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ABSTRACT 

This paper proposes a method for quantifying the effect of a qualitative explanatory variable on a binary 

response that is more flexible to use than the simple coefficient of a multiplicative GLM model; the 

objective is to have a measure that does not require the assumption of GLM proportionality and that is 

completely decorrelated from the effect of the other explanatory variables included in the model. The 

approach is illustrated using motor vehicle property loss cost data, for which an attempt is made to 

quantify the impact of the adjuster who assessed the claim on the valuation amount. 
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1. Introduction 

The insurer often has to measure the impact of a binary explanatory variable on a 

quantitative response: do policyholders arriving through a given channel have a better 

loss ratio than others? Do owners of a two-wheeler have a lower customer value than 

those who have only insured one car? Answering these types of questions requires 

correcting for the effects of other variables influencing risk, since the typologies of 
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insured and/or claims differ for the two modalities of the characteristic under 

consideration. 

In property and casualty insurance, the use of GLM regression models (see BESSON and 

PARTRAT [2004]) makes it possible to decorrelate the different variables and thus provides 

a simple answer in the form of a single coefficient synthesizing the effect of the variable, 

as long as a log link function is used. 

The validity of this coefficient, however, presupposes that the hypothesis of 

proportionality of the effects is verified, since the conditional expectation of the 

response is written as a product of coefficients each attached to the modalities of the 

variables, which can be quite constraining. When this hypothesis is not verified and the 

relative effect of the variable of interest varies from one segment to another, it is 

necessary to construct other measures and the realization of a GLM per segment leads to 

an increase in the volatility of the estimators, making it an inefficient solution when the 

number of segments increases. 

Two non-parametric approaches, based on gradient boosting (RIDEGWAY [1999]) and SHAP 

values (see SHAPLEY [1953] and LUNDBERG and LEE |2017]), are proposed in this work to 

construct this measure of influence. 

In order to be able to construct the influence measure, the model for predicting the costs 

of the claims considered here must first be reconstructed using suitable techniques, in 

practice the boosting gradient. To do this, we place ourselves in the context of the study 

carried out by DE LUSSAC [2018] and extended by KHOUGEA [2019], which consists of 

measuring the impact of a network of experts on the cost of a motor vehicle equipment 

claim. 

This paper is organized as follows: in the first part, the working context is recalled 

(section 2) and the algorithms for constructing predictors that serve as a basis for 

influence measurements are described (section3). Section4 is devoted to the description 

of the two proposed measures of influence. A comparison of the different approaches 

with the results of using a GLM is proposed in section 5, before concluding and 

formulating a recommendation (section 6). Readers interested in a broader presentation 

of this work can refer to WABO [2019]. 

2. Ratings and context of the study 

This study is set in the following context, which can easily be transposed to many other 

situations: we seek to measure the influence of two networks of adjusters, A and B, on 

the cost of motor vehicle material claims, in order to determine the network driving, all 
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other things being equal, at the lowest cost, which will be described as "more efficient4". 

In the following, the cost difference between A and B is arbitrarily favoured. 

The objective of the modelling is to measure the performance gap between two 

networks of experts when evaluating the cost of material claims. This evaluation consists 

of reconstructing the cost of claims (response variable) using nine characteristics 

(explanatory variables) that provide information about the vehicle (mileage, age and 

make), the type of accident, the hourly rate of the garage, the place and date of 

occurrence of the accident, the insurer that assumed responsibility for the claim and the 

network of experts that intervened, the variable of which has been named "target". 

The following are some statistical summaries of the data used for the digital illustrations5: 

• yellow discontinuous lines: average cost of claims appraised by network A (or B) ; 

• dots in yellow: average costs for a given modality, with the associated error bars 

representing the 95% confidence interval6 ; 

• Grey diagrams: number of claims per modality. 

Fig. 1 : Distribution of the networks' portfolio according to vehicle make 

 

For each network, the figure above shows the composition of the claims portfolio for 
each make of vehicle and the associated average cost. There are a total of thirteen 
brands, twelve of which are main brands (AUDI, PEUGEOT, BMW, etc.), the other brands 
having been grouped in a modality named OTHER.  

 
4 Justifying the link between a notion of performance and lower costs is beyond the scope of this study. We 
can just indicate here that the experts respect a set of specifications and professional standards that should 
ensure an identical service to the insured, whether through network A or network B. 
5 A detailed presentation of the data is provided in WABO [2019]. 
6 The confidence interval was obtained using a Student's Law with n-1 degrees of freedom. 
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There is a similarity between the two networks. 

Fig. 2 : Distribution of the network portfolio according to mileage 

 

Mileage was categorized into five classes using quantiles. This discretization concerns 

only the previous graphical representation. In general, the older a vehicle is, the more 

likely it is to have travelled a long distance, hence the decrease in average cost observed 

above. 
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Fig. 3 : Distribution of the networks' portfolio according to the period of occurrence of the accident 

 

The figure above shows a fairly similar trend in claims for the two networks. 

Measuring the performance gap by comparing their average claims costs is only valid if 

the claims appraised by the networks are homogeneous, which is not the case in practice. 

This is why it is necessary to take into account the dissimilarities relating to the nature of 

the claims appraised by each network. For this purpose, a model is constructed to predict 

the costs of claims based on their characteristics. 

A first possible approach is to use a GLM with a log link function. The difference in 

performance obtained is then -2.4% in favour of network A (cf. DE LUSSAC [2018]). 

However, the author pointed out that the assumption of proportionality of GLM effects is 

questionable and that the Gradient Boosting Model is preferable for modelling average 

cost. 

3. The prediction model: Gradient Boosting Models (GBM) 

The studies carried out by DE LUSSAC [2018] and KHOUGEA [2019] were mainly aimed at 

reconstructing claims costs in a P&C (motor) context using a predictive model. In order to 

find the most suitable predictive model, they compared several models such as the 

Generalized Linear Model (GLM), the Random Generalized Linear Model (RGLM), the 

Gradient Boosting Model and the Random Vector Functional Link (RVFL) neural network. 

The comparison of these models was based on the Mean Square Error (MSE) and the L1 

error obtained on the test sample : 
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MSE =
1

ntest
∑ (yi − ŷi)

2ntest
i=1   Error L1 =

1

ntest
∑ |yi − ŷi|
ntest
i=1  

ntest is the number of observations in the test sample. For i ∈ {1, … , ntest} yi and ŷi 

represent observed and predicted values respectively. 

The best performing predictive model is the WBG (see RIDGEWAY [1999]) with a root mean 

square error of 2,411,535 and an L1 error of 651. Compared to other models, the WBG had 

the lowest errors. For this reason, this model was chosen for the modelling of this study. 

