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Abstract

Choosing a proper risk measure is of great regulatory importance and is relevant
to the interfaces of operations and finance, as exemplified in Basel Accord which uses
VaR (or quantiles) in combination with scenario analysis as a preferred risk measure
for banking and operational risk. Two main families of axiomatically based risk mea-
sures are the coherent risk measures, which assume subadditivity for random variables,
and the insurance risk measures, which assume additivity for comonotonic random vari-
ables. We propose new, data-based, risk measures, called natural risk statistics, that
are characterized by a new set of axioms. The new axioms only require subadditivity
for comonotonic random variables, consistent with the prospect theory. We point out
while many risk measures may be suitable for internal risk management, robustness
is an important consideration for external risk measures. Comparing to the previous
measures, the natural risk statistics include the tail conditional median which is more
robust than the tail conditional expectation suggested by coherent risk measures; and,
unlike insurance risk measures, the natural risk statistics can also incorporate scenario
analysis. The natural risk statistics includes VaR as a special case and therefore shows
that VaR, though simple, is not irrational.
Keywords: Risk measures, utility theory, prospect theory, tail conditional expec-

tation, tail conditional median, value at risk, quantile, robust statistics, L-statistics

1 Introduction

Choosing a proper risk measure is an important regulatory issue relevant to the interfaces

of operations and finance, as exemplified in governmental regulations such as Basel Accord

[5, 6, 7], which uses VaR (or quantiles) along with scenario analysis as a preferred risk

measure for banking and operational risk. The main motivation of the current paper is to

investigate whether VaR, in combination with scenario analysis, is suitable to be a good risk

measure. By discussing various sets of axioms proposed for risk measures, and by giving a

different set of axioms based on data, this paper provides a theoretical basis for using VaR
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along with scenario analysis as a robust risk measure for the purpose of external, regulatory

risk measurement.

1.1 Background

Broadly speaking a risk measure attempts to assign a single numerical value to a random

financial loss. Obviously, it can be problematic in using one number to summarize the whole

statistical distribution of the financial loss. Therefore, one shall avoid doing this if it is at

all possible. However, in many cases there is no alternative choice. Examples of such cases

include margin requirements in financial trading, insurance risk premiums, and regulatory

deposit requirements. Consequently, how to choose a good risk measure becomes a problem

of great practical importance.

There are two main families of risk measures suggested in the literature, the coherent risk

measures suggested by Artzner et al. [3] and the insurance risk measures in Wang et al. [60].

To get a coherent risk measure, one first chooses a set of scenarios (different probability

measures), and then computes the coherent risk measure as the maximal expectation of

the loss under these scenarios. To get an insurance risk measure, one fixes a distorted

probability, and then computes the insurance risk measure as the expectation with respect

to one distorted probability (only one scenario). Both approaches are axiomatic, meaning

that some axioms are postulated first, and all the risk measures satisfying the axioms are

then identified.

Of course, once some axioms are postulated, there is room left to evaluate the axioms

to see whether the axioms are reasonable for one’s particular needs, and, if not, one should

discuss possible alternative axioms. Here we shall provide a different set of axioms, which

is more general and aims at external, regulatory risk measures.

1.2 Objectives of Risk Measures: Internal vs. External Risk Measures

One important issue that have not been well addressed in the existing literature is the

objective of choosing a risk measure. More precisely, when we propose a risk measure, is

it proposed for the interest of a firm’s equity shareholders, regulatory/legal agencies, or

the internal management of a firm? There is no reason to believe that there is one unique

risk measure fits the needs of these different parties. One risk measure may be suitable for

internal management, but not for external regulatory agencies, and vice versa.

In this paper we shall focus on external risk measures from the viewpoint of governmen-
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tal/regulatory agencies. In particular, to enforce risk measures in governmental regulation,

it is desirable to have risk measures that can be implemented consistently throughout all the

relevant firms, not matter what internal beliefs or internal models each individual firms may

have. More precisely, for external risk measures, we prefer risk measures that are robust

with respect to modeling assumptions, and are based on data (could be a mixture of histori-

cal data and simulated data generated according to a well-defined procedure agreed by most

firms) rather on some subjective internal models. For more background of legal/regulatory

requirements, see Sections 3 and 4.

1.3 Contribution of This Paper

In this paper we complement the previous approaches of coherent and insurance risk mea-

sures by postulating a different set of axioms. The resulting risk measures are fully charac-

terized in the paper. More precisely, the contribution of the current paper is sevenfold.

(1) We give reasons on why a different set of axioms is needed: (a) We point out some

critiques of subadditivity mainly from robustness view point (see Section 4), as well as

from utility theory and psychological viewpoints (see Section 5). (b) The main drawback

of insurance risk measure is that it does not incorporate scenario analysis; i.e. unlike the

coherent risk measures, an insurance risk measure chooses a (distorted) probability measure,

and does not allow one to compare different distorted probability measures. See Section 2.

(c) What is missed in both coherent and insurance risk measures is the consideration of

data. Our approach is based on data, either observed or simulated (according to some

generally agreed procedure) or both, rather than on some hypothetical distributions.

(2) A different set of axioms based on data and comonotonic subadditivity is postulated

in Section 6, resulting in the definition of natural risk statistics. A complete characterization

of the natural risk statistics is given in Theorem 1.

(3) An alternative characterization of the natural risk statistics based on statistical

acceptance sets is given in Theorem 2 in Section 6.2.

(4) VaR or quantiles in combination of scenario analysis is among the most widely used

risk measures in practice (see, e.g. the Basel Accord). However the coherent risk measures

rule out the use of VaR. In Section 7 we show that the natural risk statistics give an

axiomatic justification to the use of VaR in combination of scenario analysis.

(5) Theorems 3 and 4 in Section 7.1 completely characterize data-based coherent risk

measures and data-based law-invariant coherent risk measure. As suggested in Theorem 4,
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natural risk statistics are in general more robust than coherent risk measures.

(6) Theorem 5 in Section 7.2 completely characterizes data-based insurance risk mea-

sures. Unlike the insurance risk measures, the natural risk statistics can incorporate scenario

analysis by putting different set of weights on the sample order statistics.

(7) We point out in Section 8 that the natural risk statistics include the tail condi-

tional median as a special case, which leads to a more robust measure of risk than the tail

conditional mean suggested by the coherent risk measures.

The mathematical difficulty of the current paper lies in the proof of Theorem 1. Unlike

in the case of coherent risk measures, one cannot use the results in Huber [33] directly. This

is because we only require comonotonic subadditivity, and the comonotonic sets are not open

sets. Therefore, one has to be careful in applying the theorem of separating hyperplanes.

In addition, we need to show that the weights are nonnegative and add up to one.

2 Review of Existing Risk Measures

2.1 Coherent and Convex Risk Measures

Let Ω be the set of all possible states at the end of an observation period, and X be the set

of financial losses under consideration. Then a risk measure ρ is a mapping from X to R.

2.1.1 Subadditivity

Artzner et al. [3] proposed risk measures based on subadditivity. In particular, Artzner

et al. [3] called a risk measure ρ a coherent risk measure, if it satisfies the following three

axioms:

Axiom A1. Translation invariance and positive homogeneity:

ρ(aX + b) = aρ(X) + b, ∀a ≥ 0, b ∈ R.

Axiom A2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y almost surely.

Axiom A3. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), for any X,Y ∈ X .
Axiom A1 states that the risk of a financial position is proportional to the size of the

position. There are at least two different types of risk measures, accounting-based risk

measures and attitude-based (related to utility functions) risk measures. Axiom A1, which

says that a sure loss of amount b simply increases the risk by b, is mainly an axiom for

accounting-based risk measures. For many external risk measurs, such as margin deposit,
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the accounting-based risk measures seem to be reasonable. For internal risk measures,

attitude-based risk measures may be prefered. To get attitude-based risk meausre, one

replace Axiom A1 by other axioms, such as the ones in the convex risk measures1, in which

case a sure loss of amount b does not increases the risk by b.

Axiom A2 is a minimum requirement for a reasonable risk measure. What is controver-

sial lies in the subadditivity requirement in Axiom A3, which basically means that “a merger

does not create extra risk” (Artzner et al. [3], p. 209). We will discuss the controversies

related to this axiom in Section 5.

Artzner et al. [3] pointed out that Huber [33] showed that if Ω has a finite number of

elements and X is the set of all real random variables, then a risk measure ρ is coherent if

and only if there exists a family Q of probability measures on Ω, such that

ρ(X) = sup
Q∈Q

{EQ[X]}, ∀X ∈ X ,

where EQ[X] is the expectation of X under the probability measure Q. Delbaen [15]

extended the above result when Ω has infinite number of elements2. Therefore, getting a

coherent risk measure amounts to computing maximal expectation under different scenarios

(different Q’s), thus justifying scenarios analysis used in practice. Artzner et al. [3] and

Delbaen [15] also presented an equivalent approach of defining the coherent risk measure

through acceptance sets.

2.1.2 Law Invariance

A desirable property of risk measures is called law invariance, as stated in the following

axiom:

Axiom A4. Law invariance: ρ(X) = ρ(Y ), if X and Y have the same distribution

under probability measure P .

1Convex risk measures were proposed by Föllmer and Schied [23] and independently by Frittelli and
Gianin [26] where the positive homogeneity and subadditivity axioms are relaxed to a single convexity
axiom: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), for any X,Y ∈ X , λ ∈ [0, 1]. Law-invariant convex risk
measures are discussed further in Föllmer and Schied [24], Dana [14], Frittelli and Gianin [27], Ruschedorf
[48] and Schied [50].

2Consider a random loss X defined on X = L∞(Ω,F , P ) with (Ω,F , P ) being a general probability space.
A risk measure ρ : L∞(Ω,F , P ) → R is said to satisfy the Fatou property if ρ(X) ≤ lim infn→∞ ρ(Xn), for
any sequence (Xn)n≥1 uniformly bounded by 1 and converging to X in probability. Delbaen [15] showed
that ρ : L∞(Ω,F , P ) → R is a coherent risk measure with the Fatou property if and only if there exists a
closed and convex set of probability measures Q, all of them being absolutely continuous with respect to P ,
such that ρ(X) = supQ∈Q{EQ[X]}, ∀X ∈ L∞(Ω,F , P ).
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Law invariance means that the risk of a position is determined purely by the loss distri-

bution. A risk measure is called a law-invariant coherent risk measure, if it satisfies Axiom

A1-A4. Kusuoka [40] gives a representation for the law-invariant coherent risk measures3.

2.1.3 Tail Conditional Expectation

A special case of coherent risk measures, the tail conditional expectation (TCE) has gained

popularity since it was proposed by Artzner et al.[3]. TCE satisfies subadditivity for con-

tinuous random variables, and also for discrete random variables if one define quantiles

for discrete random variables properly; see Acerbi and Tasche [2]. The TCE is also called

expected shortfall by Acerbi et al.[1] and conditional value-at-risk by Rockafellar and Urya-

sev [46] and Pflug [42]. More precisely, the TCE at level α is defined by

TCEα(X) = mean of the α-tail distribution of X. (1)

If the distribution of X is continuous, then

TCEα(X) = E[X|X ≥ VaRα(X)]. (2)

For discrete distributions, TCEα(X) is a regularized version of the tail conditional expec-

tation E[X|X ≥ VaRα(X)].

2.1.4 Main Drawbacks

A main drawback of the coherent risk measures and convex risk measures is that it includes

TCE as a risk measure. This is fine for internal risk measures. However, as we shall point

out in Sections 4 and 5, using TCE is troublesome for external risk measures, mainly because

TCE is too sensitive to the modeling assumptions for tail distributions. Thus, it is very

difficult to implement TCE consistently as part of governmental regulations.

