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Abstract

We consider the problem of the global minimization
of a function observed with noise. This problems
occurs for example when the objective function is
estimated through stochastic simulations. We pro-
pose an original method for iteratively partitioning
the search domain when this area is a finite union
of simplexes. On each subdomain of the partition,
we compute an indicator measuring if the subdo-
main is likely or not to contain a global minimizer.
Next areas to be explored are chosen in accordance
with this indicator. Confidence sets for minimizers
are given. Numerical applications show empirical
convergence results, and illustrate the compromise
to be made between the global exploration of the
search domain and the focalization around poten-
tial minimizers of the problem.

1 Introduction

Let us consider the problem of finding a global min-
imum of an objective function in the presence of
noise, and when the search domain is a simplex (or
a finite union of simplexes), for example when we
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try to find percentages that are summing to one.
Since all percentages are summing to one, any per-
centage can be deduced from the others. It follows
that considering d+1 percentages, d ∈ N∗, the set of
all possible input parameters can be represented by
a simplex Θ in dimension d. This problem occurs
in the context of finance, when considering asset
allocations. Finding the right allocation is usually
done by finding percentages of investments leading
to minimizing a risk indicator (which can also take
into account return considerations). In engineering
problems, the problem of finding percentages that
are summing to one appears in the mixture experi-
ment field [cf. 7]. The same problem can be consid-
ered if the search domain can be represented as a
finite union of simplexes (e.g. global optimization
on a hypercube with linear constraints). In me-
chanical engineering the presence of a noise on the
output is discussed in [14]. As mentioned in [36],
traditional response surface methods often assume
that experiments have sources of error, i.e. noise.
The considered error may come from physical ex-
periments or from computer experiments, from the
use of simulation tools.

One considers a function f : Θ 7→ R, where
Θ ⊂ Rd. We assume that f is continuous, bounded,
but not necessarily differentiable. In the case where
f(θ) cannot be computed analytically, it is deduced
from stochastic simulations. When this objective
function is estimated through simulations, it in-
volves estimation errors. The simulation model
thus gives realizations of a noisy (random) function
F :

F (θ) = f(θ) + ε(θ) , θ ∈ Θobs

where Θobs = {θ1, . . . , θm} is the finite set of ex-
plored points, where f(θ) ∈ R is the determin-
istic objective function. The random variables
{ε(θ)}θ∈Θ represent noise due to simulations. We
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assume E [ε(θ)] = 0, V [ε(θ)] <∞. We also assume
that distinct elements of {ε(θ)}θ∈Θ are mutually
independent.

The objective function can only be observed with
noise: realizations of F (θ) are the only observable
quantities, for θ ∈ Θobs. It follows that observa-
tions at each point θ usually need to be repeated in
order to estimate f(θ). In this framework we want
to estimate both:

1. The unique minimal value of f ,

m∗ = inf
θ∈Θ

E [F (θ)] = inf
θ∈Θ

f(θ) .

2. The set of all parameters leading f to be close
to this solution m∗:

Sx = {θ ∈ Θ,E [F (θ)] 6 x} ,

for any given x ∈ R in the neighborhood of
m∗.

The proposed algorithm consists of choosing ade-
quate observations points in order to estimate these
quantities.

Literature Various optimization algorithms
have been proposed in the literature. When
we look for a local minimum, some methods
are well known, like gradient descent methods,
Newton-Raphson, Hooke and Jeeves algorithm,
method from [27], or specific methods related to
some particular shapes of f , e.g. convexity. In
the presence of noise, certain stochastic algorithms
aiming to determine local optima or roots can also
be considered [cf. 21, 6, 38, 30].

Even without noise, the problem of finding a
global minimum rather than a local minimum is dif-
ficult, and this field is more recent [cf. 16]. In some
sense, we need to ensure that the search domain is
sufficiently explored. Without noise, Lipschitzian
optimization, Schubert algorithm [cf. 34], DIRECT
algorithm [cf. 18] or Efficient Global Optimization
(EGO) [19] can be used. Interval methods are also
used for structural optimization [cf. 35]. A review
of global optimization methods for engineering ap-
plications is available in [3].

