dimension. Section 3 
then modifies Shubert's method to make it tractable in higher dimensions 
and to eliminate the need to specify a Lipschitz constant. This gives us the 
one-dimensional DmECT algorithm. Section 4 extends this one-dimensional 
algorithm to several dimensions. Section 5 proves convergence. Section 6 
compares the performance of DIRECT to other algorithms, and Section 7 
summarizes our results. 

2. Lipschitzian Optimization in One Dimension 

Consider the problem of finding the global minimum of a function 
f ( x )  defined on the closed interval If,  u]. Standard Lipschitzian algo- 
rithms assume that there exists a finite bound on the rate of change of the 
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function; that is, they assume that there exists a positive constant K, the 
Lipschitz constant, such that 

I f ( x ) - f ( x ' ) l < ~ K l x - x ' l ,  for all x , x '  e [g, u]. (1) 

This assumption can be used to place a lower bound on the function in any 
closed interval whose endpoints have been evaluated. Figure 1 illustrates 
this for a hypothetical function on the interval [a, b]. If we substitute a 
and b for x' in (1), we see that f ( x )  must satisfy the following two 
inequalities: 

f ( x )  >~ f (a )  - K(x -- a), (2) 

f ( x )  >~ f ( b )  + K(x - b). (3) 

These inequalities correspond to the two lines with slopes - K  and + K 
shown in Fig. 1. Since the function must lie above the V formed by the 
intersection of these two lines, the lowest value that f ( x )  can attain occurs 
at the bottom of the V. If we denote this point by X(a, b, f ,  K) and the 
corresponding lower bound of f by B(a, b, f ,  K), then we have 

X(a, b, f ,  K) = (a + b)/2 + [ f ( a )  - f (b)] / (2K),  (4) 

B(a, b, f, K) = [ f (a )  + f (b)] /2  - K(b - a). (5) 

These two equations form the core of Shubert's algorithm (Ref. 2). The 
basic idea is shown in Fig.. 2. We initialize the search by evaluating the 
function at the endpoints ( and u; see part (a) of the figure. We then 
evaluate the function at xl =X(#, u, f, K). This divides the search space 
into two intervals, If,  Xl] and Ix1 u]; see part (b) of the figure. We now 
determine which of these intervals has the lowest B-value. In this case, 
there is a tie, which we break arbitrarily in favor of the interval [l, xl].  We 
then evaluate the function at x~ =X(f ,  x l , f ,  K). Now the search space is 
divided into three intervals, [E, x2], Ix2, Xl], Ix1 u]; see part (c) of the 

slope = - K  - - ~  ' ~ ' ~ /  slope = +K / [ " ~ / /  
~(~,b,f ,K) , 

b 
x(~,~,f ,;<) 

Fig. 1. Computing the Lipschitzian lower bound for an interval. 
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(a) 

z, = x(Z,~.,f,K) 

2Z 

(b) 

Xt 

xe = X ( l , x , , f , i I )  

(c) 

Z z X~ % 

~3 = x(~,,~,f.K) 
Fig. 2. Shubert's algorithm. 

figure. The interval with the lowest B-value is [x~, u], and so we evaluate 
the function at x3 = X(Xl ,  u, f ,  K). At any point in Shubert's algorithm, the 
V's for all the intervals form a piecewise linear function that approximates 
f ( x )  from below. The next point sampled is the minimum of this piecewise 
linear approximation. Shubert's algorithm stops when the minimum of the 
approximation is within some prespecified tolerance of the current best 
solution. 

As we have seen, Shubert's algorithm selects an interval for further 
search based on a comparison of lower bounds. Each lower bound, in turn, 
is the sum of two terms, [ f ( a ) + f ( b ) ] / 2  and - K ( b - a ) ;  see Eq. (5). The 
first term is lower (and therefore better, since we are minimizing) when the 
function values at the endpoints are low. Thus, this term leads us to select 
intervals where previous function evaluations have been good, i.e., it leads 
us to do local search. The second term is lower algebraically the bigger is 



162 JOTA: VOL. 79, NO. 1, OCTOBER 1993 

the interval, i.e., the bigger is b -  a. Thus, this term leads us to select 
intervals with large amounts of unexplored territory, i.e., it leads us to do 
global search. The Lipschitz constant K serves as a relative weight on 
global versus local search; the larger K, the higher is the relative emphasis 
put on global search. 

This way of thinking about Shubert's algorithm highlights one of its 
problems. Since the Lipschitz constant must be an upper bound on the rate 
of change of the function, it will generally be quite high. In terms of the 
above discussion, this means that Shubert's algorithm will place a high 
emphasis on global search and, as a result, may exhibit slow convergence. 4 
Once the basin of convergence of the optimum is found, the search would 
proceed more quickly if K could be reduced, thereby increasing the 
emphasis on local search. In practice, however, it is difficult to know when 
and how to reduce K. Thus, one must leave K at its initial value and, if this 
value is high, one must accept slow convergence as inevitable. 

The other problem with Shubert's method is in its initialization phase, 
where we evaluate the function at the endpoints f and u. Although this is 
easy to do in one dimension, the natural extension to n dimensions is to 
evaluate the function at all 2" vertices of the search space. This is the 
approach adopted in the multivariate Lipschitzian algorithms of Pinter 
(Ref. 4) and Galperin (Ref. 3). Mladineo (Ref. 6) has developed an 
extension of Shubert's algorithm that can be initialized by evaluating the 
function at a single arbitrary point, but this algorithm is computationally 
complex for other reasons. In particular, the selection of new points 
involves solving several systems of n linear equations in n + 1 unknowns, 
and the number of such systems goes up rapidly with the number of 
iterations. For these reasons, the Mladineo algorithm must be modified in 
order to be applied in more than two dimensions. In summary, Shubert's 
algorithm has two problems: a potential overemphasis on global search, 
and the high computational complexity of current multivariate extensions. 