Nevertheless, significant discrepancies between predicted and observed values remain. 

These are partly explained by the inadequacy of the variables available for building a high-

quality predictive model, which leads to a lack of information to differentiate between 

certain claims that appear similar but for which the expert appraisal amounts are 

significantly different. However, these discrepancies do not call into question the 

consistency and value of the study, which is based on the measurement of a relative gap. 

Before detailing the settings made to build the optimal WBG, let's start by presenting the 

framework. 

a. Predictor construction 

The Gradient Boosting Models (GBM) is a family of algorithms based on the boosting7 and 

gradient of a supposedly convex and differentiable loss function. Their basic principle is 

to build a sequence of adaptive models so that at each step, each model added to the 

combination of previous models appears as a step towards a better solution. This step is 

taken in the direction of the gradient of the loss function in order to improve the 

convergence properties. 

The objective of the WBG is to build an aggregated model f minimizing the quadratic loss 

function L. 

𝑓(𝑥) = argmin
𝜓

1

𝑛
∑

1

2

𝑛

𝑖=1

(𝑦𝑖 − 𝜓(𝑥𝑖))
2
= argmin

𝜓

1

𝑛
∑

1

2

𝑛

𝑖=1

𝐿(𝑦𝑖 , 𝜓(𝑥𝑖)) 

Among the many versions of boosting, the one used in this study is Stochastic Gradient 

Boosting, which differs from classic Gradient Boosting by the addition of a random draw 

without resizing. ñ (< n) at each iteration to create an adaptive model. In FRIEDMAN 

[2002], several cases have shown the relevance of this parameter. The estimate f̂ from f 

shall be obtained using the standard algorithm set out in the Annex. 

The WBG algorithms implemented in R (gbm) and Python (scikit-learn) are relatively easy 

to use when sticking to non massive data or simple analysis based on default parameters 

 
7 Boosting is a method of automatic learning that consists in iteratively applying a weak learning algorithm to optimize 
its performance. 
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(maximum number of iterations Mthe proportion of randomly selected observations pthe 

maximum depth of the regression trees K and the rate of learning or shrinkage λ). 

Nevertheless, both of these cases are rare in reality. For this reason, it is necessary to find 

an alternative with an algorithm optimized in terms of memory management and 

allowing an advanced parallelization of the calculations: the GBM package of the H2O 

module meets these constraints and, in this study, all the GBM algorithms were executed 

using this module. 

We will then summarize the methodology used and the results obtained (cf. DE LUSSAC 

[2018]). The idea is to first apply the model with default settings, then optimize them to 

obtain the optimal predictive model. 

b. The predictive model used 

The parameterization of a model depends on two main constraints: 

• the complexity of the model: the algorithm must run in a reasonable time while 

providing good results. The complexity is mostly controlled by the number of 

iterations of the algorithm. 

• overlearning: the algorithm will naturally adapt to the learning sample as 

iterations go by, hence the need to define a stopping criterion associated with 

slow learning so that each iteration brings only a slight modification of the 

previous model. 

In this study, the stopping criterion chosen is the control of the number of iterations by 

the root mean square error on the validation sample. Specifically, the algorithm stops as 

soon as the MSE on the validation sample no longer increases after 50 iterations. It is also 

possible to slow down the learning of the model by decreasing the learning rate and/or 

the maximum depth of the regression trees. 

The first application of the WBG algorithm was done under R with the following 

parameters : M = 10,000 , p = 50 % , K = 5 and λ = 0,1. The prediction errors obtained on the 

test sample are as follows: MSE = 2,477,139 and Error L1 = 661. For information, the 

number of iterations that have been performed is 2,822 and the execution time8 is 1 

minute and 31 seconds. 

The results obtained are based on a default setting. However, good forecast quality 

depends on an optimal configuration of the parameters, carried out using a method 

known as "grid search": values are proposed for each parameter, thus creating numerous 

 
8 the previous and following calculations were carried out using an optimised calculation server under 
Linux, provided by Prim'Act. This server is equipped with 64 GB RAM, and a 32-core processor with 2.6 GHz 
operating frequency and 40 MB cache. Performance issues are not central here, when they do become 
central, the approach can be adapted by considering the approach of LUNDBERG et al [2019]. 
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possible configurations which will all be browsed through to obtain the best 

configuration. This optimization is quite delicate for two reasons : 

• the existence of numerous parameters: in addition to the four parameters 

presented above, there are others such as the number of variables to be randomly 

selected, the minimum number of observations per sheet, etc. ; 

• the majority of parameters are linked: adjusting the value of one changes the 

value of the other. 

As the number of parameters is high and some of them play redundant roles in 

controlling overlearning, it is not necessary to optimize all of them. Only seven 

parameters were configured (see appendix f. 

In order to find the optimal parameter values, one should first have an idea of the finite 

set of values from which to choose the model fitting value. For each parameter, the 

associated search interval has been obtained through numerous tests. These consist of 

calculating the model MSE of the model on the validation sample according to several 

values that are sufficiently distant to identify (expertly speaking) a set of values where 

the mean of the calculated MSEs is the lowest. The resulting set is the ideal set for grid 

search. 

The predictive model used in this study having been recalled, it is now time to respond to 

the problem through the two approaches presented below. 

4. Influence measurements 

The proposed measures of influence are first constructed in a static manner, to provide 

an estimate, over a given period of time, of the impact on the response level of the binary 

variable of interest. The second step is to look at the use of these estimates in a dynamic 

framework, conducting them quarterly over a two-year period to see if any trends 

emerge. 

Gaps between the proposed models will therefore be analysed in terms of level and 

trend. 

c. First approach: Imputation of missing responses 

This approach involves comparing the two networks on a single claims basis to eliminate 

heterogeneity bias. However, there is no claims base where both networks have been 

involved, since a claim is appraised by A or B but never by A and B. It is therefore 

necessary to estimate the amount of the missing cost for each claim in the base in 

question. For this purpose, a model built on the basis of the claims appraised by each 

network is chosen to correspond to each network. Using these predictive models, a total 

of 3 amounts per claim will be available: the observed amount, the amount predicted by 
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Network A, and the amount predicted by Network B. 

The construction of the two predictive models is performed by separating the claims of 

network A and those of network B, thus obtaining models constructed without the 

"target9" variable (as performed below). This process only works if there are similarities 

in the claims being appraised. It would also have been possible to construct both models 

with a single predictive model incorporating the "target" variable. The advantage of this 

process is that it can be used even if the claims assessed are totally different for each 

network. In the present work, the two-model approach is used, but the choice of either 

approach is irrelevant. 

