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Abstract 
 
According to the current Solvency II standard approach, non-life risk capital charges take into 
account geographical diversification by adjusting volume measures using a Herfindahl-
Hirschman concentration index for premiums and reserves at a line of business level. The 
lower the Herfindahl index the less concentrated is a portfolio and the greater is its 
diversification extent. The diversification factor of a portfolio of risks with respect to some 
risk measure is defined to be the quotient of the portfolio risk measure to the sum of the 
stand-alone risk measures over all risks in the portfolio. Maximum diversification is obtained 
by minimizing the diversification factor. According to the QIS4 proposal the minimum 
diversification factor is equal to 0.75. This value is not optimal. If the risk measure is 
proportional to the standard deviation of the risk, then the absolute minimum value of 0.707 
allows for an additional diversification reduction of maximum magnitude 4.3%. The latter is 
true in the case of the value-at-risk and the conditional value-at-risk measures for the class of 
multivariate elliptical risk distributions. However, the current Solvency II standard approach 
to non-life risk relies on log-normal distributions. In this framework, the minimum 
diversification factor, which depends on the volatility of the portfolio, is in the average equal 
to 0.667, which results in an absolute diversification reduction of magnitude 8.3% compared 
to QIS4. Extending the analysis to the class of multivariate log-elliptical risk distributions, 
further results on the minimum diversification factor can be obtained. For the class of 
multivariate log-Laplace distributions, which are able to model fat tails similarly to the class 
of generalized Pareto distributions in Extreme Value Theory, this minimum value is in the 
average 0.68 resulting in an absolute reduction of lower magnitude 7%. 
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1.  Introduction 
 
Though an old idea, the measurement and allocation of diversification in portfolios of asset 
and/or liability risks is a difficult problem, which has found so far many answers. The 
diversification effect of a portfolio of risks is the difference between the sum of the risk 
measures of stand-alone risks in the portfolio and the risk measure of all risks in the portfolio 
taken together, which is typically non-negative, at least for positive dependent risks. The risk 
allocation problem consists to apportion the diversification effect to the risks of a portfolio in 
a fair manner, to obtain new risk measures of the risks of a portfolio. The first mathematical 
approach to diversification is due to Markowitz(1952/59/87/94), whose classical portfolio 
selection model applies to the efficient diversification of investments. The present paper 
considers only the diversification effect of a portfolio of non-life risks. According to the 
current Solvency II standard approach, which is specified in QIS4(2008), non-life risk capital 
charges take into account geographical diversification by adjusting volume measures using a 
Herfindahl-Hirschman concentration index for premiums and reserves at a line of business 
level. The lower the Herfindahl index the less concentrated is a portfolio and the greater is its 
diversification extent. While from a theoretical point of view the link between diversification 
and concentration has been somewhat studied in Foldvary(2006), the present contribution 
focuses on the practical relevance of diversification in the Solvency II project. 
     The diversification factor of a portfolio of risks with respect to some risk measure is 
defined to be the quotient of the portfolio risk measure to the sum of the stand-alone risk 
measures over all risks in the portfolio. Maximum diversification is obtained by minimizing 
the diversification factor. Observe that the greater the diversification reduction is, the less risk 
capital is needed and the more new business can be written. Therefore optimal diversification 
has an important practical relevance. According to the QIS4 proposal the minimum 
diversification factor is equal to 0.75. This value is not optimal. If the risk measure is 
proportional to the standard deviation of the risk, then the absolute minimum value of 0.707 
allows for an additional diversification reduction of maximum magnitude 4.3%. The latter is 
true in the case of the value-at-risk and the conditional value-at-risk measures for the class of 
multivariate elliptical risk distributions. However, the current Solvency II standard approach 
to non-life risk relies on log-normal distributions. Under this assumption, the minimum 
diversification factor, which depends on the volatility of the portfolio, is in the average equal 
to 0.667, which results in an absolute diversification reduction of magnitude 8.3% compared 
to QIS4. Extending the analysis to the class of multivariate log-elliptical risk distributions, 
further results on the minimum diversification factor can be obtained. For the class of 
multivariate log-Laplace distributions, which are able to model fat tails similarly to the class 
of generalized Pareto distributions in Extreme Value Theory, this minimum value is in the 
average 0.68 resulting in an absolute reduction of lower magnitude 7%. 
     A more detailed account of the content follows. Section 2 reviews the Solvency II 
standard approach to non-life risks and presents a simple explanation for the proposed 
diversification factor, which is missing in QIS4(2008). It is based on the intra-portfolio 
correlation coefficient. Section 3 derives the minimum value of the diversification factor for 
risk measures proportional to the standard deviation of the risks. Typically, the obtained 
result applies to the class of multivariate elliptical distributions. A rigorous approach to the 
current standard Solvency II approach is found in Section 4, where minimum diversification 
factors are derived for the class of multivariate log-normal distributions. Section 5 extends 
the results of Section 4 to multivariate log-elliptical distributions, and exemplifies the results 
for the class of multivariate log-Laplace distributions. Finally, Section 6 illustrates the 
numerical impact of our findings on the current Solvency II standard approach. 
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2.  Solvency II non-life risk diversification according to QIS4 
 
Recall the simple actuarial rationale for the non-life economic capital formula proposed for 
Solvency II in QIS3(2007), which has been presented in Hürlimann(2008a). 

