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Abstract
The risk of not accurately estimating the amount of future losses is an essential issue in risk

measurements. Sources of estimation risk include errors in estimation of parameters which can affect
directly the VaR precision. Estimation risk in itself is related to operational risk in a way that the
losses are arising from estimation errors.
In this working paper, we are interested in measuring the error induced on the SCR by the estimation
error of the parameters.
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1 Introduction

Measuring the Value-at-Risk of the own funds is a central topic in insurance with the new Solvency II
framework and finance regarding Basle II and III accords.

Many banks and financial institutions, develop models to compute the value-at-risk and resulting capital
requirement, but we know that any model is by definition an imperfect simplification and in some cases
a model will produce results that are bias due to parameter estimation errors. For instance, this point
is illustrated in Boyle and Windcliff [2004] for pension plans investment and in Planchet and
Therond [2012] for the determination of Solvency capital in the Solvency II Framework. As a direct
consequence of parameter estimation risk, the capital requirement may be underestimated.

Article 101 of the European directive states that the Solvency Capital Requirement (SCR), shall cor-
respond to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject
to a confidence level of 99.5% over a one-year period.

We are interested in this working paper, in assessing the potential loss of accuracy from estimation
error when calculating the SCR, we expand this analytical framework where an insurer must calculate
a VaR to a confidence level of 99.5% on a distribution which we must estimate the parameters, now
this estimation might lead to important differences in the numerical results. To be able to illustrate this
situation we took the very particular simple case of the only market risk for an asset consisting of a zero
coupon bond, we are thus led to study the distribution of P (1, T − 1) which is the value of the asset
at t = 1 and we highlight the possible undervaluation of the Solvency Capital Requirement if a special
attention is not given to the risk of parameter estimation. At the end, we are going to check the effect of
adding another zero coupon bond on our Capital estimation.
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2 Model Presentation

For sake of simplicity, we use in this work the classical one-factor interest rate Vasicek model (cf. Vasicek
[1977]). The key point here is that we need closed form solutions for the zero-coupon bond price.
Moreover, the distribution of the ZC price at a future time is known (and is log normal one). This will
help us to compute very easily the quantile of the price distribution.

2.1 Simulating Interest rates: The Vasicek model

We consider an asset consisting of a zero-coupon bond now Vasicek model, assumes that r(t) is an adapted
process on a filtered probability space (Ω,F ,P, (Ft)0<t<T ) that satisfies the following stochastic differen-
tial equation:

drt = k(θ − rt)dt+ σdWt

where k, θ and σ are non-negative constants and rt is the current level of interest rate. The parameter θ
is the long run normal interest rate. The coefficient k > 0 determines the speed of pushing the interest
rate towards its long run normal level, and W is a standard Brownian motion.

The solution of the r(t) stochastic differential equation would generate (cf. Bayazit [2004]):

rt = r0e
−kt + θ(1− e−kt) + σe−kt

∫ t

0

ekudWu (1)

and for 0 ≤ s ≤ t ≤ T , rt = rse
−k(t−s) + θ(1− e−k(t−s)) + σ

∫ t

s

e−k(t−u)dWu

If one wants to take the market price of risk λ into account, (for the purpose of this article and to
minimize our uncertainty, we took a constant market price of risk λ(t, rt) = λ, but in general a market
price of risk has a more complex structure, more on this topic could be found in Caja and Planchet
[2011]), which allows us to switch between the real universe P to the risk-neutral world Q, then with
the respect of the new probability measure Q, we can rewrite the stochastic equation as follows (cf. Van
Elen [2010]):

drt = k(θ∗ − rt)dt+ σdW ∗
t

The structure of this equation in the risk-neutral world is comparable to that in the real universe where,

θ∗ = θ − σλ

k
.

In particular, we can use the explicit formula seen previously with,

rt = r0e
−kt + θ∗(1− e−kt) + σe−kt

∫ t

0

ekudW ∗
u .