3o DIRECT Algorithm in One Dimension 

In this section, we modify Shubert's algorithm to alleviate the problems 
just discussed. The result of these modifications will be the DmECT algorithm 
in one dimension. 

4In the extreme case when the Lipschi~ constant is infinity, Shubert's algorithm reduces to a 
grid search. To see this note that, when K =  o% Eq. (5) implies that the biggest interval is 
selected and Eq. (4) implies that this interval is sampled at its midpoint. It follows that, after 
1 + 2 k function evaluations, for any k = 1, 2, . . . ,  the sampled points form a uniform grid over 
the interval. 
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The key to making Shubert's algorithm practical in higher dimensions 
is, to modify the way the space is partitioned. Instead of evaluating the 
function at the endpoints of an interval, we will evaluate it at the center 
point. In n dimensions, this means that the algorithm can be initialized by 
sampling just one point (the center of the search space) as opposed to all 
2 n vertices of the space. Of course, while center-point sampling enables one 
to operate in high-dimensional spaces, it does not, by itself, ensure good 
performance in such spaces. 

The shift from sampling endpoints to sampling center points requires 
some accompanying changes. First, the calculation of an interval lower 
bound must change. Let [a, b] be an interval with center point c =  
( a+b) /2 .  Setting x' equal to c in (1), we see that f ( x )  must satisfy the 
inequalities 

f ( x )  >>.f(c) + K ( x  - c), for x ~< c, (6) 

f ( x )  >~ f ( c )  - K ( x  - c), for x ~> c. (7) 

tn Fig. 3, these inequalities correspond to the lines with slopes + K  
and - K ,  and the function must lie above the inverted V formed by their 
intersection. The lowest value the function can attain occurs at the 
endpoints a and b. This lower bound is 

lower bound = f ( c )  - K(b - a)/2. (8) 

Note that the lower bound in Eq. (8) only takes into account the function 
value at the center of the interval in question. Stronger bounds can some- 
times be computed by also considering the function value at the centers of 
nearby intervals. Unfortunately, computing such stronger bounds becomes 
intractable in higher dimensions; this is why we use the weaker bound in 
Eq. (8). 

So far, we have said that we will partition the space into intervals 
whose center points are evaluated and will select intervals based on the 

t 

C~ C b 

s ~ e : - K  

Fig. 3. Computing a lower bound with center-point sampling. 
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Befcre Division: i 

After Division: F-, • r • I • 

Fig. 4. Subdividing an interval with center-point sampling. 

lower bound given in Eq. (8). To complete our shift toward center-point 
sampling, we must specify where to evaluate the function and how to 
subdivide the selected interval. In doing this, we must be sure to maintain 
the property that each interval is sampled at its center. To maintain this 
property, we have adopted the strategy illustrated in Fig. 4: the interval is 
divided into thirds, and the function is avaluated at the center points of the 
left and right thirds. The original center point simply becomes the center of 
a smaller interval. 

Center-point sampling takes us one step toward the DmECT algorithm. 
To motivate text next step, let us suppose that we have already partitioned 
the search space into intervals [a;, bi], i = t , . . . ,  m, and are in the process 
of selecting one of these intervals for further sampling. In Fig. 5, we have 
represented each interval in the partition by a dot with horizontal coor- 
dinate (b i -  ai)/2 and vertical coordinate f(ci). The horizontal coordinate is 
the distance from the interval's center to its vertices. It captures the good- 
ness of the interval with respect to global search, that is, goodness based 
on the amount of unexplored territory in the interval. The vertical coor- 
dinate is the value of the function at the interval's center. It captures the 
goodness of the interval with respect to local search, that is, goodness 
based on known function values. If one passes a line with slope K through 
any dot in this diagram, the vertical intercept will be the lower bound for 

Fig, 5. 

f ( c )  

• z' f 
• ~ ' ~  slope = K 

i 

~° 

~ f(c,) - K[(b,-~,)/2] 
(b-~)/2 

(b, - ~,)/Z 

Graphical interpretation of interval selection. 
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the corresponding interval. Hence, the interval with the lowest lower bound 
can be found by positioning a line with slope K below the cloud of dots 
and shifting it upwards until it first touches a dot. Figure 5 shows how such 
an optimal dot (and its corresponding interval) is selected. 

The Lipschitz constant, reflected in the slope of the line in Fig. 5, 
determines the relative weighting of global versus local search. In standard 
methods, this constant is usually high and so tends to overemphasize 
global search. But what would happen if we used all possible relative 
weightings? This would correspond to identifying the set of intervals that 
could be selected using a line with some positive slope. As shown in Fig. 6, 
these intervals are represented by the dots on the lower right part of the 
convex hull of the cloud of dots. The basic idea of DIRECT is tO select (and 
sample within) all of these intervals during an iteration. More precisely, we 
will sample all "potentially optimal" intervals as defined below: 

Definition 3.1. Suppose that we have partitioned the interval [d, u] 
into intervals [ai, bi] with midpoints % for i=  1 , . . . ,  m. Let ~ > 0  be a 
positive constant, and the fmin be the current best function value. Interval 
j is said to be potentially optimal if there exists some rate-of-change 
constant R >  0 such that 

f(cfl  -/~'[(bj - aj)/2] <~f(ci) - / ~ [ ( b i -  af)/2], for all i = 1, . . . ,  m, 

f(c:) - RE(hi- aj)/2] ~fmin - -  8 Ifmid. 