Here, we consider the problem of the global op-
timization of a function observed with noise. Fur-
thermore, the objective function is not necessarily

convex or differentiable. Some methods like sim-
ulated annealing [cf. 1, 8], genetic algorithms [cf.
2, 26, 41] or Evolution Strategies can be used [cf.
12, with application to shape optimization]. Some
methods are derived from branch-and-bound algo-
rithms [28]. Finally, some methods adapted from
the construction of response surfaces are devel-
oped, either using kriging [cf. 22, 23, 29, 32] or
other interpolation techniques [cf. 31]. Some algo-
rithms rely on bayesian settings and information
theory [cf. 4, 39]. Detailed studies on global opti-
mization can be found in [24, 15, 11, 13, 40]. Many
presentations of the Workshop on Noisy Kriging-
based Optimization (Bern, november 2010) give
some methods or illustrations of the widespread
question of global optimization with noise.

The problem is here distinct from the one where
the noise relies on input parameters of the objective
function (uncertainty propagation), for which other
approaches may be useful [cf. 17].

Among global optimization algorithms, many
techniques in the literature rely on the choice of one
exploration point among a finite set of candidates.
Moreover, the optimization itself sometimes relies
on the construction of a predictor. The computa-
tion of this predictor at several candidate points
can be time consuming. In this paper, we propose
an algorithm which eases the construction of the
candidate set, and where the optimization time can
be easily reduced.

Problem The optimization procedure will pro-
vide observations of F (θi) for some points θi ∈
Θobs. When observations are repeated at each
point, a sample of observations {Fj(θi)}j=1...n(θi)

is created at each point θi ∈ Θobs. From these
repeated observations, one can build an estimator
f̂(θi) of f(θi). One can also get the estimation error

σ̂2
e(θi), which is the estimated variance of f̂(θi):
f̂(θi) = 1

n(θi)

∑n(θi)
j=1 Fj(θi) ,

σ̂2(θi) = 1
n(θi)−1

∑n(θi)
j=1 (Fj(θi)− f̂(θi))

2 ,

σ̂2
e(θi) = 1

n(θi)
σ̂2(θi) .

(1)
Denote by m the number of elements in Θobs =

{θ1, . . . , θm}. The total number of observations is
equal to n(θ1)+. . .+n(θm). This raises the problem
of the choice of both the set Θobs and the number
of replicates required to estimate f̂(θi), θi ∈ Θobs.
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In the financial field, the evaluation of a risk in-
dicator may involve simulating multiple paths of
some complicated random processes which can be
time-consuming. In the engineering field, physical
experiments as well as computer experiments may
be expensive. Since computers are acting on finite
sets in finite time, the evaluation budget of Fj(θi)
is limited. Thus a compromise has obviously to be
found between two alternatives:

• Exploring: Should one choose a large value of
m and then small values of n(θi), θi ∈ Θobs ?

This would lead to noisy estimations f̂(θi) and
a noisy optimal value.

• Or reducing noise: should one choose a little
value for m and large values n(θi), θi ∈ Θobs

? This would reduce the noise on f̂(θi), but
with an insufficient exploration of Θ, and the
proposed optimum might be a local one.

In the following, we consider a minimal value of
n0 replications of F (θ) for each exploration point
θ (when necessary, the proposed algorithm will in-
crease this quantity). Indeed, when the noise is
non-homogeneous, the algorithm will rely on the
estimation of σ2

e , and we thus assume that n0 > 1.
Another way to estimate σ2

e , allowing n0 = 1 when
using an assumption of a homogeneous noise, is
to use kriging with an estimation of the noise ef-
fect (nugget effect) through empirical variograms or
maximum likelihood estimation; the noise is then
estimated globally, and does not necessarily rely
on replications of F (θ) at same input points. This
question is the one of the estimation of the (nonho-
mogeneous) noise amplitude, and the best way to
estimate this noise may depend on the considered
problem.

2 A global optimization algo-
rithm

The proposed algorithm is based on a Branch-and-
Bound algorithm. An iterative partition of the
search domain will be constructed but, nonethe-
less, no area will be definitively excluded from the
search. At each step the exploration of one area
will be improved, and the choice of an area will
depend on the probability that the area contains a

minimizer, as will be explained in a further detailed
model below.

In summary, denoting by Z = {Zi}i=1,2... a parti-
tion of the initial search domain Θ, the basic princi-
ple of the algorithm consists in two steps (that will
be detailed or slightly modified in following sec-
tions):

• A branching step: one area Z∗ ⊂ Θ will be
chosen and divided into two parts.