Another drawback of coherent risk measures and convex risk measures is that they

rule out the use of quantiles as risk measures, as they are not expectations. One of the

most widely used risk measures in regulations of risk management is Value-at-Risk (VaR),

which is nothing but a quantile at some pre-defined probability level. More precisely, given

3Let FX be the distribution function for a random variable X ∈ L∞(Ω,F , P ). Define F−1X (u) = inf{x :
FX(x) > u}, u ∈ [0, 1), Vα(X) = 1

α

1

1−α F
−1
X (u)du, X ∈ L∞(Ω,F, P ), α ∈ (0, 1]. Kusuoka [40] proved that

if P is a non-atomic probability measure, then ρ : L∞(Ω,F , P )→ R is a law-invariant coherent risk measure
with the Fatou property if and only if there exists a compact convex setM of probability measures on [0, 1],
such that ρ(X) = supm∈M{

1

0
Vα(X)m(dα)}, ∀X ∈ L∞(Ω,F , P ).
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α ∈ (0, 1), the value-at-risk VaRα at level α of the loss variableX is defined as the α-quantile

of X, i.e.,

VaRα(X) = min{x | P (X ≤ x) ≥ α}. (3)

For example the banking regulation “Basel Accord” specifies a preferred risk measure as

VaR at 99 percentile under various scenarios.

Therefore, the very fact that coherent risk measures and convex risk measures exclude

VaR and quantiles posts a serious inconsistency between the academic theory and govern-

mental practice. The main reason of this inconsistency is due to the subadditivity in Axiom

A3, which is a controversial axiom, as we will explain in Section 5.

By relaxing this axiom and requiring subadditivity only for comonotonic random vari-

ables, we are able to find a new set of axioms in Section 6 which will include VaR and

quantiles, thus eliminating this inconsistency.

2.2 Insurance Risk Measures

Insurance risk premiums can also be viewed as risk measures, as they aim at using one

numerical number to summarize future random losses. To characterize insurance risk pre-

miums, Wang et al. [60] proposed four axioms; more precisely, a risk measure ρ is said to

be an insurance risk measure if it satisfies the following five axioms.

Axiom B1. Law invariance: the same as Axiom A4.

Axiom B2. Monotonicity: ρ(X) ≤ ρ(Y ), if X ≤ Y almost surely.

Axiom B3. Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ), if X and Y are

comonotonic, where random variables X and Y are comonotonic if and only if

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0

holds almost surely for ω1 and ω2 in Ω.

Axiom B4. Continuity:

lim
d→0

ρ((X − d)+) = ρ(X+), lim
d→∞

ρ(min(X,d)) = ρ(X), lim
d→−∞

ρ(max(X,d)) = ρ(X),

where (X − d)+ = max(X − d, 0).

Axiom B5. Scale normalization: ρ(1) = 1.

The notion of comonotonic random variables is discussed in Schmeidler [51], Yaari [62]

and Denneberg [16]. The psychological motivation of comonotonic random variables comes
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from Prospect Theory; see Section 5.3. See Dhaene et. al. [19] for a recent review of risk

measures and comonotonicity.

If two random variables X and Y are comonotonic, then X(ω) and Y (ω) always move

in the same direction as the state ω changes. For example, the payoffs of a call option and

its underlying asset are comonotonic.

Wang et al. [60] imposed Axiom B3 based on the argument that the comonotonic random

variables do not hedge against each other, leading to the additivity of the risks. However,

this is only true if one focuses on one scenario. Indeed, if one have multiple scenarios, then

the counterexample at the end of Section 7 will show that comonotonic additivity fails to

hold.

Wang et al. [60] proved that if X contains all the Bernoulli(p) random variables, 0 ≤
p ≤ 1, then risk measure ρ satisfies axioms B1-B5 if and only if ρ has a Choquet integral
representation with respect to a distorted probability:

ρ(X) =

Z
Xd(g ◦ P ) =

Z 0

−∞
(g(P (X > t))− 1)dt+

Z ∞

0
g(P (X > t))dt, (4)

where g(·) is called the distortion function which is nondecreasing with g(0) = 0 and g(1) =
1, and g ◦ P (A) := g(P (A)) is called the distorted probability. The detailed discussion of

Choquet integration can be found in Denneberg [16].

It should be emphasized that VaR satisfies the axioms B1-B5 (see Corollary 4.6 in Den-

neberg [16] for a proof that VaR satisfies Axiom B4) and henceforth is an insurance risk

measure. But VaR is not a coherent risk measure, because it may not satisfy subadditiv-

ity (see [3]). In general, an insurance risk measure in (4) does not satisfy subadditivity,

unless the distortion function g(·) is concave (see Denneberg [16]).
A main drawback of insurance risk measures is that it does not incorporate scenario

analysis. More precisely, unlike coherent risk measures, insurance risk measures choose a

fixed distortion function g and a fixed probability measure P , and do not allow one to

compare different measures within a family P of probability measures. This is inconsistent
with industrial practice, as people use different scenarios to get a suitable risk measure.

The main reason that insurance risk measures rule out scenario analysis is that they

require comonotonic additivity. The counterexample at the end of Section 7 shows that even

for comonotonic random variables, with different scenarios we may get strict subadditivity

rather than additivity. In our new approach in Section 6 we shall require comonotonic

subadditivity instead of comonotonic additivity.
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The mathematical concept of comonotonic subadditivity was also studied independently

by Song and Yan [53], who gave a representation of the functionals satisfying comonotonic

subadditivity or comonotonic convexity from a mathematical perspective4. In [54], they

gave a representation of risk measures that are not only comonotonically subadditive or

convex, but also respect stochastic orders.

There are several differences between Song and Yan [53],[54] and the current paper.

First, our paper provides a full mathematical characterization of the new risk statistics,

which are based on data (either observed or simulated or both) rather than on some hy-

pothetical distributions. Second, we provide economic, psychological, and legal reasons for

postulating the comonotonic subadditivity axiom, not just for mathematical convenience.

Third, we give two representations of the data-based coherent and insurance risk measures

in Section 7, so that we can compare the new risk measures with existing risk measures.

Fourth, we provide alternative axioms for risk measures based on acceptance sets.

2.3 Static vs. Dynamic Risk Measures

It should be emphasized that, similar to coherent and insurance risk measures, in this paper

we only consider static risk measures, i.e., one period risk measures. Readers interested in

dynamic risk measures, which have more controversies, are referred to, e.g., [4, 44, 41, 47,

61, 17, 11, 8, 37, 25, 12].See in particular, some counterexamples given in [9].

3 Philosophical Basis of Our Arguments and Basic Concepts
of the Law

In this section, we shall summarize some basic concepts of the law, which motivate us to

propose a new set of axioms for risk measures used for external regulation. By definition,

an axiom is “a statement or principle which is generally accepted to be true, but is not

necessarily so” (Cambridge English Dictionary). Hence, axioms are subject to debate and

change. Alternative axioms are therefore useful because they provide people with more

choices and they may be more suitable than existing axioms in certain circumstances.

Just like there are key differences between internal standards (such as morality) and

external standards (such as law and regulation), there are differences between internal and

4They proved that a functional ρ defined on L∞(Ω,F) or L∞(Ω,F ,P) which satisfies Axiom A1, A2
and comonotonic subadditivity can be represented by ρ(X) = maxµ∈M µ(X), where M is a certain set
of monotonic set functionals on F and µ(X) is the Choquet integral of X with respect to µ. Similar
representations are proved for comonotonic convex functionals.
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external risk measures. By understanding basic concepts of the law, we will have a better

understanding of what are needed in axioms proposed for external risk measures. We shall

point out: (1) Risk measures used in external regulation should be robust because robustness

is essential for law enforcement. (2) Risk measures used in external regulation should have

consistency with people’s behavior because law should reflect society norms.

There is a vast literature on the philosophy of law (see, e.g., Hart [29]). Two concepts to

be discussed here are legal realism and legal positivism. The former requests the robustness

of the law, and the latter requests the consistency of the law to social norms.

3.1 Legal Realism and Robustness of the Law

Legal realism is the viewpoint that the legal decision of a court regrading to a case is

determined by the actual practices of judges, rather than the law set forth in statutes

or precedents. All legal rules contained in both statutes and precedents have uncertainty

due to the uncertainty in human language and inability to anticipate all possible future

circumstances([29], p. 128). Hence a law is only a guideline for judges and enforcement

officers ([29], p. 204-205), i.e., a law is only intended to be the average of what the judges

and officers will decide. This requests the robustness of the law, i.e., we hope that different

judges will arrive at similar conclusions when they implement the law.

In particular, the enforcement of risk measures in banking regulation requires that risk

measures should be robust with respect to the underlying models and data. However, the

coherent risk measures generally lack robustness, as discussed in Section 4 and manifested

in Theorem 4 of Section 7.1. The further study in Section 8 shows that the tail condition

median, a special case of our proposed new risk measures, is more robust than the tail

conditional expectation.

3.2 Legal Positivism and Social Norm

Legal positivism is the thesis that the existence and content of law depend on social norms

and not on their merits, mainly because if a system of rules are to be imposed by force

in the form of law, there must be a sufficient number of people who accept it voluntarily.

Without their voluntary cooperation, the coercive power of law and government cannot be

established ([29], p. 201-204).

Therefore, risk measures imposed in banking regulations should also reflect most people’s

behavior; otherwise, the regulation cannot be enforced. However, the study of the prospect
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theory in psychology showed that in face of financial risk, most people’s decision can violate

the subadditivity Axiom A3 (see Section 5.3 for details). This motivated us to propose the

new risk measure, which is consistent with most people’s behavior.

3.3 An Example of Speed Limit

An illuminating example manifesting the above ideas is the setting up of speed limit on the

road, which is a crucial issue involving life and death decisions. In 1974, the U.S. Congress

enacted a National Maximum Speed Law that federally mandated that no speed limit may

be higher than 55 mph. The law was widely disregarded, even after the national maximum

was increased to 65 mph in 1987 on certain roads. In 1995, the law was repealed, returning

the choice of speed limit to each state, in part because of notoriously low compliance.

Today, the “Manual on Uniform Traffic Control Devices” of AASHTO (American As-

sociation of State Highway and Transportation Officials) recommends setting speed limit

near the 85th percentile speed of free flowing traffic (see [57], p. 51) with an adjustment

taking into consideration that people tend to drive 5 to 10 miles above the posted speed

limit. This recommendation is adopted by all states and most local agencies [35]. Although

the 85th percentile rule appears to be a simple method, studies have shown that crash rates

are lowest at around the 85th percentile.

The 85th percentile speed manifests the robustness of law and its consistency to social

norms: (1) The 85th percentile rule is robust in the sense that it is based on data rather

than on some subjective models, and it can be implemented consistently. (2) Laws that

reflect the behavior of the majority of drivers are found to be successful, while laws that lack

the consent and voluntary compliance of the public majority cannot be effectively enforced.

4 The Main Reason to Relax Subadditivity: Robustness

When a regulator imposes a risk measure, it must be unambiguous, stable, and can be im-

plemented consistently throughout all the relevant firms. Otherwise, different firms using

different models may report very different risk measures to the regulator; even worse, some

firms may even game the system in relatively easy ways. In short, from a regulator view-

point, the risk measure should demonstrate robustness with respect to underlying models,

in order to enforce the regulation and to maintain the stability of the regulation.

The robustness of coherent risk measures based on subadditivity is questionable:
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(1) The theory of coherent risk measures suggests to use the tail conditional expectation

(TCE) to compute risk measures. However, the TCE may be sensitive to model assumptions

of heaviness of tail distributions, which is a controversial subject.

For example, although it is accepted that stock returns have tails heavier than those of

normal distribution, one school of thought believes tails to be exponential type and another

believes power-type tails. Heyde and Kou [32] shows that it is very difficult to distinguish

between exponential-type and power-type tails with 5,000 observations (about 20 years of

daily observations). This is mainly because the quantiles of exponential-type distributions

and power-type distributions may overlap. For example, surprisingly, an exponential distri-

bution has larger 99 percentile than the corresponding t-distribution with degree of freedom

5. If the percentiles have to be estimated from data, then the situation is even worse, as we

have to rely on confidence intervals which may have significant overlaps. Therefore, with

ordinary sample sizes (e.g. 20 years of daily data), one cannot easily identify exact tail

behavior from data.