The cost prediction by the two networks was as follows : 

Fig. 4 : Steps in predicting the cost of claims for Networks A and B 

 

The division of the samples was done according to the proportions 3/5 (for the training 

sample), 1/5 (validation sample) and 1/5 (test sample). The concatenated test bases are 

the claims basis on which the comparison is made. 

Two possibilities of comparison are proposed : 

• the first is to compare the networks on the basis of the costs predicted for each 

network, the observed cost being taken as a benchmark without directly 

intervening in the assessment of the cost difference ; 

 
9 As a reminder, this is the name of the variable corresponding to the network of experts involved. 
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• the second is to compare the two networks on the basis of their observed and 

predicted costs, with the predicted value simply supplementing the data when it is 

not provided. 

Comparison on the same claims experience - method n°1 

Here, the evaluation is made on the basis of the predictions made and on the basis of the 

measurements. M and Err defined below. This method requires a priori the definition of 

reference amounts, i.e. amounts expected by the insurer. Thus, we look at the network 

(through its constructed predictive model) that has obtained on average the lowest cost 

of claims while having the reconstructed costs closest to those expected. 

M(ŷ1, … , ŷn) =
1

n
∑ ŷi
n
i=1 , Err((y1, ŷ1), … , (yn, ŷn)) =

1

n
∑ (yi − ŷi)

2n
i=1   (4.1) 

where yi and ŷi for i ∈ {1, … , n} correspond respectively to the observed and predicted 

amounts. n is the number of claims contained in the resulting test database. 

A simple numerical application of the previously defined measures to the claims costs 

gives : 

 

 

The average value of the claims costs predicted by the model for network A is lower than 

the average value of the costs predicted by network B. This observation leads to the 

conclusion that the presence of network A reduces costs on average by about 0.72% (this 

is a similar interpretation to the linear models) or the performance gap is -0.72%. The 

calculation of this coefficient is detailed in section 4. 

However, the error measurement obtained for network A is higher than that of network 

B. Taking into account the fact that the average cost of the observed claims is €2,006.93, 

it can be said that network A has been more efficient than network B because the 

average cost of the latter is further away from the average cost observed compared to 

network A. 

Nevertheless, one cannot overlook the fact that these calculations were made on the 

basis of all model predictions (good and bad). This is why the comparison is made again, 

but this time according to the quality of the predictions. To do this, a K-means is applied 

to construct homogeneous classes of claims with respect to the measure d1defined 

below : 

d1(yi, ŷi
A, ŷi

B) = max
 
(|
yi−ŷi

A

ŷi
A | , |

yi−ŷi
B

ŷi
B |)   (4.2) 

and

d 

M(ŷ1
A, … , ŷn

A) = €2,002.43 

M(ŷ1
B, … , ŷn

B) = €2,016.95 

 

Err ((y1, ŷ1
A),… , (yn, ŷn

A)) = 2,453,265 

Err ((y1, ŷ1
B),… , (yn, ŷn

B)) = 2,417,710 
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where yi, ŷi
A and ŷi

B correspond respectively to the observed claims costs, predicted by 

model A and predicted by model B. 

Classification using the K-means algorithm requires a number of classes to be defined 

before executing the algorithm. We have determined the number of classes so that the 

explained inertia10 is greater than 95%. which leads us to retain 10 of them, homogeneous 

for the measurement. d1. These classes are numbered from 1 to 10 in ascending order of 

class centres. 

Tab. 1. Values of the centres of the constructed classes 

Class numbers 1 2 3 4 5 6 7 8 9 10 

Centre values 0.06 0.13 0.21 0.28 0.35 0.43 0.50 0.58 0.91 3.69 

Given that in this first method, the estimates provided by each of the two predictive 

models are considered to correspond to the amounts that the networks would have 

provided after appraisal, it was considered reasonable to focus only on the claims 

contained in the first five classes. For these classes, the numerical applications of M and 

Err have been made. This procedure makes it possible to limit the biases associated with 

the average prediction quality of the model considered globally due to the limited 

number (10) of explanatory variables of the model. 

The results obtained are as follows: 

Fig. 5 : Measures 𝐌 and 𝐄𝐫𝐫 calculated in the top five classes 

 

The graph on the left above shows three average costs per class, that of the observed 

claims and that of the claims predicted by models A and B. It can be seen that the 

estimates provided by network A are on average lower than those provided by network B 

in each class. In addition, the graph on the right shows an increasing gap between 

 
10 The explained inertia is equal to the inter-class variance divided by the total variance. 
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average network costs and average expected costs. This growing gap can be explained 

by the poorer quality of the forecasts over the classes. Only in class 1, network B has a 

lower error measurement than network A. 

Equivalent to that used to obtain the previous performance gap of -0.72%, here we obtain 

-1.26% taking into account only classes 1 to 5. That is to say, network A lowers the cost of 

claims by an average of 1.26% compared to network B. The overall (considering all 

predictions) or restricted (considering the best predictions) analyses lead to the same 

conclusion, with a difference in appreciation of the magnitude of the gap.  

The time trend in the performance gap is now being studied to see if a trend emerges. 

The temporal study takes place over the quarters of the years 2015 and 2016, and 

concerns only the best predictions. The following table summarizes the performance 

variance by quarter. 

Tab. 2. Performance gap measurement by quarter in the top five clusters 

 2015 2016 

T1 T2 T3 T4 T1 T2 T3 T4 

Difference (in %) -1.92 -2.62 -2.72 -1.90 -1.80 -1.90 -1.59 -0.84 

The corresponding graph is as follows : 

Fig. 6 : Evolution of the performance gap over the quarters in the top five clusters 

 

There is an increasing trend, synonymous with a degradation of performance, this point 

will be commented on further above. 

Comparison on the same claims experience - method n°2 
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In contrast to the previous method, which requires a priori a reference amount, in this 

method we compare the two networks on the basis of observed and predicted claims 

costs. For example, for a claim appraised by network A, the observed amount is the 

amount in the database and the predicted amount is the amount from model B. 

We therefore calculate the cost that the other network would have obtained if it had 

intervened in place of the network that actually intervened. This calculation is performed 

using the predictive model of the corresponding network. By construction, this approach 

has the advantage of eliminating the bias for the observed values. 

