
EMM Estimation of Affine and Nonaffine Term Structure Models

Gregory R. Duffee and Richard H. Stanton∗

Haas School of Business
U.C. Berkeley

545 Student Services Building #1900
Berkeley, CA 94720-1900

tel. (510) 642-1435 (Duffee)
tel. (510) 642-7382 (Stanton)

fax (510) 643-1420
email: duffee@haas.berkeley.edu (Duffee)

email: stanton@haas.berkeley.edu (Stanton)

This Draft: November 18, 2000

ABSTRACT

We use the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) to estimate
a three factor term structure model which is affine under the risk-neutral probability distribution,
but non-affine under the true probability distribution. Unlike most previous research, in which
the model is affine under both distributions, this allows us to retain the analytical convenience for
pricing of this class of model, while allowing greater flexibility in matching the observed time-series
properties of interest rates. We find that the fully affine specification is statistically rejected in
favor of the more flexible alternative. We also shed new light on the implementation of EMM for
estimating models using high dimensional, very persistent series such as term structure models.
We find, in particular, that the auxiliary model most commonly used in conjunction with EMM,
the SNP model of Gallant and Tauchen (1992), has serious problems in this environment, and that
substantially better results are obtained using moment conditions derived from an approximate
maximum likelihood estimator based on the Kalman filter.
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1 Introduction

There is now an enormous literature devoted to the development, estimation and testing of

dynamic term-structure models. By specifying the behavior of interest rates under both the

physical and risk-neutral measures, these models describe the evolution of the entire term

structure of interest rates, allowing for a rich set of testable restrictions.

Estimation of dynamic term structure models typically involves minimizing a distance

between certain population moments implied by the model and sample estimates of those

moments calculated from the data.1 This estimation is complicated by the fact that analytic

moment conditions are often hard (or impossible) to calculate. While it is possible in cer-

tain cases to calculate analytic approximations to true moment conditions [see, for example,

Duffie, Pedersen, and Singleton (2000) and Aı̈t-Sahalia (1999)], in general numerical proce-

dures such as Monte Carlo simulation must be used to calculate approximations to the true

moments.

Not surprisingly, the choice of moment conditions is important. The first contribu-

tion of our paper concerns this choice of moments. The most common current approach

to simulation-based estimation is the Efficient Method of Moments (EMM), which uses mo-

ments that summarize substantial information about the conditional distribution of the data

without imposing any structure from the model of interest. This approach is embodied in

Gallant and Tauchen (1996) and implemented in Dai and Singleton (1998), where moment

conditions from a semi-nonparametric (SNP) description of the data are used. However,

despite the attractive asymptotic behavior of this approach [see, for example, Gallant and

Long (1997)], we find that it may perform poorly in practice when used for modeling interest

rate behavior. Instead, we advocate the use of moments from a linearized Kalman filter for

both simulation-based methods and as analytic approximations to true moments.

The problem with the “agnostic” SNP approach is that it requires the use of a very large

number of moment conditions, since estimation of term structure models requires information

about both the time-series and cross-sectional properties of bond yields. Yields of different

maturity bonds are not perfectly correlated, thus the amount of information available to

the econometrician increases with the breadth of the cross-section. But to summarize the

information in a large cross-section without imposing much structure, a very large number

of moment conditions will be required. If, say, we observe n bond yields at each point

in time, denoted yi,t, then using only unconditional first and second moments requires n2

combinations of E(yi,t+1|yj,t) and another n2(n+ 1)/2 combinations of E(yi,t+1yj,t+1|yk,t).

1This description includes maximum likelihood, where the moments used are the score vector correspond-
ing to the likelihood function.
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In small samples, the use of a large number of moment conditions is problematic. The

small-sample properties of GMM and EMM estimators can differ, sometimes dramatically,

from the asymptotic properties of these estimators.2 Unfortunately, the time series of interest

rates available to econometricians are short, especially when we take into account the well-

documented persistence of interest rates.

Accordingly, we advocate that the information in a panel of interest rates should be

compressed by first imposing the no-arbitrage restrictions implied by the term-structure

model of interest. These restrictions are built into the linearized Kalman filter through

parametric restrictions on the filter’s observation and transition equations.3 We use Monte

Carlo simulations to compare the combination of the Kalman filter/EMM to the combination

of SNP/EMM. For the models examined in this paper, and for reasonable sample sizes, the

results strongly support the choice of the Kalman filter.

Due primarily to their flexibility, combined with the computational ease with which they

can handle multiple factors, much of the academic literature has focused largely on affine

models characterized by Duffie and Kan (1996). In this class, risk-neutral dynamics are

specified such that bond yields are linear (affine) functions of some underlying set of state

variables. Until very recently, the term-structure literature followed Vasicek (1977) and

Cox, Ingersoll, and Ross (1985) by augmenting these risk-neutral dynamics with restrictive

functional forms for market prices of risk. Essentially, the price of risk is assumed to be a

multiple of interest rate volatility, which implies that interest-rate dynamics are affine under

the physical measure as well as the risk-neutral measure. This class of models was fully

characterized by Dai and Singleton (1998). Recent research has highlighted the limitations

of this class of affine models. For example, Ghysels and Ng (1998) and Balduzzi and Eom

(1997) find evidence against particular affine specifications using semiparametric tests. Duf-

fee (1999) finds that these restrictive forms are too inflexible to generate realistic behavior

of expected excess returns to bonds. Moreover, there is evidence of nonlinearity in expected

interest rate movements [see, for example, Pfann et al. (1996), Aı̈t-Sahalia (1996b), Conley,

Hansen, Luttmer, and Scheinkman (1997), and Stanton (1997)] that is inconsistent with the

predictions of the affine models that have been estimated to date.

Partly in response to these empirical problems, several non-affine term structure models

have recently been proposed [see, for example, Longstaff (1989) Aı̈t-Sahalia (1996a), Aı̈t-

Sahalia (1996b), Stanton (1997), Boudoukh, Richardson, Stanton, and Whitelaw (1998), An-

dersen and Lund (1996b), Constantinides (1992), Conley, Hansen, Luttmer, and Scheinkman

2See, for example, Zhou (1999), Hansen, Heaton, and Yaron (1996), Chumacero (1997), Andersen, Chung,
and Sørensen (1999), and Andersen and Sørensen (1996).

3If we take an agnostic approach to moment selection, such as using SNP, these restrictions are not
imposed when choosing moments; they are only imposed when data are simulated.

2



(1997)]. While these are able to overcome some of the empirical drawbacks of existing affine

models, most unfortunately lack the analytical tractability of these models. This is not the

case for the recent quadratic term structure models proposed by, for example, Ahn, Dittmar,

and Gallant (2000) and Leippold and Wu (2000), but these require the estimation of many

more parameters than the affine models.

In this paper, we take an alternative, more parsimonious route, first suggested by Dai and

Singleton (1998). We retain the affine form of Duffie and Kan, and generalize the functional

form for the price of risk. Unlike Duffee (1999), which also generalizes this form, we here

describe the price of risk in a way that produces nonlinear interest-rate dynamics under

the physical measure.4 We use this model to address two questions. First, how does EMM

perform with different auxiliary models? Second, what features must be built into a term

structure model in order for it to generate real-world interest-rate dynamics?

For all but pure Gaussian term-structure models, the linearized Kalman filter is a mis-

specified description of the dynamic behavior of yields. This misspecification motivates the

use of this filter as an auxiliary model for use with Gallant and Tauchen’s EMM methodology.

However, we find that for the models that we analyze, the magnitude of the misspecification

is small for reasonable parameterizations. Monte Carlo evidence presented here suggests that

the combination of the Kalman filter and EMM does not result in more accurate parame-

ter estimates than does the Kalman filter alone. Put differently, the approximation error

introduced by using the analytic Kalman filter moment conditions is not larger than is the

approximation error introduced by simulating moment conditions with EMM.

Another contribution of our paper relates to the well-known downward bias in small-

sample estimates of the speed of mean reversion of near unit-root processes such as bond

yields. Ball and Torous (1996) argued that the combination of the cross-sectional and time-

series information in yields could be used to substantially reduce the small-sample bias

in estimates of drifts of bond yields. We argue here that their conclusion relies on the

assumption of restrictive functional forms for the price of risk. These restrictions closely

link the cross-sectional behavior of yields to their time-series behavior. When we use more

general forms, such as those estimated in this paper, these links are weakened, and the small-

sample bias contaminates estimates of drifts even when information in both the time-series

and cross-section is used.

This small-sample bias also affects statistical tests of the more-restrictive functional forms

for the price of risk. We use Monte Carlo simulations to measure the magnitude of this

contamination. For typical sample sizes, we find that standard econometric techniques fre-

4Duarte (1999) has independently pursued a similar idea, although he focuses on issues that are largely
different from those considered here.
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quently reject the restrictive models of the price of risk in favor of more general models, even

through the data are generated by the more restrictive models. In particular, linear mod-

els are often rejected in favor of nonlinear models because in finite samples, the nonlinear

parameters are biased towards more mean reversion, and thus away from zero.

The final contribution of this paper is to explain why the form for the price of risk

examined in this paper, although more general than standard models, is nonetheless too

restrictive to generate realistic behavior for expected excess returns to bonds. We describe

the kind of flexibility that must be built into the price of risk in order to fit the empirical

features of Treasury bond yield and return dynamics.

The remainder of the paper is organized as follows. Section 2 discusses various econo-

metric methods used to estimate diffusion models, and presents a motivating example in

which EMM/SNP is used to estimate a simple one factor model using simulated data. The

poor results of this estimation clearly motivate our search for a better combination. Section3

presents the general interest rate model. In Section 4, special cases of the model are used

to investigate small-sample properties of the econometric methods. Results from fitting the

model to U.S. Treasury bond data are presented in Section 5. Some concluding comments

are offered in Section 6.