• An evaluation step: for each area Z, a quantity
named potential will indicate if the area may
contain a minimizer.

2.1 Partitioning the search domain

Consider an area Z of the search domain Θ. That
is Z ⊂ Θ is a subset of the search domain. It seems
quite convenient to choose a convex domain for Z,
each point being then more easily linked with the
explored vertices of the area.

There are many ways to separate a convex do-
main into several domains. This topic can be linked
to triangulation topics [cf. Delaunay’s triangula-
tion 10]. Some optimization algorithms rely on a
separation in several hypercubes of Θ (cf. DIRECT
algorithm, [18]).

The branching step relies on some choices that
are detailed here:

• The separation of an area Z ⊂ Θ will rely on
the exploration of a set of nZ new points of
the area. In order to maximize the available
information used for the choice of each point,
we have chosen to restrict this set to only one
point, that is nZ = 1.

• Due to the initially considered shape of the
search domain Θ which is a simplex of Rd, we
have here chosen to separate Θ into simplexes
(and not into hypercubes or other convex ar-
eas).

• If an area Z is a simplex of Rd, one can sepa-
rate Z into d+ 1 simplexes by exploring a new
point into the interior of Z. We decided here
to place the new explored point in one edge
of the simplex, thus dividing the simplex into
two parts.

3



Figure 1: First iterations of a partition of a 2-
simplex. Arrows indicate the added observed point
at each step.

• At last, the separating point will be chosen
in the middle of one of the longer edges of the
simplex: this will lead to a straightforward vol-
ume calculation of the two divided areas and
avoids the creation of some very flat simplexes
after successive separations.

The detailed dividing procedure of an area Z ⊂
Θ is given here. Consider an area Z ⊂ Θ, simplex
of Θ. Denote by {θ1, . . . θd+1} the d+ 1 vertices of
this simplex Z. If one decides to divide Z into two
areas, then Z1 will be constituted of two simplexes
Z1 and Z2, built as follows:

• Choose one of the longer edges [θi0 , θj0 ] of the
simplex Z, i0, j0 ∈ {1, . . . , d+ 1}, i0 6= j0.

• Define the separating point θ+ as the middle
of this longer edge, θ+ = 1

2 (θi0 + θj0).

• Define the simplex Z1 by its vertices:

({θ1, . . . θd+1} \ θi0) ∪ θ+ ,

define by the same way Z2 by its vertices:

({θ1, . . . θd+1} \ θj0) ∪ θ+ .

It seems to us that this branching procedure
would be very easy to implement, suited to the
simplex. The exploration of only one point at each
step, thus not depending on the dimension d of the
problem is one of the advantages of such a branch-
ing step. At last, this separation methodology al-
lows to explore, after successive steps, both fron-
tiers and interiors of the considered areas.

In Figures 1 and 2, an example of an iterative
partition of a simplex in dimension d = 2 is given.
Note that, since at each step one point is explored
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Figure 2: Partition of a 2-simplex into
60 areas. Here the search area is Θ ={

(x, y) ∈ [0, 1]2, x 6 y
}

.

on the edge of a simplex of the partition, it is possi-
ble without supplementary cost to divide adjacent
areas, as shown in the last right illustration of the
Figure 1.

Many optimization algorithms rely on the con-
struction of a response surface, which allows to
choose a point to explore among a set of candi-
dates [cf. 20]. Computers are acting on finite sets in
finite time, and this candidates set is necessarily fi-
nite. The segmentation of the search domain avoids
the construction of this candidates set. This ques-
tion is important since this candidates set should
intuitively increase in size with the required preci-
sion on the minimizer.

2.2 Potential of each area

The idea of defining a potential is to see if an area is
likely to contain a point leading to a lower minimum
than the one which has been so far estimated. Con-
sider that we have already explored a set of points
Θobs = {θ1, . . . , θm}. For each point θ ∈ Θobs, we

can calculate the estimator f̂(θ) and its variance,
the estimation error, σ̂2

e(θ) (cf. Equation 1), so that
we can define a synthetic set of observations

T =
{(
θ, f̂(θ), σ̂2

e(θ)
)
, θ ∈ Θobs

}
. (2)