The comparison here is made using the following measure : 

M′(y1, … , ym, ŷm+1, … , ŷn) =
1

n
( ∑ yk

m
k=1 + ∑ ŷk

n
k=m+1 ) (4.3) 

where the yi for i ∈ {1, … ,m} are consistent with the observed costs and the ŷi for 

i ∈ {m + 1, . . . , n} correspond to the predicted claims costs. With m which is equal to the 

number of claims appraised by a network (those observed), and n is the number of claims 

contained in the test base (the one on which the networks are evaluated). 

We get : 

 

The results show that network A has on average a lower cost than network B. This makes 

the A network the more efficient of the two. More specifically, we can conclude that the 

presence of the latter decreases the cost by an average of about 0.90%, or 0.18 points 

more than the measure obtained in the first method. 

This result is obtained on the basis of both good and bad predictions. But there is not a 

sufficiently reliable and relevant technique to select the best predictions. This limit can be 

assimilated to predictions via a linear model, in particular the calculation of all predictions 

is carried out using the same regression coefficients. 

As in the previous method, it is useful to study the quarterly evolution of the performance 

gap. To this end, the measure defined in (4.3) has been applied to network costs on a 

quarter-by-quarter basis : 

Tab. 3. Performance gap measurement by quarter 

 2015 2016 

T1 T2 T3 T4 T1 T2 T3 T4 

Difference (in %) -3.40 -1.14 -0.92 -1.06 -1.24 -0.03 0.81 0.21 

A graphical view of these differences gives : 

M′(y1
A, … , ym

A , ŷm+1
A , … , ŷn

A) = €1,998.88  M′(y1
B, … , ym

B , ŷm+1
B , … , ŷn

B) = €2,016.98  
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Fig. 7 : Evolution of the performance gap over the quarters 

 

The above results indicate a trend towards a narrowing of the gap between the two 

networks, this time not always in favour of network A as in the first method. 

Both methods lead to the same overall conclusion which is in favour of Network A. The 

second method has the main limitation that it cannot be restricted to the good 

predictions made by the model. Both methods provide better predictions than those of a 

linear model and (using a simple calculation that is detailed in Section 4) provide 

information (using a simple calculation that is detailed in Section 4) on the performance 

gap between the systems, which can be calculated globally or on any segment, which the 

GLM does not allow. 

d. Second approach: using SHAP values 

The pragmatic approach proposed above, while simple to implement, has an important 

limitation, however, which is that the resulting measure of deviation depends on the 

heterogeneity structure of the sets of claims on which it is calculated. To get around this 

difficulty, we will calculate the contributions of the variables for a predicted value, in 

order to better isolate that of the "target" variable. 

Contributions are calculated using Kernel SHAP, a method derived from the Shapley value 

(see SHAPLEY [1953]). The latter provides an equitable distribution between the 

contributions of the variables and the solid mathematical theory of Kernel SHAP. 

Kernel SHAP is a technique that allows to explain a prediction of a machine learning 

model, by building locally a linear model around this prediction (cf. RIBEIRO et al. [2016]). 

Its principle is to find the best linear model that reflects the behaviour of the predictive 

model for a given prediction (see LUNDBERG and LEE [2017]) : 
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g(x′) = argmin
ε∈GL

L(f, ε, πx′)   (4.4) 

where f and g are respectively the model to be explained and the explanatory model ; GL 

is the class of linear models;  

x′ is the vector corresponding to the absence/presence of the11 explanatory variables of 

the instance of interest x in the prediction obtained; 

And the parameters πx′
12(proximity measurement) and L (loss function) are given below. 

{
 
 

 
 𝐿(𝑓, 𝜀, 𝜋𝑥′) = ∑ 𝜋𝑥′(𝑧

′) (𝑓(ℎ𝑥(𝑧
′)) − 𝜀(𝑧′))

2

,

𝑧′∈𝑍

𝜋𝑥′(𝑧
′) =

𝑚 − 1

|𝑧′|(𝑚 − |𝑧′|)
(
𝑚

|𝑧′|
)
−1

.

 

z′ is the vector corresponding to the absence/presence of the m explanatory variables of 
the created neighboring instance zin the prediction obtained. z′ is of value in {0,1}m ; 
Z is the set of row vectors of the binary matrix representing all possible combinations13 of 
z′ ; 
hx is a function such that z = hx(z

′) and |z′| corresponds to the number of non-zero 

elements of z′. 

Application example 

Kernel SHAP consists in explaining the difference between a predicted value and the 

mean predicted value. More precisely, it assigns to each explanatory variable a SHAP 

value, a value corresponding to its contribution to the difference obtained between the 

predicted value and the mean predicted value. 

As the diagram below illustrates, this is a prediction made on a claim with an observed 

cost of €1,057.16. 

Fig. 8 : Decomposition for an observation 

 

Positive contributions (SHAP values) are shown in red, and negative contributions are 

shown in blue. Moreover, we can see that the predicted value (noted output value on the 

diagram) is €1,050.69 and the predicted average value (noted base value on the diagram) 

 
11 If x is big mso... x′ is of value in {0,1}m. 
12 It allows the creation of neighbouring instances to the instance of interest x. 
13 For example, if m = 2 so... Z = {(0,0); (0,1);  (1,0);  (1,1)}. 
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is €2,012. All the contributions have been well represented on the above diagram but not 

all of them are written due to lack of space. 

These SHAP values were calculated using the Python function of the H2O module 

predict_contributions. This function can only be used for predictive models such as GBM, 

XGBoost obtained with the H2O package. Its syntax is as follows : 

𝜙 = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑑𝑎𝑡𝑎) 

where model and data correspond respectively to the predictive model built14 under H2O 

and the test sample and ϕ = (ϕ0, … , ϕm) (with ϕj column vector to ntest values) 

corresponds to a matrix of size ntest lines and m columns (m being the number of 

explanatory variables), of which the m− 1 The last columns correspond to the SHAP 

values of the predicted values. ϕ0 corresponds to the mean predicted value, it is the same 

value throughout the column, we can assimilate it to the intercept in a linear model. 

Modeling 

The main interest of this approach is the contribution of the "target" variable (variable 

representing the network of experts involved). Specifically, we are looking at which 

network has the lowest average contribution. The network with the lowest average 

contribution will be the best performing network. 

However, in order to remain in line with the performance gaps calculated so far (in 

percentage terms), these average contributions should be divided by the average 

predicted cost : 

 

 

 

with p ∈ {1,… ,m} column index of the variable "target". The ϕ̂1p
A , … , ϕ̂

ntest
A p
A  s represent 

the approximate values of the contributions of Network A and the ϕ̂1p
B , … , ϕ̂

ntest
B p
B  are 

those of Network B's contributions. 