2 Estimation

2.1 Estimating Continuous-Time Models

Given a general diffusion model

dXt = µ(Xt) dt+ σ(Xt) dZt, (1)

the transition density from value x at time t to value y at some later time s, p(s, y | t, x),
must satisfy the Kolmogorov forward equation,

∂p(s, y | t, x)
∂s

= − ∂

∂y
(µ(y)p(s, y | t, x)) + 1

2

∂2

∂y2

(
σ2(y)p(s, y | t, x)) , (2)

and the Kolmogorov backward equation (see Øksendal (1985)),

−∂p(s, y | t, x)
∂t

= µ(x)
∂

∂x
(p(s, y | t, x)) + 1

2
σ2(x)

∂2

∂x2
(p(s, y | t, x)) . (3)

In principle, for a given parametrization of µ and σ, we can solve equation (2) for the con-

ditional density p as a function of the parameters, then use maximum likelihood to estimate
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the model’s parameters (see, for example, Lo (1988)). This approach was followed by Pear-

son and Sun (1994) in estimating the parameters of a 2 factor CIR interest rate model, using

the fact that, under this process, interest rates are conditionally distributed as a multiple

of a non-central χ2 random variable [see Feller (1951)]. However, except in rare cases, we

can only solve equation (2) numerically, making this technique very burdensome. Recently

several authors have extended the range of problems to which we can apply maximum like-

lihood. Pedersen (1995) and Santa-Clara (1995) [see also Brandt and Santa-Clara (1999)]

develop a simulation based approach that allows the approximation of the likelihood func-

tion by splitting each observation interval into small pieces, and using the fact that the

distribution of the variables approaches conditional normality as the length of the intervals

shrinks towards zero. This method can only be applied, however, when the variables being

estimated are observed without error. Aı̈t-Sahalia (1999) develops a series of approximations

to the likelihood function that are tractable to estimate, but his method only applies to a

single variable (or to multiple variables, but only if they are all independent).

As an alternative approach, the Generalized Method of Moments (GMM) of Hansen

(1982) often allows us to estimate models when either the full likelihood function is too com-

plicated or time-consuming to calculate, or where we wish to specify only certain properties

of the distribution, rather than the full likelihood function [see, for example, Gibbons and

Ramaswamy (1993)]. Sometimes we can calculate the moment conditions in closed form.

For example, for fairly general diffusion processes, Hansen and Scheinkman (1995) show

how to derive certain analytic moment restrictions from equation (1), but these do not take

advantage of all of the information contained in the discretely observed data. Chan et al.

(1992) use approximate moment conditions, obtained by assuming that the size of the time

interval between observations is “small”, so the expected change and variance over the next

period are given by

E[∆Xt] ≈ µ(Xt)∆t,

var[∆Xt] ≈ σ2(Xt)∆t.

This approach is extended and used in a nonparametric setting by Stanton (1997) and

Boudoukh et al. (1998). These approximations are very simple to implement, and very close

to the true moments for small time intervals, but estimators based on these approximations

are, strictly speaking, inconsistent.

One issue in estimating term structure models is the exact observability of the data.

In general, given an n factor model, and a set of parameter values, we can pick any n

points on the yield curve, and invert the appropriate pricing equations to calculate exactly
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the implied values of the underlying state variables.5 This was used to allow maximum

likelihood estimation by Pearson and Sun (1994), Chen and Scott (1993), and Duffie and

Singleton (1997). However, when we have m > n bond yields, there is in general no set of

values for the n factors that exactly matches the m bond yields. One solution is to assume

that n of the yields are measured without error, and allow for some sort of “measurement

error” in the remaining yields [as in Chen and Scott (1993), and early versions (though

not the published version) of Pearson and Sun (1994)]. This has the disadvantage that the

specification of the yields estimated without error is, necessarily, somewhat ad hoc. An

alternative approach is to allow all the yields to be measured with error, but it now becomes

impossible to observe the underlying state variables exactly. Instead, some sort of filtering

must be performed to calculate an expected value for these variables, given current and

past values of the bond yields. A natural approach to this problem is the use of the linear

Kalman Filter [see, for example, Harvey (1989) or Hamilton (1994)]. This has been used

in a term structure context by, among others, Pennacchi (1991), Chen and Scott (1995),

Duan and Simonato (1997), de Jong (1998), Geyer and Pichler (1999), and Jegadeesh and

Pennacchi (1996). The standard Kalman filter assumes normally distributed dynamics for

both the true state variables and measurement error(s). In addition, it assumes that the

variance matrix is constant. These conditions hold only in the case of a multifactor version

of the Vasicek (1977) model [see, for example, Babbs and Nowman (1999)], but not for other

affine models, where volatility is stochastic, and conditional distributions are non-normal.

This makes estimates obtained directly from the Kalman filter approach inconsistent, though

there is Monte Carlo evidence that this may be of limited importance in practice [see, for

example, de Jong (1998) and Duan and Simonato (1997)].

An alternative approach is to use simulation to calculate arbitrary population moments

as functions of the parameters of the process being estimated, which can be compared with

sample moments estimated from the data [see, for example, Duffie and Singleton (1993)].

There remains, however, the question of which moments to simulate. We would like to use

the vector of derivatives of the likelihood function (score vector) of the data, as we would

then be calculating maximum likelihood estimators. In general we cannot do this, but we

can come close using the Efficient Method of Moments (EMM) approach of Gallant and

Tauchen (1996). They use moment conditions derived from an auxiliary semi-nonparametric

(SNP) description of the data, and Gallant and Long (1997) show that this approach asymp-

totically attains the same efficiency as maximum likelihood [see also Gallant and Tauchen

(1999)].6 This has led many authors to adopt this procedure. For example, in an interest

5This is true of the true model, but may not always be possible in practice. For example, observed bond
yields might imply negative values for state variables that ought never to be negative.

6This is closely related to the “indirect inference” approach of Gourieroux, Monfort, and Renault (1993).
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rate context, see Dai and Singleton (1998), Andersen and Lund (1997), and Andersen and

Lund (1996a), and for estimation of stochastic volatility models see, for example, Andersen,

Chung, and Sørensen (1999). In our case, this approach has several advantages. First, we ob-

serve zero-coupon bond yields at discrete intervals, and want to use an estimation technique

that exploits the information in the conditional density of these discretely-observed yields.

The nonlinear physical dynamics of the state vector prevent us from obtaining analytic ex-

pressions related to this density. This is not a problem with a simulation based approach

such as EMM. Second, we would like to use multiple points on the term structure without

necessarilyassuming that a particular subset is measured without error. Again, EMM allows

us to include measurement error in all bond yields without additional complication. We now

discuss the estimation methodology in more detail. We shall implement it using two different

choices of auxiliary model.

2.2 EMM

The “Efficient Method of Moments” of Gallant and Tauchen (1996) is a simulation based

GMM estimator which uses the expectation of the score vector from some auxiliary model

as the vector of moment conditions for GMM. To the extent that the auxiliary model nests

the structural model being estimated, the estimator achieves the same asymptotic efficiency

as maximum likelihood [see Gallant and Long (1997)], hence the name of the approach. For

details see Gallant and Tauchen (1996) and the user manual, Gallant and Tauchen (1998a),

on which this discussion is based.

Let {ỹt, x̃t−1}n
t=1, be the observed dataset, where

x̃t−1 =
(
ỹ′t−L, . . . ỹ

′
t−1

)′
,

for some L ≥ 1. The first step in EMM estimation is quasi-maximum likelihood of the

auxiliary model (also referred to as the “score generator”), using the observed dataset,

θ̃n = argmax
θ∈Θ

1

n

n∑
t=1

ln f(ỹt | x̃t−1, θ).

To estimate the parameters of the structural model, ρ, GMM is now performed using (sim-

ulated) expectations of this score vector to generate moment conditions, i.e., the moment

This also uses an auxiliary model, but matches estimated parameter values, rather than score vectors, making
it in general much more computationally burdensome.
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vector is

mn(ρ, θ̃n) =
1

N

N∑
τ=1

∂

∂θ
ln f [ŷτ(ρ) | x̂τ−1(ρ), θ̃n],

where N is the size of the simulated dataset. The EMM estimator of ρ is then

ρ̂n = argmin
ρ∈R

m′
n(ρ, θ̃n)Ĩ

−1
n mn(ρ, θ̃n),

where Ĩ−1
n is the weighting matrix.

In implementing EMM as described above, there remains the question of what auxiliary

model to use. The only real requirement is that the auxiliary model should provide a good

statistical description of the distribution of the data. We shall consider two different auxiliary

models. One is the now-standard SNP model of Gallant and Tauchen (1992); the other is an

approximate maximum likelihood estimation of a linearized version of the true model using

a Kalman filter.7

2.3 Auxiliary Model 1 - SNP

The standard auxiliary model for use with EMM has become the SNP (for SemiNonParametric)

model of Gallant and Tauchen (1992) [see also the user’s guide, Gallant and Tauchen

(1998b)]. It consists of writing the conditional density of the dataset under analysis in

the form of a Hermite polynomial multiplied by a normal density, i.e.,

f(ỹt | x̃t−1, ρ) = c(x̃t−1) [h(z̃t | x̃t−1)]
2
φ(z̃t),

where

• φ(.) represents the standard normal p.d.f.,

• h(z̃t | x̃t−1) is a Hermite polynomial in z̃t,

• c(x̃t−1) is a normalization constant (equal to 1/
∫
[h(s | x̃t−1)]

2
φ(s) ds), and

• z̃t is a normalized version of ỹt, defined by

z̃t = R−1
x,t−1 (ỹt − µx,t−1) ,

where µx,t−1 is the conditional mean, and R−1
x,t−1 the Cholesky decomposition of the con-

ditional variance of ỹt. This specification allows great flexibility in fitting the conditional

distribution. In particular, we are free to choose:

7This auxiliary model was also suggested by Duan and Simonato (1997).
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• the dimensionality of the Hermite polynomial in z, Kz (allows for non-Gaussian be-

havior).