A very common way to build a predictor from these
observations is to use a kriging predictor of f . In
this case, one can define a random predictor f̃T (θ)
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as a gaussian random variable. This variable is as-
sumed to be centered on the kriging mean at point
θ with a variance given by the kriging variance. Ex-
pressions of the kriging mean and variance as para-
metric functions of the set T and point θ are de-
tailed for example in [22]. We just remark that the
kriging predictor shall be adapted to the fact that
observations are noisy. This leads to using kriging
with adding a noise effect on the covariance matrix,
corresponding to estimations errors (this noise ef-
fect is sometimes called nugget effect). Some details
on possible kriging predictors are given in the nu-
merical applications section. The kriging variance
will depend on both a spatial error, due to the dis-
tance between the considered point and explored
points, and an estimation error, due to estimation
errors at explored points.

Suppose that we want to find the set of points
leading the predictor f̃T of the function f to belong
to a given interval J . For a minimization problem,
one can consider for example J =]−∞, m̂∗], where
m̂∗ is an estimation of the minimal value of f .

We first define a notion of the potential of an
area Z, Z ⊂ Θ.

Theorem 2.1 (Potential of an area). Given ob-
servations set T , and given a target interval J , the
potential of an area Z is:

βJ,T (Z) = V (Z)·P
[
f̃T (θZ) ∈ J

]
=

∫
Z

P
[
f̃T (θ) ∈ J

]
dθ .

where V (Z) is the d-volume of the area Z, and
where θZ is a random point, with uniform distri-
bution in Z.

For disjoint areas Z1 and Z2, it follows in partic-
ular that βJ,T (Z1 ∪ Z2) = βJ,T (Z1) + βJ,T (Z2).

Consider now a partition Z = {Z1, . . . , Zn} of
the initial search domain Θ: all areas of Z are dis-
joint, and their union is Θ. The area to be explored
will be picked randomly, with a probability propor-
tional to its potential. The following proposition
gives more formally the probability to choose an
area Z ∈ Z.

Theorem 2.1 (Probability to explore an area).
Given a partition Z = {Z1, . . . , Zn} of Θ, assume
that the probability ρJ,T (Z) to choose an area Z of
Z is proportional to its potential:

ρJ,T (Z) =
βJ,T (Z)∑

Zi∈Z βJ,T (Zi)
.

Then this probability is:

ρJ,T (Z) = P
[
θU ∈ Z f̃T (θU ) ∈ J

]
,

where θU is a random point with uniform distribu-
tion on Θ.

Proof Since θZ has the same distribution as θU
given that θU ∈ Z, one can show that

βJ,T (Z) = V (Z)P
[
f̃T (θU ) ∈ J θU ∈ Z

]
.

Since P [θU ∈ Z] = V (Z)/V (Θ), by elementary
conditional calculations one finds,

βJ,T (Z) = V (Θ)P
[
f̃T (θU ) ∈ J ∩ θU ∈ Z

]
.

Now write γJ,T (Z) = aβJ,T (Z), where a is a con-
stant. Obviously,

βJ,T (Z)/
∑
Zi∈Z

βJ,T (Zi) = γJ,T (Z)/
∑
Zi∈Z

γJ,T (Zi) .

(3)

Assuming that P
[
f̃T (θU ) ∈ J

]
> 0, and setting

a−1 = V (Θ)P
[
f̃T (θU ) ∈ J

]
, we get

γJ,T (Θ) = 1 . (4)

Therefore

γJ,T (Z) = P
[
θU ∈ Z f̃T (θU ) ∈ J

]
.

It follows that, for disjoint areas Z1 and Z2,

γJ,T (Z1 ∪ Z2) = γJ,T (Z1) + γJ,T (Z2) ,

so that from Equation 4∑
Zi∈Z

γJ,T (Zi) = γJ,T (Θ) = 1 , (5)

and from Equations 3 and 5, we get

ρJ,T (Z) = γJ,T (Z) = P
[
θU ∈ Z f̃T (θU ) ∈ J

]
.

2

Proposition 2.1 is interesting since it gives a quite
natural interpretation of the relative potential of
each area: the probability to choose an area Z,
given that a point θU chosen without preference
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is interesting (i.e. f̃T (θU ) ∈ J), is the probability
that this point belongs to Z.