The first condition in the definition forces the interval to be on the 
lower right of the convex hull of the dots. The second condition insists that 
the lower bound for the interval, based on the rate-of-change constant ~7, 
exceed the current best solution by a nontrivial amount. For example, if 

- / 

/ / /  

• • 

• " o Pot°ot,a,,y oo,lmoi 
m Non-Opt imal  

Fig. 6. Set of potentially optimal intervals. 
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= 0.01, then the lower bound for the interval would have to exceed the 
current best solution by more than 1%. This second condition is needed to 
prevent the algorithm from becoming too local in its orientation, wasting 
precious function evaluations in pursuit of extremely small improvements; 
in terms of Fig. 6, it implies that some of the smaller intervals might not be 
selected. Later, we will show results suggesting that DIRECT is fairly insen- 
sitive to the setting of e, providing good results for values ranging from 
10 -3 to 10 7. Note that the tilde in R is used to emphasize that R is just 
a rate-of-change constant and not a Lipschitz constant in the normal sense. 

The one-dimensional DIRECT algorithm is essentially Shubert's algo- 
rithm modified to use center-point sampling and to sample all potentially 
optimal intervals during an iteration. If a Lipschitz constant were known, 
we could also use Shubert's stopping criterion; that is, we could compute 
a lower bound on the function and stop searching when this bound is 
within some tolerance of our current best so lu t ion /However ,  we prefer to 
assume that a Lipschitz constant is not known. Hence, we will stop using 
a prespeclfied hmlt T on the number of iterations. A formal statement of 
the one-dimensional OIRECT algorithm appears below. 

Univariate DIRECT Algorithm. 

Step 1. Set r e = l ,  [a l ,  b l ] = [ E , u ] ,  c l = ( a  1 + b l ) / 2 ,  and evaluate 
f ( c l ) .  Set f m i ~ = f ( c l ) .  Let t = O  (iteration counter). 

Step 2. Identify the set S of potentially optimal intervals. 

Step 3. Select any interval j ~ S. 

Step 4. Let 8 = (by-  aj)/3, and set Cm + 1 = Cj-- 8 and Cm + 2 = Cj + 8. 

Evaluate f ( c ,~  + 1) and f ( c  m + 2) and update fmi~" 

Step 5. In the partition, add the left and right subintervals 

[am+ 1 ,  bin+ 1"] : [ a j ,  a jJ i  - 8 ] ,  center point cm+ 1 ,  

[am+2, bm+2] = [as+ 28, bj], center point Cm+2. 

Then modify interval j to be the center subinterval by setting 

[a s, bj] = [aj + 8, a j +  283. 

Finally, set m = m + 2. 

Step 6. Set S =  S -  {j}. If S ~ ~ ,  go to Step 3. 

5If a Lipschitz constant K were actually known, one would also modify Definition 3.1 to insist 
that K" <~ K. 
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Step 7. Set t = t +  1. If t = T ,  stop; the iteration limit has been 
reached. Otherwise, go to Step 2. 

The order in which the potentially optimal intervals are selected in 
Step 3 is irrelevant as long as one selects them all. All results reported in 
this paper will reflect complete iterations; that is, they will reflect values of 
m and fmin at Step 7. 

Although we have not described how to identify the set of potentially 
optimal intervals, it can be done quite efficiently. For example, an algo- 
rithm known as Graham's scan can find the convex hull of a set of m 
arbitrary points in O(m log2 m) time (Ref. 7). If the points are already 
sorted by their abscissas, it requires only O(m) time. We can do better than 
this, however, because the points in Fig. 6 are not arbitrary. In particular, 
since DIRECT always divides intervals into thirds, the only possible interval 
lengths are ( u - d ) 3  k, for k = 0 ,  1, 2 , . . . .  This means that many of the 
points in Fig. 5 will have the same abscissa. As a result, if we keep the 
intervals sorted by function value within groups of intervals with the same 
length, then we can identify the convex hull in O(m') time, where m' is the 
number of distinct interval lengths (abscissas in Fig. 6). 

4. DIRECT Algorithm in Several Dimensions 

In this section, we generalize the one-dimensional DIRECT algorithm to 
several dimensions. Without loss of generality, we will assume that every 
variable has a lower bound of zero and an upper bound of one (the scale 
can always be normalized so that this is true). Thus, the search space will 
be the n-dimensional unit hypercube. As the algorithm proceeds, this space 
will be partitioned into hyperrectangles, each with a sampled point at its 
center. The main issue in extending DIRECT to several dimensions concerns 
how to divide these hyperrectangles. To keep things simple, we will start 
our discussion by focusing on the division of hypercubes. Once this is done, 
we then extend the method to hyperrectangles. 

An easy way to divide a hypercube would be to select one dimension 
arbitrarily and split the hypercube into thirds along this dimension. But 
selecting a dimension arbitrarily is not conceptually attractive. To avoid 
such arbitrariness, we have constructed the following approach. We start 
by sampling the point c + 6ei, i = 1 . . . . .  n, where c is the center point of 
the hypercube, 3 is one-third the side length of the hypercube, and ei is the 
ith unit vector (i.e., a vector with a one in the ith position and zeros 
elsewhere). In the two-dimensional example of Fig. 7, this translates into 
sampling above, below, to the left, and to the right of the center point; 
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these newly sampled points are shown as open dots with numbers beside 
them indicating the function's value. By sampling along all dimensions, 
we have avoided selecting any dimension arbitrarily. But we now must 
resolve another issue: how are we to divide the hypercube so that each 
subrectangle has a sampled point at its center? 