• the degree of the polynomial in x that makes up each of the coefficients in the Hermite

polynomial, Kx (another way to allow for conditional heterogeneity).

• the number of lags of x in the Hermite polynomial, Kp.

• the number of lags in a VAR specification for µx,t−1, Lµ.

• the degree of an ARCH (or GARCH, setting Lg > 0) specification for the scale trans-

formation Rx,t−1, Lr.

Choice of an appropriate specification is performed by using a model selection criterion,

such as the Schwarz Bayes information criterion [see Schwarz (1978)], which rewards good

fit, while penalizing over-parametrization. Gallant and Tauchen (1998b) discuss a search

strategy for finding an appropriate parametrization for a given problem.

2.3.1 Example - One Factor CIR model

As an example of this procedure, 1,000 weekly observations (approximately 20 years) on the

instantaneous riskless interest rate were simulated from a standard one factor Cox, Ingersoll,

and Ross (1985) model,

drt = κ(µ − rt) dt + σ
√
rt dZ, (4)

where the price of interest rate risk is given by the parameter λ. The parameter values used

for the simulation were

κ = 0.29368,

µ = 0.07935,

σ = 0.11425,

λ = −0.12165,

corresponding to the values estimated in Pearson and Sun (1989). The simulation was per-

formed using the fact [See Cox, Ingersoll, and Ross (1985)] that rt is conditionally distributed

as a multiple of a non-central χ2 distribution. For each simulated value of rt, the one year

yield was calculated, and to prevent perfect correlation between the two series, some i.i.d.

noise was added to the one year interest rate, in the form of a normally distributed random

variable with standard deviation σε = 0.0001, making a total of five parameters determining

the joint distribution of the two series, {rt, y
1
t }.

The first step in estimating κ, µ, σ, λ and σε was to determine the appropriate SNP

specification using the search methodology described in Gallant and Tauchen (1998b). The
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optimal specification was 30314411, corresponding to

Lu = 3 (order of VAR),

Lg = 0 (order of GARCH),

Lr = 3 (order of ARCH),

Lp = 1 (lags in Hermite polynomial),

Kz = 4 (degree of Hermite polynomial),

Iz = 4 (# cross terms to suppress),

Kx = 1 (order of polynomial in Hermite polynomial coefficients),

Ix = 1 (# cross terms to suppress).

The model was estimated using EMM/SNP, with two different sets of starting values.

The first estimation was performed starting from parameter values (0.3, 0.11, 0.05, 0.01,

0.01). These are not equal to the true parameter values, but would not be an unreasonable

set of values to start from if we did not already know the true parameter values. Table 1

shows that at the end of the estimation, the estimated parameter values are substantially

different from the true values, the reported standard errors are essentially zero, and the true

parameter values are way outside any reasonable confidence intervals one might construct

(for example, the estimated value for κ is approximately 2 million standard errors from

the true parameter value!). In addition, the χ2(44) test statistic has the value 7.2 × 1010.

The model was reestimated, this time starting from the true parameter values. The final

estimated parameter values are different, but again a long way from the true parameters,

and again the reported standard errors seem very small, though much larger than with the

previous estimation (for example, the estimated value for µ is now “only” 478 standard errors

from the truth). The χ2(44) test statistic is much smaller, at 1557.8, but again this statistic

would imply a huge rejection of the model, even though it is true by construction.

This one example suggests that, at least in this case, we seem to be obtaining biased pa-

rameter estimates and standard errors, overstated χ2 statistics, and that the final parameter

estimates are highly dependent on where the estimation starts from.8 This in turn suggests

that the small sample properties of the EMM/SNP combination, when used in conjunction

with datasets of the size and type we actually see in practice, may not be nearly as attrac-

tive as their asymptotic properties, motivating a more thorough investigation of these small

sample properties, and the search for a possibly better behaved auxiliary model than SNP.

The alternative auxiliary model we shall investigate is the linearized Kalman filter.

8Another test with 100 years of weekly data produced very similar results.
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2.4 Auxiliary Model 2 - Linearized Kalman filter

We first briefly review the standard Kalman filter. For details see, for example, Harvey

(1989) or Hamilton (1994). At discrete time intervals t = 1, . . . , T , a vector m-vector Yt is

observed. We refer to the entire panel of observations as Y . The observables depend on an

underlying state n-vector Xt. The ‘observation equation’ expresses Yt as linear in Xt and

the ‘transition equation’ expresses the discrete-time evolution of Xt as linear in Xt. These

equations determined by some underlying parameter vector ρ.

Yt = H0(ρ) +H1(ρ)
′Xt + wt; (5)

Xt+1 = F0(ρ) + F1(ρ)Xt + vt+1; (6)

E(wt) = 0; (7)

E(vt+1) = 0; (8)

E(wtw
′
t) = R(ρ); (9)

E(vt+1v
′
t+1) = Q(ρ). (10)

The vectors and matrices in (5) through (10) are functions only of ρ, not of the observation

or state vectors. With this setup, the Kalman filter recursion can be used to produce

one-step-ahead forecasts of the state vector and observable vector, which we denote X̂t+1|t
and Ŷt+1|t, and the variance-covariance matrices of these forecasts, which we denote Pt+1|t
and Vt+1|t respectively. The recursion also produces the contemporaneous prediction of the

state vector and its associated variance-covariance matrix, which we denote X̂t|t and Pt|t,

respectively.

Quasi-maximum likelihood estimation using the standard Kalman filter is straightfor-

ward. An initial Ŷ1|0 and V1|0 are calculated from an initial X̂0|0 and P0|0, which are in turn

calculated using the first two unconditional moments of Xt. Then the quasi log-likelihood

value associated with Yt, t = 1, . . . , T is

L(ρ, Y ) =
T∑

t=1

lt,

lt = −1

2
[m log(2π) + log |Vt|t−1|+ (Yt − Ŷt|t−1)

′V −1
t|t−1(Yt − Ŷt|t−1)].

The estimated parameter vector ρ̂ is chosen to maximize L.

This Kalman filter approach is best suited for models that express zero-coupon bond

yields as affine functions of an underlying state variable. Such models, such as those in
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the Duffie and Kan (1996) class, fit naturally into the linear structure of (5), if we use

zero-coupon bonds as the observable vector Yt. The Kalman filter structure then implies

that yields are observed with serially uncorrelated measurement error wt with a constant

variance-covariance matrix R. If the dynamics of the state vector are nonlinear, there will

be no exact analog to (6). For these nonlinear models, a natural alternative is to replace (6)

with a linearization of (1) around X̂t|t. The time between discrete observations is denoted

∆t. The linearization is

Xt+1 = F0t + F1tXt + vt+1; (11)

F0t =


µ(X̂t|t)− ∂µ(Xt)

∂X ′
t

∣∣∣∣∣
Xt=X̂t|t

X̂t|t


∆t; (12)

F1t = I +
∂µ(Xt)

∂X ′
t

∣∣∣∣∣
Xt=X̂t|t

∆t; (13)

Qt = σ(X̂t|t)σ(X̂t|t)′∆t. (14)

In (11) through (14), three approximation errors are introduced. The first is that we

use the instantaneous dynamics of Xt as a proxy for the discrete-time dynamics of Xt. The

second is the linearization of these dynamics. The third is the evaluation of these dynamics

at filtered value of Xt instead of an exactly-identified value of Xt. Therefore the parameter

vector that maximizes the Kalman filter quasi-log-likelihood function will not, in general,

be a consistent estimator of the true parameter vector. Nonetheless, because the auxiliary

model is closely related to the (assumed) true data generation model, the auxiliary model

should be an efficient method of compressing the information in the observed data.

The usual method of starting the Kalman filter recursion at the analytic unconditional

first and second moments of Xt is unavailable to us because we do not have analytic expres-

sions for these moments. We use simulations to approximate them. We generate a long time

series of the state vector by discretizing (1), using a time step of ∆t (the same time step for

our discrete observations). Smaller time steps could be used to reduce the approximation

error in these moments, but in practice we found that they were unnecessary.

Our method for beginning the Kalman filter recursion requires some justification. There

are two obvious alternatives. First, we could set aside an initial set of observations and

estimate the unconditional population moments using the unconditional moments of the

state implied by this initial set. However, the highly persistent nature of interest rates

requires that a very long initial set of observations be used to estimate accurately these

moments, and the available time series are short.
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Second, we could condition the recursion on the first observation, bypassing the use of

unconditional moments. A consequence of this alternative is that the resulting parameter

estimates need not imply a stationary process for interest rates. Because of the persistence

of interest rates, this is not an unlikely result. Although there is nothing economically or

econometrically wrong with implied nonstationarity from such a conditional recursion, it is

highly inconvenient. A very useful feature of the Kalman filter as a auxiliary model is that

the structure of the auxiliary model is the same as the structure of the model estimated

in the EMM stage. Therfore the estimated parameters from the auxiliary model can be

used as the initial parameters to search for the EMM optimum. However, if the auxiliary

parameters imply nonstationarity, they will not produce sensible results in the EMM stage,

because EMM imposes stationarity on the underlying process.

3 A nonlinear term structure model

3.1 Interest rates under the equivalent martingale measure

This model uses the framework of Duffie and Kan (1996). There are n state variables, denoted

Xt ≡ (Xt,1, . . . , Xt,n)
′. Uncertainty is generated by n independent Brownian motions. Under

the equivalent martingale measure these are denoted Z̃t ≡ (Z̃t,1, . . . , Z̃t,n)
′; corresponding

Brownian motions under the physical measure are represented without the tildas. The

instantaneous nominal interest rate, denoted rt, is affine in the state:

rt = δ0 + δXt. (15)

Here, δ0 is a scalar and δ is an n-vector. The evolution of the state variables under the

equivalent martingale measure is given by equation (16):

dXt = (Kθ −KXt)dt+ ΣStdZ̃t. (16)

In (16), K and Σ are n x n matrices and θ is an n-vector. Dai and Singleton (1998) show

that Σ can be normalized to a diagonal matrix; we adopt their normalization here. The

matrix St is also diagonal, with elements described in (17):

St(ii) ≡
√

αi + β ′
iXt, (17)

where βi and α are n-vectors. This discussion assumes that the dynamics of (16) and (17)

are well-defined, which requires that αi + β ′
iXt is nonnegative for all i and all possible Xt.