Consider a partition of the search domain in mul-
tiple small areas. From Proposition 2.1, one can see
that the chosen heuristic is distinct from the max-
imization of an Expected Improvement [as defined
in 19]: the potential is not an Expected Improve-
ment, and we do not choose to explore directly the
maximal potential area. This choice is relying on
the idea that for identical (or roughly identical) po-
tentials, the exploration should be uniform on the
search domain: this leads to a sharing of the evalua-
tion budget according to the potential of each area.
This choice is easy to adapt to other shapes of tar-
get interval J , and to quantile inversion. One can
also motivate this choice by the fact that, if the
predictor f̃T does not change when T grows, the
maximization of an Expected Improvement would
lead to exploring always the same point. Explor-
ing the area of the best potential thus seems to
rely heavily on the goodness of fit of f̃T . Some au-
thors found that the search by the maximization
of an Expected Improvement is too local when the
estimated parameters are not good [33]. At last,
it is possible to accentuate the differences between
low and high potentials by simple distorsions (e.g.
changing a potential β ∈ [0, 1] in βγ , γ > 1): tak-
ing an extreme distortion (e.g. large γ) would lead
to exploring only areas of maximal potential. As
a summary, an area is supposed to be interesting
if its potential is high. This occurs, on the one
hand, if vertices of this area leads to estimations of
the objective function close to the estimated min-
imum. On the other hand, an area may contain a
minimizer if it is large enough, that is if it contains
points far enough to vertices, that thus have to be
explored. Intuitively, this last point relies heavily
on the estimated regularity of the underlying ob-
jective function.

For practical evaluations of the potential
βJ,T (Z) when Z is a simplex, [37] shows how to
sample a point uniformly on a simplex. In the
case where one wishes to reduce the computation
time of the potential (e.g. when evaluations of
F are not so expensive, and many points have to

be explored), the probability P
[
f̃T (θZ) ∈ J

]
may

be replaced by a probability P
[
f̃T (θB(Z)) ∈ J

]
where B(Z) is a point supposed to be repre-

sentative of the area, e.g. its center. Even if
this would change the considered probability, the
relative potential of each area may not change a lot.

In [31], some remarks are done on links between
potentials and Expected Improvement [as defined
in 19]. An advantage of the potential is that
its definition is suited to any target interval J .
Considering other target interval than ] − ∞,m∗]
may be interesting, for example, to find level
curves of a function. In the insurance field or
when analyzing risks, this is a common problem
for solvency requirements. The constitution of a
solvency capital in order to avoid ruin (or negative
events) in a given percentage of scenarios, leads
to finding quantiles of losses, and corresponding
input parameters.

When one considers the minimization case, one
can set for any area Z:

βT (Z) = βJT ,T (Z) with JT =]−∞, m̂∗T ] , (6)

where m̂∗T is an estimator of m∗ given observations
T . As an example, in further numerical illustra-
tions we have chosen a conservative estimate of m̂∗

by using
m̂∗T = f̂(θ∗T ) + λσ̂e(θ

∗
T ) , (7)

where λ is a positive constant and where θ∗T ∈ Θobs

is an actual explored minimizer. This is to avoid
situations where, due to the estimation noise on
m∗, the estimated value m̂∗T is lower than m∗,
which would lead to considering the objective func-
tion of some interesting areas too far from this un-
derestimated value m̂∗T .
For the sake of clarity, the subscript T will be omit-
ted when there is no ambiguity: the potential of an
area Z will be simply denoted by β(Z), and the
estimator of the current minimum m̂∗.

2.3 Re-exploration of some points

In previous section, we have seen how to calculate
the potential of each area belonging to a partition Z
of the search domain. This allows to choose at each
step one area to be explored, for example by picking
an area randomly, with a probability proportional
to its potential.

Once an area is chosen for the exploration, one
can wonder if it is necessary to partition this area
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further and then create a subpartition Z′ of Z, or if
it is more interesting to replicate observations of F
at some vertices θi of the area, in order to reduce
the noise relying on the estimated value of f(θi),
i ∈ {1, . . . , d+ 1}.

In this section, we will study this question.
Should we divide an area around a point θ+, middle
of an edge [θ1, θ2]? or should we explore again θ1 or
θ2? It is obvious that, in the absence of noise, re-
exploring a vertex θ would lead to the same evalua-
tion of F (θ) and is then useless. The re-exploration
is justified only by the noise perturbing the evalu-
ation of f .