Figure 7 shows two possible ways to do this for the case n=2 .  
In part (a), we first divide the square into thirds along the horizontal 
dimension and then divide the center rectangle (the one with e) into thirds 
along the vertical dimension. In part (b), the order is reversed. Both of 
these division strategies partition the hypercube into subrectangles with 
sampled points at their centers. 

To decide which division order to use, notice that, if we first split on 
dimension i, then the two points c +__ 6e; will be at the centers of the biggest 
subrectangles. For example, in part (a) of Fig. 7, we first divide on dimen- 
sion 1; as a result, the points with function values 5 and 8 become the 
centers of the largest subrectangles. This observation leads to the following 
question: do we want the biggest rectangles to contain the points with the 
best or the worst function values? The strategy that we have adopted is to 
make the biggest rectangles contain the best function values. This strategy 
increases the attractiveness of searching near points with good function 
values (since bigger rectangles are preferred for sampling, everything else 
equal). In our experience, the increased emphasis on local search speeds up 
convergence without sacrificing the global properties of the algorithm, 
which are ensured by the method of selecting rectangles discussed later. 

Sample 06 / 

05 • 08 

O2 

Divide on Horizontal 

og • 
O2 

Divide on Vertical 

O~ 08 
05 • 

Divide on Vertical Divide on Horizontal 

1 1 05 • ~ • 0 8  

- E 

Fig. 7. Sampling and dividing a square in the DIRECT algorithm. 

(5) 
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Fig. 8. Dividing a rectangle in the DIRECT algorithm. 

More precisely, we have adopted the following rule for subdividing a 
hypercube. Let 

wi = min{f(c  + 5ei), f ( e  - 6e,)} 

be the best of the function values sampled along dimension i. Start by 
splitting along the dimension with the smallest w value. Once this is done, 
split the rectangle containing c into thirds along the dimension with the 
next smallest w value. Continue in this way until we have split on all 
dimensions. This splitting rule would select part (b) of Fig. 7. 

Once the initial hypercube has been divided, some of the subregions 
will be rectangular. In dividing such rectangles, we only consider the long 
dimensions. For example, the three-dimensional rectangle shown in Fig. 8 
would be divided along the horizontal and vertical dimensions, but not the 
shorter depth dimension. By dividing only along the long dimensions, we 
ensure that the rectangles shrink on every dimension; as we see later, this 
is essential for proving convergence. A formal description of the rectangle 
division procedure is given below. Note that this description also covers 
hypercubes as a special case. 

Procedure for Dividing Rectangles. 

Step 1. Identify the set iT of dimensions with the maximum side 
length. Let 6 equal one-third of this maximum side length. 

Step 2. Sample the function at the points c _+ 6e i for all i ~ I, where c 
is the center of the rectangle and e i is the ith unit vector. 

Step 3. Divide the rectangle containing c is into thirds along the 
dimensions in I, starting with the dimension with the lowest 
value of 

wi = min{f(c  + 6ei), f ( c  -- 6e/) }, 

and continuing to the dimension with the highest w~. 
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The procedure for identifying the set of potentially optimal rectangles 
in the same as that in one dimension. For each rectangle, we will know the 
function value at the center point and the distance d from the center point 
to the vertices. We can now form a diagram like that in Fig. 6, using the 
distance d for the horizontal axis, and identify the set of potentially optimal 
intervals as before. Formally, the set of potentially optimal intervals is 
given by Definition 4.1 below. 

Definition 4,1. Suppose that we have a partition of the unit hyper- 
cube into m hyperrectangles. Let ei denote the center point of the ith 
hyperrectangle, and let d,. denote the distance from the center point to the 
vertices. Let e > 0 be a positive constant. A hyperrectangle j is said to be 
potentially optimal if there exists some R > 0 such that 

f ( c j ) - K d j < ~ f ( c i ) - K d ~ ,  for all i=1  . . . . .  m, 

f(c/) - ~dj  ~ fmi. - e [fmi.I. 

We now have all the ingredients for the DIRECT algorithm in several 
dimensions. We initialize the search by sampling at the center of the unit 
hypercube. Each iteration then begins by identifying the set of potentially 
optimal hyperrectangles. These hyperrectangles are then sampled and 
subdivided as just described. The process continues until a prespecified 
iteration limit is reached (one could also stop after a prespecified number 
of function evaluations). A formal statement of the multivariate DIRECT 
algorithm is given below. 

Multivariate DIRECT Algorithm. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Normalize the search space to be the unit hypercube. Let e~ 
be the centerpoint of this hypercube and evaluate f(e,) .  Set 
fr, i ,= f ( e l ) ,  m =  1, and t = 0  (iteration counter). 

Identify the set S of potentially optimal rectangles. 

Select any rectangle j ~ S. 

Using the procedure described earlier, determine where to 
sample within rectangle j and how to divide the rectangle 
into subrectangles. Update fmin and set m = m + Am, where 
Am is the number of new points sampled. 

Set S = S - { j } . I f S ¢ ~ g o t o S t e p 3 .  
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Fig. 9. Three iterations of the DmrCT algorithm on Branin's function. 
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Step 6. Set t = t +  1. If t =  T, stop; the iteration limit has been 
reached. Otherwise, go to Step 2. 