A zero-coupon bond of maturity T is a financial security paying one unit of cash at a prespecified date
T in the future without intermediate payments. The price at time t ≤ T is denoted by P (t, T ).
The general case of a zero coupon bond at time t with maturity T is (cf. Bayazit [2004]):

P (t, T ) = A(t, T )e−B(t,T )r(t),

where,


A(t, T ) = exp

[
(θ∗ − σ2

2k2
)(B(t, T )− (T − t))− σ2

4k
B(t, T )2

]
B(t, T ) =

1− e−k(T−t)

k
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2.2 Parameter Estimation

For the Vasicek model, we have drt = k(θ − rt)dt + σdWt with the solution already calculated that

generate rt = rse
−k(t−s) + θ(1− e−k(t−s)) + σe−kt

∫ t

s

ekudWu,

now rt is normally distributed with mean and variance: E[rt|Fs] = rse
−k(t−s) + θ(1− e−k(t−s))

V ar[rt|Fs] =
σ2

2k
(1− e−2k(t−s))

The properties of the integral of a deterministic function relative to a Brownian motion lead to the
exact discretization (cf. Planchet & Thérond [2009]):

rt+δ = rte
−kδ + θ(1− e−kδ) + σ

√
1− e−2kδ

2k
ε,

where ε is a random variable that follows the standard normal distribution and δ is the discretization step.

To calibrate this short rate model, let’s rewrite it in more familiar regression format: yt = α+βxt +σ1εt

Where, yt = rt+δ, α = θ(1− e−kδ), β = e−kδ, xt = rt and σ1 = σ

√
1− e−2kδ

2k

The OLS regression provides the maximum likelihood estimator for the parameters: α, β and σ1 (cf.
Brigo et al. [2007]).
One can for instance compare the formulas stated above with the estimators derived directly via maximum

likelihood given our Log-Likelihood function: ln(L) = ln

(
1

σ1
√

2π

)n
− 1

2σ2
1

n∑
i=1

(ri − ri−1β − θ(1− β))
2

which are of the form (cf. Brigo & Mercurio [2006]):

β̂ =

n

n∑
i=1

riri−1 −
n∑
i=1

ri

n∑
i=1

ri−1

n

n∑
i=1

r2i−1 − (

n∑
i=1

ri−1)2

θ̂ =

n∑
i=1

[ri − β̂ri−1]

n(1− β̂)

σ̂2
1 =

1

n

n∑
i=1

[ri − β̂ri−1 − θ̂(1− β̂)]2

Parameter estimation is an important stage in the simulation of trajectories of a continuous process be-
cause it can cause a bias as we will see in the next section.

Given the parameters estimated all what is left is to find the market price of risk λ which give us
the right price of the zero coupon. Since P (0, T ) is usually known (given by the market at time t = 0),
and P (0, T ) is a function of k, θ, σ and λ as seen previously, λ would be calculated as:

λ =

((
θ − σ2

2k2

)
−

(σ2

4k
B(0, T ) + r0

)
B(0, T ) + ln

(
P (0, T )

)
B(0, T )− T

)
k

σ
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2.3 Calculation of the SCR

Article 101 of the European directive (cf. CEIOPS [2009]) states that the Solvency Capital Requirement
(SCR), shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance un-
dertaking subject to a confidence level of 99.5% over a one-year period.

In our case the SCR would be calculated as follows:

rt = r0e
−kt + θ∗(1− e−kt) + σe−kt

∫ t

0

ekudW ∗
u is normaly distributed with mean and variance: E[rt|F0] = r0e

−kt + θ∗(1− e−kt)

V ar[rt|F0] =
σ2

2k
(1− e−2kt)

In addition, A(t, T ) and B(t, T ) are deterministic in the the zero coupon price fundamental equation:

P (t, T ) = A(t, T )e−B(t,T )r(t),

So, P (t, T ) would follow the LogNormal distribution since if X is normally distributed with mean µx and
variance σ2

x, ae−bXwould follow the Lognormal distribution with:

mean: eln(a)−bµx+
1
2 b

2σx
2

and variance: (eb
2σx

2 − 1)e−2bµx+b
2σx

2

.