In summary, the tail behavior may be a subjective issue depending on people’s modeling

preferences. Since as we will show in Section 8 that TCE is sensitive to the assumption on

the tail distribution behavior, using TCE as an external risk measure can be problematic if

the tail behavior is a subjective issue.

(2) Some risk measures may be coherent, satisfying subadditivity, but not robust at

all. A simple example is the sample maxima. More precisely, given a set of observations

x̃ = (x1, . . . , xn) from a random loss X, let (x(1), . . . , x(n)) denote the order statistics of

the data x̃ with x(n) being the largest. Then x(n) is a coherent risk measure, as it satisfies

subadditivity. However, the maximum loss x(n) is not robust at all, and is quite sensitive

to both outliers in data and to model assumptions in simulation and analysis.

More generally, let w̃ = (w1, . . . , wn) ∈ Rn be a weight with 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn

and
Pn

i=1wi = 1. Then the risk measure ρ̂(x̃) =
Pn

i=1wix(i) is an empirically coherent risk

measure satisfying subadditivity, as will be shown in Section 7. However, since this risk

measure puts larger weights on larger observations, it is obviously not robust. In fact, as we

will prove in Theorem 4 in Section 7, any empirically law-invariant coherent risk measure

ρ̂(x̃) can be represented by

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wix(i)},

where W = {w̃} is a set of weights with each w̃ = (w1, . . . , wn) ∈ W satisfying w1 ≤
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w2 ≤ · · · ≤ wn, which is not robust as it puts more weights on more extreme observations.

Therefore, coherent risk measures are generally not robust. We will discuss the issue of

robustness in more detail in Section 8.

5 Other Reasons to Relax Subadditivity

5.1 Diversification And Tail Subadditivity of VaR

Both the subadditivity axiom and the convexity axiom conform to the idea that diversifica-

tion does not increase the risk. There are two main motivations for diversification. One is

based on the simple observation that SD(X + Y ) ≤ SD(X) + SD(Y ), for any two random

variables X and Y with finite second moments, where SD(·) denotes standard deviation.
The other is based on expected utility theory. Samuelson [49] showed that any investor

with a strictly concave utility function will uniformly diversify among i.i.d. risks with finite

second moments, i.e., the expected utility of the uniformly diversified portfolio is larger

than that of any other portfolio. Both of the two motivations require finiteness of second

moments of the risks.

Is diversification still preferable for risks with infinite second moments? The answer

can be no. Ibragimov and Walden [34] showed that diversification is not preferable for

unbounded extremely heavy-tailed distributions, in the sense that the expected utility of

the diversified portfolio is smaller than that of the undiversified portfolio5. Ibragimov and

Walden [34] also showed that, investors with certain S-shaped utility functions would prefer

non-diversification, even for bounded risks.6. A S-shaped utility function is convex in the

domain of loss. The convexity in the domain of loss is supported by experimental results

and the prospect theory [38] [58], which is an important alternative to the expected utility

theory. We will have more discussion about prospect theory in section 5.3.

The fact that diversification is not universally preferable makes it unreasonable to crit-

icize VaR just because it does not have subadditivity universally. Although in the center

5LetXi, i = 1, . . . , n be i.i.d. risks with unbounded heavy-tail distribution belonging to the class CS(r)(see
[34] for definition) with r < 1, in particular E|Xi| = ∞. Let Xw , n

i=1 wiXi be the diversified portfolio
of the risks, where w ∈ Rn is a nonnegative weight with n

i=1 wi = 1. Let Xa denote the truncation of
random variable X on [−a, a], i.e., Xa , max{−a,min{X,a}}, where a > 0. They showed that there is
an a0 such that for all a > a0 and all concave utility function u, it holds that E(u(Xa

1 )) ≥ E(u(Xa
w)), i.e.,

investor would prefer single risk X1 instead of diversified risk Xw.
6Let Xi, i = 1, . . . , n be i.i.d. risks with unbounded heavy-tail distribution belonging to class CS(r). Let

Xa
i be the truncation of Xi. Then Xa

i are bounded i.i.d. risks. Let X̄(a) =
1
n

n
i=1X

a
i be the diversified

portfolio. They showed that there exist S-shaped utility functions v such that E(v(Xa
1 )) > E(v(X̄(a))).
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of the distributions VaR may violate the subadditivity, Daníelsson et al. [13] questioned

whether the violation is merely a technical issue, at least if one focuses on the tail regions

which are the most relevant regions for risk management. Indeed they showed that VaR

is subadditive in the tail regions, provided that the tails in the joint distribution are not

extremely fat (with tail index less than one)7. They also carried out simulations showing

that VaRα is indeed subadditive when α ∈ [95%, 99%] for most practical applications.
To summarize, there is no conflict between the use of VaR and diversification. When

the risks do not have extremely heavy tails, diversification is preferred and VaR satisfies

subadditivity in the tail region; when the risks have extremely heavy tails, diversification

may not be preferable and VaR may fail to have subadditivity.

Not Very Fat Tails Fat Tails
Does diversification help to reduce risk? Yes No
Does VaR satisfy subadditivity? Yes No

Asset returns with tail index less than one have very fat tails. They are hard to find

and easy to identify. Daníelsson et al. [13] argued that they can be treated as special

cases in financial modeling. Even if one encounters an extreme fat tail and insists on

tail subadditivity, Garcia et al. [28] showed that, when tail thickness causes violation of

subadditivity, a decentralized risk management team may restore the subadditivity for VaR

by using proper conditional information.

5.2 Does Merger Always Reduce Risk

Subadditivity basically means that “a merger does not create extra risk” (Artzner et al.

[3], p. 209). However, Dhaene et al. [18] pointed out that many times merger may increase

risk, particularly due to bankruptcy protections for firms. For example, it is better to split

a risky trading business into a separate sub-firm. This way, even if the loss from a sub-firm

is enormous, the parent firm can simply let the sub-firm go bankrupt, thus confining the

loss to that one sub-firm. Therefore, creating sub-firms may incur less risk and merger may

increase risk8.
7More precisely, Daníelsson et al. [13] proved that: (1) If X and Y are two asset returns having jointly

regularly varying non-degenerate tails with tail index bigger than one, then there exists α0 ∈ (0, 1), such
that VaRα(X + Y ) ≤VaRα(X)+VaRα(Y ), ∀α ∈ (α0, 1). (2) If the tail index of the X and Y are different,
then a weaker form of tail subadditivity holds lim supα→1

VaRα(X+Y )
VaRα(X)+VaRα(Y )

≤ 1.
8Mathematically, let X and Y be the net payoff of two firms before a merger. Because of the bankruptcy

protection, the actual net payoff of the two firms would be X+ = max(X, 0) and Y + = max(Y, 0), respec-
tively. After the merger, the net payoff of the joint firm would be X + Y , and the actual net payoff would
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For example, the collapse of Britain’s Barings Bank (which has a long operating history

and even helped finance the Louisiana Purchase by the United States in 1802) in February

1995 due to the failure of a single trader (Nick Leeson) in Singapore clearly indicates that

merger may increase risk. Had Barings Bank set up a separate firm for its Singapore unit,

the bankruptcy in that unit would not have sunk the entire bank.

In addition, there is little empirical evidence supporting the argument that “a merger

does not create extra risk”. Indeed, in practice, the credit agencies, such as Moody’s and

Standard & Poor’s, will not upgrade a firm’s credit rating because of a merger; on the

contrary, many times the credit rating of the joint firm may be lower shortly after the

merger of two firms.

5.3 Reasons from the Psychological Theory of Uncertainty and Risk

Risk measures have a close connection with the psychological theory of people’s preference

of uncertainties and risk. Kahneman and Tversky [38] proposed a model of choice under

uncertainty called “prospect theory,” leading to a Nobel prize in Economics. In particular,

many people have studied on using comonotonic random variables; see Kahneman and

Tversky [58], Tversky and Wakker [59], Quiggin [43], Schmeidler [51], [52] and Yaari [62].

These models are also referred to as “anticipated utility,” “rank-dependent models,” and

“Choquet expected utility.”

The prospect theory postulates that (a) it is better to impose preference on comonotonic

random variables rather than on arbitrary random variables; and (b) people evaluate un-

certain prospects using “decision weights” that may be viewed as distorted probabilities of

outcomes. The theory can explain a variety of preference anomalies including the Allais

and Ellsberg paradoxes.

There are simple examples showing that risk associated with non-comonotonic random

variables may violate subadditivity, because people are risk seeking for the losses of moderate

or high probability, as implied by prospect theory9.

be (X + Y )+, due to bankruptcy protection. Because (X + Y )+ ≤ X+ + Y +, a merger always results in a
decrease in the actual net payoff, if one only considers the effect of bankruptcy protection in a merger. In
other words, a merger increases the risk of investment given everything else being equal. This contradicts
the intuition that “A merger does not create extra risk".

9Suppose there is an urn which contains 50 black balls and 50 red balls. Let B be the event of losing
$10,000 if a ball randomly drawn from the urn is black, and R be the event of losing $10,000 if a ball
randomly drawn from the urn is red. Obviously, B and R have the same measure of risk, i.e., ρ(B) = ρ(R).
Let S be the event of losing $5,000 for sure, then ρ(S) = 5, 000. According to the prospect theory, people
are risk seeking for the losses of moderate or high probability, i.e., most people would prefer a substantial
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Schmeidler [52] indicated that risk preference for comonotonic random variables are

easier to justified than the risk preference for arbitrary random variables. Following the

prospect theory, we think it may be appropriate to relax the subadditivity to comonotonic

subadditivity. In other words, we impose ρ(X + Y ) ≤ ρ(X) + ρ(Y ) only for comonotonic

random variables X and Y .

The insurance risk measures impose comonotonic additivity in Axiom B3, based on the

argument that comonotonic losses have no hedge effect against each other. However, this

intuition only holds when one focuses only on one scenario or one distorted probability.

The counterexample at the end of Section 7 shows that if one incorporates different sce-

narios, then additivity may not hold even for comonotonic random variables. Hence, the

comonotonic additivity condition in Axiom B3 may be too restrictive and its relaxation to

comonotonic subadditivity may be a better choice.

5.4 Superadditivity vs. Subadditivity

In terms of utility theory, it is not clear whether a risk measure should be superadditive or

subadditive, at least for independent random variables. For example, Hennessy and Lapan

[31] show that for utilities with increasing relative risk aversion, two individual lotteries may

be perferable to the summed lottery, i.e., risk measures of lotteries can be superadditive10.

In an interesting paper Eeckhoudt and Schlesinger [21] link the sign of utility function

to risk preferences11. Since we shall impose subadditivity only for commonotonic random

probability of a larger loss over a sure loss. Therefore, most people would prefer position B over position S
(see problem 12 on p. 273 in Kahneman and Tversky [38], and table 3 on p. 307 in Tversky and Kahneman
[58]). In other words, we have ρ(B) = ρ(R) < ρ(S) = 5, 000. On the other hand, since the position
B + R corresponds to a sure loss of $10,000, we have ρ(B + R) = 10, 000. Combining together we have
ρ(B) + ρ(R) < 5, 000 + 5, 000 = 10, 000 = ρ(B +R), violating the subadditivity. Clearly the random losses
associated with B and R are not comonotonic. Therefore, this example shows that risk associated with
non-comonotonic random variables may not have subadditivity. Schmeidler [52] attributes this phenomena
to the difference between randomness and uncertainty, and further postulates that even for rational decision
makers their subjective probabilities may not add up to one, due to uncertainty.
10Let u(·) be the utility function and ce(·) be the functional of certainty equivalent, i.e., ce(X) ,

u−1(E(u(X))), for any lottery X. Hennessy and Lapan [31] proved that if u has increasing relative risk
aversion, then there exist X ≥ 0 and Y ≥ 0, such that ce(X + Y ) < ce(X) + ce(Y ). In other words, X + Y
has less utility and hence larger risk.
11Let u(4) be the fourth derivative of an utility function u. They proved that u(4) ≤ 0 if and only if

E(u(x + 1 + 2)) + E(u(x)) ≤ E(u(x + 1)) + E(u(x + 2)), for any x ∈ R and any independent risk 1

and 2 such that E( 1) = E( 2) = 0. This result can be interpreted as follows. Suppose the owner of two
sub-firms, each of which has initial wealth x, faces the problem of assigning two projects to the sub-firms.
The net payoff of the two projects are 1 and 2, respectively. The result suggests that, whether the owner
prefers to assign both projects to a single subfirm or prefers to assign one project to each sub-firm depends
on the sign of the fourth derivative of his utility function.
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variables, there is no contradiction with the above mentioned results in utility theory because

commontonic random variables are not independent random variables.