(ϕ̂ij)1≤i≤ntest;1≤j≤m
is the matrix of SHAP values obtained on the test sample. These 

contributions are approximate values to avoid long calculation times. 

From the above results it can be concluded that network A is more efficient than network 

B. Equivalent to the interpretation made in the linear models, it can be said that the 

presence of network A reduces on average the cost of claims by 1.32% or that the 

 
14 The construction of the model was carried out using the learning and validation samples. 

𝑠𝐻𝐴 =

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ 𝜙𝑖𝑝

𝐴𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

 𝑠𝐻𝐵 =

1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ 𝜙𝑖𝑝

𝐵𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

 

= − 0.79 % = 0.53 % 
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performance gap is −1.32%. This coefficient corresponds to the difference between sHA 

and sHBThe calculation of the coefficient will be explained in detail in section 4. 

Although the contributions of the explanatory variables are evenly distributed, it is worth 

asking whether the same conclusion can be reached by looking only at the best 

predictions. Indeed, the contributions of the "target" variable from poor predictions may 

be greater or less than expected. 

These scores are calculated again, but this time based on the quality of the predictions. 

For this purpose, homogeneous classes are constructed with respect to the 

measurement d2 : 

𝑑2(𝑦𝑖, �̂�𝑖) = |
𝑦𝑖 − �̂�𝑖
�̂�𝑖

| 

where yi and ŷi correspond respectively to observed and predicted claims costs. 

The classification was done using the K-means algorithm. The method used to find the 

number of classes is the same as the one used in the first approach: we take a number of 

clusters such that the explained inertia is greater than 95%. The K-means algorithm is 

applied with K = 9. The nine homogeneous classes with respect to the measure d2 have 

been numbered from 1 to 9 in ascending order of class centre values (see below). 

Tab. 4. Values of the centres of the constructed classes 

Class numbers 1 2 3 4 5 6 7 8 9 

Centre values 0.10 0.31 0.53 0.75 1.33 2.19 3.54 5.89 10.95 

The two networks are compared again not on the basis of the whole test, but in each 

constructed group. As a result, the following results are obtained : 
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Fig. 9 : Graphical representation of the scores calculated by class, for each network 

 

Looking at the graph above, we can see that network A has a better score than network 

B in each group. In addition, there is some fluctuation in scores, probably due to 

prediction errors. Since the distribution of contributions depends on the predicted values, 

if the predicted values are bad, the contributions of the "target" variable will probably be 

bad too. For this reason, it was considered reasonable to focus only on the first-class 

results, thus coming as close as possible to a reliable distribution. In this class, you get : 

 

 

In this case, the performance gap between the two networks is -1.21%, an increase of 0.11 

points over the performance gap calculated on the basis of the entire test. 

However, it is not useful to ask whether by comparing the two networks again over a 

larger number of well-predicted claims, the same conclusion will be reached. For this 

reason, we have applied the SHAP Kernel to the whole database, with the same predictive 

model as the one used in the application to the test database. The contributions obtained 

were ranked according to the quality of the predictions. 

The best prediction class here includes, in addition to the number of previously well-

predicted values, about one hundred and fifty thousand other well-predicted values. A 

numerical application of the resulting contributions gives : 

 

 

With one difference, the same values are obtained as those previously obtained. Despite 

sHA = −0.72 % 

 

 

 

 

 

sHB = 0.49 % 

sHA = −0.71 % 

 

 

 

 

 

sHB = 0.48 % 
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a larger number of well-predicted values, the conclusion remains unchanged, so the 

approach has some robustness15. 

As in the previous approach, the quarterly evolution of the performance gap is presented. 

In other words, the scores previously obtained were calculated again, but this time on a 

quarter-by-quarter basis. By digital application, we obtain : 

Tab. 5. Measurement of the performance gap by quarter in the SHAP approach 

 2015 2016 

T1 T2 T3 T4 T1 T2 T3 T4 

Difference (in %) -1.21 -0.79 -0.74 -1.07 -0.77 -0.63 -0.85 -0.99 

The corresponding graphical representation is as follows : 

Fig. 10 : Evolution of the performance gap over the quarters in the SHAP approach 

 

This graph shows the same trend as each of the graphs performed in the previous 

methods. In addition, there is some stability in the spreads over time. We'll come back to 

that in section 4. 

The results obtained in the proposed approaches are compared with those obtained with 

generalized linear models. 

 
15 Kernel SHAP has been applied to the test base and to the whole base, and in each case the contributions 
obtained are approximate values. The calculation time for the SHAP values of the test base (comprising 
approximately one hundred and sixty thousand observations) was approximately 7 minutes and 20 
seconds, while that for the entire base (comprising approximately eight hundred and fifty thousand 
observations) was approximately 8 minutes and 30 seconds. 
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5. Synthesis of approaches and rapprochement with the GLM 

As stated in the first part of section 2, the problem of the study had been addressed by DE 

LUSSAC [2018] in the context of predictions from generalized linear models. 

Like the GLM, the two approaches previously presented allowed us to determine the 

most effective network of experts. Before comparing the results of the different 

approaches, the modelling carried out in the GLM is recalled below. 

Performance gap from GLM 

This part provides the modelling process carried out and the results obtained (see DE 

LUSSAC [2018]). 

As a distribution, the gamma distribution was chosen because it is well suited to 

asymmetric and positive distributions. The logarithmic function was used to obtain 

multiplicative tariffs. Indeed : 

𝑙𝑜𝑔(𝔼[𝑌|𝑋]) = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑚𝑋𝑚 
 
          𝔼[𝑌|𝑋] = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑚𝑋𝑚) 
 

          𝔼[𝑌|𝑋] = 𝑒𝑥𝑝(𝛽0) × (𝑒𝑥𝑝(𝛽1))
𝑋1
× …× (𝑒𝑥𝑝(𝛽𝑚))

𝑋𝑚
 

The logarithmic link function also allows you to reason in percentage terms. 

The implementation of GLM does not only require the definition of the distribution and 

the link function. Indeed, it is important to reduce the complexity of the calculations. The 

database used includes discrete variables with a fairly large number of modalities. Since 

the GLM calculates a modal regression coefficient for each discrete variable, it was 

deemed necessary to categorize these variables. 

We can also note the choice of other parameterizations carried out such as the choice of 

the variable selection procedure or the criterion of penalization of the log-likelihood of 

the model. For more information, see DE LUSSAC [2018]. 

Modelling using the GLM leads to the conclusion that the A system decreases the 

predicted values on average by approximately 2.4 per cent compared to the B system. In 

other words, there is a performance gap of -2.4% (estimated value of the regression 

coefficient). This measure falls within a 95% confidence interval of plus or minus 0.4%. 