So in our case,

E
[
P (t, T )

]
= exp

{
ln(A(t, T ))−B(t, T )

(
r0e

−kt + θ∗(1− e−kt)
)

+
1

2
B(t, T )2

(
σ2

2k
(1− e−2kt)

)}
V ar

[
P (t, T )

]
=

(
eB(t,T )2 σ

2

2k

(
1−e−2kt

)
− 1

)
exp

{
− 2B(t, T )

(
r0e

−kt + θ∗(1− e−kt)
)

+B(t, T )2 σ
2

2k (1− e−2kt)

}
To reiterate, since we have P (t, T ) ↪→ LN

(
µL = ln(A(t, T ))−B(t, T )E[rt|F0], σ2

L = B(t, T )2V ar[rt|F0]

)
,

if we denote xLNp our quantile, p the critical value and Φ the cdf of a standardized gaussian random vari-
able we would have:

xLNp = V aRp(P (t, T )) = F−1
0 (p) = exp(σLΦ−1 (p)︸︷︷︸

1−α

+µL)

At the end, the Solvency Capital Requirement (SCR) of our zero coupon bond would be:

SCR = P (0, T )− xp(e−R1P (1, T − 1))

In practice, p = 0.5% and R1 is the spot rate for t = 1.

3 Estimation Risk

To show the estimation risk we are going to take the very particular simple case of the only market risk
for an asset consisting of a zero coupon bond, we are thus led to study the distribution of P (1, T − 1)
which is the value of the asset at t = 1 and then we will add to it one more zero coupon bond and check
how estimation risk affects the Solvency Capital Requirement if a special attention is not given to the
risk of parameter estimation.

3.1 Case of one zero coupon bond

For the case of one zero coupon bond, we are going to follow the below steps to calculate our Solvency
Capital requirement and show the estimation error behind:

1. We fix the Vasicek parameters set ϑ = (k0, θ0, σ0, λ0) by applying the Maximum Likelihood esti-
mation technique stated previously in section 2.2.
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2. Let ω = (k, θ, σ), given the asymptotic normality of MLE, we have: ω̂ ↪→ N ((k0, θ0, σ0)︸ ︷︷ ︸
ω0

,Σ), where

Σ is calculated using the inverse of fisher information matrix: Σ =

(
−E

[
∂2 lnL
∂ω∂ω′

])−1

ω=ω0

.

3. We estimate the market price of risk λ since P (0, T ) is known at t = 0, which allows us to switch
between the real measure P to the risk-neutral measure Q see section 2.2;

4. Calculate the Solvency capital Requirement (SCR) of the Zero-Coupon bond at 0.5%, and its

Relative difference ε =
ˆSCR− SCR
SCR

;

5. Repeat steps 2 to 5 on a number N of times (in our example, we took N = 105 iterations)
to be able to analyze the empirical cumulative distribution function of ε = (ε1, ..., εN ), where

εi =
ˆSCRi − SCR
SCR

.

As for the calculation of Fisher’s inverse information Matrix:

Σ =

(
−E

[
∂2 lnL
∂ω∂ω′

])−1

ω=ω0

,

we used the log-likelihood function: ln(L) = ln

(
1

σ1
√

2π

)n
− 1

2σ2
1

n∑
i=1

(ri − ri−1β − θ(1− β))
2

see ap-

pendix A for the full support.

3.2 Estimation Risk of a Portfolio consisting of two Zero-Coupon bonds

In this section, we will be interested in capturing the effect of parameter estimation when we add another
zero-coupon bond to our portfolio; we took the two zero coupon bonds maturing respectively at T1 and
T2 months.

Let P0 be the Price at t = 0 of our Portfolio, P0 = P (0, T1) + P (0, T2) with the only difference that
P will not follow a LogNormal Distribution in that case.
Following the same estimation technique of parameters from above, we explain how we computed the
market price of risk λ which give us the right price of the Portfolio.

Now with P (0, T ) = e

(
θ−λσ

k −1/2 σ
2

k2

)(
1−e−Tk/12

k −T/12
)
−1/4

σ2(1−e−Tk/12)
2

k3
− (1−e−Tk/12)r0

k
, already illustrated

above we would have:

P0 = P (0, T1) + P (0, T2)

P0 = e

(
θ−λσ

k −1/2 σ
2

k2

)(
1−e−T1 k/12

k −T1/12

)
−1/4

σ2(1−e−T1 k/12)
2

k3
− (1−e−T1 k/12)r0

k
+

e

(
θ−λσ

k −1/2 σ
2

k2

)(
1−e−T2 k/12

k −T2/12

)
−1/4

σ2(1−e−T2 k/12)
2

k3
− (1−e−T2 k/12)r0

k

We can solve this equation numerically and find λ by using the dichotomy method.