Suppose an insurance risk portfolio over a fixed time period, say over a one-year time 
period  [ ]1,0   between the times  0=t   and  1=t , is described by the following quantities: 
 
P  : the (net) risk premium of the portfolio for the time period 
S  : the random aggregate claims of the portfolio over the time period  
 
While the risk premium is supposed to be known at the beginning of the period, the random 
aggregate claims are not. The random loss of the portfolio at the beginning of the time period 
is described by the difference between aggregate claims and risk premium and defined by 
 

PSL −= .      (2.1) 
 
In non-life insurance the aggregate claims over the time period are taken exclusive of the 
“run-off” and include the claims  Y   paid out during the time period and the change in claims 
reserves  01 RRR −=∆ , where  tR   denotes the claims reserves at time  t , which consists of 

the total reserves for outstanding claims and for IBNR claims. Therefore one has the equality 
RYS ∆+= . At time  0=t   the claims reserve  0R   is known while  1R   is unknown. The 

volume  0RPV +=   of the portfolio, which is defined as the sum of the risk premium and the 

claims reserves at the beginning of the period, is known at time  0=t . Consider the ratio of 
the random loss to the volume, which can be written as 
 

( )
0

1

0

01 ,1
RP

RY
XX

RP

RPRY

V

L

+
+=−=

+
+−+=    (2.2) 

 
where  X   represents a combined ratio of the portfolio (ratio of incurred claims inclusive 
“run-off” to the premium and reserve volume). The actuarial equivalence principle or fair 
value principle  [ ] 0=LE   implies that  [ ] 1=XE . The Solvency II model assumes that  X   is 

log-normally distributed, say with parameters  Xµ   and  Xσ . With  [ ]XVar=σ   one has 

 
).1ln(, 222

2
1 σσσµ +=−= XXX     (2.3) 

 
The economic capital of the insurance risk portfolio to the confidence level  α   is supposed 
to depend only on the random loss and is denoted by  [ ]LECα . In the standard Solvency II 

approach, the economic capital is defined to be the value-at-risk (VaR) of the random loss 
taken at the confidence level  %5.99=α . Using (2.2), the log-normal assumption on  X   
and (2.3) one derives the non-life economic capital formula 
 

[ ] [ ] ( ) VLVaRLEC ⋅== σρααα     (2.4) 
with 
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where  ( )α1−Φ   denotes the  α -quantile of the standard normal distribution  )(xΦ . 
Alternatively, and as first suggested in the CEIOPS consultation paper CP20(2006), 5.309, 
p.137, one can instead define the economic capital to be the tail value-at-risk (TailVaR) or 
conditional value-at-risk (CVaR) of the random loss taken at the confidence level  %99=α . 
With this choice of risk measure, one obtains the following economic capital formula 
 

[ ] [ ] ( ) VLCVaRLEC ⋅== σρααα     (2.6) 

with 

( ) ( ) ( )( )
α

σαασρα −
+−ΦΦ−

=
−

1

1ln 21

.   (2.7) 

 
As a novel feature QIS4(2008) takes into account geographical diversification by adjusting 
volume measures using a Herfindahl-Hirschman index for premiums and reserves at a line of 
business level. However, one misses there a theoretical explanation for the proposed 

diversification factor. For simplicity, let ∑
=

=
n

j
jVV

1

 be the geographical decomposition of the 

volume measure of a line of business into  n   geographical regions. Let us assume that 
diversification can be measured by the intra-portfolio correlation coefficient 
 

[ ] ,,1,1
1 1 V

V
wwwQ i

iji

n

i

n

j
ij =−∈=∑∑

= =

ρ    (2.8) 

 
where  ijρ   represent the correlation coefficients and  iw   the portfolio weights of the non-life 

risks in the geographical regions. Adjusting for diversification the QIS4 non-life risk capital 
can be represented as 

( ) [ ]LECQ α⋅+1
2

1
,     (2.9) 

 
where  [ ]LECα   is the original non-life risk capital charge, which does not take 

diversification into account. If  1=Q   (perfect positive dependence between the regions) no 
reduction for diversification occurs while if  1−=Q    (perfect negative dependence) the non-
life risk capital charge vanishes. If one assumes further a linear dependence structure between 
perfect dependence and independence such that the correlation coefficients are given by 
 