6 Main Result: Natural Risk Statistics and Their Axiomatic
Representations

6.1 The First Representation

In this section we shall propose a new measure of risk based on data. Suppose we have

a collection of data observation x̃ = (x1, x2, ...xn) ∈ Rn on the random variable X. The

collection x̃ may be a set of empirical data observations from X, or a set of simulated data

observation regarding possible outcomes of X from a given model, or a combination of the

two. Our risk measure, call natural risk statistic, is based on the data x̃. More precisely, a

risk statistic ρ̂ is a mapping from the data in Rn to a numerical value in R. In our setting
of risk statistic, X can be any random variable, discrete or continuous. What we need is a

set of data observation (could be empirical or simulated or both) x̃ = (x1, x2, ..., xn) ∈ Rn

from X. Next we shall introduce a set of axioms for ρ̂.

Axiom C1. Positive homogeneity and translation invariance:

ρ̂(ax̃+ b1) = aρ̂(x̃) + b, ∀x̃ ∈ Rn, a ≥ 0, b ∈ R,

where 1 = (1, 1, ..., 1)T ∈ Rn.

Axiom C2. Monotonicity: ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ, where x̃ ≤ ỹ means xi ≤ yi, i =

1, . . . , n.

The above two axioms have been proposed for the coherent risk measures. Here we

simply adapted them to the case of risk statistics. Note that Axiom C1 yields

ρ̂(0 · 1) = 0, ρ̂(b1) = b, b ∈ R.

Note that we can easily relax the requirement of ρ̂(b1) = b. For example, if we require

the loss suggested from a risk measure cannot exceed 10% of the total capital, then we can

simply require ρ̂(b1) = b/0.1 = 10 ∗ b. Also axioms C1 and C2 imply ρ̂ is continuous12.
Axiom C3. Comonotonic subadditivity:

ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), if x̃ and ỹ are comonotonic,
12 Indeed, suppose ρ̂ satisfies axioms C1 and C2. Then for any x̃ ∈ Rn, ε > 0, and ỹ satisfying |yi − xi| <

ε, i = 1, . . . , n, we have x̃− ε1 < ỹ < x̃+ ε1. By the monotonicity in Axiom C2, we have ρ̂(x̃− ε1) ≤ ρ̂(ỹ) ≤
ρ̂(x̃+ ε1). Applying Axiom C1, the inequality further becomes ρ̂(x̃)− ε ≤ ρ̂(ỹ) ≤ ρ̂(x̃)+ε, which establishes
the continuity of ρ̂.
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where x̃ and ỹ are comonotonic if and only if (xi − xj)(yi − yj) ≥ 0, for any i 6= j.

In Axiom C.3 we relax the subadditivity requirement in coherent risk measures so that

the axiom is only enforced for comonotonic data. This also relaxes the comonotonic ad-

ditivity requirement in insurance risk measures. Comonotonic subadditivity is consistent

with the prospect theory of risk in psychology, as we specify our preference only among

comonotonic random variables.

Axiom C4. Permutation invariance:

ρ̂((x1, . . . , xn)) = ρ̂((xi1 , . . . , xin)), for any permutation (i1, . . . , in).

This axiom can be considered as the counterpart of the law invariance Axiom A4 in

terms of data. It means that if two data x̃ and ỹ have the same empirical distribution, i.e.,

the same order statistics, then x̃ and ỹ should give the same estimate of risk. It is postulated

because we focus on risk measures of a single random variable X with data observation x̃.

In other words, just like coherent risk measures and insurance risk measures, here we discuss

static risk measures rather than dynamic risk measures.

Definition 1. A risk statistic ρ̂ : Rn → R is called a natural risk statistic if it satisfies
axioms C1-C4.

The following representation theorem for natural risk statistics is a main result of the

current paper.

Theorem 1. Let x(1), ..., x(n) be the order statistics of the observation x̃ with x(n)

being the largest.

(I) For an arbitrarily given set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each

w̃ ∈W satisfying
Pn

i=1wi = 1 and wi ≥ 0 for i = 1, . . . , n, the risk statistic

ρ̂(x̃) , sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn (5)

is a natural risk statistic.

(II) If ρ̂ is a natural risk statistic, then there exists a set of weights W = {w̃ =

(w1, . . . , wn)} ⊂ Rn with each w̃ ∈ W satisfying
Pn

i=1wi = 1 and wi ≥ 0 for i = 1, . . . , n,
such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn. (6)
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Proof. See the on-line supplement. ¤

The main difficulty in proving Theorem 1 lies in part (II). Axiom C3 implies that the

functional ρ̂ satisfies subadditivity on comonotonic sets of Rn, for example, on the set

B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}. However, unlike in the case of coherent risk measures,
the existence of a set of weightsW such that (6) holds does not follow easily from the proof

in Huber [33]. The main difference here is that the comonotonic set B is not an open set
in Rn. The boundary points may not have nice properties as the interior points do. We

have to treat boundary points with more efforts. In particular, one should be very cautious

when using the results of separating hyperplanes. Furthermore, we have to spend some

effort showing that wi ≥ 0 for i = 1, . . . , n.

6.2 The Second Representation via Acceptance Sets

An alternative view of risk is to define risk as something that may not be acceptable. Similar

to coherent risk measures, we shall show the proposed natural risk statistics can also be

characterized via acceptance sets. More precisely, a statistical acceptance set is a subset

of Rn. Given a statistical acceptance set A ∈ Rn, the risk statistic ρ̂A associated with A
is defined to be the minimal amount of risk-free investment that has to be added to the

original position so that the resulting position is acceptable, or in mathematical form

ρ̂A(x̃) = inf{m | x̃−m1 ∈ A}, ∀x̃ ∈ Rn. (7)

On the other hand, given a risk statistic ρ̂, one can define the statistical acceptance set

associated with ρ̂ by

Aρ̂ = {x̃ ∈ Rn | ρ̂(x̃) ≤ 0}. (8)

Thus, one can go from a risk measure to an acceptance set, and vice versa.

We shall postulate the following axioms for statistical acceptance set A:
Axiom D1. The acceptance set A contains Rn

− where Rn
− = {x̃ ∈ Rn | xi ≤ 0, i =

1, . . . , n}.
Axiom D2. The acceptance set A does not intersect the set Rn

++ where Rn
++ = {x̃ ∈

Rn | xi > 0, i = 1, . . . , n}.
Axiom D3. If x̃ and ỹ are comonotonic and x̃ ∈ A, ỹ ∈ A, then λx̃+(1−λ)ỹ ∈ A, for

∀λ ∈ [0, 1].
Axiom D4. The acceptance setA is positively homogeneous, i.e., if x̃ ∈ A, then λx̃ ∈ A

for all λ ≥ 0.
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Axiom D5. If x̃ ≤ ỹ and ỹ ∈ A, then x̃ ∈ A.
Axiom D6. If x̃ ∈ A, then (xi1 , . . . , xin) ∈ A for any permutation (i1, . . . , in).

We will show that a natural risk statistic and a statistical acceptance set satisfying

axioms D1-D6 are mutually representable. More precisely, we have the following Theorem:

Theorem 2. (I) If ρ̂ is a natural risk statistic, then the statistical acceptance set Aρ̂ is

closed and satisfies axioms D1-D6.

(II) If a statistical acceptance set A satisfies axioms D1-D6, then the risk statistic ρ̂A is
a natural risk statistic.

(III) If ρ̂ is a natural risk statistic, then ρ̂ = ρ̂Aρ̂
.

(IV) If a statistical acceptance set D satisfies axioms D1-D6, then Aρ̂D = D̄, the closure
of D.

Proof. See the on-line supplement. ¤

Theorem 2 shows that the risk statistic ρ̂ calculated from the data x̃ is equivalent to

the amount of risk-free investment that has to be added to make the original position

acceptable. This alternative characterization of the natural risk statistic is consistent with

a similar characterization of coherent risk measures in Artzner et al. [3].

7 Comparison between Natural Risk Statistics, Coherent Risk
Measures and Insurance Risk Measures

7.1 Comparison with Coherent Risk Measures

To compare natural risk statistics with coherent risk measures in a formal manner, we first

have to extend coherent risk measures to coherent risk statistics.

Definition 2. A risk statistic ρ̂ : Rn → R is called a coherent risk statistic, if it satisfies
axioms C1, C2 and the following Axiom E3:

Axiom E3. Subadditivity: ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), for every x̃, ỹ ∈ Rn.

We have the following representation theorem for coherent risk statistics.

Theorem 3. A risk statistic is a coherent risk statistic if and only if there exists a set of

weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈W satisfying
Pn

i=1wi = 1 and wi ≥
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0, i = 1, . . . , n, such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ Rn. (9)

Proof. See the on-line supplement. ¤

Natural risk statistics require the permutation invariance, which is not required by

coherent risk statistics. To have a complete comparison between natural risk statistics

and coherent risk measures, we consider the following law-invariant coherent risk statistics,

which is the counterpart of law-invariant coherent risk measures in the literature.

Definition 3. A risk statistic ρ̂ : Rn → R is called a law-invariant coherent risk statistic,
if it satisfies axioms C1, C2, C4 and E3.

We have the following representation theorem for the law-invariant coherent risk statis-

tics.

Theorem 4. Let x(1), ..., x(n) be the order statistics of the observation x̃ with x(n)

being the largest.

(I) For an arbitrarily given set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each

w̃ ∈W satisfying

nX
i=1

wi = 1, (10)

wi ≥ 0, i = 1, . . . , n, (11)

w1 ≤ w2 ≤ . . . ≤ wn, (12)

the risk statistic

ρ̂(x̃) , sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn (13)

is a law-invariant coherent risk statistic.

(II) If ρ̂ is a law-invariant coherent risk statistic, then there exists a set of weights

W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈W satisfying (10), (11) and (12), such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wix(i)}, ∀x̃ ∈ Rn. (14)

Proof. See the on-line supplement. ¤
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By Theorems 3 and 4, we see the main differences between natural risk statistics and

coherent risk measures:

(1) A natural risk statistic is a supremum of L-statistic (which is a weighted average of

order statistics), while a coherent risk statistic is a supremum of a weighted sample average.

There is no simple linear function that can transform a L-statistic to a weighted sample

average.

(2) Although VaR is not a coherent risk statistic, VaR is a natural risk statistic. In

other words, though being simple, VaR is not without justification, as it also satisfies a

reasonable set of axioms.

(3) A law-invariant coherent risk statistic is a supremum of L-statistic with increasing

weights. Hence, if one assigns larger weights to larger observations, a natural risk statistic

become a law invariant coherent risk statistic. However, assigning larger weights to larger

observations is not robust.

7.2 Comparison with Insurance Risk Measures

Similar to the coherent risk statistic, we can extend insurance risk measures to insurance

risk statistics as follows:

Definition 3. A risk statistic ρ̂ : Rn → R is called a insurance risk statistic, if it

satisfies the following axioms F1-F4.

Axiom F1. Permutation invariance: the same as Axiom C4.

Axiom F2. Monotonicity: ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ.

Axiom F3. Comonotonic additivity: ρ̂(x̃+ỹ) = ρ̂(x̃)+ρ̂(ỹ), if x̃ and ỹ are comonotonic.

Axiom F4. Scale normalization: ρ̂(1) = 1.

We have the following representation theorem for the insurance risk statistic.