See Dai and Singleton (1998) for the required restrictions.
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Using the results of Duffie and Kan (1996), we can write the price and yield of a zero-

coupon bond that matures at time t+ τ as

P (Xt, τ ) = exp[A(τ )− B(τ )′Xt], (18)

Y (Xt, τ ) = (1/τ )[−A(τ ) +B(τ )′Xt]. (19)

In (18) and (19), A(τ ) is a scalar function and B(τ ) is an n-valued function. Both can

be represented as solutions to a set of ordinary differential equations (ODEs).

3.2 The price of risk

The dynamics of Xt under the physical measure are determined by specifying the market

price of risk. Defining πs/πt as the state price deflator for time-t pricing of time-s payoffs,

we can write

dπt

πt
= −rtdt− Λ′

tdZt. (20)

The element i of the n-vector Λt represents the price of risk associated with the Brownian

motion Zt,i. We parameterize the model as follows. Let λ1 and λ2 be n-vectors of constants.

Define Λt as

Λt = Σ−1λ1 + StΣ
−1λ2 (21)

This form, which is equivalent to the form adopted by Duarte (1999), nests the completely

affine class of Dai and Singleton (1998) (which includes the models of Cox, Ingersoll, and

Ross (1985) and Vasicek (1977)). For this more restrictive class, λ1 is zero. When this

vector is nonzero it introduces nonlinear dynamics into the physical measure as long as St

is a nontrivial function of Xt (i.e., St is not simply a constant matrix).

One of the main advantages of this more general form of Λt is that individual elements

of Λt can change sign, depending on the shape of the term structure (i.e., the depending on

the elements of Xt). Thus investors’ willingness to face certain types of interest-rate risk

can switch sign. As discussed at length in Duffee (1999), the structure of Λt in completely

affine models is at odds with the stylized fact that excess bond returns tend to be positive

when the yield curve is more steeply sloped than usual and negative when the yield curve is

less steeply sloped than usual. It is an open question as to whether the more general form is

sufficiently flexible to capture this stylized behavior of bond returns. Duarte concludes that

it seems sufficient, while our conclusion is more negative.
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3.3 Interest rate dynamics under the physical measure

The general representation of the state price deflator’s dynamics in (20) allow us to write

the dynamics of Xt under the physical measure as follows:

dXt = K(θ −Xt)dt+ ΣStΛtdt+ ΣStdZt (22)

Combining (22) and (21), we can express the physical dynamics of the state vector as

dXt = [(Kθ + ψ) + Stλ1 −KpXt] dt+ ΣStdZt (23)

where element i of the vector ψ is αiλ2i, the matrix Kp is defined as K − Φ, and row i of

matrix Φ is β ′
iλ2i.

Stationarity of Xt is determined largely by the eigenvalues of Kp, because the affine

function of Xt, K
pXt, dominates the square-root function of Xt, ΣStλ1, for large Xt. If the

eigenvalues are all positive, Xt is stationary. If any of the eigenvalues of Kp are negative, Xt

is nonstationary. If any of the eigenvalues are zero, stationarity will depend on the signs on

the square-root terms in ΣStλ1.

The combination of (15), (18), (23), and the structure of the ODEs in Duffie and Kan

(1996) imply that the instantaneous bond-price dynamics are

dP (Xt, τ )

P (Xt, τ )
= [rt − B(τ )′(ψ + Stλ1 + ΦXt)]dt− B(τ )′ΣStdZt (24)

Instantaneous expected excess returns to a τ -maturity bond, denoted et,τ , can be inferred

from (24):

et,τ = −B(τ )′(ψ + Stλ1 + ΦXt). (25)

3.4 An example

To illustrate this framework, here we take a closer look at a one-factor version. The model

is a simple extension of Cox et al. (1985), but its features (and limitations) provide a useful

framework for interpreting the more complex models we estimate later in the paper. The

instantaneous interest rate has CIR dynamics under the equivalent martingale measure:

drt = (kθ − krt)dt+ σ
√
rtdz̃t. (26)

This model fits into the general framework by setting δ0 = α = 0 and δ = β = 1. Under the

physical measure, the dynamics of rt can be written as
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drt = (kθ + λ1
√
rt − kprt) + σ

√
rtdzt, kp = k − λ2. (27)

The instantaneous interest rate is stationary if kp > 0 or if kp = 0, λ1 < 0. Expected excess

returns to bonds are given by

et,τ = −B(τ )(λ1

√
rt + λ2rt) (28)

where B(τ ) is given by the usual CIR pricing formula. The signs of λ1 and λ2 can be pinned

down by two features of the empirical behavior of expected excess returns to bonds. First,

mean excess bond returns are positive. Therefore, since B(τ ) > 0, we require

λ1E(
√
rt) + λ2E(rt) < 0. (29)

Second, expected excess returns to bonds move in the same direction as the slope of

the term structure. The parametric restrictions necessary to reproduce this feature in our

one-factor example depend on the sign of k. If k > 0, investors price bonds as if shocks to

interest rates die out over time. Therefore an increase in the short rate corresponds to a

smaller increase in long-term yields, and thus a decrease in the slope of the term structure.

This pins down the sign of the derivative of expected excess returns with respect to rt:

k > 0, (1/2)λ1E(1/
√
rt) + λ2 > 0. (30)

Multiply the second inequality in (30) by E(rt), and ignore the difference between E(
√
rt)

and E(rt)E(1/
√
rt):

(1/2)λ1E(
√
rt) + λ2E(rt) > 0. (31)

A comparison of (29) and (31) reveals that in order to produce excess bond returns that

are, on average, positive, and are positively correlated with the slope of the term structure,

we require λ1 < 0 and λ2 > 0 (as long as k > 0). The additional flexibility provided by λ1

is vital here. As noted by Backus, Foresi, Mozumdar, and Wu (1998), a standard CIR-type

model cannot simultaneously fit both of these empirical regularities. If λ1 = 0 and λ2 > 0,

mean excess bond returns are negative, and if λ1 = 0 and λ2 < 0, expected excess returns

move inversely with the slope of the term structure.

Stationarity implies λ2 ≤ k. Thus imposing stationarity limits the magnitude of the

relationship between rt (and hence the slope of the term structure) and expected excess

returns to bonds. Recall from (28) that expected excess returns are the product of exposure

to interest rate risk (−B(τ )) and the price of interest rate risk. If k is close to zero, λ2
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must also be close to zero, thus the price per unit of interest-rate risk will not fluctuate

much with rt. If k is large, λ2 can be large, and the price per unit of interest-rate risk

can fluctuate substantially. However, with large k, −B(τ ) is small. Recall that with CIR

pricing, −B(τ ) ≈ ∫ τ

0
exp(−ks)ds. (The formula is exact aside from a Jensen’s inequality

term.) When k is large, bonds are priced as if shocks to interest rates die off quickly, and

bonds have little risk exposure. (Note that the standard CIR model has exactly the same

limitation.)

This logic assumed k > 0. If k < 0, it is much easier to fit the above two facts about

bond returns. The reason is that bonds are priced as if shocks to rt are explosive. This

produces ‘the tail wags the dog’ behavior in the term structure, in which longer-maturity

yields fluctuate much more than do shorter-maturity yields. Then an increase in the short-

term interest rate corresponds to an increase in the slope of the yield curve. A negative value

of λ2 produces the correct correlation between the slope of the term structure and expected

excess bond returns, and there is no lower bound on λ2. However, this implication is at odds

with two facts about the term structure. First, shorter-maturity bond yields (say, two-year

maturities) are more volatile than are longer-maturity bond yields, and second, short-term

interest rates and the slope of the term structure tend to move in opposite directions.

As we shall see, these same limitations appear in the estimation of our multifactor term-

structure model. Whether these limitations of the model are binding is, of course, an em-

pirical question. In the empirical work that follows, we find that they are binding; the

limitations are at the heart of the failure of this class of models to fit the empirical behavior

of bond returns.

4 Properties of the estimation methods: Monte Carlo

evidence

In this section we use Monte Carlo simulations to consider three questions. First, what

kinds of biases show up in small-sample estimation of flexible term-structure models, such

as the model examined here? Second, for the kinds of data samples we typically use in term-

structure estimation, how large is the misspecification in the linearized Kalman filter? Third,

how do the small-sample properties of the Kalman filter compare to those of SNP/EMM?

4.1 Small-sample estimation biases in extended affine models

Here we document small-sample biases associated with estimating models such as ours, in

which the price of risk vector Λt is more flexible than it is in the completely affine case. The
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biases show up in the parameters that determine the drift of rt. We begin by using a small

Monte Carlo simulation to illustrate the biases.

We generate instantaneous interest rates using a CIR process. Equation (26) describes

the equivalent-martingale dynamics and (27), with λ1 = 0, describes the physical dynamics.

The parameters used in the data-generating process are based on the results of fitting a one-

factor CIR model to monthly U.S. interest rate data from 1974 through 1998. We assume

that the econometrician observes, with noise, 240 monthly observations (20 years) of rt and

the continuously-compounded one-year bond yield. The measurement errors are normally-

distributed, independent across maturities and time, and have standard deviations Dr and

D1.

The data are fit to the nonlinear term-structure model of (26) and (27), where λ1 is

allowed to be nonzero. The model is estimated with EMM using the linearized Kalman filter

as an auxiliary model. Each EMM simulation has length 12,000 months (1,000 years of data).

A small-scale Monte Carlo simulation (100 simulations) is used to generate distributions of

parameter estimates and associated standard errors. The parameter estimates from both

the auxiliary model and the EMM stage are displayed in Panels A and B of Table 2.