=+= ijijij δδρ ,
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2

1
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≠
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,    (2.10) 

then one obtains 

( ) ∑
=

=+=
n

i
iwHHQ

1

2,1
2

1
,     (2.11) 

 
where  H   denotes the Herfindahl-Hirschman index (see Hürlimann(2008b) for motivating 
this choice). In this simple model the non-life risk capital charge reads (QIS4(2008), 
TS.XIII.B33, p.222) 
 

( ) [ ]LECH α⋅⋅+ 25.075.0 .     (2.12) 
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3.  Diversification in a multivariate elliptical model 
 
In general, an adjustment for diversification will be based on the theory of risk measures. Let 
X   be the overall non-life risk per volume unit and let njX j ,...,1, = , be the non-life risks 

per volume unit in the geographical regions. Then one has the equality  ∑
=

⋅=⋅
n

j
jj VXVX

1

. 

Using a positively homogeneous risk measure )(⋅ρ , the non-life risk capital, which has been 
adjusted for diversification, has the representation 
 

( ) ∑
=

⋅⋅=⋅=
n

j
jj VXDFVXVXEC

1

)()(, ρρρ ,   (3.1) 

where 
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     (3.2) 

 
is the diversification factor of the non-life portfolio with respect to the risk measure  )(⋅ρ   

and  ∑
=

⋅
n

j
jj VX

1

)(ρ   is the non-life risk capital before diversification (sum of the stand-alone 

non-life risk capitals over the geographical regions). Consider first a class of multivariate 
distributions of the risk vector  ),...,( 1 nXX   for which the risk measure  )(⋅ρ   is proportional 

to the standard deviation of the risk. For example, this is the case for the value-at-risk and the 
conditional value-at-risk measures for the class of multivariate elliptical distributions (e.g. 
Landsman and Valdez(2003), Dhaene et al.(2008)), which contains the ubiquitous 
multivariate normal distributions. In this situation one has 
 

∑
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⋅

⋅= n

j
jj V

V
DF

1

σ
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     (3.3) 

 
with  njj ,...,1,, =σσ   the standard deviations of  njXX j ,...,1,, = . Clearly one has 
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with  ijρ   the correlation coefficients of the non-life risks in the geographical regions. For 

illustration and comparison purposes assume (2.10). Then one obtains 
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a volatility weighted Herfindahl-Hirschman index. A maximum diversification effect is 
obtained for a minimum diversification factor or equivalently a minimum value of  )(σH   

subject to the constraint  1
1

=∑
=

n

j
jw . Applying the Lagrange multiplier method one sees that a 

solution of this optimization problem solves the equations 
 

,1,,...,1,
2

)(
1

===
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∑ =

n

j
j

j
jj

kk
k wnkH

w

w λσ
σ

σσ   (3.7) 

 
for some constant  λ . The obvious solution with  0=λ   is 
 

nkw
n

j
jkk ,...,1,)( 1

1

11 =⋅= −

=

−− ∑σσ .     (3.8) 

 
In this situation the minimum diversification factor for  n   regions equals 
 

)1())(( 1
2
11

min nn
n HDFDF +=== σ .    (3.9) 

 
Asymptotically one obtains the limiting minimum value 
 

2
2

minmin lim ==
∞→

n

n
DFDF .     (3.10) 

 
Compared to the QIS4 limiting minimum value of 0.75 in (2.12), the multivariate elliptical 
model allows for an additional diversification reduction of maximum magnitude 4.29%.  
 
 
4.  Diversification in a multivariate log-normal model 
 
Unfortunately, the simple results of Section 3 do not apply directly to the current Solvency II 
approach to non-life risk because it relies on log-normal distributions of the risks as seen in 

Section 2. The portfolio non-life risk per unit of volume, given by  ∑
=

=
n

j
jj XwX

1

, is a sum of 

correlated log-normal random variables, whose distribution does not have an analytical 
closed-form expression, but can be approximated by means of several methods. In the context 
of Solvency II we assume that the random vector  ),...,( 1 nXX   is of the form  ),...,( 1 nZZ ee , 

where  ),...,( 1 nZZ   has a multivariate normal distribution with mean vector  

[ ] [ ] ),...,(),...,( 2
2
12

12
1

1 nnZEZE ξξ −−= , variance vector  [ ] [ ] ),...,(),...,( 22
11 nnZVarZVar ξξ= , and 

covariance matrix  [ ] )(),( jiijji ZZCov ξξθ= . This assumption is consistent with the 

requirement  [ ] [ ] )1,...,1(),...,( 1 =nXEXE , that is the expected targets of the combined ratios 

are one as explained in Section 2. Furthermore, with the variance notation 
[ ] niXVar ii ,...,1,2 ==σ , one has the relationship  { }jiijjiij σσρξξθ += 1ln . For illustration we 

assume that  ijρ   is again specified by (2.10). We discuss two approximation methods. 
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4.1. Simple log-normal approximation 
 