To provide a more intuitive feeling for how the algorithm works, 
Fig. 9 shows the first three iterations of the algorithm on the two-dimen- 
sional Branin test function (Ref. 8) using e=0.0001. For each iteration, 
column 1 shows the status of the partition at the start of the iteration, 
column 2 shows the set of potentially optimal rectangles (shaded), and 
column 3 shows how these rectangles are sampled and subdivided. 
Figure 10(a) shows a scatter plot of the sampled points after 16 iterations 
and 195 function evaluations. At this point, the best solution from DIRECT 
is within 0.01% of the global optimum. The status of the search after 45 
iterations and 1003 function evaluations is shown in Fig. 10(b). Branin's 
function has three global optima, and the sampled points clearly cluster 
around them. 

In our description of the algorithm so far, it would appear necessary 
to store the center point and side lengths of each rectangle. But one need 
not store all this information. Instead, one can store information that 
makes it possible to reconstruct the center points and side lengths when 
needed. Each time a rectangle is divided, the subrectangles can be con- 
sidered child rectangles of the original parent rectangle. What we actually 
store is information on this search tree, such as parent nodes, depth in the 
tree, child type (left or right), and so on. In this way, the storage 
requirements of DIRECT become independent of the number of dimensions. 
However, the storage requirements do increase with the number of function 
evaluations (i.e., with the number of  rectangles being stored). 

(a) (b) 

• o  

o •  i ii i i i i i i  
• , . • o  

* . ° o ~  

• t ° . .  * • • 

• o o  • * • 

. , . . . . .  • o o • o . • m ~  • • • o  

• • ° o . o • • • . . m * . * • o o • • • •  

: .iii ii.i. i!i| 
Fig. 10. Scatter plots for Branin's function after 195 and 1003 evaluations. 
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5. Convergence 

DIRECT is guaranteed to converge to the globally optimal function 
value if the objective function is continuous--or at least continuous in the 
neighborhood of a global optimum. This follows from the fact that, as the 
number of iterations goes to infinity, the set of points sampled by DIRECT 
form a dense subset of the unit hypercube. That is, given any point x in the 
unit hypercube and any 6 > 0, DIRECT will eventually sample a 15oint within 
a distance 6 of x. 

The reason why the iterates of DmECT are dense is as follows. Recall 
that the partition is initialized with just one rectangle, the unit hypercube, 
for which every side has a length of 1. Since new rectangles are formed by 
dividing existing ones into thirds on various dimensions, the only possible 
side lengths for a rectangle are 3-k for k = 0, 1, 2 . . . . .  Moreover, since a 
rectangle is always divided on its largest side, no side of length 3-~k+ 1) can 
be divided until all of those of length 3 -e  have been divided. It follows 
that, after r divisions, the rectangle will have j =  rood0; n) sides of length 
3 -tk+~) and n - j  sides of length 3 -k, where k = ( r - j ) / n .  The distance 
from the center to the vertices is therefore given by 

d =  [ j3  -2(k+ 1~ + (n - j ) 3  -2k] °'5/2. (9) 

As the number of divisions approaches infinity, the center-to-vertex 
distance approaches zero. 

Now suppose that we are at the start of iteration t. Each rectangle in 
the partition will have been divided a certain number of times. Let r, be the 
fewest number of divisions undergone by any rectangle. This rectangle 
would then have the largest center-to-vertex distance. We claim that 
l i m t ~  rt=oo; that is, the number of divisions of every rectangle 
approaches infinity. This is easily proved by contradiction. If the timt_~ oo r, 
is not infinity, then there must exist some iteration t' after which r t never. 
increases; that is, limt_~ ~ rt = r,,. Now at the end of iteration t', there will 
be a finite number of rectangles which have been divided rr times; let this 
number be N. All these rectangles will be tied for the largest center-to- 
vertex distance, but they will differ with respect to the value of the function 
at the center point. Let rectangle j be the one with the best function value 
at the center point. In the next iteration, rectangle j will be potentially 
optimal because the two conditions of Definition4.1 are satisfied for 
K > m a x { K  1, K2}, where 

K1 = If(e/)  --fmin + e [fmin[ ]/dj, (10) 

K2= max [f(cj)--f(ci)]/(4--C).  (11) 
1 4 i ~ m  
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But if rectangle j is potentially optimal, it will be subdivided. This will 
leave N - 1  rectangles that have been divided only r c times. Clearly, by 
iteration t = t ' +  N, all of the original N rectangles will have been divided, 
implying that rt >~ rc + 1. But this contradicts our assumption that r t never 
increases above re. This contradiction proves that l imt~ ~ r t =  ~ .  From 
this, it follows that the maximum center-to-vertex distance must approach 
zero as t ~ ~ .  Thus, given any 6 > 0, there will exist some number  of 
iterations T such that, if t > T, then every rectangle has a center-to-vertex 
distance less than 6. This, in turn, implies that every point in the hypercube 
will be within a distance 6 of some sampled point. 

Because the points sampled by DIRECT form a dense subset of the 
hypercube, DIRECT will converge to the globally optimal function value as 
long as the function is continuous in the neighborhood of the global mini- 
mum. Since any function satisfying a Lipschitz condition is continuous, 
DIRECT will also converge for any function satisfying a Lipschitz condition, 
even though the Lipschitz constant may not be known. 

