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SUMMARY

In a Cox regression model, instability of the estimated regression coefficients can be reduced by maximiz-
ing a penalized partial log-likehhood, where a penalty function of the regression coefficients is substracted
from the partial log-likelihood. In this paper, we choose the optimal weight of the penalty function by
maximizing the predictive value of the model, as measured by the crossvalidated partial log-likelihood. Our
methods are illustrated by a study of ovarian cancer survival and by a study of centre-effects in kidney grafi
survival.

1. INTRODUCTION

This paper deals with the modelling of categorical covariates in survival analysis, based on Cox's
proportional hazards model.! The estimated regression coefficients of categorical covariates may
be unstable, especially if some categories contain few observations. In linear models, parameter
estimates can be improved by ridge regression, introduced by Hoerl and Kennard.” The ridge
estimates are biased, but more stable than the conventional unbiased estimates. An equivalent
method in likelihood based models is the estimation of coefficients by penalized likelihood, where
a penalty function of the regression coefficients is subtracted from the log-likelihood. For
examples in logistic regression see Le Cessie and Van Houwelingen® and Zwinderman et al*

The main problem in estimation by penalized likelihood i1s how much weight to put on the
penalty function. In this paper, the weight is determined by maximizing the predictive value of the
model. In linear models, the predictive value can be measured by the predicted sum of squares
PRESS.? In likelihood based models, this can be done by the crossvalidated log-likelihood CVL,"
like PRESS computed from the leave-one-out regression coefficients, The CVL is related to
Akaike's Information Criterion A1C,” but it has the advantage that it can also be used in Cox
regression, where the components of the partial likelihood are dependent.

We apply these methods to categorical covariates in the Cox model. The penalized partial
likehhood approach is outlined in Section 2. In Section 3, we define the CVL-measure of the
predictive value. Applications of penalized likelihood in Cox regression are given in Sections
4 and 5. In Section 4, we optimize the coding of two ordinal covariates (categorical covariates
with ordered categories) in ovarian cancer survival, Section 5 deals with the estimation of centre
effects in kidney transplant survival,

2. PENALIZED PARTIAL LIKELIHOOD

Suppose we have n observations (t,, d;, X,), where 1, is the possibly censored survival time, d; is the
censoring indicator and X, is a row vector of covariates for individual i. In the Cox proportional
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hazards model,' the hazard function for individuat i is given by
hi(t) = holt) exp(X; B)

where fiy(f) ts a baseline hazard function and exp(X;f) is the relative risk or hazard ratio.
Parameters are estimated by maximizing the partial log-likeiihood

Ip) = ‘:il d,(X,ﬁ = In( bX cxp(x,ﬁ)))

he Ry

where R; is the set of all individuals at risk at time {;,. The maximum likelihood estimate of 8 is
denoted by b,
We now define the penalized partial log-likelihood as

FB) = 15) ~ ol

where p(fl) is a penalty function and 4 is a non-negative weight parameter, which, in this section, is
considered as fixed, The factor § is introduced for mathematical convenience. The value of § that
maximizes the penalized partial likelihood depends on 2 and is denoted by b*.

With only one categorical covariate with ¢ categories, we write X, = {(Xjy, ..., X;.) , where
X;; = I[X; = j]is a dummy variable for category j with corresponding regression cocflicient . I
the first category is considered as a baseline, we have f, = 0. I the categories of X are not ordered
and if, in addition, we may assume that the effects of the various categories are not too different
from the mean ecffect, a suttable penalty function is

i) = .8~ B

This function penalizes fi’s that are furthest from the mean.

Covariates with ordered categories form a special class to which we will refer as ordinal
covariates. If X is an ordinal covariate, the difference between the regression coefficients of two
adjacent categories is supposed not too large. This leads to penalty functions that penalize first-
or second-order differences of consecutive fi;'s:

=1
riP = Y By - B

J=1

pa(B) = Ti,z(ﬁnl — 28, + B;. '

It is informative to consider the null space of a penalty function, that is, the set of cocfficients
) for which p(fl} = 0. For pq and p,, the null space only contains fi, = ... = f. = 0, while for p,,
all linear sequences of #)'s that imply a linear covariate effect remain unpenalized as well. If there
exists a prior beliel about the behaviour of the regression coefficients, this can be reflected by an
appropriate choice of the penalty function, especially its null space.