Firstly and most simply the portfolio combined ratio  ∑
=

=
n

j
jj XwX

1

  is approximated by a 

single log-normal random variable with mean and variance 
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j
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where  )(σH   is the volatility weighted Herfindahl-Hirschman index defined in (3.6). It is 
important to mention that this is only a rough log-normal approximation, which can be 
replaced by a more sophisticated single log-normal approximation if necessary (e.g. Fenton-
Wilkinson(1960), Schwartz and Yeh(1982), Beaulieu and Xie(2004), Mehta et al.(2007)). A 
theoretical justification for the use of such approximations is found in Dufresne(2002). Now, 
for a minimum capital charge (2.5) or (2.7) under this approximation, one has to minimize 

(4.2) subject to the constraint  1
1

=∑
=

n

j
jw . Applying the Lagrange multiplier method one sees 

that a solution of this optimization problem solves the equations 
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2
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j
j
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j
jjk wnkw
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for some constant  λ . This is only possible provided  ,,...,1,* nkk == σσ  that is the 

volatilities are constant in each geographical region. In this situation  HH =)(σ   coincides 
with the Herfindahl index (2.11) and a calculation using the relationship (4.2) yields 
 

.,...,1,
)1(2

1
nk

H
k =

+
= σσ      (4.4) 

 
 The corresponding diversification factor (3.2) reads 
 

))1(/(
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2
1 H

HDFDF
+

==
σρ

σρ

α

α ,   (4.5) 

 
where  ( )⋅αρ   is either (2.5) or (2.7). Its absolute minimum is attained when  0→H   and 
given by 

)2(

)(
)(lim

0
min σρ

σρ

α

α

⋅
==

→
HDFDF

H
.    (4.6) 

 
In the current standard Solvency II approach one sets  995.0=α   for the VaR measure (2.5) 
and  98675.0=α   for the CVaR measure (2.7) to get approximately  ( ) σσρα ⋅≈ 3   (see also 
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Table 2.1 in Hürlimann(2008a)). Under this approximation (4.5) reads  )1(2
1 HDF +≈  as 

in Section 3. An exact evaluation of (4.6) yields the following results. 
 
Table 4.1:  minimum diversification factor for the simple log-normal approximation 
 

VaR DF_min CVaR DF_min
confidence level 0.995 0.995 0.98675 0.98675

stdev
12.0% 2.925 0.673 2.923 0.672
12.5% 2.940 0.672 2.939 0.671
13.0% 2.955 0.670 2.954 0.669
13.5% 2.970 0.669 2.969 0.668
14.0% 2.985 0.668 2.985 0.667
14.5% 3.000 0.667 3.000 0.666
15.0% 3.015 0.666 3.015 0.665
15.5% 3.030 0.665 3.031 0.663
16.0% 3.045 0.663 3.046 0.662
16.5% 3.060 0.662 3.062 0.661
17.0% 3.075 0.661 3.077 0.660  

 
In this table the VaR and the CVaR columns represent the quotients  ( ) σσρα / . Compared to 
the QIS4 limiting minimum value of 0.75 in (2.12), the simple approximation of the 
multivariate log-normal model allows for an additional diversification reduction of average 
magnitude 8.3%. In case the volatilities in the geographical regions are not available or 
difficult to estimate, the assumption of constant volatilities is appropriate and justified by the 
above minimum property. Alternatively, by given volatility structure  ,,...,1, nkk =σ  one can 

minimize  )(σH   in (4.2) subject to the constraint  1
1

=∑
=

n

j
jw   to get again the optimal 

weights (3.8). In this situation the diversification factor reads 
 

( )
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α

α   (4.7) 

 
In the special case of equal volatilities one recovers (4.6) when  ∞→n . 
 
 
4.2.  Comonotonic maximum variance approximation 
 
Our second approximation of the sum of correlated log-normal random variables relies on the 
comonotonic approximation method considered originally in Kaas et al.(2000) and Dhaene et 
al.(2002). The developments by Vanduffel et al.(2005/2008) suits exactly our needs. Recall 

that  ∑
=

=
n

j

Z
j

jewX
1

, where  ),...,( 1 nZZ   satisfies the assumptions at the beginning of this 

Section. Consider the conditioning random variable Λ , which is defined by 
 

∑
=

=Λ
n

i
ii Z

1

γ       (4.8) 
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for some constants  iγ . Following Kaas et al.(2000) one defines a random variable 
 

[ ] ( ) [ ]{ },exp
1

2
2
1∑

=

Λ−Λ
Λ

+−=Λ=
n

j

E
jjjjj rrwXEX σξξl    (4.9) 