Theorem 5. Let x(1), ..., x(n) be the order statistics of the observation x̃ with x(n) being

the largest, then ρ̂ is an insurance risk statistic if and only if there exists a single weight

w̃ = (w1, . . . , wn) with wi ≥ 0 for i = 1, . . . , n and
Pn

i=1wi = 1, such that

ρ̂(x̃) =
nX
i=1

wix(i), ∀x̃ ∈ Rn. (15)

Proof. See the on-line supplement. ¤

22



Comparing (6) and (15), we see that a natural risk statistic is the supremum of L-

statistics, while an insurance risk statistic is just one L-statistic. Therefore, insurance

risk statistics cannot incorporate different scenarios. On the other hand, each weight w̃ =

(w1, . . . , wn) in a natural risk statistic can be considered as a “scenario” in which (subjective

or objective) evaluation of the importance of each ordered observations is specified. Hence,

nature risk statistics incorporate the idea of evaluating the risk under different scenarios,

similar to coherent risk measures.

The following counterexample shows that if one incorporates different scenarios, then the

comonotonic additivity may not hold, as the strict comonotonic subadditivity may prevail.

A Counterexample: Consider a natural risk statistic defined by

ρ̂(x̃) = max(0.5x(1) + 0.5x(2), 0.72x(1) + 0.08x(2) + 0.2x(3)), ∀x̃ ∈ R3.

Let z̃ = (3, 2, 4) and ỹ = (9, 4, 16). By simple calculation we have

ρ̂(z̃ + ỹ) = 9.28 < ρ̂(z̃) + ρ̂(ỹ) = 2.5 + 6.8 = 9.3,

even though x̃ and ỹ are comonotonic. Therefore, the comonotonic additivity fails, and

this natural risk statistic is not an insurance risk statistic. In summary, insurance risk

statistic cannot incorporate those two simple scenarios with weights being (0.5, 0.5, 0) and

(0.72, 0.08, 0.2).

8 Tail Conditional Median: a Robust Natural Risk Statistic

In this section, we propose a special case of natural risk statistics, which we call the tail

conditional median (TCM), and compare it with an existing coherent risk measure, the tail

conditional expectation (TCE). Theoretical and numerical results are provided to illustrate

the robustness of the proposed tail conditional median.

8.1 The Differences between Tail Conditional Expectation and Tail Con-
ditional Median

As we will see that TCE is not robust and is sensitive to model assumptions and outliers,

here we propose an alternative, the tail conditional median (TCM), as a way of measuring

risk to ameliorate the problem of robustness. The TCM at level α is defined as

TCMα(X) = median[X|X ≥ VaRα(X)]. (16)
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In other words TCMα(X) is the conditional median of X given that X ≥ VaRα(X).

Remark: If X is continuous then

TCMα(X) = VaR 1+α
2
(X).

This show that VaR at a higher level can incorporate tail information, contrary to some

claims in the existing literature. For example, if one wants to measure the loss beyond 95%

level, one can use VaR at 97.5%, which is the tail conditional median at 95% level. For

discrete random variable or data, one simply uses the definition (16) and there may be a

difference between TCMα(X) and VaR 1+α
2
(X), depending on ways of defining quantiles for

discrete data.

There have been some examples in the existing literature that are used to show VaR

does not satisfy subadditivity at certain level α. However, if one considers TCM at the same

level α, or equivalently considers VaR at a higher level, the problem of non-subadditivity

of VaR is easily solved. We list some major examples here:

Example 1. The example on page 216 of [3] did not calculate VaR correctly. Actually in

that example, the 1% VaR13 of two options A and two options B are 2u and 2l respectively,

instead of −2u and −2l. And the 1% VaR of A+B is u+ l, instead of 100− l−u. Therefore,
VaR satisfies subadditivity in that example.

Example 2. The example on page 217 of [3] showed that the 10% VaR does not satisfy

subadditivity for X1 and X2. However, the 10% tail conditinal median (or equivalently 5%

VaR) satisfies subadditivity! Actually, the 5% VaR of X1 and X2 are both equal to 1. By

simple calculation, P (X1 + X2 ≤ −2) = 0.005 < 0.05, which implies that the 5% VaR of

X1 +X2 is strictly less than 2.

Example 3. The example in section 2.1 of [20] showed that the 99% VaR of L1 and L2

are equal, although apparently L2 is much more risky than L1. However, the tail conditional

median at 99% level (or 99.5% VaR), of L1 is equal to 1010, which is much larger than 1,

the tail conditional median at 99% level (99.5% VaR) of L2. In other words, if one looks

at the tail conditional median at 99% level, one can correctly compare the risk of the two

portfolios.

There are several differences between TCE and TCM. First, there are theoretical differ-

ences. For example, TCM does not in general satisfy subadditivity, although TCE generally

13 In [3], VaR is defined as VaR(X) = − inf{x | P (X ≤ x) > α}, where X = −L representing the net
worth of a position. In other words, VaR at level α in [3] corresponds to VaR at level 1− α in this paper.
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does; and TCM is a natural risk statistic while TCE is a coherent risk statistic.

Second, as we shall see, theoretically TCM is more robust than TCE because TCM has

a bounded influence function but TCE does not.

Third, there may be significant numerical differences between TCE and TCM. In Table

1, we calculated the risk measure TCEα and TCMα with α ranging from 95% to 99% for

a data set of auto insurance claims. Both the differences and relative differences between

TCEα and TCMα are very significant. Table 2 uses S&P 500 daily data from January 03,

1980 to December 21, 2005. More precisely, we report TCE and TCM for the daily losses

(negative returns) in Table 2 with α ranging from 95.0% to 99.9%. The relative differences

of TCE and TCM are also very significant.

α TCEα TCMα TCEα − TCMα
TCEα−TCMα

TCEα
99.0% 6390627.0523 4489416.3847 1901210.6676 29.75%
98.5% 4454513.7015 1682970.0123 2771543.6892 62.22%
98.0% 3681944.0471 1384060.8997 2297883.1474 62.41%
97.5% 3014237.8755 1039186.8726 1975051.0028 65.52%
97.0% 2579508.4877 962778.2851 1616730.2026 62.68%
96.5% 2333814.6040 851033.8563 1482780.7477 63.53%
96.0% 2073066.4541 705136.3357 1367930.1185 65.99%
95.5% 1865231.5196 676514.4433 1188717.0763 63.73%
95.0% 1736077.5343 662045.2762 1074032.2581 61.87%

Table 1: The difference between tail conditional expectation (TCE) and tail conditional me-
dian (TCM) for a data set of auto insurance claim. The table shows a significant difference
between the TCE and TCM.

8.2 Robustness Comparison between the Tail Conditional Expectation
and Tail Conditional Median

Next we show numerically that the tail conditional median is more robust than the tail

conditional expectation. The left panel of Figure 1 shows the value of TCEα with respective

to log(1−α) for Laplace distribution and T-distribution, where α is in the range [0.95, 0.999].
As demonstrated in Figure 1, if the model assumes the loss distribution to be Laplace while

the underlying true loss distribution is a t-distribution, the calculated TCE value can be far

from the true value. The right panel of Figure 1 shows the value of TCMα with respective

to log(1− α) for Laplace distribution and T-distribution. As seen from the figure, TCMα

is more robust than TCEα in the sense that it is less sensitive to the tail behavior of the
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α TCEα TCMα TCEα − TCMα
TCEα−TCMα

TCEα
99.9% 0.0922 0.0685 0.0237 25.70%
99.5% 0.0487 0.0389 0.0098 20.21%
99.0% 0.0383 0.0306 0.0078 20.24%
98.5% 0.0337 0.0280 0.0057 16.97%
98.0% 0.0308 0.0259 0.0050 16.15%
97.5% 0.0288 0.0245 0.0043 14.94%
97.0% 0.0272 0.0233 0.0038 14.13%
96.5% 0.0259 0.0224 0.0035 13.54%
96.0% 0.0248 0.0217 0.0032 12.72%
95.5% 0.0239 0.0207 0.0032 13.21%
95.0% 0.0231 0.0196 0.0035 15.05%

Table 2: The tail conditional expectation (TCE) and tail conditional median (TCM) for
S&P 500 index daily losses (negative returns) from Jan 03, 1980 to Dec 21, 2005. The table
shows a significant difference between the TCE and TCM.

underlying distribution. For example, as shown in the figure, with α = 99.6%, the variation

of TCE with respect to the change of underlying models is 1.44, whereas the variation of

TCM is only 0.75.

8.3 Influence Functions of Tail Conditional Expectation and Tail Condi-
tional Median

Influence functions introduced by Hampel [30] are useful in assessing the robustness of an

estimator. Consider an estimator T (F ) based on an unknown distribution F . For x ∈ R,
let δx be the point mass 1 at x. The influence function of the estimator T (F ) at x is defined

by

IF (x, T, F ) = lim
ε↓0

T ((1− ε)F + εδx)− T (F )

ε
.

The influence function yields information about the rate of change of the estimator T (F )

with respect to a contamination point x to the distribution F . An estimator T is called

bias robust at F , if its influence function is bounded, i.e.,

γ∗ = sup
x

IF (x, T, F ) <∞.

If the influence function of an estimator T (F ) is unbounded, an outlier in the data may

cause problems.
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Figure 1: Comparison of the robustness of the tail contional expectation (TCE) and tail
conditional median (TCM). The distributions used are Laplace and T-distributions with
degree of freedom 3, 5, 12, normalized to have mean 0 and variance 1. The x-axis is
log(1 − α) where α ∈ [0.95, 0.999]. The tail conditional median (TCM) is less sensitive to
changes in distribution, as the right panel has a narrower range in y-axis.

Proposition 1. Suppose the loss distribution has a density fX(·) which is continuous
and positive at VaR 1+α

2
(X), then the influence function of TCMα is given by

IF (x,TCMα,X) =

⎧⎪⎪⎨⎪⎪⎩
1
2(α− 1)/fX(VaR1+α

2
(X)), x < VaR 1+α

2
(X),

0, x = VaR 1+α
2
(X),

1
2(1 + α)/fX(VaR1+α

2
(X)), x > VaR 1+α

2
(X).

Suppose the loss distribution has a density fX(·) which is continuous and positive at
VaRα(X), then the influence function of TCE is given by

IF (x,TCEα,X) =

(
VaRα(X)−E[X|X ≥ VaRα(X)], if x ≤ VaRα(X),
x
1−α −E[X|X ≥ VaRα(X)]− α

1−αVaRα(X), if x > VaRα(X).
(17)

Proof. See the on-line supplement. ¤

We see immediately from Proposition 1 that

sup
x

IF (x,TCMα,X) <∞, sup
x

IF (x,TCEα,X) =∞
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Hence, TCE has an unbounded influence function but TCM has a bounded influence func-

tion, which implies that TCM is more robust.

8.4 Discussion on Computational Issues

There are at least two computational issues: whether it is easy to compute a risk measure

from the regulator’s viewpoint, and whether it is easy to incorporate a risk measure into

portfolio optimization from an individual bank’s viewpoint.

For the first issue, since the tail conditional median is robust, it is easier to compute the

tail conditional median than tail conditional expectation, as the tail conditional median is

less sensitive to modelling assumptions.

For the second issue, it is easier to do portfolio optimization with respect to the tail con-

ditional expectation than to the tail conditional median, as the mean leads to convexity in

optimization. However, we should point out that doing optimization with respect to median

is a classical problem in robust statistics, and recently there are good algorithms designed

for portfolio optimization under both CVaR and VaR constraints (see [45]). Furthermore,

from the regulator’s viewpoint, it is a first priority to find a good robust risk measure for the

purpose of legal implementation. How to achieve better profits via portfolio optimization,

under the risk measure constraints to satisfy governmental regulations, should be a matter

left for individual banks.