The main point to take from this table is that the mean parameter estimates imply that

the interest rate dynamics are nonlinear. The estimates of λ1 are biased upward (from its true

value of zero), and the estimates of kp are also biased upward. The table also documents

that estimate of k is not biased, thus the bias in kp is equivalent to a downward bias in

the estimate of λ2. These biases are created by the well-known small-sample bias in the

estimation of the speed of mean reversion of a persistent process. Because this bias is an

inherent feature of the generalization of affine models we consider, it is worth discussing it

in detail here.

First consider the bias in the speed of mean reversion when estimating a standard CIR

model. Ball and Torous (1996) point out that if a CIR model is estimated using only time-

series information, the speed of mean reversion under the physical measure, kp, is biased

upwards; this is the standard near-unit-root problem. They also note that if both time-series

and cross-sectional information are used in the estimation procedure, the bias is substantially

reduced (and the precision of the estimate increases). The intuition is straightforward. The

speed of mean reversion under the equivalent martingale measure, k, is determined by the

contemporaneous covariances among changes in yields of different maturities. The mean

slope of the term structure determines the price of risk λ2, and thus also determines the

speed of mean reversion under the physical measure. Thus kp is pinned down without using

any information about the speed of mean reversion in the sample.

However, when both time-series and cross-sectional information are used to estimate our
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nonlinear generalization of a CIR model, the small-sample bias remains. The reason is that

the price of interest rate risk is a function of both λ1 and λ2. The mean slope of the yield

curve cannot determine them both, and thus cannot determine kp. Therefore the speed of

mean reversion in the sample is important in determining these parameter estimates, and

the resulting estimates will reflect the small-sample downward-bias in this speed.

This bias can be easily seen by examining the relation between rt and the drift in rt.

Figure 1 plots rt versus its drift, κθ + λ1
√
rt − kprt. The solid line is constructed with

the parameters of the CIR model used to generate the true data and the dashed line is

constructed with the mean EMM parameter estimates.

The nonlinear shape of the dashed line allows it to produce both the correct value of kθ

(the leftmost point in the figure) and the correct mean instantaneous interest rate—note that

the dashed line crosses the x-axis at essentially the same value of rt as does the solid line.

In addition, it implies faster mean reversion than does the solid line. In other words, the

additional parameter λ1 allows the model to fit both the cross-sectional behavior of yields

and the mean slope of the term structure, while simultaneously fitting the upward-biased

speed of mean reversion in the sample.

Although the bias documented here is in the context of a nonlinear model of interest

rates, it is not created simply by allowing for nonlinear dynamics in rt, as in Chapman and

Pearson (2000). Instead, it is created by loosening the tight restrictions that the CIR model

places on the form of Λt. Presumably, any loosening of these restrictions, whether nonlinear

or linear (as in Duffee (1999)) will give rise to the same kind of bias in the parameters that

determine the drift of rt.

4.2 The magnitude of misspecification in the Kalman filter

A comparison of Panels A and B of Table 2 reveals that the mean parameter estimates from

the linearized Kalman filter auxiliary model are very similar to those from the second-stage,

EMM procedure. Moreover, the standard deviations of the estimated parameters are lower

with linearized Kalman filter estimation than with the Kalman filter/EMM estimation. This

suggests we may be better off simply estimating the (slightly misspecified) Kalman filter.

Of course, the accuracy of our linearized Kalman filter approach depends on the non-

linearity of the true data-generation process. The results in Table 2 are based on a linear

data-generation process, so it is not particularly surprising to find that the linearized Kalman

filter works so well. The only source of misspecification is in the use of instantaneous first

and second moments of yields as proxies for the one-month-ahead first and second moments

of yields.
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A more appropriate comparison between the linearized Kalman filter and the combined

Kalman filter/EMM procedure requires the simulation of a truly nonlinear model. Therefore

we generate data using the one-factor nonlinear model of (26) and (27). The parameters of

the process were chosen to capture the kinds of nonlinearities that we are likely to observe

in term-structure data. To do so, we first fit a three-independent-factor version of the model

to monthly U.S. interest rate data from 1974 through 1998. The parameters of the factor

that were the most nonlinear (the largest absolute second derivative of the drift function,

evaluated at the unconditional mean and plus/minus one unconditional standard deviation

from the mean) were rounded off and used in this simulation.

As with the earlier Monte Carlo simulation, 240 months of the instantaneous interest rate

and the continuously-compounded one-year bond yield are observed with iid measurement

error. The observed data are fit to the nonlinear term-structure model of (26) and (27).

The model is estimated with EMM using the linearized Kalman filter as an auxiliary model.

Each EMM simulation has length 12,000 months (1,000 years of data). A small-scale Monte

Carlo simulation (100 simulations) is used to generate distributions of parameter estimates

and associated standard errors. The parameter estimates from the auxiliary model and the

EMM stage are displayed in Panels A and B of Table 3.

The mean estimates for those parameters identified by the equivalent martingale measure

are very similar across the two panels. However, the mean estimates for both λ1 and kp

clearly differ. The estimated drift functions are displayed in Figure 2. As seen in the table

and the figure, the Kalman filter estimates are closer to the true parameters than are the

EMM estimates.

The reason for this ordering is straightforward. The estimated drift functions (the dotted

and dashed lines in Figure 2) exhibit more mean reversion than the true drift function, for

the reason discussed in the previous subsection.9 As in Table 2, the bias shows up in Table 3

as an upward bias to both λ1 and kp. However, there is another, offsetting bias introduced by

the misspecification of the linearized Kalman filter. The linearized model implies that shocks

die out linearly, while in the data-generating model they die out exponentially. Therefore the

linearized model produces more mean reversion for a given kp than does the true model.10

Thus for a given speed of mean reversion in the data, the linearized Kalman filter will fit it

with a smaller value of kp.

Table 3 documents that the parameter estimates of λ1 and kp are imprecise. Both the

9The magnitude of the difference between the true and estimated drifts is not as large in Figure 2 as it
is in Figure 1 because the true speed of mean reversion is substantially higher in Figure 2, resulting in a
smaller bias.

10For example, in a CIR model with kp = 1.5, the linearized model implies that 1 − 1.5/12 = 0.875 of a
shock remains after one month, while the correct calculation is e1.5/12 = 0.882.
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standard errors of the estimates and the means of their associated standard errors are similar

in magnitude to the parameters themselves. Note that the Kalman filter estimates of these

parameters are more precise than are the corresponding EMM estimates. This fact, combined

with the fact that the Kalman filter estimates are closer to the true parameters than are the

EMM estimates, indicates that we may be better off simply estimating the linearized Kalman

filter rather than taking the additional step of using the Kalman filter as an auxiliary model

for EMM.

4.3 Comparing the linearized Kalman filter with SNP/EMM

We argued earlier that the SNP/EMM procedure is likely to perform poorly in econometric

settings where the number of SNP moment conditions is large relative to the number of

parameters to be estimated. In order to test this claim, the one-factor examples considered

in previous subsections are inappropriate. In those examples, the data consisted of only two

bond yields. The simplest SNP description of two time series has nine parameters, which

is only slightly larger than the seven parameters (including measurement error standard

deviations) in the one-factor nonlinear model of (26) and (27).

Therefore here we compare the performance of SNP/EMM to the linearized Kalman

filter in the context of a model that is closer to the kinds of models that econometricians will

estimate in practice. (We would like to include the performance of the Kalman filter/EMM,

but Monte Carlo simulation of this two-step procedure using realistic models is currently

prohibitively time-consuming.) The process driving bond yields is a two-factor CIR process,

with the instantaneous interest rate is the sum of the independent factors.

rt = x1,t + x2,t. (32)

Under the equivalent martingale measure, the dynamics of the independent factors can

be written as

dxi,t = (kθi − kixi,t)dt+ σi
√
xi,tdz̃i,t, i = 1, 2. (33)

Under the physical measure, the dynamics are also affine (there is no λ1 vector):

dxi,t = (kθi − (ki − λ2i)xi,t)dt+ σi
√
xi,tdzi,t, i = 1, 2. (34)

To identify the parameters in the model we use yields on bonds of three maturities. We

assume that the available data are 240 monthly observations (20 years) of continuously-

compounded yields on zero-coupon bonds with maturities of six months, two years, and
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ten years. All yields are observed with normally-distributed, iid measurement error. The

standard deviations of the measurement errors are D1/2, D2, and D10.

The parameters of (32), (33), and (34) are estimated in two ways. First, the data are fit

to the misspecified Kalman filter. Because the true dynamics of rt are affine, the misspecifi-

cation consists in using the instantaneous dynamics to construct moments instead of using

the true one-month-ahead moments. The unconditional moments used to begin the Kalman

filter are estimated with simulations.

Second, the SNP/EMM methodology is used to estimate the parameters. Experimenta-

tion revealed that the preferred SNP model is a simple VAR with one lag and no ARCH,

GARCH, or higher-order terms in the variance. Because the observed data are three-

dimensional, there are eighteen SNP parameters (4x3 VAR terms plus the six free elements

of the unconditional variance-covariance matrix). The resulting eighteen moment conditions

are used in the EMM stage. Each EMM simulation has length 12,000 months (1,000 years

of data).11

The true parameters and a summary of the parameter estimates from 100 Monte Carlo

simulations are displayed in Table 4. First consider the Kalman filter estimates. There are

three main conclusions to draw from the table. First, the mean Kalman filter estimates are

very close to the true parameters values, except for a slight overestimate of the speeds of

mean reversion under the physical measure. The true speeds of mean reversion for factors one

and two are k1 − λ11 = 0.6 and k2 − λ12 = 0.2 respectively, while corresponding mean point

estimates are 0.649 and 0.267. Second, the distributions of the Kalman filter parameter

estimates appear to be reasonably symmetric; the mean and median estimates are very

similar. Third, the mean standard errors of the estimates are reasonably close to the standard

deviations of the estimated parameters. The standard errors are typically somewhat larger

than the corresponding standard deviations, but the differences are not large.