Consider that an area Z has been chosen for the
exploration. We have seen that the potential of an
area was relying on the variance of the predictor
(see Definition 2.1 on page 5, where the variance
of f̃T is kriging variance). This potential is thus
depending both on estimation errors and on spatial
errors.

• Suppose first that we explore again a vertex
of the area Z. since the area is not modi-
fied, the spatial structure will not change, but
the estimation error at explored points will
be reduced. This reduction is easy to esti-
mate since the estimation error depends on
the number n(θ) of repeated observations in
θ. Write σ2(θ) = V [F (θ)] = V [ε(θ)] the
variance of the random variable F (θ). The
estimation error σe(θ) is the standard devia-
tion of the empirical mean of a random sam-
ple of n(θ) observations of F (θ): σe(θ) =
σ(θ)/

√
n(θ). Adding n+ observations would

lead to the new estimation error at point θ:
σ+
e (θ) = σe(θ)

√
n(θ)/

√
n(θ) + n+, which is

straightforward to estimate. We can thus esti-
mate what would be the potential of the area
after the exploration.

• Suppose now that we decide to separate the
area Z into several parts around the separation
point θ+. It is quite easy to estimate σ(θ+),
and thus to estimate what would be the esti-
mation error σe(θ

+) if one samples n+ values
of F (θ+). The spatial structure on new sep-
arated areas is only depending on the known
position of each vertex of Z and of θ+ and,
again, we can estimate the potential of each of
the future separate part of Z.

In summary, before sampling some new values of
F (θ), it is possible to estimate both the values of

the potentials β̂(Z1) and β̂(Z2) in the case where
we divide the area Z, and to estimate the potential
β̂(Z) of the area in the case where new replications
of F are made on an already explored point.

The maximal potential over all areas constitute
an indicator of the convergence of the algorithm:

βmax(Z) = max
Z∈Z

β(Z) .

If this indicator is small for all areas, one can say
that either the volume of the area is small (and the
area have been explored), or the potential at the
center of the area is small. Aiming at minimizing
this maximal potential βmax(Z), one can propose
the following dividing rule:

Divide if max
{
β̂(Z1), β̂(Z2)

}
6 β̂(Z) . (8)

This rule leads to a systematic division for non-
noisy function F , systematic improvement of the
estimation error on an already explored point if the
estimation error is huge: this is a desired property
since it is useless to reexplore the function at the
same point when there is no noise.

Other dividing rules may be imagined, either
based on other convergence criterions, or based on
direct comparisons of measures of spatial errors and
estimation errors.

2.4 Summary of the algorithm

The proposed algorithm is here summarized (cf.
Algorithm 1). Given a partition of the search do-
main, the algorithm allows at each step to compute
the potential of each subdomain of the partition.
One then can pick randomly an area with a proba-
bility proportional to its potential. The chosen area
is then explored. Depending on the choice to split
this area or to reduce the noise at its vertices, this
area is either divided into two parts, or replications
of observations of the noisy function F are done at
one vertex of the area.

Finally, when the algorithm has finished (e.g.
when the evaluation budget of F is consumed), one
can get for each subdomain of the partition the
volume and the potential of the area. For each un-
explored point of the search domain, one also can
compute the potential of this point, without other
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evaluations of F . This allows us to get the set of
potential minimizers of the function f , given a con-
fidence level s:

Ŝm∗,s = {θ ∈ Θ, β(θ) > s} with β(θ) = P
[
f̃T (θ) 6 m∗

]
.

3 Numerical illustrations

3.1 Kriging predictor and simplifica-
tions

In order to build a random predictor f̃T (θ), we

have chosen to interpolate estimated values of f̂ at
some observed points, using observations set T (cf.
Equation 2) and simple kriging. Kriging accounts
for noise, which can be non-homogeneous, and is
contained in the observation set T . This noise is
here estimated through n0 replications of F (θ), but
n0 can be set to 1 if the noise variance is given. We
have chosen a Gaussian covariance matrix, where
the covariance function k(d) is supposed to depend
only on the distance d between two distinct points:

k(d) = s2 exp(−(d/w)2) d > 0 .

The question of the estimation of s and w is not
studied here. We have chosen some parameters
that seemed reasonable to us, without trying here
to get the best possible estimations. The purpose
was mainly to understand the behavior of the al-
gorithm since fixing these parameters directly in-
volve an arbitrage between local and global search.
In section 3.2, we used (s, w) = (10, 0.3). In sec-
tion 3.3, we used either (s, w) = (1, 0.3) (Figure 7,
right), or (s, w) = (0.1, 0.3) (other illustrations).
These values are recalled when necessary.