9 Conclusion

We propose new, data-based, risk measures, called natural risk statistics, that are charac-

terized by a new set of axioms. The new axioms only require subadditivity for comonotonic

random variables, thus relaxing the subadditivity for all random variables in coherent risk

measures, and relaxing the comonotonic additivity in insurance risk measures. The relax-

ation is consistent with the prospect theory in psychology. Comparing to previous risk

measures, the natural risk statistics include the tail conditional median which is more ro-

bust than the tail conditional expectation suggested by coherent risk measures; and, unlike

the insurance risk measure, the natural risk statistics can also incorporate scenario analy-

sis. The natural risk statistics include VaR (with senario analysis) as a special case and

therefore shows that VaR, though simple, is not irrational.

We emphasize that the objectives of risk measures are very relevant for our discussion. In

particular, some risk measures may be suitable for internal management but not for external
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regulatory agencies, and vice versa. For example, coherent and convex risk measures may

be good for internal risk measures, as there are connections between these risk measures

and subjective prices in incomplete markets for market makers (see, e.g., the connections

between coherent and convex risk measures and good deal bounds in Jaschke and Küchler

[36] and Staum [56]). However, as we point out, for external risk measures one may prefer a

different set of properties, including consistency in implementation which means robustness.

There are several open problems left. First, the natural risk statistics proposed here are

static risk measures. It will be of great interest if they can be extended to dynamic risk

measures. Furthermore, just like subadditivity in coherent risk measures has been extended

to convexity, we pose a conjecture that comonotonic subadditivity can be extended to

comonotonic convexity.
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What Is a Good Risk Measure: Bridging the Gaps between Robustness,

Subadditivity, and Insurance Risk Measures

C. C. Heyde, S. G. Kou, X. H. Peng

Columbia University

1 Proof of Theorem 1

The proof relies on the following two lemmas, which depend heavily on the properties of

interior points. Therefore, we can only show that they are true for the interior points of B.
The results for boundary points will be obtained by approximating the boundary points by

the interior points, and by employing continuity and uniform convergence.

Lemma 1. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}, and denote Bo to be the interior
of B. For any fixed z̃ = (z1, . . . , zn) ∈ Bo and any ρ̂ satisfying axioms C1-C4 and ρ̂(z̃) = 1

there exists a weight w̃ = (w1, . . . , wn) such that the linear functional λ(x̃) :=
Pn

i=1wixi

satisfies

λ(z̃) = 1, (18)

λ(x̃) < 1 for all x̃ such that x̃ ∈ B and ρ̂(x̃) < 1. (19)

Proof. Let U = {x̃ | ρ̂(x̃) < 1} ∩ B. Since x̃, ỹ ∈ B, we know that x̃ and ỹ are

comonotonic, axioms C1 and C3 imply that U is convex, and, therefore, the closure Ū of U

is also convex.

For any ε > 0, since ρ̂(z̃ − ε1) = ρ̂(z̃)− ε = 1− ε < 1, it follows that z̃ − ε1 ∈ U . Since

z̃ − ε1 tends to z̃ as ε ↓ 0, we know that z̃ is a boundary point of U because ρ̂(z̃) = 1.

Therefore, there exists a supporting hyperplane for Ū at z̃, i.e., there exists a nonzero vector

w̃ = (w1, . . . , wn) ∈ Rn such that λ(x̃) :=
Pn

i=1wixi satisfies λ(x̃) ≤ λ(z̃) for all x̃ ∈ Ū . In

particular, we have

λ(x̃) ≤ λ(z̃),∀x̃ ∈ U. (20)

We shall show that the strict inequality holds in (20). Suppose, by contradiction, that

there exists x̃0 ∈ U such that λ(x̃0) = λ(z̃). For any α ∈ (0, 1), let x̃α = αz̃ + (1 − α)x̃0.

Then we have

λ(x̃α) = αλ(z̃) + (1− α)λ(x̃0) = λ(z̃) (21)
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In addition, since z̃ and x̃0 are comonotonic (as they all belong to B) we have

ρ̂(x̃α) ≤ αρ̂(z̃) + (1− α)ρ̂(x̃0) < α+ (1− α) = 1, ∀α ∈ (0, 1). (22)

Since z̃ ∈ Bo, it follows that there exists a small enough α0 ∈ (0, 1) such that x̃α0 is also an
interior point of B. Hence, for all small enough ε > 0,

x̃α0 + εw̃ ∈ B. (23)

With wmax = max(w1, w2, ..., wn), we have x̃α0+εw̃ ≤ x̃α0+εwmax1. Thus, the monotonicity

in Axiom C2 and translation invariance in Axiom C1 yield

ρ̂(x̃α0 + εw̃) ≤ ρ̂(x̃α0 + εwmax1) = ρ̂(x̃α0) + εwmax. (24)

Since ρ̂(x̃α0) < 1 via (22), we have by (24) and (23) that for all small enough ε > 0,

ρ̂(x̃α0 + εw̃) < 1, x̃α0 + εw̃ ∈ U.

Hence, (20) implies λ(x̃α0 + εw̃) ≤ λ(z̃). However, we have, by (21), an opposite inequality

λ(x̃α0 + εw̃) = λ(x̃α0) + ε|w̃|2 > λ(x̃α0) = λ(z̃), leading to a contradiction. In summary, we

have shown that

λ(x̃) < λ(z̃),∀x̃ ∈ U. (25)

Since ρ̂(0) = 0, we have 0 ∈ U . Letting x̃ = 0 in (25) yields λ(z̃) > 0, so we can re-scale

w̃ such that λ(z̃) = 1 = ρ̂(z̃). Thus, (25) becomes

λ(x̃) < 1 for all x̃ such that x̃ ∈ B and ρ̂(x̃) < 1,

from which (19) holds. ¤
Lemma 2. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}, and denote Bo to be the interior

of B. For any fixed z̃ = (z1, . . . , zn) ∈ Bo and any ρ̂ satisfying axioms C1-C4, there exists a
weight w̃ = (w1, . . . , wn) such that

nX
i=1

wi = 1, (26)

wi ≥ 0, i = 1, . . . , n, (27)

ρ̂(x̃) ≥
nX
i=1

wixi, for ∀x̃ ∈ B, and ρ̂(z̃) =
nX
i=1

wizi. (28)

Proof. We will show this by considering three cases.
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Case 1: ρ̂(z̃) = 1.

From Lemma 1, there exists a weight w̃ = (w1, . . . , wn) such that the linear functional

λ(x̃) :=
Pn

i=1wixi satisfies (18) and (19).

First we prove that w̃ satisfies (26). For this, it is sufficient to show that λ(1) =Pn
i=1wi = 1. To this end, first note that for any c < 1 Axiom C1 implies ρ̂(c1) = c < 1.

Thus, (19) implies λ(c1) < 1, and, by continuity of λ, we obtain that λ(1) ≤ 1. Secondly,
for any c > 1, Axiom C1 implies ρ̂(2z̃ − c1) = 2ρ̂(z̃)− c = 2− c < 1. Then it follows from

(19) and (18) that 1 > λ(2z̃ − c1) = 2λ(z̃) − cλ(1) = 2 − cλ(1), i.e. λ(1) > 1/c for any

c > 1. So λ(1) ≥ 1, and w̃ satisfies (26).

Next, we will prove that w̃ satisfies (27). Let ẽk = (0, . . . , 0, 1, 0, . . . , 0) be the k-th

standard basis of Rn. Then wk = λ(ẽk). Since z̃ ∈ Bo, there exists δ > 0 such that

z̃ − δẽk ∈ B. For any ε > 0, we have

ρ̂(z̃ − δẽk − ε1) = ρ̂(z̃ − δẽk)− ε ≤ ρ̂(z̃)− ε = 1− ε < 1,

where the inequality follows from the monotonicity in Axiom C2. Then (19) and (18) implies

1 > λ(z̃ − δẽk − ε1) = λ(z̃)− δλ(ẽk)− ελ(1) = 1− ε− δλ(ẽk).

Hence wk = λ(ẽk) > −ε/δ, and the conclusion follows by letting ε go to 0.
Finally, we will prove that w̃ satisfies (28). It follows from Axiom C1 and (19) that

∀c > 0, λ(x̃) < c, for all x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (29)

For any c ≤ 0, we choose b > 0 such that b+ c > 0. Then by (29), we have

λ(x̃+ b1) < c+ b, for all x̃ such that x̃ ∈ B and ρ̂(x̃+ b1) < c+ b.

Since λ(x̃+ b1) = λ(x̃) + bλ(1) = λ(x̃) + b and ρ̂(x̃+ b1) = ρ̂(x̃) + b we have

∀c ≤ 0, λ(x̃) < c, for all x̃ such that x̃ ∈ B and ρ̂(x̃) < c. (30)

It follows from (29) and (30) that

ρ̂(x̃) ≥ λ(x̃), for all x̃ ∈ B,

which in combination with ρ̂(z̃) = λ(z̃) = 1 completes the proof of (28).

Case 2: ρ̂(z̃) 6= 1 and ρ̂(z̃) > 0.
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Since ρ̂
³

1
ρ̂(z̃) z̃

´
= 1 and 1

ρ̂(z̃) z̃ is still an interior point of B, it follows from the re-

sult proved in Case 1 that there exists a linear functional λ(x̃) :=
Pn

i=1wixi, with w̃ =

(w1, . . . , wn) satisfying (26), (27) and

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂

µ
1

ρ̂(z̃)
z̃

¶
= λ

µ
1

ρ̂(z̃)
z̃

¶
,

or equivalently

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃) = λ(z̃).

Thus, w̃ also satisfies (28).

Case 3: ρ̂(z̃) ≤ 0.
Choose b > 0 such that ρ̂(z̃ + b1) > 0. Since z̃ + b1 is an interior point of B, it follows

from the result proved in Case 2 that there exists a linear functional λ(x̃) :=
Pn

i=1wixi

with w̃ = (w1, . . . , wn) satisfying (26), (27) and

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃ + b1) = λ(z̃ + b1),

or equivalently

ρ̂(x̃) ≥ λ(x̃),∀x̃ ∈ B, and ρ̂(z̃) = λ(z̃).

Thus, w̃ also satisfies (28). ¤
Proof of Theorem 1. (1) The proof of part (I). Suppose ρ̂ is defined by (5), then obviously

ρ̂ satisfies axioms C1 and C4.

To check Axiom C2, write

(y(1), y(2), . . . , y(n)) = (yi1 , yi2 , . . . , yin),

where (i1, . . . , in) is a permutation of (1, . . . , n). Then for any x̃ ≤ ỹ, we have

y(k) ≥ max{yij , j = 1, . . . , k} ≥ max{xij , j = 1, . . . , k} ≥ x(k), 1 ≤ k ≤ n,

which implies that ρ̂ satisfies Axiom C2 because

ρ̂(ỹ) = sup
w̃∈W

{
nX
i=1

wiy(i)} ≥ sup
w̃∈W

{
nX
i=1

wix(i)} = ρ̂(x̃).

To check Axiom C3, note that if x̃ and ỹ are comonotonic, then there exists a permu-

tation (i1, . . . , in) of (1, . . . , n) such that xi1 ≤ xi2 ≤ . . . ≤ xin and yi1 ≤ yi2 ≤ . . . ≤ yin .
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Hence, we have (x̃+ ỹ)(i) = x(i) + y(i), i = 1, ..., n. Therefore,

ρ̂(x̃+ ỹ) = sup
w̃∈W

{
nX
i=1

wi(x̃+ ỹ)(i)} = sup
w̃∈W

{
nX
i=1

wi(x(i) + y(i))}

≤ sup
w̃∈W

{
nX
i=1

wix(i)}+ sup
w̃∈W

{
nX
i=1

wiy(i)} = ρ̂(x̃) + ρ̂(ỹ),

which implies that ρ̂ satisfies Axiom C3.

(2) The proof of part (II). By Axiom C4, we only need to show that there exists a set of

weightsW = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈W satisfying
Pn

i=1wi = 1 and wi ≥ 0,
∀1 ≤ i ≤ n, such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ B,

where B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}.
By Lemma 2, for any point ỹ ∈ Bo, there exists a weight w̃(ỹ) satisfying (26), (27) and

(28). Therefore, we can take the collection of such weights as

W = {w̃(ỹ) | ỹ ∈ Bo}.