 

where  [ ] [ ] njZZCovZCovr
n

k
kjkjjj ,...,1,,,

1

==Λ= ∑
=

Λ γσξ . One finds the equality in 

distribution 

( ){ },)(exp
1

12
2
1∑

=

−Φ+−=
n

j
jjjjjd UrrwX ξξl     (4.10) 

 
with  )(xΦ   the standard normal distribution and  U   a uniform random variable on  ( )1,0 . If 

all the correlation coefficients  jr   defined in (4.9) are non-negative, then  lX   is a 

comonotonic sum. In this situation it is well-known that the VaR and CVaR risk measures are 
determined by (e.g. Vanduffel et al.(2005), Section 2.1) 
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   (4.11) 

 
From the definitions in (4.9) one sees that a sufficient condition for  0≥jr   is that all  0≥jγ   

and all  [ ] 0, ≥kj ZZCov . Using Jensen’s inequality it can be proved that  lX   is a convex 

lower bound of  X , a fact written  XX cx≤l , which means that for any convex function  

)(xv   one has  [ ] [ ])()( XvEXvE ≤l . In Dhaene et al.(2002) a comonotonic convex upper 

bound, denoted by  uX   and such that  u
cx XX ≤ , has also been proposed. In the lognormal 

context this random variable can be defined by imposing  1=jr   in (4.9). For this upper 

bound one has 

{ },)(exp
1

12
2
1∑

=

−Φ+−=
n

j
jjjd

u UwX ξξ     (4.12) 

 
It is easy to see that the VaR and CVaR measures associated to (4.12) correspond to the sum 
of the stand-alone measures in each geographical region, hence to the valuation before 
diversification. Since  u

cxcx XXX ≤≤l   the following relationships hold: 
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u wXEXEXE l      (4.13) 
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For more details on these results we refer to Kaas et al.(2000) and Dhaene et al.(2002). In 
view of the inequality (4.14), it is clear that the best comonotonic lower bound 
approximations of  X   are the ones for which  [ ]lXVar   is as close to  [ ]XVar   as possible. 

Vanduffel et al.(2005) maximize the first order approximation of  [ ]lXVar   obtained by 

letting  jiji
rr rre jiji ξξξξ ≈−1   to get the following coefficients in (4.8) 

 
.,...,1, njw jj ==γ      (4.15) 

 
This simple choice is retained here and defines the so-called comonotonic maximum variance 
approximation of  X . For approximation purposes we will assume that  ijij ρθ ≈ , where the 

latter is again specified by (2.10). Then the coefficients  jr   in (4.11) are obtained from 
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It is useful to derive lower and upper bounds to (4.11). For this set 

j
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j
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ξξξξ
≤≤≤≤

==
1
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1

min max,min  , and let  min0 ξξ =  (lower bound) or  max0 ξξ =  (upper bound) in 

the following. Lower and upper bounds are then obtained from the formula 
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In the special case of equal weights  njw 1=   the corresponding diversification factors read 

 

)(

))1((

0

0
1

2
1

ξρ
ξρ

α

α ⋅+
= nnDF ,     (4.18) 

 
where  ( )⋅αρ   is either (2.5) or (2.7). The absolute minimum of (4.18) is attained when  

∞→n   and is given by 

)(

)(
lim

0

02
2

min ξρ
ξρ

α

α ⋅==
∞→

n

n
DFDF .    (4.19) 

 

With  σσξ ⋅== 2*
0   one recovers (4.6) and the numerical results of Table 4.1. We 

conclude that in the limiting case of minimum diversification the simple log-normal 
approximation and the comonotonic maximum variance approximation lead up to parameter 
transformation to the same results. 
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5.  Diversification in a multivariate log-elliptical model 
 
A natural generalization of the multivariate log-normal distribution is the class of multivariate 
log-elliptical distributions, which has been discussed recently in Dhaene et al.(2008) and 
Valdez et al.(2009). 
     In generalization to Section 4, we assume that the random vector  ),...,( 1 nXX   is of the 

form  ),...,( 1 nZZ ee , where  ),...,( 1 nZZ   has a multivariate elliptical distribution with density 

generator  )(xg , mean vector  [ ] [ ] ))(ln),...,(ln(),...,( 22
11 nn ggZEZE ξξ −−−−= , variance 

vector  [ ] [ ] ))0('2,...,)0('2(),...,( 22
11 nn ggZVarZVar ξξ −−= , and covariance matrix  

[ ] ))0('2(),( jiijji gZZCov ξξθ−= . This assumption is again consistent with the requirement  

[ ] [ ] [ ] [ ] )1,...,1())(),...,((),...,( 22
11

1 =−−= n
ZEZE

n gegeXEXE n ξξ   of Section 2. Furthermore, with 

the variance notation [ ] niXVar ii ,...,1,2 ==σ , one has the relationship 
 

( )
)()(

)2(
1 22

22

ji

jiijji
jiij gg

g

ξξ
ξξθξξ

σσρ
−−

++−
=+ .    (5.1) 

 
In the log-normal special case one has  )exp()( 2

1 xxg −=   and (5.1) is equivalent with the 

relationship  { }jiijjiij σσρξξθ += 1ln   of Section 4. In our illustrative examples we assume 

that  2
1)0(' −=g ,  and that  ijρ   is again specified by (2.10). 