6. Performance Comparisons 

We have applied DIRECT to nine standard test functions. The first seven 
were proposed by Dixon and Szego (Ref. 8) as benchmarks for comparing 
global search methods. The last two are taken from the literature on 
tunneling algorithms (Ref. 9). Table 1 gives the number  of dimensions, local 
minima, and global minima for each of these functions. All of the test 
functions are differentiable. 

Following Dixon and Szego (Ref. 8), we have compared DIRECT to 
existing algorithms based on the number  of function evaluations required 

Table 1. Key characteristics of the test functions. 
i i i i i i i  iiiiiii i i i i  i 

Number of Number of Number of 
Test function Abbreviation dimensions local minima global minima 

Shekel 5 $5 4 5 1 
Shekel 7 $7 4 7 1 
Shekel 10 S10 4 10 1 
Hartman 3 H3 3 4 1 
Hartman 6 H6 6 4 1 
Branin RCOS BR 2 3 3 
Goldstein and Price GP 2 4 1 
Six-Hump Camel C6 2 6 2 
Two-Dimensional Shubert SHU 2 760 18 

i i i i i i  i i i  i i  
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for convergence as well as the number of units of standard time required, 
where one unit of standard time corresponds to 1000 evaluations of the 
Shekel 5 test function at the point (4, 4, 4, 4). 

While this may seem like an objective standard, it has some serious 
problems. First, Dixon and Szego established no definition of convergence, 
allowing this to be defined by the originators of the methods as they saw 
fit. Second, no standard was proposed for dealing with stochastic algo- 
rithms. It is entirely possible for a stochastic algorithm to converge on 
some runs but not on others. In these cases, it becomes unclear what one 
should report as the number of function evaluations required for con- 
vergence. Finally, many algorithms have several algorithmic parameters 
and their performance can be quite sensitive to how these parameters are 
set. If a large number of runs are spent fine-tuning these parameters, then 
the performance of the algorithm with the fine-tuned parameters does not 
truly represent the full effort involved in optimizing the function. 

Other methods for comparing optimization algorithms have been 
proposed. For example, Stuckman and Eason (Ref. 10) have compared 
several global search algorithms based on percent error after 20, 50, 100, 
200, 500, and 1000 function evaluations. Unfortunately, results of this sort 
are not available for many algorithms. 6 

To use the Dixon/Szego comparison method, we must define what we 
mean by convergence for DIRECT. Since all the test functions have known 
global optima, a natural choice is to define convergence in terms of percent 
error from the globally optimal function value. If we let fg~oba~ denote this 
globally optimal function value and let fmin denote the best function value 
at some point in the search, then the percent error is 

percent error = 100(fmin - f g l o b a l ) / I f g l o b a l ]  • (12) 

We report the number of function evaluations and standard CPU times 
required to achieve less than 1.0 and 0.01 percent errors. For existing algo- 
rithms, we report results based on the definition of convergence used by 
their authors. In all computer runs, the parameter ~ was set to 0.0001. 

Tables 2 and 3 summarize these performance comparisons with respect 
to number of function evaluations and computation time, respectively. The 
first 11 algorithms all appeared in the 1978 anthology edited by Dixon and 
Szego (Ref. 8) and therefore are somewhat old. The algorithm by Belisle et 
al. (Ref. 11) is of the simulated annealing type, while those by Boender et 
al. (Ref. 12) and Snyman and Fatti (Ref. 13) are variations on the multi- 
start method. The Kostrowicki and Piela algorithm (Ref. 14) uses a local 

6On request, we will provide full iteration histories for DIRECT on all the test functions 
(contact D. R. Jones). 
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optimizer to minimize a smoothed version of the function, with the amount 
of smoothing being reduced as the algorithm proceeds. Yao's algorithm 
(Ref. 9) alternates between a local optimization phase and a tunneling 
phase that attempts to move from the current local minimum into the 
basin of convergence of a better one. The Perttunen (Ref. 15) and 
Perttunen/Stuckman (Ref. 16) algorithms are of the Bayesian sampling 
variety; during each iteration, they sample at a point calculated to have the 
highest probability of improving upon the current best solution. 

To provide some overall perspective, Table 4 summarizes the results 
as follows. For any test function where both DIRECT and a competing 
algorithm were applied, we say that DIRECT wins if it converged in fewer 
function evaluations and loses otherwise. If a competing algorithm 
converged to a local, it is considered a loss. Similar results are shown for 

Table 2. Number  of function evaluations in various methods compared to DIRECT. 

Test functions 

Method Reference $5 $7 S10 H3 H6 GP BR C6 SHU 

Bremrnerman 8 (a) (a) (a) (a} (a) (a) 250 (b) (b) 
Mod Bremrnerman 8 (a) (a) (a) (a) 515 300 160 (b) (b) 
Zilinskas 8 (a) (a) (a) 8641 (b) (b) 5129 (b) (b) 
Gomulka-Branin 8 5500 5020 4860 (b) (b) (b) (h) (b) (b) 
T6rn 8 3679 3606 3874 2584 3447 2499 1558 (b) (b) 
Gomulka-T6rn 8 6654 6084 6144 (b) (b) (b) (b) (b) (b) 
Gomulka-V.M. 8 7085 6684 7352 676611125 1495 1318 (b) (b) 
Price 8 3800 4900 4400 2400 7600 2500 1800 (b) (b) 
Fagiuoli 8 2514 2519 2518 513 2916 158 1600 (b) (b) 
DeBiase-Frontini 8 620 788 1160 732 807 378 587 (b) (b) 
Mockus 8 1174 1279 1209 513 1232 362 189 (b) (b) 
Belisleet al. (c) 11 (b) (b) (b) 339 302 4728 1846 (b) (b) 
Boenderet al. 12 567 624 755 235 462 398 235 (b) (b) 
Snyman-Fatti 13 845 799 920 365 517 474 (b) 178 (b) 
Kostrowicki-Piela 14 12000 12000 12000 200 200 120 (b) 120 (b) 
Yao 9 (b) (b) (b) (b) (b) (b) (b) 1132 <6000 
Perttunen (d) 15 516 371 250 264 (b) 82 97 54 t97 
Perttunen-Stuckman (d) 16 1•9 109 109 140 175 113 109 96 (a) 