We consider here the case where simulations that
are done to determine one F (θ) are quite long,
thus justifying a limited evaluation budget. Nev-
ertheless, each evaluation of F does not necessarily
take many hours, and the number of tested input
parameters might thus be quite high (say several
thousands). Many engineering situations also in-
volve designs with several thousand parameters to
test, with tests which may take several minutes
each: we cannot always consider that all calcu-
lations of potentials are done in a negligible time
compared to evaluations of F (θ), and this does not
mean that testing all design points is fast. As an
example, considering a predictor f̃T obtained by

kriging is possible, if one assumes the existence of
a non-stationary nugget effect linked with the non-
homogeneous noise on f . It would however require,
at each step, to invert matrices of size n2

T , when nT
is the number of previously explored points, lead-
ing to heavy computations when nT is large.
For figures presented in this section, we have cho-
sen to reduce nT in order to accelerate the con-
struction of the kriging predictor: for calculating
the potential of an area, only the d + 1 vertices of
this area were considered, thus involving matrices
of size (d + 1) × (d + 1). This is a quite impor-
tant reduction of the available information around
a point, but this considerably speeds up all calcula-
tions. Depending on the considered problem, this
reduction is not compulsory. One can imagine us-
ing more points for the kriging predictor, or using
other interpolations techniques which do not imply
the inversion of large matrices [cf. 31]. If simu-
lations are very expensive, one may have time to
build a full kriging predictor of the objective func-
tion.

In numerical illustrations of this section, we also
took a slight modification of the potential of an area
Z, defined as the product of the volume of the area
and the potential of the center of the area. This
will avoid considering multiple points of each area:

β̄(Z) = V (Z) · P
[
f̃T (θBZ

) ∈ J
]
,

Where θBZ
is the center of the area Z. This center

will then be supposed to be representative of the
area (rather than a uniform sample on the area).
One should keep in mind that potentials are only
used to compare relative weight of each area. In
optimization procedures, interesting areas are sup-
posed to become small, so that the uniform ”col-
oration” of each area is not too problematic.

3.2 A basic illustration of the con-
vergence behavior

In this first illustration section, we consider an ex-
ample, as simple as possible, in order to investigate
the empirical convergence of the algorithm in sim-
plest cases. This raises the question of how to define
the convergence.

Let us consider the set S of minimizers of f and
the set Br of all points at a given distance r from
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Figure 3: Objective function f(x) = 1+sin(15x)+
αx, α = 0.01, without noise.

a solution of S.

Br =
⋃
S∈S

Br(S) with Br(S) = {θ ∈ Θ, d(θ, S) 6 r} .

One can define the proportion of evaluations of F
in Br among all evaluations, which is defined as:

pr =

∑
θi∈Θobs∩Br

n(θi)∑
θi∈Θobs

n(θi)
. (9)

where Θobs is the set of explored points. When
n(θi) = n0 for any θi ∈ Θobs,

pr = card(Θobs ∩Br)/card(Θobs) , (10)

and pr is also the proportion of explored points in
Br among all explored points (we recall that Θobs

is the set of explored points).
If one considers a uniform exploration of Θ, it

is obvious that, without any knowledge of f , any
exploration has a probability V (Br)/V (Θ) of being
at a distance lower than r from a solution, V (.)
being the volume of an area in the dimension d of
the problem. Given n exploration points uniformly
distributed on Θ, the probability that one of these
points is at a distance lower than r from a solution
is thus given by a geometric distribution, and tends
to 1 when n increases.

The minimal distance between the explored set
and one minimizer is an interesting indicator of con-
vergence, but alone is not sufficient to get an idea
of the ability of one algorithm to perform better
than a uniform exploration.

We study now the convergence of the algorithm
in one of the most simple cases one can imagine,

on a basic test function given in Figure 3, without
noise and in dimension d = 1. We draw the empir-
ical distribution of explored points, on the left side
of Figures 4 and 5. In these figures, we can observe
the distribution of explored points for different val-
ues of n, where n is the number of explored points.
One empirically sees that when the size of the ex-
plored set increases, this distribution gets closer to
a dirac distribution, or to a mixed-dirac distribu-
tion in the case of two minimizers (Figure 4). On
the right part of Figures 4 and 5, we get an idea of
the proportion pr of points belonging to Br among
explored points. In both cases, this proportion in-
creases, and gets closer to one when the number of
explored points increases.