Performance gap from the WBG 

In the modeling done with the log link function GLM, the performance gap is obtained by 

reading the regression coefficient of the variable corresponding to the expert network 

involved. However, the modeling done with the Gradient Boosting Model does not 
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explicitly provide this performance gap. The latter was obtained as follows: 

▪ Performance gap in the first approach: here, the performance gap between the 

two networks is obtained from the following formula : 

é𝑐𝑎𝑟𝑡1 =
�̅�𝐴 − �̅�𝐵
�̅�

 

Where y̅A and y̅B correspond respectively to the mean predicted value of network 

A and the mean predicted value of network B. And y̅ = 1/ntest∑ yi
ntest
i=1  , the yi are 

the observed costs. 

 

In order to measure the difference in performance between the two networks, 

the coefficient of variation specific to each network is first calculated, i.e. the 

coefficients kA and kB such as y̅A = y̅(1 + kA) and y̅B = y̅(1 + kB). Then, the 

difference of the two coefficients was calculated, hence the expression in (4.4). 

By numerical application of the formula (4.4) in the first method of Approach 1, we 

obtain : 

é𝑐𝑎𝑟𝑡1 =
2 002,43 − 2 016,95

2 006,93
= −0.72 % 

In the second method of the same approach, we obtain : 

é𝑐𝑎𝑟𝑡1 =
1 998,88 − 2 016,98

2 006,93
= −0.90 % 

▪ Performance gap in the second approach: here, the formula constructed to 

measure the performance between the two networks is : 

 

é𝑐𝑎𝑟𝑡2 = 𝑠𝐻𝐴 − 𝑠𝐻𝐵 

 

where sHA and sHB correspond to the scores for networks A and B, calculated in 

section 3, which is the variation between the average contribution of a network 

and the total average contribution (or predicted average value). The idea is the 

same as in the previous approach: we start by measuring in percentage (for each 

network) the variation between the average contribution of the network and the 

total average contribution. That is, the coefficients kA and kB such as CA =

y̅(1 + kA) and CB = y̅(1 + kB) (with CA and CB the average contributions of 

Networks A and B). Then, the difference between these two coefficients is made, 

hence the result in (4.5). By digital application, we obtain : 

é𝑐𝑎𝑟𝑡2 = −0.79 % − 0.53 % = −1.32 % 

Summary of results 

(4.5) 

(4.6) 
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The table below summarizes the performance gaps achieved : 

Tab. 6. Summary table of the performance gap in the four methods 

 Performance gap 

GLM -2.4 % 

Identical loss experience 1 -0.72 % 

Identical loss experience 2 -0.90 % 

SHAP -1.32 % 

The variances in the above table are interpreted as the percentage reduction in the 
average cost of System A compared to System B. 

The above is a static comparison. It would be interesting to make a dynamic comparison, 

specifically a quarter-by-quarter comparison. Before showing the temporal evolution of 

the deviations of the four methods on the same graph, we recall the deviation 

measurements obtained using the GLM : 

Tab. 7. Performance gap measurement by quarter in a GLM 

 2015 2016 

T1 T2 T3 T4 T1 T2 T3 T4 

Difference (in %) -4.6 -3.6 -1.5 -3.5 -2.2 -1.0 -1.6 -1.4 

Standard deviation (%) 0.50 0.54 0.59 0.51 0.52 0.55 0.57 0.54 

The following graph shows the quarterly evolution of the performance gaps calculated in 

the four methods : 

Fig. 11 : Quarterly evolution of the performance gap in the four methods 

 

A similar trend can be observed for deviations calculated using the GLM approach and 
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approach 1. In addition, there is a certain stability on the deviations calculated using the 

SHAP approach. But this approach also reflects the same trend as the other three curves, 

as shown in Figure 6. 

The stability observed in the SHAP approach can be explained by the fact that the SHAP 

approach succeeds in dissociating the (minimal) correlation effects between the 

explanatory variables. This is something the GLM cannot do because it assumes total 

independence between the variables. However, in some practical cases there is a weak 

correlation between the variables and Kernel SHAP allows thanks to the Shapley value to 

better isolate the contribution of a variable. Approach 1 also does not allow to dissociate 

the correlation effect between the variables. 

Now, taking into account this correlation effect in approach 2, i.e. applying the deviation 

calculation performed in approach 1 to approach 2, we obtain the following formula : 

�̅�𝐴 − �̅�𝐵
�̅�

=

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ ∑ 𝜙𝑖𝑗

𝐴𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1 − 1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ ∑ 𝜙𝑖𝑗

𝐵𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

 

Approach 1 evaluates the networks on the basis of identical claims experience, in contrast 

to approach 2, which evaluates both networks through their database. However, using 

the same formula as in Approach 1 is not an aberration because similarities between the 

data from the two networks are found for each explanatory variable. 

By numerical application of the formula (4.6) to the SHAP values, there is a performance 

gap of -1.30% (in favour of network A). Doing this calculation again, but this time quarter 

by quarter, we get : 

Tab. 8. Performance gap measurement with correlation effect, by quarter in the SHAP approach 

 2015 2016 

T1 T2 T3 T4 T1 T2 T3 T4 

Difference (in %) -2.95 -1.22 -1.65 -4.38 0.03 -0.82 0.31 1.27 

Comparing the differences obtained with those of the other three approaches, one finds : 

(4.7) 
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Fig. 12 : Quarterly evolution of the performance gap in the four approaches, all taking into account the 
correlation between variables 

 

The curves of the four methods all describe a degradation of the performance gap, but 

nevertheless in favour of network A. There is a consistency and a certain adequacy 

between the results. Here, the trend is the same for all four approaches, which was not 

the case in Figure 7. In this figure, correlations between variables (however small) were 

not taken into account. 