DIRECT, error < 1 %  103 97 97 83 213 101 63 113 2883 
DIRECT, error <0.01% 155 145 145 199 571 191 195 285 2967 

(a) Method converged to a local minimum. 
(b) Method not applied. 
(c) Average evaluations when converged, For H6, converged only 70% of time. 
(d) Convergence defined as obtaining <0.01 percent error. 



JOTA: VOL. 79, NO. 1, OCTOBER 1993 177 

standardized computation time. All these comparisons use the strict defini- 
tion of convergence for DmECT (<0.01% error). 

The results of these comparisons show DmECT to be very competitive 
with existing algorithms. In terms of function evaluations required for 
convergence, Dm~CT wins in 50% or more of the comparisons against 
every competing algorithm except Perttunen and Perttunen-Stuckman. In 
terms of computation time, t)mECT wins in over 50 % of the comparisons 
against every algorithm except Snyman-Fatti and Kostrowicki-Piela. 

Many of the close competitors to DmECT have features that make them 
less attractive in practical settings. For example, the Perttunen-Stuckman 
method is known to get fairly close to the optimum quickly but to 
take much more time to get as close as 0.01% error. To obtain results 

T a b l e  3. N o r m a l i z e d  c o m p u t a t i o n  in various methods compared to  DIRECT. 

Test functions 

Method Reference $5 $7 S10 H3 H6 GP BR C6 SHU 

Bremmerman 8 (a) (a) (a) (a) (a) (a) 1.00 (b) (b) 
ModBremmerman 8 (a) (a) (a) (a) 3.00 0,70 0.50 (b) (b) 
Zilinskas 8 (a) (a) (a) 175.00 (b) (b) 80.00 (b) (b) 
Gomulka-Branin 8 9.00 8.50 9,50 (b) (b) (b) (b) (b) (b) 
Yrrn 8 10.00 13,00 15.00 8.00 16.00 4`00 4.00 (b) (b) 
Gomulka-Trrn 8 17.00 15.00 20.00 (b) (b) (b) (b) (b) (b) 
Gomulka-V.M. 8 19,00 23.00 23.00 17.00 48.00 2.00 3.00 (b) (b) 
Price 8 14.00 20.00 20.00 8.00 46,00 3.00 4.00 (b) (b) 
Fagiuoli 8 7.00 9.00 13.00 5.00 100.00 0.70 5.00 (b) (b) 
De Biase-Frontini 8 23.00 20.00 30.00 16,00 21.00 15.00 14.00 (b) (b) 
Mockus 8 (e) (c) (c~ (c) (c) (c) (c) (b) (b) 
Belisleet al. 11 (b) (b) (b) 0.88 0.86 9.80 3.40 (b) (b) 
Boenderet al, 12 3.50 4.50 7.00 1.70 4.30 1,50 1.00 (b) (b) 
Snyman-Fatfi 13 1,10 1.30 2.00 0.60 L30 0,20 (b) 0.I0 (b) 
Kostrowicki-Piela 14 15.00 19.00 26,00 0.30 0.50 0.04 (b) 0,05 (b) 
Yao 9 (b) (b) (b) (b) (b) (b) (b) (c) (c) 
Perttunen (d) I5 9259.20 4769.t0 2272.00 434`30 (h) 10.11 13.37 4,80 39,06 
Perttunen- 

Stuckman (d) 16 20.59 20,54 20.61 18.32 34.32 I6.36 16.39 15.77 (a) 

DIRECT, error < 1 %  0.32 0.33 0.37 0.29 0.70 0,29 0.t9 0.28 22,95 
DmEcT, error <0.01% 0.68 0,69 0.75 0.87 2.24 0.67 0.70 0.90 23.50 

(a) Method converged to a local minimum. 
(b) Method not applied. 
(c) Computation time not reported. 
(d) Convergence defined as obtaining <0.01 percent error. 

lllllllllllll !ml ' l l l  llll ! l  I 
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comparable to DIRECT, we therefore ran the Per t tunen-Stuckman method 
for 100 function evaluations and, if necessary, used a local optimizer to 
fine-tune the solution to 0.01% error. The local optimizer was the IMSL 
subroutine D B C O N F ,  a quasi-Newton method using numerical 
derivatives; the number  of function evaluations in Table 2 includes those 
required to compute these derivatives. While using 100 global evaluations 
worked well on these test problems, the appropriate number of global 
evaluations is likely to be problem dependent. As Table 2 shows, a limit of 
100 global evaluations was inadequate for the two-dimensional Shubert 
function. The Shubert function can be successfully optimized using 200 
global evaluations but, if 200 evaluations had been used for all the test 
problems, DIRECT would have won in 6 out of 9 comparisons. 

Among the other close competitors, Perttunen's method is extremely 
C P U  intensive (in terms of C P U  time, DIRECT beats Perttunen's method on 
every test function). The multistart algorithms of Boender et al. and 
Snyman and Fatti  require the objective function to be differentiable and 
may require multiple runs. The diffusion equation method of Kostrowicki 
and Piela requies, for efficiency, the ability to obtain a closed-form formula 

Table 4. Summary comparisons of DIRECT vs. competing algorithms. 