 
5.1. Simple log-elliptical approximation 
 

In parallel to Section 4.1 the portfolio combined ratio  ∑
=

=
n

j
jj XwX

1

  is approximated by a 

single log-elliptical random variable with mean  [ ] 1=XE   and variance 
 

[ ] ( ) ,)(1
2

1
2

1

2











⋅+== ∑

=

n

j
jjwHXVar σσσ    (5.1) 

 
where  )(σH   is defined in (3.6). As in Section 4.1 a minimum capital charge under this 

approximation is only possible provided  nkk ,...,1,* == σσ . In this situation  HH =)(σ   

coincides with (2.11). The corresponding diversification factor reads 
 

))1(/(

)(
)(

2
1 H

HDFDF
+

==
σρ

σρ

α

α ,   (5.2) 

 
where  ( )⋅αρ   is either  ( ) [ ] 1−= XVaRαα σρ   or  ( ) [ ] 1−= XCVaRαα σρ . Its absolute 

minimum is attained when  0→H   and given by 
 

)2(

)(
)(lim

0
min σρ

σρ

α

α

⋅
==

→
HDFDF

H
.    (5.3) 
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To illustrate consider a multivariate log-Laplace model with density generator 
1

2
1 )1()( −+= xxg .  Set  9877.0=α   for the VaR measure and  96471.0=α   for the CVaR 

measure to get approximately  ( ) σσρα ⋅≈ 3  (choice consistent with QIS4 calibration). An 
exact evaluation of (5.3) is found in the Table 5.1 and is based on the formulas 
 

[ ] ( ) [ ] [ ] ( ) [ ]
,2)21(24512

,)1(21,1

242

2
2

2
2 2

2

<+−++=

−⋅+=⋅−= −

σσσξ

αξξ ξ
ααα XCVaRXCVaRXVaR

  (5.4) 

 
where the latter expression follows from the general log-elliptical relationship 
 

[ ]XVarg
g

g
ln)0('2,

)(

)4(
1 2

22

2
2 =⋅−

−
−=+ ξ

ξ
ξσ    (5.5) 

 
by noting that  1

2
1 )1()( −+= xxg   and solving (5.5) for  ξ . 

 
Table 5.1:  minimum diversification factor for the simple log-Laplace approximation 
 
 

VaR DF_min CVaR DF_min
confidence level 0.9877 0.9877 0.96471 0.96471

stdev
12.0% 2.943 0.682 2.934 0.678
12.5% 2.955 0.681 2.947 0.677
13.0% 2.966 0.681 2.960 0.676
13.5% 2.978 0.681 2.974 0.676
14.0% 2.989 0.681 2.987 0.675
14.5% 3.000 0.680 3.000 0.675
15.0% 3.011 0.680 3.012 0.674
15.5% 3.021 0.680 3.025 0.674
16.0% 3.032 0.680 3.037 0.674
16.5% 3.042 0.680 3.050 0.674
17.0% 3.052 0.680 3.062 0.673  

 
 
Compared to the log-normal results of Table 4.1, the simple approximation of the 
multivariate log-Laplace model leads to similar capital charges for significantly lower 
confidence levels, which are due to the fat tails of this model. The diversification reduction of 
approximate magnitude 7% compared to QIS4 is a bit less than for the log-normal model. A 
formula similar to (4.7) can also be derived. 
 
 
5.2. A Taylor based mean-preserving approximation 
 
Our second approximation of the sum of correlated log-elliptical random variables is based 

on Valdez et al.(2008). Recall that  ∑
=

=
n

j

Z
j

jewX
1

, where  ),...,( 1 nZZ   satisfies the 

assumptions at the beginning of this Section. Consider the conditioning random variable Λ , 
which is defined by 
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∑
=

=Λ
n

i
ii Z

1

γ       (5.6) 

 
for some constants  iγ . Following Valdez et al.(2008), Section 6, one defines a random 
variable 

( )( ) [ ]{ },exp
1

12∑
=

Λ−Λ−

Λ
⋅−⋅=

n

j

E
jjjjj

MP rrgwX σξξ    (5.7) 