The extension to more covariates is straightforward. As an example we consider two ordinal
covariates X, and X, with ¢, and c; categories and regression cocfficients f;(j = I, ...,c,) and
wilk=1,...,¢5), respectively. In an additive model the regression coefficient 8 of cell (/, k) can
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be obtained as §i; + y,. If there is interaction between X, and X, all cells must be considered as
separate categories. In both cases the §,’s can be penalized by

1

<2 -
pad) = 3 Y (85 — )
1= k=1
where & is the mean of the 6,'s of the bordering categories.

Observe that coefficients of boundary cells are included in this function. They can be left out by
summing from 2 to ¢; — | and ¢; — 1, respectively. The null space of py is again only 6, = 0 for
all j and k.

All four penalty functions pq, ..., p3 can be written in the form p(B) = §'4f, with A a symmetric
non-negative definite matrix. With p{#) in this form the penalized log-likelihood can be wrilten as

L
Pigy=1p — 346 AB. (m

For a given 4, the first and second derivatives of the penalized log-likelihood with respect to fi are
given by

P = v = up) - 248 = iy~ iap
i sa T i

and

'::2‘&

&l
= W(ﬁ) =H'{{=Hp +id= — W(ﬁ) + A4,

respectively. A Newton-Raphson procedure can now be used to estimate the penalized regression
coefficients b’

A first-order Taylor expansion of U* around the unrestricted estimate b leads to the following
approximation of b

b = [H4b)] "H(b)b. (2)

In the Normal linear model, this is precisely the ridge estimate of Hoerl and Kennard,? if A is
chosen as the identity matrix. Since &* is an intrinsically biased estimator, standard errors of
b* are not very informative. Instead, we will report the square root of the diagonal elements of
[H*b*] ! which give an impression of the stability of the penalized estimates. These quantities
may be called pseudo-standard errors.

3. CROSSVALIDATED PARTIAL LIKELIHOOD

In this section, we determine the weight parameter, 4, by using the predictive value of the model as
a criterion. Predictive value is conceptually different from explained variation; while the latter
measurcs the fit to the data from which the model was derived, the predictive value is a measure
for the fit to future data. As there are no future data, we mimic the prediction process by
crossvalidation; every observation is left out once and predicted by using all other observations.
In a Normal linear model with observations Y;, the predictive value can be measured by the
predicted sum of squares PRESS.® which is a function of the weight parameter A:
PRESS(A) = ¥ (¥, = X;b" _;)).
1

-
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Here b{.,, denotes the leave-one-out’ regression coefficient, that is estimated when individual i is
left out of the observations.

In a likelihood based (Cox) model, a generalization of PRESS is the crossvalidated (partial)
log-liketihood®

CVLA) = Y Uib_y)
i=1
where /;(f) is the contribution of individual i to the log-likelihood, defined as I(f) — . ,(f) ,
with [ _;(f} denoting the unrestricted log-likelihood without individual i. The value of A
that maximizes CVL(2) is the optimal weight parameter to use in the penalized (partial)

log-likelihood.
In the Cox model, the following expression for I{f) can be derived:®

1{$) =[], . ,[(1 = pi) *1p
__explXif)
ik e ———
Y exp(X.f)

ke R,

with

the conditional probability that individual i dies at time ¢,, given the individual is alive just before
ty. Observe that for i{{f) the product only includes the observed failure times before 1, Hence, I{ff)
can be interpreted as the (log) probability that individual i survives at all occasions before t; and
dies at ¢,

In practice we will use the following approximation to the CVL:®

CVLIA) = ¥ 1(bY) ~ cid) )
i~
with
cld)y=1r ([” AbH17' Y UibY) U;(h‘)r) 4)
=1

a term that corrects the sum of the individual contributions. Here Ufff) denotes the vector of
derivatives of () with respect to .

If the components of the log-likelihood are independent, as in linear and logistic models, the
first term in the CVL equals {(h*), the log-likelihood of the model evaluated at b*, while ¢(J) in
expectation equals the effective dimension

e(A) = tr[HY(B*)] " 'H(b"). (5)

Hence, with independent components, CVL (4} is approximately equal to a penalized version of
Akaike's Information Criterion’

AIC(2) = 1(b*) — eld). (6)

Observe that AIC(0) is the original definition of AIC, that is, the log-likelihood minus the
dimension of the model.