3.2.1 The sum of lognormal variables

We often encounter the sum of lognormal variables in financial modeling, a lot of methods are used
to approximate the sum into a lognormal distribution but in our study, we are going to apply Fenton-
Wilkinson approach (cf. Fenton [1960]) the most used for its simplicity. We place ourselves in the
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case where we have l lognormal distributions Xi = eYi where Yi ↪→ N (µi, σi), the approach states that

the sum of l lognormal distributions S =

l∑
i=1

eYi can be approximated by a lognormal distribution eZ ,

Z ↪→ N (µZ , σ
2
Z) where,

µZ = 2 ln(m1)− 1/2 ln(m2)

σ2
Z = ln(m2)− 2 ln(m1)

and,

m1 = E(S) = eµZ+σ2
Z/2 =

l∑
i=1

eµYi+σ
2
Yi ,

m2 = E(S2) = e2µZ+2σ2
Z =

l∑
i=1

e2µYi+2σ2
Yi + 2

l−1∑
i=1

l∑
j=i+1

eµYi+µYj e
1/2(σ2

Yi
+σ2

Yj
+2ρijσYiσYj ),

are the first and second moment of S (cf. El Faouzi & Maurin [2006])1.

As a result, and by applying the same previous steps as in section 3.1, where SCR = P − xp
(
P (12, T − 12) + P (12, T

′
− 12)︸ ︷︷ ︸

P1

)
,

with xp our quantile estimated, P1 is the price of our Portfolio at t = 12 months and typically in the
Solvency II context p = 0.5%, we were able to estimate our Capital Requirement.

3.3 Numerical Results

In this section, we apply the preceding theoretical discussion of our estimation technique to the problem
at hand. From the Federal Reserve (FR), we took our interest rates, dated from January 1982 till August
2008 (n = 320 months), and compared our results with smaller data dated from July 2001 till August
2008, which gives us 86 months overall. We estimated the model parameters of Vasicek then we applied
the asymptotic normality of Maximum Likelihood to generate various outcomes. This simulation example
is intended to indicate how parameter estimation can affect directly the Solvency Capital Requirement
for one zero coupon bond of maturity 120 months and two zero coupon bonds of respective maturity of 60
and 120 months. Now since the estimation of the SCR is executed on simulated values, the simulations
and the estimation of the SCR has to be effected on a large size sample (we took N = 105 simulations).

As so, and with our fixed values parameters shown in table 1 below, we have been able to estimate

our Solvency Capital Requirement and its relative difference ε = (ε1, ...εN ), where εi =
ˆSCRi − SCR
SCR

.

With the given Inverse Fisher information matrix for n = 320:
0.00004655 −0.00004988 −2.7924× 10−13

−0.00004988 0.0001488 8.7048× 10−13

−2.7924× 10−13 8.7048× 10−13 1.5591× 10−8


and for n = 86: 

0.0002959 −0.0003975 −1.1661× 10−12

−0.0003975 0.0009364 2.69943× 10−12

−1.1661× 10−12 2.69943× 10−12 3.2427× 10−8


1Corrections of the formulas given in this paper have been made regarding the second moment of S: E(S2)
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Fixed Values
n 320 86

r0 = 1.75% 1.75%
k = 0.219 0.153
θ = 3.388% 0.971%
σ = 1.104% 0.8189%
λ = −0.4189 −0.9954

P (0, 120) = 0.678 0.678
P (0, 60) = 0.854 0.854

P = 1.532 1.532

Table 1: Vasicek parameter model

Now we are interested in the particular case of ε < 0 and more particularly where ε < εmax where the
SCR is underestimated by more than 3%. For that, table 2 compares the results regarding, P(ε ≤ −0.03),
for our one and two zero coupon bonds of maturity 60 and 120 months.

n = 320 n = 86
P(0,120) P(0,60)+P(0,120) P(0,120) P(0,60)+P(0,120)

45.3% 42.9% 48.4% 47.8%

Table 2: Underestimation of the SCR

We can easily check that whichever the case treated, on average, 45% of the simulations underestimated
our solvency capital requirement by more than 3%, (P(ε ≤ −3%) = 45%).