The table also documents that the SNP/EMM estimates are much less precise than are

the Kalman filter estimates. For every parameter, the standard deviation of the SNP/EMM

estimates is larger, sometimes by a factor of 40, than the corresponding standard deviation of

the Kalman filter estimates. (Because only 100 Monte Carlo simulations are generated, these

large standard deviations make it impossible to evaluate the potential bias in SNP/EMM

parameters.) However, the standard errors from the SNP/EMM estimation process do not

reflect the imprecision in the estimates. They understate, sometimes drastically, the true un-

certainty in the parameters. For example, the standard deviations of the parameter estimates

11This length is much shorter than those typically used in higher-frequency SNP/EMM estimation (e.g.,
Zhou (1999)). Here, however, the only features of the data that the simulation needs to reproduce are the
first-order VAR coefficients and the unconditional variance-covariance matrix of shocks to this VAR. For
these features, 1,000 years should be sufficient.
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for kθ1 and k1 are fifteen times greater than their mean standard errors.

The combination of imprecise parameter estimates and overly precise standard errors

leads to overrjection of the true model. One measure of overrejection is fraction of Type

1 errors associated with the GMM general χ2 goodness-of-fit test. When a 99th percent

confidence level is used, the null hypothesis that the model is correct is rejected in 42 of the

100 Monte Carlo simulations. Half of the time, the null hypothesis is rejected at the 95%

confidence level.

These Monte Carlo results are strong evidence for the conclusion that the SNP/EMM

technique is inappropriate for the estimation of typical no-arbitrage term-structure models.

There are too many SNP moment conditions, and the moments are inefficient in the sense

that they do not exploit fully the implications of the models. By contrast, the linearized

Kalman filter procedure produces both more accurate parameter estimates and more accurate

estimates of the uncertainty in the parameters.

5 Fitting a nonlinear term-structure model to Trea-

sury yields

5.1 The data

We use month-end yields on five zero-coupon Treasury bonds (interpolated from coupon

bonds) from Bliss (1997), who uses the interpolation method of McCulloch and Kwon (1993).

The maturities are six months, one year, two years, five years, and ten years. The observed

yields, which are annualized and expressed in decimal form, are stacked in the vector Yt.

Yt =
(

Y1/2,t Y1,t Y2y,t Y5,t Y10,t

)′

The data range is January 1974 through December 1998, for a total of 300 months. We

chose this range to include both recent data and the highly volatile interest rate period of

the late 1970s and early 1980s. We include this volatile period because nonlinear behavior,

if it exists, is more likely to be discovered in a sample of data with a large range.

5.2 A three-factor model

In our three-factor model, the instantaneous interest rate is the sum of a constant and the

factors:

rt = δ0 +Xt,1 +Xt,2 +Xt,3 (35)
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We restrict our attention to the class of models denoted as A3(3) by Dai and Singleton

(1998), which means that matrix ΣSt has the following form:

ΣSt =




σi

√
Xt,1 0 0

0 σi

√
Xt,2 0

0 0 σi

√
Xt,3




Our primary goal is to estimate a nonlinear model in which the factors are correlated.

Dai and Singleton (1998) note that in the linear version of this model, nonzero correlations

among factors is necessary to reproduce the hump in the term structure of yield volatilities.

The importance of allowing for correlation in this more general model is an open empirical

question. Duarte (1999) estimates a version of this model with uncorrelated factors, for

which simulation techniques are not necessary.12 Therefore the ‘feedback’ matrix K will

have nonzero off-diagonal elements. However, to avoid overfitting, we do not want to give

the model too much freedom in choosing these off-diagonal elements. We assume that a

single off-diagonal element is nonzero.

K =




κ11 0 0

κ21 κ22 0

0 0 κ33


 (36)

We experimented with allowing K to be lower triangular. This extension improved the

fit of the model, especially in reducing cross-sectional errors at the short-end of the yield

curve. However, it did not materially affect the estimates of the nonlinear parameters in the

vector λ1.

The physical dynamics of Xt are:

dXt =


Kθ +




X
1/2
1,t λ11

X
1/2
2,t λ12

X
1/2
3,t λ13


 −KpXt


 dt+ ΣStdZt, (37)

Kp = K − diag(λ2) =




κp
11 0 0

κ21 κp
22 0

0 0 κp
33


 ,

12To use his estimation approach (an application of the approximate maximum likelihood technique de-
veloped by Äıt-Sahalia (1999)) Duarte has to assume the three factors in his model are uncorrelated, and
also that certain bond yields are observed without error, while others are observed with some measurement
error.
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where diag(λ2) refers to the diagonal matrix with λ2 along the diagonal.

Certain restrictions on the parameters are necessary for these dynamics to not admit

arbitrage opportunities. They are (Kθ)i ≥ 0 ∀ i, and nonpositivity of k21. Stationarity

requires that the diagonal elements of Kp are nonnegative. If any diagonal element of Kp

is zero, the corresponding element of λ1 must be negative. Finally, the parameter vector Xt

must also be nonnegative for all t, otherwise elements of St are not real.

We close the model by specifying the behavior of measurement error in yields. The

variance-covariance matrix of the measurement error, which is R in (9), is assumed to be

diagonal. The diagonal elements are D2
1/2, D

2
1 , D

2
2, D

2
5, and D2

10. Thus there are a total of

22 parameters. The specification of rt and its equivalent-martingale dynamics require eleven

parameters, while an additional six price-of-risk parameters determine the physical dynamics.

The five measurement-error standard deviations complete the description of observed yields.

5.3 Estimation of the auxiliary model

In order to estimate the parameters of the above model, we employ the Kalman filter using

a linearized version of the same model. The score vector used in the EMM step is the vector

of derivatives of the Kalman filter log-likelihood function with respect to the estimated

parameters.

A number of practical problems arise in estimating the auxiliary model. First, the Kalman

filter recursion can produce estimates of the state vector, X̂t|t or X̂t|t−1, that violate the state

vector’s lower bound of zero. If the contemporaneous prediction, X̂t|t, violates the bound, the

Kalman filter recursion will fail because F0t, F1t, and Qt will be undefined. We address this

problem by evaluating µ(Xt) and σ(Xt) at an ‘adjusted’ X̂t|t. The adjustment replaces each

negative component in Xt|t with a small positive number. We make no other adjustments to

the estimated states. In particular, we allow X̂t|t−1 to violate the lower bound.

The second problem is that the Kalman filter log-likelihood function has a large num-

ber of local maxima, making estimation problematic. We therefore adopted the following

maximization technique, adapted from the procedure in Duffee (1999).

1. Randomly generate a parameter vector from a multivariate normal distribution with a

diagonal variance-covariance matrix. The means and variances were arbitrarily set to

reasonable values.

2. Using this parameter vector as the starting value, maximize the Kalman filter log-

likelihood function using two successive applications of the Simplex algorithm.

To keep the maximization algorithm out of unpromising regions of the parameter space,
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we set the value of the log-likelihood to a very large negative number if any values of

X̂t|t violated the lower bound of zero.

3. If the parameter estimates from the above step produce admissible values of X̂t|t for

all t, use NPSOL to make any final improvements in the estimates. Otherwise, this

step is skipped. In this stage, a few violations of admissibility of X̂t|t are allowed.13

4. Repeat these steps until NPSOL is used to produce 500 sets of log-likelihood values

and parameter estimates. The global maximum from this set is used as the estimate

of the auxiliary model.

The parameter estimates and associated standard errors from the Kalman filter are dis-

played in Table 5. The parameter estimates are in square brackets and their standard errors,

which are computed assuming that the Kalman filter is correctly specified, are in curly brack-

ets. We defer a detailed discussion of these results until a little later. However, one feature

of these parameter estimates deserves special mention here. Two of the estimates are on the

boundary of their parameter space: Kp
33 and D1. Therefore the derivatives of the Kalman fil-

ter likelihood function with respect to these parameters are not zero. This implies that these

derivatives cannot be used as moment conditions in the EMM stage. Thus we have fewer

EMM moment conditions than model parameters. Our response is to set the same parame-

ters in the EMM step to their Kalman-filter fixed values. However, this is not a completely

satisfactory solution because the auxiliary model is known to be misspecified. It is possi-

ble that the estimated parameters would not lie on their boundaries if a correctly-specified

model were used.

5.4 EMM estimation

The main motivation for the choice of the Kalman filter as an auxiliary model for EMM is

because of its small-sample properties. However, there is another implication of this choice

that has large practical implications. We do not need to perform a comprehensive search of

the parameter space to find the parameters that minimize the EMM objective function. That

search was already performed in the Kalman filter stage. As long as the linearized model is

sufficiently close to the true model, we can be confident that the parameters that minimize

13We cannot allow an unlimited number of violations of X̂t|t, because then the “optimum” can be one
in which all state vectors are entirely negative numbers with zero drift and zero variance. Since negative
states are replaced with zeros, the likelihood value is infinite (all forecasts of future states are zero with
no variance). In practice, we found that the alternative of allowing no violations resulted in implausible
standard errors, for reasons discussed below. We arbitrarily chose to allow five violations. At the optimum,
five violations occurred.
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the EMM objective function are in the same local neighborhood as are the parameters that

maximize the Kalman filter likelihood function.

This extremely useful. Because the objective functions have so many local maxima and

minima, we must conduct a comprehensive search over the parameter space. Estimation of

the auxiliary model takes much less CPU time (by a factor of ten or more) than does EMM

estimation. Thus the ability to conduct this search in the auxiliary model stage instead of

the EMM stage is an important advantage of our choice of auxiliary model.

To recap, there are 20 free parameters to estimate with EMM. They are the original

22 parameters excluding kp
33 and D1, which are set to zero. We estimate the remaining

parameters by simulating a long time series of data and minimizing the EMM objective

function.