Using Kernel SHAP, it is possible to isolate the effect of other variables on the 

performance gap. The following graph shows the effect of each variable in the quarterly 

evolution of the performance gap. 
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Fig. 13 : Quarterly evolution of the contributions of variables on the performance gap with correlation 
between variables in the SHAP approach 

 

The figure above was obtained by calculating for each quarter the deviation of each 

variable from the overall deviation defined in (4.6). Specifically, the reasoning is as 

follows : 

�̅�𝐴 − �̅�𝐵
�̅�

=

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ ∑ 𝜙𝑖𝑗

𝐴𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1 − 1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ ∑ 𝜙𝑖𝑗

𝐵𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

 

                

=

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ 𝜙𝑖1

𝐴𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1 − 1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ 𝜙𝑖1

𝐵𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

+. . . +

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ 𝜙𝑖𝑝

𝐴𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1 − 1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ 𝜙𝑖𝑝

𝐵𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

+ 

 

   …+

1
𝑛𝑡𝑒𝑠𝑡
𝐴ൗ ∑ 𝜙𝑖𝑚

𝐴𝑛𝑡𝑒𝑠𝑡
𝐴

𝑖=1 − 1
𝑛𝑡𝑒𝑠𝑡
𝐵ൗ ∑ 𝜙𝑖𝑚

𝐵𝑛𝑡𝑒𝑠𝑡
𝐵

𝑖=1

1
𝑛𝑡𝑒𝑠𝑡ൗ ∑ ∑ 𝜙𝑖𝑗

𝑚
𝑗=0

𝑛𝑡𝑒𝑠𝑡
𝑖=1

 

In fact, it is the sum of the differences in each variable that explains the difference in 

performance obtained. Kernel SHAP manages to dissociate the existing effects between 

variables, thus attributing to each variable its marginal contribution. 

The approaches developed in this study offer better predictions than the log link function 

GLM, with an average decrease of about 34% in the GLM MSE being found on the GLM 

MSE used in these approaches. This is due to the use of the GBM, a machine learning 

model. However, it should be noted that these two approaches, unlike the GLMs, do not 

Effect of the "target" 

variable 
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return error measurements associated with deviation measurements. 

An important point to note is the modelling carried out to calculate the temporal 

evolution of performance gaps: the advantage of the GLM is that it can be applied as and 

when data become available without having to re-run previous calculations. In other 

words, the performance variance calculated for a quarter does not affect the variances 

calculated for previous quarters. The other two approaches, based on the use of the 

WBG, require all calculations to be restarted once new observations have been taken into 

account. This may result in a slight variation in the previously calculated deviation 

measurements. It is indeed unwise to envisage a GBM modeling per quarter, due to too 

few observations and thus exposing oneself to larger error measures than those obtained 

with the global base. 

A key point justifying the interest of the proposed approaches is the possibility of 

modulating the impact measure on sub-segments when the hypothesis of proportionality 

is not verified. 

6. Conclusion and discussion 

At the end of this study, which aimed to measure the influence of the selected network of 

adjusters on the cost of motor vehicle material claims, two approaches were developed. 

The first is to compare the two networks on an identical claims basis and the second is to 

measure (using Kernel SHAP) the marginal contribution of a network to the predicted 

costs. Both approaches were implemented with a machine learning model: the Stochastic 

Gradient Boosting Model. The results are compared with those obtained by DE LUSSAC 

[2018] with a multiplicative GLM model. 

All these approaches lead qualitatively to the same result, both in instantaneous 

(outperformance of A compared to B) and dynamic (deterioration of performance over 

the quarters of the two-year history considered). 

The GLM, despite its limited assumptions or its lower prediction quality compared to that 

of a machine learning model, remains a sufficiently relevant model to get an idea of the 

comparison between two networks. Especially since its modeling is relatively simple and 

its interpretation understandable and easy. 

In quantitative terms, different levels of performance are achieved and it is important to 

quantify the deviation measurement as accurately as possible. In this context, if we were 

to choose one measure from the four proposed methods, the one obtained with SHAP 

values would be preferred. It offers better predictions than the GLM, including a decrease 

in MSE of approximately 34% between the GLM and GBM. It is also noteworthy that it is 

based on a Shapley value theory framework. However, the latter does not return 

associated error measures as modelling via GLM does. 
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Having chosen the SHAP approach as the one most representative of reality, the problem 

of choosing the performance gap measure arises. Should we give preference to the gap 

measure that isolates the contribution of a network, and thus manages to dissociate the 

link between the variables? Or the one that takes into account, in addition to the 

contribution of a network, the correlation (however weak it may be) between the 

variables? 

It's a pretty tough question. However, we advocate choosing the gap measure that 

completely isolates a network's contribution. For, it seems basic that this is the objective 

sought by the GLM. Except that, due to the fact that the latter neglects the minimal 

correlations existing between variables (assuming total independence between them), it 

ultimately returns a measure of deviation that informs the contribution of a network that 

takes into account the existing link between variables. This can be avoided with the SHAP 

approach. 

Finally, it should be noted that all the proposed methods can be applied in a large number 

of situations, as soon as it is necessary to measure the impact of a binary variable on a 

quantitative response variable. 
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8. Annex 

e. GBM Algorithm 

 

 

Entrance(s)      𝐱 : observation to be expected ; (𝐲𝐢, 𝐱𝐢)𝟏≤𝐢≤𝐧 sample data ; 𝐌 : maximum 

number of iterations ; 𝐩 : proportion of randomly selected observations ; 

𝐊 : maximum depth of regression trees ; 𝛌 : learning rate or shrinkage. 

 Initialization : 𝐟(𝐱) =
𝟏

𝐧
∑ 𝐲𝐣
𝐧
𝐣=𝟏  

 Calculation : �̃� = 𝐩 × 𝐧 

 For 𝐦 ranging from 1 to 𝐌 do 
Random and non-discounting draw of �̃� indices in {1, …, 𝑛 The indices 
drawn are stored in 𝒪. 

  Calculation of 𝑧𝑖 = −
𝜕𝐿(𝑦𝑖,𝜌)

𝜕𝜌
|𝜌=�̂�(𝑥𝑖) for 𝑖 ∈ 𝒪 

Adjustment of a regression tree δ, maximum depth 𝐾, to couples (𝑥𝑖 , 𝑧𝑖)𝑖∈𝒪 
  Calculation of 𝛾 = argmin

𝑤
∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖) + 𝑤𝛿(𝑥𝑖))𝑖∈𝒪  

  Update : 𝑓(𝑥) = 𝑓(𝑥) + 𝜆𝛾𝛿(𝑥) 
 
 End For 
 

Exit(s)    𝐟(𝐱) 
 

f. Prediction model parameters 

The parameters concerned and their associated search limits are as follows: 

▪ The minimum subdivision numbers (𝐧𝐛𝐢𝐧𝐬) and maximum (𝐧𝐛𝐢𝐧𝐬_𝐭𝐨𝐩_𝐥𝐞𝐯𝐞𝐥) for 

continuous variables: during the construction of the regression tree, each 

quantitative variable is transformed into a qualitative variable whose number of 

subdivision factors is a parameter of the model. The greater the number of 

factors, the more possibilities there will be to study, thus increasing complexity, 

and the more precise the discretization will be. Default, 𝐧𝐛𝐢𝐧𝐬 is set at 20 and 

𝐧𝐛𝐢𝐧𝐬_𝐭𝐨𝐩_𝐥𝐞𝐯𝐞𝐥 à 1 024. The study by De Lussac [2018] shows a small influence of 

these parameters on the MSE (on the validation sample) despite a large variation. 