Function evaluations CPU time 

Algorithm Reference Win-loss Win-loss 

Bremmerman 8 7-0 7-0 
Mod Bremmerman 8 5-2 6-1 
Zilinskas 8 5-0 5-0 
Gomulka-Branin 8 3-0 3-0 
T6rn 8 7-0 7-0 
Gomulka-T6rn 8 3-0 3-0 
Gomulka-V.M. 8 7-0 7-0 
Price 8 7-0 7-0 
Fagiuoli 8 6-1 7-0 
De Biase-Frontini 8 7-0 7-0 
Mockus 8 6-1 (a) 
Belisle et al. 11 3-1 3-1 
Boender et al. 12 6--1 7-0 
Snyman-Fatti 13 5-2 3-4 
Kostrowicki-Piela 14 4-3 3-4 
Yao 9 2-0 (a) 
Perttunen 15 4-4 8-0 
Perttunen-Stuckman 16 1-7 8-0 

(a) Computation times not reported. 
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Table 5. Function evaluations required for convergence. 
,ml i i  

Test functions 

e $5 S7 S10 H3 H6 GP BR C6 SHU 

0.01 
0.001 
0.0001(a) 
0.00001 
0.000001 
0.0000001 

3749 374t 3741 3817 > 10000 191 787 521 1623 
155 145 145 533 985 191 259 285 I887 
t55 145 145 199 571 191 195 285 2967 
155 145 145 199 571 191 195 285 3959 
155 145 145 199 571 191 195 285 4899 
155 145 145 199 571 191 195 285 5747 

(a) This is the value of e used in comparisons of DII(ECT to other algorithms. 

for a particular integral (this was not possible for $5, $7, and S10, which 
accounts for the high number of function evaluations on those functions). 

Table 5 explores the sensitivity of DIRECT to the parameter e. For each 
of the test functions, we report the number of function evaluations until 
convergence for values of e between !0 2 and 10 -7,  Convergence was 
defined as achieving less than 0.01% error. Given this definition of 
convergence, it is most natural to set e equal to 0.0001. This tells DIRECT 
to ignore rectangles whose lower bound (using the rate-of-change constant 

that makes them potentially optimal) suggests that further search in the 
rectangle will not improve upon the current best solution by 0.01%. 
Smaller values of e make the algorithm more local and tend to increase the 
number of function evaluations. But, as the table shows, e can be made 
several orders of magnitude smaller than its natural value without 
drastically affecting the results (test function SHU is an exception). 

It is risky, however, to increase e above the value implied by the 
definition of convergence. Even if the algorithm finds the basin of 
convergence of the global optimum, large values of epsilon can prevent 
DIRECT from refining its solution to the desired accuracy. The search 
becomes very global and lengthy, as indicated by the line in Table 5 for 
e = 0.0t. In general, we expect that setting e equal to the desired solution 
accuracy will yield good results. 

7. Conclusions 

For an algorithm to be truly global, some effort must be allocated to 
what we have called global search--search done primarily to ensure that 
potentially good parts of the space are not overlooked. On the other hand, 
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to achieve efficiency, some effort must also be placed on local search-- 
search done in the area of the current best solution(s). Most existing algo- 
rithms strike a balance between local and global search using one of two 
approaches. The first is to start with a large emphasis on global search and 
then shift the emphasis towards local search as the algorithm proceeds. 
This is the approach followed by simulated annealing (Ref. 11) and the 
diffusion equation method (Ref. 14). The second approach is to combine a 
local optimization technique with some other procedure that gives a global 
aspect to the search. This is the approach adopted by multistart and 
tunneling algorithms. 

DIRECT introduces a third approach to balancing global and local 
search: do a little of both on every iteration (recall that an iteration in 
DmECT consists of several function evaluations). As we have seen, this is 
accomplished by selecting all those rectangles that would have the lowest 
lower bound for some rate-of-change constant: small constants select 
rectangles good for local search, while large constants select those good for 
global search. 

An advantage of this third approach is that it leads to an algorithm 
with few parameters. In contrast, those algorithms which shift from global 
to local search usually have parameters that specify the rate at which 
this shift is accomplished (e.g., the temperature schedule in simulated 
annealing). Similarly, methods which combine local optimizers with global 
procedures often have several parameters which control how the global 
procedures operate. For example, the multistart method of Boender et al. 
requires one to specify how many random points to evaluate and what 
fraction of these should be followed up with the local optimizer. Sometimes 
algorithms are sensitive to such parameters and a good deal of experimen- 
tation is required before a satisfactory result is obtained. As we have seen, 
DIRECT has only one parameter and appears to be fairly insensitive to how 
it is set. 

In summary, practical use of Lipschitzian algorithms has long been 
impeded by the need to specify a Lipschitz constant. DmECT eliminates 
this requirement by carrying out simultaneous searches with all possible 
Lipschitz constants. The algorithm can operate in high-dimensional spaces 
because it uses an especially easy-to-manage partition of the space into 
hyperrectangles whose center points are sampled. The algorithm requires 
no derivatives and, because it is deterministic, no multiple runs. Parameter 
fine-tuning is minimized because there is only one parameter which is easy 
to set. Results for standard test functions suggests that, for problems up to 
six dimensions, DIRECT is an extremely effective global optimizer that 
requires relatively few function evaluations. 
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