The length of the simulation is 50,000 months. The state vector Xt is simulated by

discretizing (37). The discretization interval is 1/60th of a month and the simulations are

produced using the weak order-2 method of Kloeden and Platen (1992). The simulation is

started from X0 = 1 and the first 500 months are discarded. (We cannot start the simulation

with E(Xt) because we do not have an analytic expression for this mean.) This simulation

method can produce values of Xt which violate the lower bound of zero. Our algorithm

replaced any such values with zero. Given a time series of simulated Xt, bond yields are

produced using (19).

The parameter estimates from EMM estimation are displayed in Table 5. (They are the

values without parentheses or brackets.) Standard errors are in parentheses. The parameter

estimates from the EMM stage are very close to those from the Kalman filter stage.

Although their parameter estimates are similar, the standard errors produced by the

Kalman filter and EMM procedures are typically substantially different. Our interpretation

of these differences is that they are indirect evidence of model misspecification. The problem

is related to the contemporaneous Kalman filter forecasts X̂t|t. When the model is simulated

in the EMM stage with the optimal EMM parameters, none of the 50,000 months of fore-

casted states are particularly close to their lower bound of zero. Moreover, perturbing the

parameters around their optimal values did not alter this result. However, the state forecasts

generated with actual bond yields are frequently very close to their lower bounds, and on

five occasions the lower bound is violated.

When the state forecasts are very close to the lower bound, a tiny change in a parameter

can cause a large change in the likelihood function, by pushing the state forecast either

further away from the bound or through the bound. The standard errors on the Kalman

filter parameters reflect this sensitivity.14 But if the model were correctly specified, the

14If the likelihood function is set to a large negative value when the lower bound on the state vector is
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EMM simulations indicate that small perturbations of the parameters should not have such

an effect.

Regardless of which set of standard errors are used, the results in Table 5 do not give

strong support for nonlinearities in interest-rate dynamics—at least the kind of nonlinearities

examined in this paper. None of the three elements of λ1 is statistically different from zero

under both the Kalman filter and EMM estimates. We now take a closer look at the role λ1

plays in fitting the data.

5.5 The price of risk

As noted in Section 3, completely affine models–those for which the vector λ1 is identically

zero–cannot reproduce the stylized fact that excess bond returns (over short-term interest

rates) are positively correlated with the slope of the term structure. The question we address

here is whether the more general form of the price of risk in (21) provides the needed

flexibility. The short answer is no. More precisely, the model gets the sign of the relation

correct, but the magnitude is too small.

Table 6 summarizes the relation, implied by the model, between the slope of the term

structure and excess bond returns. Instantaneous expected excess returns to bonds are

constructed for each month in the data sample using (25), with the contemporaneous pre-

dictions Xt|t used as observations of the state vector. The table reports statistics for ex-

pected excess returns to bonds with maturities of six months, two years, and ten years. The

model-produced expected excess returns are positively correlated with the slope of the term

structure, as measured by the difference between yields on five-year and six-month bonds.

However, they are not very volatile. Expected excess returns do not differ much from steep-

slope regimes to low-slope regimes. The evidence discussed in Duffee (1999) documents that

actual expected excess returns to Treasury bonds are much more sensitive to the slope of

the term structure.

Because the model does not generate much volatility in expected excess returns, it does a

poor job forecasting future yields with the slope of the term structure. Campbell and Shiller

(1991) note that when the slope of the term structure is steeper than usual, short-term

yields subsequently tend to rise, while long-term yields subsequently tend to fall. Table 7

reproduces this result for the 1974–1998 period examined in this paper. The change in a bond

yield from month t to month t+ n is regressed on the month-t slope of the term structure,

for n = 1, 6. In the columns labeled “Actual coefficients,” we observe that six-month yields

tend to rise when the slope is more steeply sloped, while longer-maturity bond yields tend

violated, this problem is exacerbated. This is why we allow for a few violations of the bound at the optimum
set of Kalman filter parameters.
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to fall. As the horizon lengthens from one month to six months, these patterns become more

pronounced.

Table 7 also reports the corresponding regression coefficients for yield forecasts from our

model. The month t+n bond yield forecasted as of month t is approximated by extrapolating

from Xt|t using the instantaneous dynamics of (37). Then the change from the month-t yield

to the forecasted month t+n yield is regressed on the month-t slope. The model implies that

all yields are expected to rise over the next six months when the slope of the term structure

is steep. The only prediction of declining long-term yields is at the one-month horizon for

the ten-year bond.

We can interpret Tables 6 and 7 in terms of the expectations hypothesis of interest rates.

If expected excess returns to bonds are to remain constant over time, an increase in the

slope of the term structure must be accompanied by an expected future increase in yields on

long-maturity bonds. In the data, this hypothesis is rejected. Long-bond yields tend to fall;

their expected excess returns rise substantially. The model we estimate allows for a small

increase in their expected excess returns, but not enough to forecast declining yields over

the next few months.

The reason behind the failure of the model to produce sufficiently-volatile expected excess

returns is essentially that given in the one-factor example in Section 3. Although including

the vector λ1 in (21) frees up the sign of the vector λ2, it does not free up the magnitude of

λ2.

To see this clearly, focus on the behavior of Xt,3. This factor drives the slope of the term

structure, and changes in expected excess returns are largely driven by this shock. Under

the equivalent martingale measure, this shock dies out fairly quickly; k33 is approximately

one, which implies a half-life of seven to eight months. Under the physical measure, kp
33

is estimated to be on the boundary of its parameter space. In other words, given k33,

the estimate of λ23 is positive and as large as possible. Thus a negative shock to factor

three corresponds to higher expected excess returns to long bonds—they are priced as if the

negative shock to the instantaneous interest rate dies off quickly, but in fact it is expected

to persist. This drives the correlation, in Table 6, between the term-structure slope and

expected excess returns.

The additional flexibility afforded by λ1 in (21) is that λ23 can be positive, and hence

generate the correct sign of the relation between the slope and expected excess returns.

Because λ13 is negative, investors, on average, receive compensation for facing the bond-price

risk associated with slope shocks. Without λ13, a positive value of λ23 would make investors

pay to face slope risk on average. However, λ23 is bounded above by the requirement that

kp
33 be nonnegative. This bound makes it impossible for the model to generate a sufficiently
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large covariance between expected excess returns and the slope to the term structure.

Duarte (1999) comes to a different conclusion using a related model and a different data

sample. (His model does not allow for correlations among the factors.) His parameter

estimates generate substantial covariation between expected excess returns and the term-

structure slope. But the source of this relation in his model is a factor that is explosive

under the equivalent martingale measure.15 As discussed in the example in Section 3, an

explosive factor makes it fairly simple to generate large variations between expected excess

returns to bonds and the slope of the term structure. However, as also noted in the example,

a shock to such a nonstationary factor creates a positive relation between short-term interest

rates and the slope of the term structure, as interest-rate movements are magnified at the

long end. Over the 1974–1998 data sample examined in this paper, we do not observe such

behavior.

6 Concluding comments

The search continues for a model of the term structure that is simultaneously parsimo-

nious, does not admit arbitrage, and fits the behavior of Treasury yields. We make several

contributions to this search. First, we show that (currently) the most commonly used proce-

dure for estimating these models, EMM combined with an SNP auxiliary model, may have

poor small sample properties when used to estimate term stucture models using both cross-

sectional and time series data. We instead advocate using an alternative auxiliary model, a

linearized Kalman filter. This has the key advantage over SNP that the restrictions imposed

by no-arbitrage are imposed when constructing moments. This offers advantages both be-

cause of its small-sample properties, and its practical value in estimating models for which

the likelihood functions have a large number of local maxima.

The model we use to investigate the small sample properties of these estimators is of

interest in its own right. It is a a three-factor term-structure model that parsimoniously

generalizes the usual affine formulation by being affine under the equivalent martingale mea-

sure, but nonlinear under the physical measure. Using this model we find that the biases

noted by Ball and Torous (1996) are a pervasive feature of term structure estimation, and do

not (as they hypothesize) in general go away when we use a combination of the cross-sectional

and time-series information in yields.

Finally, estimating the model using real data, we find that the price of risk examined

in this paper, although more general than standard models, is nonetheless too restrictive to

generate realistic behavior for expected excess returns to bonds. We are able to describe

15Duarte calls the factor a “curvature” factor.
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the kind of flexibility that must be built into the price of risk in order to fit the empirical

features of Treasury bond yield and return dynamics.
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Variable True Value Estimate 1 Estimate 2
Set 1 Truth

κ 0.29368 0.37807 0.35941669
(0.00000003) 0.00013770

µ 0.07935 0.11127186 0.06404175
(0.00000000) 0.00003200

σ 0.11425 0.10611242 0.10892350
(0.00000003) 0.00005381

λ -0.12165 0.00883312 -0.18975737
(0.00000001) 0.00017812

D1 0.001 0.00203092 0.00009934
(0.00000000) 0.00000024

χ2(44) - 7.2× 1010 1557.8

Table 1: Estimating a one factor CIR model using EMM/SNP

Twenty years of monthly observations of instantaneous interest rates and one-year bond
yields are generated by a one-factor CIR process. The one year bond yield is observed with
iid measurement error (with standard deviation D1), and the data are fit to a standard
1 factor CIR interest rate model using EMM with an SNP auxiliary model. This table
summarizes the results of estimation starting from two different sets of starting values, one
close to, but not equal to, the true parameter values, and another where the estimation was
started at the population parameter values.
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Panel A. Kalman filter estimates

True Mean Std. Dev. Mean
Parameter value Estimate of Estimates Std. Error

kθ 0.021 0.0210 0.00058 0.00058
k 0.200 0.2005 0.00890 0.00802
σ 0.100 0.0985 0.00480 0.00465
λ1 0.0 0.1062 0.13058 0.10968
kp 0.3 0.7200 0.50388 0.41255
Dr 0.001 9.822 × 10−4 3.233× 10−4 3.074× 10−4