Figure 1: Empirical Cumulative Distribution Function of ε

Figure 1, shows us the empirical cumulative distribution function of ε of our Portfolio composed of one zero
coupon bond maturing in 120 months, for n = 320. We notice that, 45.3% of our cases underestimated
the Solvency Capital Requirement by more than 3% given a probability P(ε < −3%) = 45.3%.
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4 Conclusion

In this article, we have highlighted the possible underestimation of the Solvency Capital Requirement, by
taking into consideration the very simple case of an asset consisting of one and two zero coupon bonds.
Applying the Vasicek model, enabled us to illustrate the direct consequence of parameter estimation risk
on the capital requirement. For example Boyle and Windcliff [2004] shows a similar consequence by
working on the pension plans investment.

In practice, we do not know the true value of our parameters and estimated values are usually treated
as correct, yet if we take into consideration the impact of parameter estimation risk, then our capital
requirement have a 50% chance to be underestimated by more then 3% as the study shows us.

So it would be more appropriate in reality to privilege simple and prudent models and avoid complexing
them, in a way, to prevent more estimation errors that might have severe influences in some cases on our
Solvency Capital Requirement.

Moreover, such simplified models should be used to comply to the Own Risk Solvency Assessment (ORSA)
required by Solvency II.
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A The Inverse of Fisher Information Matrix:

The calculation of the Inverse Fisher Information Matrix: Σ =

(
−E

[
∂2 lnL
∂ω∂ω′

])−1

ω=ω0

, was done by the

use of the Log-Likelihood function:

ln(L) = ln

(
1

σ1
√

2π

)n
− 1

2σ2
1

n∑
i=1

(ri − ri−1β − θ(1− β))
2

Now by deriving the Log-Likelihood function we obtain the following:

∂2

∂β2
ln(L) = −1/2

2nθ2 +

n∑
i=1

2 ri−1
2 − 4 ri−1θ

σ1 2

∂2

∂θ2
ln(L) = −1/2

2n− 4nβ + 2nβ2

σ1 2

∂2

∂σ1 2
ln(L) =

n

σ1 2
−3

nθ2 − 2nθ2β + nθ2β2 +

n∑
i=1

ri
2 − 2 riri−1β − 2 riθ + 2 riβ θ + ri−1

2β2 + 2 ri−1β θ − 2 ri−1β
2θ

σ1 4

∂2

∂θ∂β
ln(L) = −1/2

−4nθ + 4nθ β +

n∑
i=1

2 ri + 2 ri−1 − 4 ri−1β

σ1 2

∂2

∂σ1∂β
ln(L) =

−2nθ2 + 2nθ2β +

n∑
i=1

−2 riri−1 + 2 riθ + 2 ri−1
2β + 2 ri−1θ − 4 ri−1β θ

σ1 3

∂2

∂σ1∂θ
ln(L) =

2nθ − 4nθ β + 2nθ β2 +

n∑
i=1

−2 ri + 2 riβ + 2 ri−1β − 2 ri−1β
2

σ1 3

∂2

∂β∂θ
ln(L) = −1/2

−4nθ + 4nθ β +

n∑
i=1

2 ri + 2 ri−1 − 4 ri−1β

σ1 2

∂2

∂β∂σ1
ln(L) =

−2nθ2 + 2nθ2β +

n∑
i=1

−2 riri−1 + 2 riθ + 2 ri−1
2β + 2 ri−1θ − 4 ri−1β θ

σ1 3

∂2

∂θ∂σ1
ln(L) =

2nθ − 4nθ β + 2nθ β2 +

n∑
i=1

−2 ri + 2 riβ + 2 ri−1β − 2 ri−1β
2

σ1 3

We can easily check that the matrix is symmetric, since:

∂2

∂θ∂β
ln(L) =

∂2

∂β∂θ
ln(L),

∂2

∂σ1∂β
ln(L) =

∂2

∂β∂σ1
ln(L) and

∂2

∂σ1∂θ
ln(L) =

∂2

∂θ∂σ1
ln(L).

10