For this reason, the value of 𝐧𝐛𝐢𝐧𝐬 is searched in the interval [500; 1500] and that 

of 𝐧𝐛𝐢𝐧𝐬_𝐭𝐨𝐩_𝐥𝐞𝐯𝐞𝐥 is set at 3,000. 

▪ The number of variables to be randomly selected 𝐜𝐨𝐥_𝐬𝐚𝐦𝐩𝐥𝐞_𝐫𝐚𝐭𝐞 This 

parameter allows the variables in each division to be selected randomly and 

without resetting. It has been shown by numerous tests on several values that the 

Algorithm 1: Stochastic Gradient Boosting for Regression 
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forecast quality of the model also depends on this parameter. Thus, the defined 

search interval is [0.4; 1] in steps of 0.1. This interval is motivated by the results of 

prediction errors (on the validation sample) that were of interest starting at 0.4. 

▪ The minimum number of observations per sheet 𝐦𝐢𝐧_𝐫𝐨𝐰𝐬 : it defaults to 10. 

After several tests, the set of possible values defined is {1, 2, 5, 10, 20}. 

▪ The maximum depth of the trees 𝐊 The optimal value is generally equal to 5 and it 

was decided to look for its optimal value between 4 and 8. 

▪ The proportion of randomly selected observations 𝐩 parameter: as well as the 

𝐧𝐜𝐨𝐥_𝐬𝐚𝐦𝐩𝐥𝐞_𝐫𝐚𝐭𝐞The random draw is made without discount. After numerous 

tests, 𝐩 is searched in the interval [0.5; 1] in steps of 0.1. 

▪ The learning rate 𝛌 It penalizes the addition of a new model in the aggregation 

and slows down convergence. Its optimal value is sought in the range [0.05; 0.1] in 

steps of 0.001. 

▪ The degressive factor 𝛌𝐦 It allows better control of convergence by making it 

sufficiently slow. It intervenes by replacing the apprenticeship rate 𝛌 by 𝛌 × 𝛌𝐦 in 

the WBG algorithm (in annex), with 𝛌𝐦 = 𝟎, 𝟗𝟗𝟗𝐦 for example, 𝐦 being the 

counter of the loop. The idea for this addition was motivated by the relationship 

between the learning rate and the number of iterations required to obtain the 

optimal solution. Indeed, a low rate leads to an increase in the number of trees but 

generally leads to an improvement in the quality of prediction. Thus, the 

degressive factor 𝛌𝐦 allows the model to have a high learning coefficient for the 

first iterations and then allows it to learn slowly over the iterations. For that 

reason, 𝛌𝐦 is searched in the interval [0.99; 1] in steps of 0.001. 

The parameters to be optimized and the set of values where their optimal value has been 

sought are summarized. 

Tab. 9. Parameters to be optimized and their areas of existence 

Number of subdivisions for continuous variables 𝑛𝑏𝑖𝑛𝑠 [500 ; 1 500] 

Random selection of variables 𝑐𝑜𝑙_𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒 [40 % ; 100 %] 

Minimum observation per sheet 𝑚𝑖𝑛_𝑟𝑜𝑤𝑠 {1, 2, 5, 10, 20} 

Maximum tree depth 𝐾 [4 ; 8] 

Randomly selected observations 𝑝 [50 % ; 100 %] 

Learning Coefficient 𝜆 [0,05 ; 0,1] 

Degressive factor 𝜆𝑚 [0,99 ; 1] 

Using a simple calculation and the number of possible values for each of the above 

parameters, there are 11×7×5×5×6×51×11 = 6,479,550 possible configurations. Going 

through all these combinations is not possible. The grid search will then be abandoned in 

favour of another method called "random grid search". This process has been theorized 
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by BERGSTRA and BENGIO [2012]. The basic argument is that at equivalent computing time, 

the random grid search can find efficient models over larger spaces than the grid search 

does. Moreover, BERGSTRA and BENGIO [2012] found that only certain parameters have a 

real impact on the performance of the algorithm. These observations justify not having to 

test all the values of the parameters that are not sufficiently influential, which saves a 

huge amount of computing time. 

It is essential to define a stopping criterion for the random search method. This is either a 

function of the calculation time, or a function of the number of models calculated. In this 

study, it was chosen to set a maximum calculation time. Indeed, the more time is 

important, the more models will be calculated and the closer we get to the optimal 

solution. 

Nevertheless, a 1-hour random search may yield a better optimal solution (in the sense of 

the MSE on the test sample) than a 4-hour random search. As an illustration, see the table 

below. 

Tab. 10. Random grid search results according to computing time 

 
Calculation 

time 

Settings 
 

MSE test col_sample_rate     λ          λm       K     nbins   min_rows     p     No. of trees 

1 hour                 0,4              0,062     0,992     8       1 400             20             0,8         1 375 2 422 460 

4 hours                 0,4              0,072     0,996     8       1 500               1              0,8         2 792 2 428 957 

12 hours                 0,5              0,069     0,994     8       1 500               1                1           1 853  2 421 259 

The table above gives the parameters of the best models obtained according to the 

number of hours performed by random search. The selected model is the one obtained 

after 12 hours of random search. 

In order to achieve better results, the resulting model has been modified. The latter is 

motivated by RIDEGWAY [2007], which reports a significantly better result when a 5-sample 

cross-validation is performed. The principle is as follows: first aggregate the learning and 

validation samples, then divide the resulting sample into 5 samples of the same size, 

finally each of the 5 samples will serve as a validation sample while the other 4 

aggregated samples will serve as a learning sample. The stopping criterion used is the 

same as above. 

Cross-validation is most effective by lowering the16 boosting MSE on the test sample to 

2,411,535. 

 
 16 However, a major disadvantage of this method is its computing time. For example, it took 36 minutes 
and 7 seconds longer than the simple WBG (which took 1 minute and 31 seconds to complete). 
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In summary, compared to the simple WBG which has an MSE on the test sample of 

2,477,139, the optimized WBG now has an MSE of 2,411,535. This represents a decrease of 

2.7%, which is a significant gain. In addition, a comparison was also made with the L1 

standard and it was found that the predictions from the optimized WBG are about 1.51% 

more accurate than those from the simple WBG. This attests to the fact that a better 

quality model has been obtained and therefore to the usefulness of all the processes 

applied to obtain it. 

 