 

where  [ ] [ ] njZZCovZCovr
n

k
kjkjjj ,...,1,,,

1

==Λ= ∑
=

Λ γσξ . One finds the equality in 

distribution 

( )( ) ( ),)(exp
1

112∑
=

−−
⋅−⋅=

n

j
Zjjjjjd

MP UFrrgwX ξξ    (5.8) 

 
with  )(xFZ   the spherical distribution with density generator  )(xg   and  U   a uniform 

random variable on  ( )1,0 . Since  [ ] [ ]XEXE MP =   the approximation (5.7) is a mean-

preserving approximation. Moreover, if x
exg 2

1

)(
−= , then  (5.8) coincides with the 

comonotonic log-normal approximation (4.9) (similar to Valdez et al.(2008), Theorem 6.1). 
The VaR and CVaR risk measures of (5.8) are determined by (e.g. Valdez and 
Dhaene(2004)) 
 

[ ] ( )( ) ( )

[ ] ( )( ) ( ),)(
1

1

,)(exp

112

1

1

112

* αξ
α

αξξ

α

α

−−

=

=

−−

⋅−⋅⋅
−

=

⋅−⋅=

∑

∑

ZZjj

n

j
j

MP

n

j
Zjjjjj

MP

FFrgwXCVaR

FrrgwXVaR

j

  (5.9) 

 
where  *

jZ   is the Escher transform of  Z   with parameter  jjr ξ , whose density is defined by 

 

( )( ) ( ) )(exp)(
12

* xfxrrgxf ZjjjjZ j
⋅⋅−=

−
ξξ .   (5.10) 

 
Valdez et al.(2008) have suggested to choose the coefficients in (5.6) such that  Λ   and  X   
are “as alike as” possible, which results in the so-called Taylor based mean-preserving 
approximation (see also Vanduffel et al.(2008)) with coefficients (5.6) given by 
 

( ) .,...,1,2 njwg jjj =⋅−= ξγ     (5.11) 

 
For approximation purposes we will as in Section 4.2 assume that  ijij ρθ ≈ , where the latter 

is specified by (2.10). Then the coefficients  jr   in (5.9) are obtained from 
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( ) ( ) ( )

( )
( )

( ) ( ) ( )
.

)(1

1

2

2

,,

)(

)(

,))(1(
2

1
))(()(

2
2

2
12

1

2
2

1

22

222

1

222

ξ

ξξ

σ

ξξξξ

ξξ
ξξ

ξ

ξξξξξξξσ

H
S

gwgwgw

r

gwS
S

gw

H

SHgwgwgw

jjj

jk
kkkjjj

j

n

j
jjj

n

j
jjj

ji
jjjiji

n

i
iji

+

−
+

⋅=
−+−

=

−=
−

=

⋅+=−−+−=

Λ

≠

=

=

<=
Λ

∑

∑
∑

∑∑

       (5.12) 

 
It is useful to derive lower and upper bounds to (5.9). For this set 

j
nj

j
nj

ξξξξ
≤≤≤≤

==
1

max
1

min max,min  , and let  min0 ξξ =  (lower bound) or  max0 ξξ =  (upper bound) in 

the following. Lower and upper bounds are then obtained from the formula 
 

( ) .,,...,1,
1

1

2

2

1

2
0

2
0 ∑

=

==−
+

+
⋅=

n

j
j

j
jj wHnjg

H

w
r ξξξ   (5.13) 

 
In the special case of equal weights  njw 1=   the corresponding diversification factors read 

 

( )
( ) )(

))1((

0
2
0

0
2
0

1
2
1

ξξρ
ξξρ

α

α

−
−⋅+

=
g

g
DF nn ,    (5.14) 

 
where  ( )⋅αρ   is either  ( ) [ ] 1−= XVaRαα σρ   or  ( ) [ ] 1−= XCVaRαα σρ . The absolute 

minimum of (5.14) is attained when  ∞→n   and is given by 
 

( )
( ) )(

)(
lim

0
2
0

0
2
02

2

min ξξρ
ξξρ

α

α

−
−⋅==

∞→ g

g
DFDF n

n
.   (5.15) 

 
With  ( ) *

0
2
0 σξξ =−g   one recovers (5.3) and the numerical results of Table 5.1 for the 

multivariate log-Laplace model. We conclude that in the limiting case of minimum 
diversification the simple log-elliptical approximation and the Taylor based mean-preserving 
approximation lead up to parameter transformation to the same results. 
 
 
6.  Application to the current Solvency II standard approach 
 
It appears instructive to consider the impact of our findings on the current Solvency II 
standard approach. We give a numerical example, which compares the current QIS4 
specification with the new approach based on the common assumption of log-normally 
distributed non-life risks. For illustration purposes it suffices to restrict the analysis to the 
simple log-normal approximation of Section 4.1. We suppose that the volatilities in the 
geographical regions of a line of business are unknown, and assume therefore that they are 
constant in each line of business (as motivated in Section 4.1). For the determination of the 
solvency capital requirement (SCR) for the combined premium and reserve risk the following 
data is required: 
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m   :  number of lines of business 

l
V   :  volume measure of the line of business  { }m,...,1∈l  

l
σ   :  volatility measure (standard deviation) of the line of business  l  

l
H   :  Herfindahl index of the line of business  l  

)(
lkC ρ=  :  correlation matrix between the lines of business  { }mk ,...,1, ∈l  

 