In the Cox model, the components () are dependent, which implies that the sum of the ,(#) s
is not equal to {{f) and AIC (1) is not a numerical approximation to CVL (4). However, the
differences AAIC and ACVL from the null model (without covariates) are approximately equal.
Hence, AIC(7) can be useful as an alternative criterion for the determination of the weight
parameter in penalized partial likelihood,
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Table ). Diameter of residual tumour in ovarian cancer survival. Categories, number of

patients (n) and regression coefficients estimated without penalty (b with standard error)

and with penalty functions p, (b, with pseudo-standard crror, PSE) and p, (b, with PSE),
Correction ¢, from {4), and CVL, from (3), are given at the bottom of the table

Category Residual
diameter n b (SE) by {PSE) b (PSE)

2

1 microsc 29 0 0 0
2 < lem 67 0424 (0319 0233 (0189) 0:306  (0:093)
3 1-2 cm 49 0934 (0322) 0606 (0220) 0600  (0r146)
4 2-5cm 68 1023 (03107 O781 (0-218) 0861 ((r174)
b > Scm 145 1234 (00293 (965 {0:207) 1-105  (0-198)
c 391 234 119
CVL - 1664-57 — 166365 — 166268

Tabie 11. Karnofsky performance status in ovarian cancer survival. Categories, number of patients (n)

and regression coefficients estimated without penalty (b with standard error} and with penalty

functions p, (b, with pscudo-standard crror, PSE) and p; (b, with PSE). Correction ¢, from (4}, and
CVL, from (3}. are given at the bottom of the table

Category Performance

status n b (SE) b, (PSE) b, {PSE)
1 100 137 0 0 0

2 90 108 0071 (0155} 0093 {0-123) 0-198 (0-090)
3 80 47 0314 (0196} 0-350 (0:152) 0466 {0129)
4 70 46 081l (0188} 0715 {0-160) 0-802 (0:153)
S < 60 20 11169 ((F253) 0921 (0-209) 1156 (0-210)

c 4-57 249 1171

CVL — 166849 — 166712 — 1666:28

4. OPTIMAL CODING OF ORDINAL COVARIATES IN OVARIAN CANCER
SURVIVAL

We consider the survival times for 358 patients with an advanced ovarian cancer, who were
treated with chemotherapy. The data were derived from two trials comparing two different types
of chemotherapy.® The follow-up was at Jeast 4 years and the 4 year survival probability was
about 0-30. We concentrate on the coding of two ordinal covariates: the diameter of the residual
tumour (after surgery) and the Karnofsky performance status (measured at start of treatment),
which is a measure of the ability of a patient to lead her daily life. Both covariates have five
categories, which are defined in Tables I and 11. Throughout we assume a proportional hazards
model. In a notation shightly different from Section 2, we write the hazard function as h{t) = ho(t)
RR, where RR is the relative risk or hazard ratio depending on one or both covariates.
If there is only one ordinal covariate X with ¢ categories, the relative risk can be modelled as

InRR) = ¥ B,I[X = 1.
i=1



2432 P. ). M, VERWEI} AND H. C. VAN HOUWELINGEN

-1662

=1G6G4 K'
~
~

-1665 ~

cvils]
’
/

1658 R ———

. N
G 40 eg 120 €0 2CC

Figure 1. Diameter of residual tumour in ovarian cancer survival. Crossvalidated partial log-likelihood CVL({Z) plotted
against 4 for models with penalty functions p, (dashed) and p; {solid)
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Figure 2. Karnofsky performance status in ovanan cancer survival. Crossvalidated partial log-likelihood CVL(/) plotted
against 4 for models with penalty functions p, (dashed) and p, (solid)

For the residual diameter and karnofsky index, we have ¢ = 5 and the estimated regression
coeflicients are given in Tables 1 and IL respectively. The stability of the coeflicients and the
predictive value of the model can be improved by estimating the regression coefficients by using
the penalized partial log-likelihood (1). As penalty functions we consider pi and pz of Section 2.
The value of the weight parameter is based on the maximization of the approximate CVL (3).