Then from (28), for any fixed x̃ ∈ Bo we have

ρ̂(x̃) ≥
nX
i=1

w
(ỹ)
i xi, ∀ỹ ∈ Bo,

ρ̂(x̃) =
nX
i=1

w
(x̃)
i xi,

Therefore,

ρ̂(x̃) = sup
ỹ∈Bo

{
nX
i=1

w
(ỹ)
i xi} = sup

w̃∈W
{

nX
i=1

wixi}, ∀x̃ ∈ Bo, (31)

where each w̃ ∈W satisfies (26) and (27).

Next, we will prove that the above equality is also true for any boundary points of B,
i.e.,

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ ∂B. (32)

Let x̃0 be any boundary point of B. Then there exists a sequence {x̃k}∞k=1 ⊂ Bo such that
x̃k → x̃0 as k →∞. By the continuity of ρ̂, we have

ρ̂(x̃0) = lim
k→∞

ρ̂(x̃k) = lim
k→∞

sup
w̃∈W

{
nX
i=1

wix
k
i }, (33)
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where the last equality follows from (31). If we can interchange sup and limit in (33), i.e. if

lim
k→∞

sup
w̃∈W

{
nX
i=1

wix
k
i } = sup

w̃∈W
{ lim
k→∞

nX
i=1

wix
k
i } = sup

w̃∈W
{

nX
i=1

wix
0
i }, (34)

then (32) holds and the proof is complete.

To show (34), note that we have by Cauchy-Schwartz inequality¯̄̄̄
¯
nX
i=1

wix
k
i −

nX
i=1

wix
0
i

¯̄̄̄
¯ ≤

Ã
nX
i=1

(wi)
2

!1
2
Ã

nX
i=1

(xki − x0i )
2

! 1
2

≤
Ã

nX
i=1

(xki − x0i )
2

!1
2

, ∀w̃ ∈W,

because wi ≥ 0 and
Pn

i=1wi = 1,∀w̃ ∈ W. Therefore,
Pn

i=1wix
k
i →

Pn
i=1wix

0
i uniformly

for all w̃ ∈W and (34) follows. ¤

2 Proof of Theorem 2

(I) (1) For ∀x̃ ≤ 0, Axiom C2 implies ρ̂(x̃) ≤ ρ̂(0) = 0, hence x̃ ∈ Aρ̂ by definition. Thus,

D1 holds. (2) For any x̃ ∈ Rn
++, there exists α > 0 such that 0 ≤ x̃− α1. Axioms C2 and

C1 imply that ρ̂(0) ≤ ρ̂(x̃− α1) = ρ̂(x̃)− α. So ρ̂(x̃) ≥ α > 0 and henceforth x̃ /∈ Aρ̂, i.e.,

D2 holds. (3) If x̃ and ỹ are comonotonic and x̃ ∈ Aρ̂, ỹ ∈ Aρ̂, then ρ̂(x̃) ≤ 0, ρ̂(ỹ) ≤ 0,
and λx̃ and (1− λ)ỹ are comonotonic for any λ ∈ [0, 1]. Thus C3 implies

ρ̂(λx̃+ (1− λ)ỹ) ≤ ρ̂(λx̃) + ρ̂((1− λ)ỹ) = λρ̂(x̃) + (1− λ)ρ̂(ỹ) ≤ 0.

Hence λx̃+(1−λ)ỹ ∈ Aρ̂, i.e., D3 holds. (4) For any x̃ ∈ Aρ̂ and a > 0, we have ρ̂(x̃) ≤ 0 and
C1 implies ρ̂(ax̃) = aρ̂(x̃) ≤ 0. Thus, ax̃ ∈ Aρ̂, i.e., D4 holds. (5) For any x̃ ≤ ỹ and ỹ ∈ Aρ̂,

we have ρ̂(ỹ) ≤ 0. By C2, ρ̂(x̃) ≤ ρ̂(ỹ) ≤ 0. Hence x̃ ∈ Aρ̂, i.e., D5 holds. (6) If x̃ ∈ Aρ̂,

then ρ̂(x̃) ≤ 0. For any permutation (i1, . . . , in), C4 implies ρ̂((xi1 , . . . , xin)) = ρ̂(x̃) ≤ 0.
So (xi1 , . . . , xin) ∈ Aρ̂, i.e., D6 holds. (7) Suppose x̃k ∈ Aρ̂, k = 1, 2, . . ., and x̃k → x̃ as

k → ∞. Then ρ̂(x̃k) ≤ 0,∀k. Suppose the limit x̃ /∈ Aρ̂. Then ρ̂(x̃) > 0. There exists

δ > 0 such that ρ̂(x̃− δ1) > 0. Since x̃k → x̃, it follows that there exists K ∈ N such that
x̃K > x̃− δ1. By C2, ρ̂(x̃K) ≥ ρ̂(x̃− δ1) > 0, which contradicts to ρ̂(x̃K) ≤ 0. So x̃ ∈ Aρ̂,

i.e., Aρ̂ is closed.

(II) (1) For ∀x̃ ∈ Rn,∀b ∈ R, we have

ρ̂A(x̃+ b1) = inf{m | x̃+ b1−m1 ∈ A} = b+ inf{m | x̃−m1 ∈ A} = b+ ρ̂A(x̃).

For ∀x̃ ∈ Rn,∀a ≥ 0, if a = 0, then

ρ̂A(ax̃) = inf{m | 0−m1 ∈ A} = 0 = a · ρ̂A(x̃),
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where the second equality follows from D1 and D2. If a > 0, then

ρ̂A(ax̃) = inf{m | ax̃−m1 ∈ A} = a · inf{u | a(x̃− u1) ∈ A}

= a · inf{u | x̃− u1 ∈ A} = a · ρ̂A(x̃),

by D4. Therefore, C1 holds. (2) Suppose x̃ ≤ ỹ. For anym ∈ R, if ỹ−m1 ∈ A, then D5 and
x̃−m1 ≤ ỹ −m1 imply that x̃−m1 ∈ A. Hence {m | ỹ −m1 ∈ A} ⊂ {m | x̃−m1 ∈ A}.
By taking infimum on both sides, we obtain ρ̂A(ỹ) ≥ ρ̂A(x̃), i.e., C2 holds. (3) Suppose x̃

and ỹ are comonotonic. For any m and n such that x̃−m1 ∈ A, ỹ− n1 ∈ A, since x̃−m1

and ỹ − n1 are comonotonic, it follows from D3 that 12(x̃−m1) + 1
2(ỹ − n1) ∈ A. By D4,

the previous formula implies x̃+ ỹ − (m+ n)1 ∈ A. Therefore,

ρ̂A(x̃+ ỹ) ≤ m+ n.

Taking infimum of all m and n satisfying x̃−m1 ∈ A, ỹ − n1 ∈ A, on both sides of above
inequality yields

ρ̂A(x̃+ ỹ) ≤ ρ̂A(x̃) + ρ̂A(ỹ).

So C3 holds. (4) Fix any x̃ ∈ Rn and any permutation (i1, . . . , in). Then for any m ∈ R,
D6 implies that x̃−m1 ∈ A if and only if (xi1 , . . . , xin)−m1 ∈ A. Hence

{m | x̃−m1 ∈ A} = {m | (xi1 , . . . , xin)−m1 ∈ A}.

Taking infimum on both sides, we obtain ρ̂A(x̃) = ρ̂A((xi1 , . . . , xin)), i.e., D.4 holds.

(III) For ∀x̃ ∈ Rn, we have

ρ̂Aρ̂
(x̃) = inf{m | x̃−m1 ∈ Aρ̂} = inf{m | ρ̂(x̃−m1) ≤ 0} = inf{m | ρ̂(x̃) ≤ m} ≥ ρ̂(x̃),

via C1. On the other hand, for any δ > ρ̂(x̃), we have

δ > ρ̂(x̃)⇒ ρ̂(x̃− δ1) < 0 (since ρ̂ satisfies C1)

⇒ x̃− δ1 ∈ Aρ̂ (by definition)

⇒ ρ̂Aρ̂
(x̃− δ1) ≤ 0 (by definition)

⇒ ρ̂Aρ̂
(x̃) ≤ δ (since ρ̂Aρ̂

satisfies C1)

Letting δ ↓ ρ̂(x̃), we obtain ρ̂Aρ̂
(x̃) ≤ ρ̂(x̃). Therefore, ρ̂(x̃) = ρ̂Aρ̂

(x̃).

(IV) For any x̃ ∈ D, we have ρ̂D(x̃) ≤ 0. Hence x̃ ∈ Aρ̂D . Therefore, D ⊂ Aρ̂D . By the

results (I) and (II),Aρ̂D is closed. So D̄ ⊂ Aρ̂D . On the other hand, for any x̃ ∈ Aρ̂D , we have
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by definition that ρ̂D(x̃) ≤ 0, i.e., inf{m | x̃−m1 ∈ D} ≤ 0. If inf{m | x̃−m1 ∈ D} < 0,

then there exists m < 0 such that x̃ −m1 ∈ D. Then since x̃ < x̃ −m1 by D5 x̃ ∈ D.
Otherwise, inf{m | x̃ −m1 ∈ D} = 0. Then there exists mk such that mk ↓ 0 as k → ∞
and x̃ −mk1 ∈ D. Hence x̃ ∈ D̄. In either case we obtain that Aρ̂D ⊂ D̄. Therefore, we
conclude that Aρ̂D = D̄. ¤

3 Proof of Theorem 3

The proof for the “if" part is trivial. The proof for the “only if" part. Suppose ρ̂ is a

coherent risk statistic. Let Θ = {θ1, . . . , θn} be an arbitrary set with n elements. Let H be

the set of all the subsets of Θ. Let Z be the set of all real-valued random variables defined

on (Θ,H). Define a functional E∗ on Z:

E∗ : Z → R

Z 7→ E∗(Z) , ρ̂(Z(θ1), Z(θ2), . . . , Z(θn)),

then E∗(·) is monotone, positively affinely homogeneous and subadditive in the sense defined
in equations (2.7), (2.8) and (2.9) at Chapter 10 of Huber [33]. Then the result follows by

applying Proposition 2.1 at page 254 of Huber [33] to E∗. ¤

4 Proof of Theorem 4

The proof for theorem 4 follows the same line as the proof for theorem 1. We first prove

two lemmas which are similar to Lemma 1 and 2, with simpler argument and stronger

conclusion. More precisely, we have the following two lemmas.

Lemma 3. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}. For any fixed z̃ ∈ B and any
ρ̂ satisfying axioms C1, C2, E3, C4 and ρ̂(z̃) = 1, there exists a weight w̃ = (w1, . . . , wn)

satisfying (12) such that the linear functional λ(x̃) :=
Pn

i=1wixi satisfies

λ(z̃) = 1, (35)

λ(x̃) < 1 for all x̃ such that ρ̂(x̃) < 1. (36)

Proof. Let U = {x̃ | ρ̂(x̃) < 1}. Axioms C1 and E3 imply that U is convex, and,

therefore, the closure Ū of U is also convex.

For any ε > 0, since ρ̂(z̃ − ε1) = ρ̂(z̃)− ε = 1− ε < 1, it follows that z̃ − ε1 ∈ U . Since

z̃ − ε1 tends to z̃ as ε ↓ 0, we know that z̃ is a boundary point of U because ρ̂(z̃) = 1.
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Therefore, there exists a supporting hyperplane for Ū at z̃, i.e., there exists a nonzero vector

w̃0 = (w01, . . . , w
0
n) ∈ Rn such that λ0(x̃) :=

Pn
i=1w

0
i xi satisfies λ

0(x̃) ≤ λ0(z̃) for all x̃ ∈ Ū .

In particular, we have

λ0(x̃) ≤ λ0(z̃),∀x̃ ∈ U. (37)

Let (i1, . . . , in) be the permutation of (1, 2, . . . , n) such that w0i1 ≤ w0i2 ≤ · · · ≤ w0in . And

let (j1, . . . , jn) be the permutation of (1, 2, . . . , n) such that ijk = k, k = 1, 2, . . . , n. Define

a new weight w̃ and a new linear functional as follows:

w̃ = (w1, . . . , wn) , (w0i1 , . . . , w
0
in), (38)

λ(x̃) :=
nX
i=1

wixi, (39)

then w̃ satisfies condition (12).