D1 0.001 9.223 × 10−4 2.830× 10−4 2.301× 10−4

Panel B. EMM estimates

True Mean Std. Dev. Mean
Parameter value Estimate of Estimates Std. Error

kθ 0.021 0.0207 0.00146 0.00058
k 0.200 0.1985 0.00882 0.00791
σ 0.100 0.1010 0.00507 0.00484
λ1 0.0 0.1202 0.14776 0.13182
kp 0.3 0.7660 0.57373 0.51702
Dr 0.001 1.027 × 10−3 3.071× 10−4 2.348× 10−4

D1 0.001 8.870 × 10−4 2.818× 10−4 2.350× 10−4

Table 2: Fitting CIR data to a nonlinear model: Monte Carlo simulation results

Twenty years of monthly observations of instantaneous interest rates and one-year bond
yields are generated by a one-factor CIR process. The data, which are observed with iid mea-
surement error (with standard deviations Dr and D1), are fit to a nonlinear term-structure
model described by equations (26) and (27) in the paper, using EMM with a linearized
Kalman filter as the auxiliary model. This table summarizes the results of 100 Monte Carlo
simulations.
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Panel A. Kalman filter estimates

True Mean Std. Dev. Mean
Parameter value Estimate of Estimates Std. Error

kθ 0.065 0.0648 0.00155 0.00169
k 1.500 1.4953 0.04280 0.04595
σ 0.100 0.0933 0.00479 0.00515
λ1 -0.150 -0.1185 0.14202 0.18580
kp 1.200 1.3758 0.78385 1.02168
Dr 0.001 1.001× 10−3 3.469× 10−4 4.468× 10−4

D1 0.001 9.676× 10−4 1.017× 10−4 1.012× 10−4

Panel B. EMM estimates

True Mean Std. Dev. Mean
Parameter value Estimate of Estimates Std. Error

kθ 0.065 0.0642 0.00153 0.00155
k 1.500 1.4809 0.04205 0.04210
σ 0.100 0.1009 0.00523 0.00584
λ1 -0.150 -0.0358 0.17058 0.19622
kp 1.200 1.8088 0.95025 1.10605
Dr 0.001 1.070× 10−3 3.321× 10−4 2.597× 10−4

D1 0.001 9.522× 10−4 1.039× 10−4 9.041× 10−5

Table 3: Comparing linearized Kalman filter estimation with Kalman filter/EMM: Monte
Carlo simulation results

Twenty years of monthly observations of instantaneous interest rates and one-year bond
yields are generated by a nonlinear extension of a one-factor CIR process. The model is
described by equations (26) and (27) in the paper. The data, which are observed with iid
measurement error (with standard deviations Dr and D1), are fit to the model using EMM
with a linearized Kalman filter as the auxiliary model. This table summarizes the results of
100 Monte Carlo simulations.
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Panel A. Parameter estimates

True Kalman filter estimates SNP/EMM estimates
Parameter Value Mean Median Std. Dev. Mean Median Std. Dev.

kθ1 0.018 0.018 0.018 0.0013 0.023 0.019 0.0476

k1 0.300 0.299 0.296 0.0235 0.380 0.294 0.8584

σ1 0.100 0.099 0.098 0.0077 0.111 0.093 0.0584

λ21 -0.300 -0.350 -0.331 0.1404 -0.584 -0.317 1.0381

kθ2 0.006 0.006 0.006 0.0006 0.006 0.006 0.0024

k2 -0.010 -0.009 -0.010 0.0099 -0.013 -0.006 0.0388

σ2 0.100 0.100 0.100 0.0075 0.101 0.100 0.0248

λ22 -0.210 -0.276 -0.241 0.1335 -0.285 -0.219 0.1855

D1/2 0.001 0.001 0.001 0.0001 0.001 0.001 0.0003

D2 0.001 0.001 0.001 0.0001 0.001 0.001 0.0002

D10 0.001 0.001 0.001 0.0001 0.001 0.001 0.0002

Table 4: A comparison of estimation methods: Monte Carlo simulation results

Table 4 continues on the next page.
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Panel B. Estimated standard errors

Kalman filter estimates SNP/EMM estimates
Parameter Mean Median Mean Median

kθ1 0.0039 0.0011 0.0062 0.0031

k1 0.0873 0.0233 0.0539 0.0258

σ1 0.0120 0.0072 0.0297 0.0191

λ21 0.1305 0.1189 0.3152 0.1101

kθ2 0.0008 0.0006 0.0015 0.0011

k2 0.0238 0.0080 0.0277 0.0200

σ2 0.0095 0.0060 0.0185 0.0142

λ22 0.1242 0.0886 0.1164 0.0750

D1/2 0.0003 0.0001 0.0003 0.0002

D2 0.0002 0.0001 0.0001 0.0001

D10 0.0002 0.0001 0.0002 0.0001

Table 4: A comparison of estimation methods: Monte Carlo simulation results

Twenty years of monthly observations of six-month, two-year, and ten-year zero-coupon
bond yields are generated by a two-independent-factor CIR process. The data, which are
observed with iid measurement error (with standard deviations D1/2, D2, and D10), are fit
to the model using two methods. The first is a misspecified Kalman filter, which uses
instantaneous dynamics in place of one-month-ahead dynamics. It also begins the filter
with simulated unconditional moments of the states instead of the analytic unconditional
moments. The second is SNP/EMM. This table summarizes the results of 100 Monte Carlo
simulations.
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Index number (i)
Parameter 1 2 3

(Kθ)i 0.0026 0.0040 0.0440
(0.0069) (0.0245) (0.2917)
[0.0026] [0.0040] [0.0424]
{0.0026} {0.0012} {0.0136}

k1i 0.0427 0 0
(0.0488)
[0.0424]
{0.0416}

k2i -0.2667 0.2869 0
(0.8500) (0.1289)
[-0.2612] [0.2843]
{0.1051} {0.1844}

k3i 0 0 1.1278
(0.8152)
[1.121]
{0.563}

σi 0.0432 0.0799 0.1198
(0.0260) (0.0318) (0.6101)
[0.0428] [0.0791] [0.1164]
{0.0082} {0.0552} {0.0127}

λ1i 0.0013 0.1440 -0.2818
(0.0340) (0.0585) (0.5428)
[0.0013] [0.1411] [-0.2791]
{0.0018} {0.6416} {0.0935}

kp
ii 0.1176 0.9043 0

(0.5073) (0.4581)
[0.1160] [0.8992] [0]
{0.0639} {2.4674} {–}

Table 5: Results of Kalman filter/EMM estimation of a nonlinear term-structure model

Table 5 continues on the next page.
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Constant term and measurement error standard deviations

δ0 D1/2 D1 D2 D5 D10

−0.0409 0.00205 0 0.00072 0.00085 0.00118
(0.2085) (0.00011) (0.00016) (0.00015) (0.00024)
[−0.0404] [0.00204] [0] [0.00071] [0.00086] [0.00117]
{0.0538} {0.00014} {–} {0.00018} {0.00016} {0.00041}

Table 5: Results of Kalman filter/EMM estimation of a nonlinear term-structure model

Monthly yields on zero-coupon Treasury bonds (interpolated from coupon bonds) are fit to
the three-factor model summarized by equations (35) through (37). The sample period is
January 1974 through December 1998. A linearized Kalman filter produced the parameter
estimates in square brackets and associated standard errors in curly brackets. Using the
Kalman filter as an auxiliary model, EMM produced the parameter estimates at the top of
each set of figures, with associated standard errors in parentheses. If there is no standard
error, the parameter is set to zero by assumption. If the standard error is a dashed line, the
parameter was estimated to be on the boundary of its parameter space.
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Corr. with Slope-sorted quartile means
Maturity Mean Std. dev. term slope 1st 4th

2 yrs 0.38 0.77 0.57 -0.26 0.72

5 yrs 0.19 1.14 0.38 -0.42 0.60

10 yrs 0.26 1.38 0.27 -0.25 0.64

Table 6: Summary of monthly fitted values of excess returns to bonds, 1974–1998

The term-structure model of Section 5 is used to construct implied instantaneous expected
excess (over the instantaneous interest rate) returns to zero-coupon Treasury bonds from
January 1974 through December 1998. The table reports summary statistics for these re-
turns, which are annualized and expressed in percent. The slope of the term structure
is measured by the difference between the five-year and the six-month zero-coupon yields.
To produce the columns labeled “slope-sorted quartile means,” expected excess returns are
sorted into quartiles based on the contemporaneous slope of the term structure. Means of
the first and fourth quartiles are reported above.
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One month ahead Six months ahead
Actual coef Model-implied coef Actual coef Model-implied coef

6 months 0.029 0.116 0.144 0.509

2 yrs -0.014 0.106 -0.081 0.317

5 yrs -0.036 0.002 -0.188 0.117

10 yrs -0.044 -0.065 -0.225 0.014

Table 7: Regressions of changes in bond yields on the slope of the term structure, 1974–1998

Changes in zero-coupon bond yields from month t to month t+ n are regressed on the slope
of the yield curve in month t. The regression coefficients for monthly data from January
1974 through December 1998 are reported in the “Actual coefficients” columns. In addition,
the term-structure model of Section 5 is used to construct forecasts, in month t, of month
t + n bond yields. The same regression is run, with the forecasted yields used in place of
the actual month t+ n yields. The slope of the term structure is measured by the difference
between the five-year and the six-month zero-coupon yields.
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Figure 1: Actual and estimated drifts for a one-factor term-structure model.

The data are generated by a CIR model for which the drift in the instantaneous interest rate
is given by the solid line. The dashed line displays the drift implied by EMM parameter
estimates of a nonlinear extension to the CIR model.
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Figure 2: Actual and estimated drifts for a nonlinear one-factor term-structure model.

The data are generated by a nonlinear extension to a CIR model, for which the drift in
the instantaneous interest rate is given by the solid line. The dotted line displays the drift
implied by Kalman filter parameter estimates. The dashed line displays the drift implied by
EMM parameter estimates.
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