First we consider a model with the residual diameter as the only covariate, For A = 0, the
correction (4), is about 4, which is the dimension of the unrestricted model. As A - oo, ¢(2) — O for
p1and ¢{4) — 1 for p2, these values coinciding with the dimension of the null spaces of the penalty
functions. The crossvalidated log-likelihood CVL{4) is plotted in Figure 1. It is clear that penalty
function p2 leads to a higher predictive value than py. For p;, the optimal weight parameter is
15-4, while for p2, the optimal A scems to be oo. In the latter case, this would lead to a linear model
for residual diameter. However, for 4 about 176, the CVL is slightly higher than the CVL of the
linear model (— 1662-68 versus —1662:72). The penalized estimates of the regression coefficients
arc given in Table L

For the Kamofsky performance status, the crossvalidated log-likelihood is plotted in Figure 2.
Again, the use of penalty function pz leads to the highest predictive value. Furthermore, for A near
75, the CVL is a bit higher than the CVL of the linear model (— 1666:28 versus — 1666:62). The
estimated regression coefficients are given in Table I1.
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Figure 3. Residual diameter and Kammofsky index, Crossvalidated partial log-likelihood CVLI2) plotted against 1 for an
additive model (salid) and for the medel including interaction {(dashed), both with penalty funciion ps

Figure 4. Residus] diameter and Kamofsky index. The In {relative risk) surfaces arising [rom an additive mocdel:
(&) unrestrcted (k) penalized

With two ordinal covariates X; and X3, with ¢, and c; categories and regression coefficients
B, =1...e;) and p(k = 1...c3), respectively, for which the effects are additive, we model the
relative risk as follows:

L £
In(RRY= } B I[X; =1+ 2 ni(X:=4k].
i=1 k=1
Since the right hand side is of the form f,(X,) + (X)) . with f; and f; possibly non-linear
functions, this model is a generalized additive model in the spirit of Hastie and Tibshirani.® With
Xy representing residual diameter and X, the Karnofsky index, we have ¢, = ¢; = 5 and the
In{RR) arizing from the unrestricted estimates, that varies from 0 to 1905, is plotted in Figure 4{a).
Again, we use penalized likelihood estimation to improve the predictive value, the penaity
function being py of Section 2, where d, = fi; + y.. The CVL is plotted in Figure 3. The
optimal value of £ is about 64, The corresponding In{RR) varies from 0 to 1-485 and is plotted in
Figure 4{b}. This surface is smoother than the one in Figure 4(a) and suggests a model in which
both covariates are linear. The predictive value of the linear model, however, is a bit lower (CVL
—1657(M4 versus —1636°51).
It is also possible to consider a saturated model by adding an interaction term between residual
diameter and Karnofsky index to the model:

RR) =3 ¥ duf[Xs =) X2 =K.

=L k=1
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In this case, every combination of the two covariates is treated as a separate category, The
unrestricted estimates of the regression coefficients are highly unstable, because 11 of the 25
categories contain less than 10 observations, including two empty categories. Penalized estima-
tion of the regression coefficients is now the only way to obtain realistic values. The penalty
function is again p; of Section 2.

The predictive value, as measured by CV1{4), is plotted in Figure 3. It can be seen that for every
value of 7, CVL{J) of the interaction model is lower than CVL(4) of the additive model. Hence,
adding the interaction term does not improve the predictive value, neither for the unrestricted
meodel, nor for any penalized model. The maximal CVL of the interaction model (— 165695) is
obtained when 4 is about 72. The corresponding In{RR) values, ranging from 0 to 1:454, are
approximately the same as those arising from the additive model.

Another approach to the two-covariate situation is the usc of separate penalty functions p(f)
and g(y), with possibly different weight parameters A and p lcading to the penalized
log-likelihood:

4B, v) = (B, ) — $ip(B) — duqly).

In view of the previous results, function p, from Scction 2 is appropriate for both p and g. The
results of this approach (not shown) do not differ much from the reported results, but the
computations are more lime consuming, because the CVL is in this case a function of two
arguments.