For any fixed x̃ ∈ U , by Axiom C4, ρ̂((xj1 , . . . , xjn)) = ρ̂(x̃) < 1, so (xj1 , . . . , xjn) ∈ U .

Then, we have

λ(x̃) =
nX

k=1

wkxk =
nX

k=1

w0ikxk =
nX

k=1

w0ijk
xjk

=
nX

k=1

w0kxjk = λ0((xj1 , . . . , xjn)) ≤ λ0(z̃) (40)

where the last inequality follows from (37). Noting that z1 ≤ . . . ≤ zn, we obtain

λ0(z̃) =
nX

k=1

w0kzk ≤
nX

k=1

w0ikzk = λ(z̃). (41)

By (40) and (41), we have

λ(x̃) ≤ λ(z̃),∀x̃ ∈ U. (42)

We shall show that the strict inequality holds in (42). Suppose, by contradiction, that

there exists x̃0 ∈ U such that λ(x̃0) = λ(z̃). With wmax = max(w1, w2, ..., wn), we have

x̃0 + εw̃ ≤ x̃0 + εwmax1 for any ε > 0. Thus, axioms C1 and C2 yield

ρ̂(x̃0 + εw̃) ≤ ρ̂(x̃0 + εwmax1) = ρ̂(x̃0) + εwmax, ∀ε > 0. (43)

Since ρ̂(x̃0) < 1, we have by (43) that for small enough ε > 0, ρ̂(x̃0 + εw̃) < 1. Hence,

x̃0 + εw̃ ∈ U and (42) implies λ(x̃0 + εw̃) ≤ λ(z̃). However, we have an opposite inequality
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λ(x̃0 + εw̃) = λ(x̃0) + ε|w̃|2 > λ(x̃0) = λ(z̃), leading to a contradiction. In summary, we

have shown that

λ(x̃) < λ(z̃),∀x̃ ∈ U. (44)

Since ρ̂(0) = 0, we have 0 ∈ U . Letting x̃ = 0 in (44) yields λ(z̃) > 0, so we can re-scale

w̃ such that λ(z̃) = 1 = ρ̂(z̃). Thus, (44) becomes

λ(x̃) < 1 for all x̃ such that ρ̂(x̃) < 1,

from which (36) holds. ¤
Lemma 4. Let B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}. For any fixed z̃ = (z1, . . . , zn) ∈ B

and any ρ̂ satisfying axioms C1, C2, E3 and C4, there exists a weight w̃ = (w1, . . . , wn)

satisfying (10), (11) and (12), such that

ρ̂(x̃) ≥
nX
i=1

wixi, for ∀x̃ ∈ Rn, and ρ̂(z̃) =
nX
i=1

wizi. (45)

Proof. The proof is obtained by using Lemma 3 and following the same line as the proof

for Lemma 2. ¤
Proof of Theorem 4. (1) Proof for part (I). We only need to show that under condition

(12), the risk statistic (13) satisfies subadditivity for any x̃ and ỹ ∈ Rn. Let (k1, . . . , kn) be

the permutation of (1, . . . , n) such that (x̃ + ỹ)k1 ≤ (x̃+ ỹ)k2 ≤ . . . ≤ (x̃+ ỹ)kn . Then for

i = 1, . . . , n− 1, the partial sum up to i satisfies

iX
j=1

(x̃+ ỹ)(j) =
iX

j=1

(x̃+ ỹ)kj =
iX

j=1

(xkj + ykj ) ≥
iX

j=1

(x(j) + y(j)). (46)

In addition, we have for the total sum

nX
j=1

(x̃+ ỹ)(j) =
nX

j=1

(xj + yj) =
nX

j=1

(x(j) + y(j)). (47)

Re-arranging the summation terms yields

ρ̂(x̃+ ỹ) = sup
w̃∈W

{
nX
i=1

wi(x̃+ ỹ)(i)} = sup
w̃∈W

{
n−1X
i=1

(wi − wi+1)
iX

j=1

(x̃+ ỹ)(j) + wn

nX
j=1

(x̃+ ỹ)(j)},
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This, along with the fact wi − wi+1 ≤ 0 and equations (46) and (47), shows that

ρ̂(x̃+ ỹ) ≤ sup
w̃∈W

{
n−1X
i=1

(wi −wi+1)
iX

j=1

(x(j) + y(j)) +wn

nX
j=1

(x(j) + y(j))}

= sup
w̃∈W

{
nX
i=1

wix(i) +
nX
i=1

wiy(i)}

≤ sup
w̃∈W

{
nX
i=1

wix(i)}+ sup
w̃∈W

{
nX
i=1

wiy(i)} = ρ̂(x̃) + ρ̂(ỹ).

(2) Proof for part (II). By Axiom C4, we only need to show that there exists a set of weights

W = {w̃ = (w1, . . . , wn)} ⊂ Rn with each w̃ ∈W satisfying (10), (11) and (12), such that

ρ̂(x̃) = sup
w̃∈W

{
nX
i=1

wixi}, ∀x̃ ∈ B,

where B = {ỹ ∈ Rn | y1 ≤ y2 ≤ · · · ≤ yn}.
By Lemma 4, for any point ỹ ∈ B, there exists a weight w̃(ỹ) satisfying (10), (11) and

(12) such that (45) holds. Therefore, we can take the collection of such weights as

W = {w̃(ỹ) | ỹ ∈ B}.

Then from (45), for any fixed x̃ ∈ B we have

ρ̂(x̃) ≥
nX
i=1

w
(ỹ)
i xi, ∀ỹ ∈ B; and ρ̂(x̃) =

nX
i=1

w
(x̃)
i xi.

Therefore,

ρ̂(x̃) = sup
ỹ∈B
{

nX
i=1

w
(ỹ)
i xi} = sup

w̃∈W
{

nX
i=1

wixi}, ∀x̃ ∈ B,

which completes the proof. ¤

5 Proof of Theorem 5

(1) The proof for the “if” part is similar to the proof for part (I) of Theorem 1.

(2) The proof for the “only if” part: First of all, we shall prove

ρ̂(cx̃) = cρ̂(x̃), ∀c ≥ 0,∀x̃ ≥ 0. (48)

By Axiom F3, we have ρ̂(0) = ρ̂(0) + ρ̂(0), so

ρ̂(0) = 0. (49)
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Axiom F3 also implies

ρ̂(mx̃) = mρ̂(x̃), ∀m ∈ N, x̃ ∈ Rn, (50)

and ρ̂( km x̃) = 1
m ρ̂(kx̃), ∀m ∈ N, k ∈ N ∪ {0}, x̃ ∈ Rn, from which we have

ρ̂(
k

m
x̃) =

1

m
ρ̂(kx̃) =

k

m
ρ̂(x̃), ∀m ∈ N, k ∈ N ∪ {0}, x̃ ∈ Rn,

or equivalently for the set the set of nonnegative rational numbers Q+ we have

ρ̂(qx̃) = qρ̂(x̃), ∀q ∈ Q+, x̃ ∈ Rn. (51)

In general, for any c ≥ 0 there exist two sequences {c(1)n } ⊂ Q+ and {c(2)n } ⊂ Q+, such that
c
(1)
n ↑ c and c

(2)
n ↓ c as n → ∞. Then for any x̃ ≥ 0, we have c(1)n x̃ ≤ cx̃ ≤ c

(2)
n x̃ for any n.

It follows from Axiom F2 and (51) that

c(1)n ρ̂(x̃) = ρ̂(c(1)n x̃) ≤ ρ̂(cx̃) ≤ ρ̂(c(2)n x̃) = c(2)n ρ̂(x̃), ∀n, ∀x̃ ≥ 0.

Letting n→∞, we obtain (48).
Secondly we shall show

ρ̂(c1) = c, ∀c ∈ R. (52)

By (50) and Axiom F4, we have

ρ̂(m1) = mρ̂(1) = m, ∀m ∈ N. (53)

By Axiom F3, (49) and (53), we have

0 = ρ̂(0) = ρ̂(m1) + ρ̂(−m1) = m+ ρ̂(−m1), ∀m ∈ N,

hence

ρ̂(−m1) = −m, ∀m ∈ N. (54)

By (50),

ρ̂(k1) = ρ̂(m · k
m
1) = mρ̂(

k

m
1), ∀m ∈ N, k ∈ Z,

which in combination with (53) and (54) leads to

ρ̂(
k

m
1) =

k

m
, ∀m ∈ N, k ∈ Z. (55)

In general, for any c ∈ R there exist two sequences {c(1)n } ⊂ Q and {c(2)n } ⊂ Q, such that
c
(1)
n ↑ c and c

(2)
n ↓ c as n→∞. By Axiom F2, we have

ρ̂(c(1)n 1) ≤ ρ̂(c1) ≤ ρ̂(c(2)n 1), ∀n.
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Letting n→∞ and using (55), we obtain (52).

Now we are ready to prove the theorem. Let ẽk = (0, . . . , 0, 1, 0, . . . , 0) be the k-th

standard basis of Rn, k = 1, . . . , n. For any x̃ ∈ Rn, let (x(1), ..., x(n)) be its order statistic

with x(n) being the largest. Then by Axiom F1 and F3, we have

ρ̂(x̃) = ρ̂((x(1), ..., x(n)))

= ρ̂(x(1)1+ (0, x(2) − x(1), ..., x(n) − x(1)))

= ρ̂(x(1)1) + ρ̂((0, x(2) − x(1), ..., x(n) − x(1))).

Using (52), we further have

ρ̂(x̃) = x(1) + ρ̂((0, x(2) − x(1), ..., x(n) − x(1)))

= x(1) + ρ̂((x(2) − x(1)) · (0, 1, . . . , 1) + (0, 0, x(3) − x(2), ..., x(n) − x(2)))

= x(1) + ρ̂((x(2) − x(1)) · (0, 1, . . . , 1)) + ρ̂((0, 0, x(3) − x(2), ..., x(n) − x(2))),

where the second equality follows by the permutation invariance and the last equality by

the comonotonic additivity. Therefore, by (48)

ρ̂(x̃) = x(1) + (x(2) − x(1))ρ̂((0, 1, . . . , 1)) + ρ̂((0, 0, x(3) − x(2), ..., x(n) − x(2)))

= · · ·

= x(1) + (x(2) − x(1))ρ̂((0, 1, . . . , 1)) + (x(3) − x(2))ρ̂((0, 0, 1, . . . , 1)) + · · ·

+ (x(n) − x(n−1))ρ̂((0, ..., 0, 1))

=
nX
i=1

wix(i),

where

wi = ρ̂(
nX
j=i

ẽj)− ρ̂(
nX

j=i+1

ẽj), i = 1, . . . , n,

with ẽj being a vector such that the jth element is one and all other elements are zero. SincePn
i=1wi = ρ̂(

Pn
j=1 ẽj) = 1 and wi ≥ 0, i = 1, . . . , n, by Axiom F2, the proof is completed.

¤

6 Proof of Proposition 1

The result of TCM is from equation (3.2.3) in [55]. To show (17), note that by equation

(3.2.4) in [55] the influence function of the (1 − α)-trimmed mean T1−α(X) := E[X|X <
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VaRα(X)] is

IF (x, T1−α,X) =

(
x−(1−α)VaRα(X)

α −E[X|X < VaRα(X)], if x ≤ VaRα(X)

VaRα(X)−E[X|X < VaRα(X)] if x > VaRα(X)
(56)

By simple calculation, the influence function of E[X] is

IF (x,E[X],X) = x−E[X]. (57)

Since E[X] = αT1−α(X) + (1− α)TCEα, it follows that

IF (x,E[X],X) = αIF (x, T1−α,X) + (1− α)IF (x,TCEα,X). (58)

Now (17) follows from equations (56), (57) and (58). ¤
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