Let  ∑
=

=
m

VV
1l

l
  be the overall volume measure and consider the volume weights  VVw /

ll
= ,  

{ }m,...,1∈l , and the vector of weighted volatilities  ( )mmw ww σσσ ,...,11= . Then, the overall 

standard deviation  σ   is obtained from the equation  w
T
w C σσσ ⋅⋅=2 . Without geographical 

diversification the capital requirement for premium and reserve risk at the confidence level  
%5.99=α  is given by (2.4), that is 

 
( ) VSCRPR ⋅= σρα .      (6.1) 

 
To take geographical diversification into account according to QIS4, one considers the 
geographically diversified volume measures 
 

( ) { }mVHV D ,...,1,25.075.0 ∈⋅⋅+= l
lll

.   (6.2) 

 

Let  ∑
=

=
m

DD VV
1l

l
  be the overall diversified volume measure and consider the diversified 

volume weights  DDD VVw /
ll

= , { }m,...,1∈l , and the vector of diversified weighted 

volatilities  ( )m
D
m

DD
w ww σσσ ,...,11= . Then, the overall diversified standard deviation  Dσ   is 

obtained from the equation  D
w

TD
w

D C σσσ ⋅⋅= )()( 2 . With geographical diversification the 

capital requirement for premium and reserve risk at the confidence level  %5.99=α  is now 
 

( ) DDD
PR VSCR ⋅= σρα .     (6.3) 

 
Alternatively, according to the simple log-normal approximation of Section 4.1, one 
considers the geographically diversified volume measures, which are consistent with (4.5) 
and defined by 
 

{ }mV
H

V D ,...,1,
))1(/(

)(~

2
1

∈⋅
+

= l
l

ll

l

l σρ
σρ

α

α .  (6.4) 

 

Let  ∑
=

=
m

DD VV
1

~~

l

l
  be the corresponding overall diversified volume measure and consider the 

diversified volume weights  DDD VVw
~

/
~~
ll

= , { }m,...,1∈l , and the vector of diversified 

weighted volatilities  ( )m
D
m

DD
w ww σσσ ~,...,~~

11= . The corresponding overall diversified standard 

deviation  Dσ~   is obtained from the equation  D
w

TD
w

D C σσσ ~)~()~( 2 ⋅⋅= . With geographical 
diversification the alternative simple log-normal capital requirement for premium and reserve 
risk at the confidence level  %5.99=α  is given by 
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( ) DDD
PR VSCR

~~
~

⋅= σρα .     (6.3) 

 
The next table illustrates at two single examples the numerical impact of the new approach 
under varying levels of geographical diversification as measured by the Herfindahl indices. 
We suppose that there are  5=m   lines of business with the following correlation matrix 
 























==

15.025.05.025.0

5.015.025.025.0

25.05.0125.05.0

5.025.025.015.0

25.025.05.05.01

)(
lkC ρ    (6.4) 

 
Table 6.1:  QIS4 geographical diversification versus simple log-normal approximation 
 
 overall                     lines of business 
volumes 1000 400 250 200 100 50 
standard deviations (std) 14.5% 12% 20% 25% 30% 50% 
SCR (without Diversification) 435.6      
Example 1       
Herfindahl indices  0.25 0.5 0.6 0.75 1 
QIS4 diversified volumes 867.5 325 218.75 180 93.75 50 
QIS4 diversified overall std 14.9%      
QIS4 SCR (with Diversification) 387.8      
alternative diversified volumes 832.7 306.26 210.29 174.21 91.90 50 
alternative diversified overall std 14.9%       
alternative SCR (with Diversification) 375.1           
Example 2       
Herfindahl indices  0.1 0.2 0.3 0.4 0.5 
QIS4 diversified volumes 803.75 310 200 165 85 43.75 
QIS4 diversified overall std 14.7%       
QIS4 SCR (with Diversification) 355.6           
alternative diversified volumes 741.75 284.45 183.45 152.92 79.67 41.26 
alternative diversified overall std 14.8%       
alternative SCR (with Diversification) 329.3           
 
 
In example 1 the diversification effect equals 11% of the SCR without diversification under 
the QIS4 approach. Under the alternative approach this effect increases to 13.9%. In the more 
diversified example 2 the diversification effect increases from 18.4% to 24.4%. Since the line 

of business diversification factors satisfy the approximations  )1(2
1

ll
HDF +≈   and in 

virtue of the inequalities 
 

( ) HH ⋅+≤+ 25.075.012
1 ,     (6.4) 

 
we expect that the diversification effect always increases from the QIS4 approach to the 
alternative approach, which implies a release of required risk capital. 
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