5. CENTRE EFFECTS IN KIDNEY GRAFT SURVIVAL

An example of a categorical covaniate without ordered categories is the centre effect in a multi-
centre study. Here we consider data from 4754 {first) kidney transplants, taken from the database
of the Eurotransplant foundation and analysed by Thorogood et al.'® The transplantations
were performed in 52 centres in the years 1984-1987. We left out five observations from
three centres with only one or two transplantations, For the remaining 49 centres, the number
of transplantations varied from 7 to 391. The centre effects were coded as a categorical covariate
with 49 categories. We did not choose a baseline centre, but constrained the estimated co-
efficients to sum to zero. Apart from the centre effects, nine other covariates were included in
the model: donor and recipient sex; donor age; recipient age; cold ischaemic period; the number
of HLA-DR mismatches; the number of HLA-B mismatches; highest panel reactive antibody;
recipient blood group and recipient diabetic. The unrestricted estimates of the centre effects
are plotted against the rank of their standard error in Figure 5. For small centres, the standard
errors are large and the estimates are rather unstable, as can be seen in the right hand part of
the figure.

In the penalized estimation procedure, an appropriate penalty function for the centre effects is
po from Section 2. This function can be written as §7(f — P)f, where 7 is the (49 x 49) identity
matrix and P is a matrix with 1/49 in every entry. The regression coefficients of the other nine
covariates remain unpenalized. For the determination of the weight parameter, we use AIC(4}(6)
instead of CYL(4), because in this large dataset the former is computationally more attractive,
AIC(A) is maximized by A = 3-0 and the corresponding penalized estimates of the centre effects are
plotted in Figure 5. For the small centres in the right of the picture, a shrinkage phenomenon can
be observed; the positive estimates have decreased and the negaltive estimates have increased. The
parameter estimates of the nine other covariates (not shown), which were not penalized, changed
only very slightly, as expected.
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Figure 5. Centre effects in kidney transplantation. Unrestricted (circles) and penalized estiinates {squares) plotted against
the rank of the standard error of the unrestricted effects

A different way to obtain an estimate of 4 is from the empirical Bayes perspective. The
penalized partial log-likelihood

1
B() = i) — S4BT — PVi
can be seen as the unnormalized posteriar log-likelihood of f# with respect to the Normal prior
pen(otu-rr)

To convert it into a true posterior, a A-dependent normalizing term has to be added, Observe that
the covariance matrix is singular because of the constraint £f; = 0. Hence, a generalized inverse is
used instead of an ordinary inverse. Our & is the posterior mode of g. If the conditional
distribution of b given § is supposed 10 be N(8, Z;) with X; = H(b}™, the posterior mode eguals
the posterior mean and is given by

%u - m~[mw‘ +§u — P ] b= [H(b) + il ~ P))" Hb}b

which is the same expression as the approximation (2) of b% given in Section 2. Now /i can
be cstimated from the marginal distribution of the data. Under thc Normal approximation, we
have

Eb'b = tr[H{b) ] + %:ru -P)

leading to the moment estimation

2 trif - P)”
bh—tr[H(b)]

in the spirit of DerSimonian and Laird.'* This gives a valuc of 39 for the optimal 2. A more
sophisticated estimate can be obtained from the ML estimate of 4 in the marginal model,
which can be obtained by EM methodology,'? but that is beyond the scope of this paper.
Finally, we remark that the posterior covariance matrix of £ is approximately equal to HXb)™,
which motivates the pseudo standard errors of Section 2 as Bayesian posterior standard
deviations.
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6. DISCUSSION

Penalized partial likelihood is a useful method for obtaining more stable estimates of regression
coefficients for Cox's proportional hazards model. For ordinal covariates the penalized estimates
lead to smoother surfaces of log (relative risk), while for covariates without ordered categories,
like centre effects, the penalized estimates are shrunk towards the mean. Although we restricted
ourselves to categorical covariates, the penalized partial likelihood method can also be applied to
continuous covariates which are highly collinear. If the predictive value of the model is used as
acriterion to determine the weight parameter, the penalized estimates have the extra advantage of
being the best predictors.

Penalized (partial) likelihood estimation is related to estimation in frailty models'*:'* in which
the centre effects are considered as random. This is also the case in empirical Bayes estimation,
which allows the weight parameter to be estimated from the marginal distribution of the data.
Using a Normal approximation to I(ff) , a moment type estimator for A can be obtained that is
very simple to compute. However, it can be conjectured that this estimate is not robust against
deviation from the prior model, while the crossvalidated approach does net need such an
assumption and can be cxpected to be robust against unrealistic penalties.

Penalized likelihood methods are not incorporated in standard software for survival analysis,
but a program written in GAUSS is available from the first author.
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