What is particularly noticeable here is that even
when the test function have a second local optimum
very close to the global one, as in Figure 3, the algo-
rithm first considers this potential second solution,
then rapidly focuses on the correct global solution
as one can see in Figure 5. A uniform exploration of
the search domain would here lead to a uniform dis-
tribution of explored points on the left of Figures 4
and 5. It would also lead to a roughly constant
small proportion of explored points belonging to
Br on the right part of these figures, for a distance
r = 0.01. In some sense, on this very simple exam-
ple, the algorithm shows its ability to exploit the
information of previously explored points and to
perform better than a uniform exploration. It em-
pirically converges towards an exploration around
the global minimizers of the objective function.

3.3 An illustration with noise in di-
mension 2

We propose in this paragraph some illustrations
with the following random function, defined on the
orthogonal unit simplex Θ in dimension d = 2, for
any point θ = (x, y) in Θ:

f(θ) = (min(x, y)− 0.1)
2

+ (max(x, y)− 0.6)
2
,

F (θ) = f(θ) + σB(U − 0.5) ,

The variable U is a uniform random variable on
[0, 1]. In each design point θ, n0 = 10 simula-
tions were made in order to estimate both f(θ)
and σ2

e(θ). The noise is here homogeneous, and
thus estimations of the variance σ2(θ) are very close
for different sites θ. These variances were here
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Figure 4: Cumulative distribution function (c.d.f.) of explored points for n = 10, n = 100 or n = 500
explored points (left) and proportion pr = card(Θobs ∩Br)/card(Θobs) of points at a given distance to a
solution after n = card(Θobs) explorations (right). Underlying objective function f(x) = 1+sin(15x)+δx
in the case δ = 0 (two global minimizers).
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Figure 5: Cumulative distribution function (c.d.f.) of explored points for n = 10, n = 100 or n = 500
explored points (left) and proportion pr = card(Θobs ∩Br)/card(Θobs) of points at a given distance to a
solution after n = card(Θobs) explorations (right). Underlying objective function f(x) = 1+sin(15x)+δx
in the case δ = 0.01 (one global minimizer).
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Figure 7: With noise or with overestimated kriging variance: set of simulation points F with noise
σB = 0.1, s = 0.1 (left) or σB = 0.1, s = 1 (right), without re-exploration criterion. w = 0.3 and
iterations number is n = 1000 in both cases.
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Figure 6: Shape of the function f(θ) =

(min(x, y)− 0.1)
2

+ (max(x, y)− 0.6)
2
, with θ =

(x, y).

estimated as if this homogeneity information was
lost. The reduction of n0 is possible (even down to
n0 = 1), if the variance of the noise is given, or cor-
rectly estimated through the limit behavior of the
empirical variogram at small distances or by other
statistical techniques. The shape of the function f
is given in the Figure 6.

We first consider the behavior of the algorithm
without re-exploration, that is replacing the re-
exploration criterion by a systematic division: each
interesting area is systematically divided into two
parts. In Figure 7, we can see that the algo-
rithm explores the whole search domain, but fo-
cuses around minimizers. In practice it focuses
more rapidly without noise and when the function
is supposed to be regular enough. On the left part
of this Figure 7, one can see what happens with a
noise, some areas around the minimizers are heav-
ily explored in order to ensure that they do not
potentially contain a minimizer. On the right part
of this Figure 7, we deliberately gave a higher value
of s, leading to a higher kriging variance: the algo-
rithm thus assumes that the objective function is
less regular than it is, and explores more carefully
the whole search domain. Choosing very high val-
ues of s leads to a roughly uniform exploration of
the search domain. The covariance parameters can
thus be seen as a way to privilege either the local
or the global search.

In the Figure 8, we give the shape of the simula-
tion points with the re-exploration criterion. Points
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Figure 8: Simulation points for a noise σB = 0.1,
with re-exploration criterion, (s, w) = (0.1, 0.3).
The number of iterations (exploration or re-
exploration) is n = 1000. The size of bubbles at
each explored point θ = (x, y) are proportional to
the number n(θ) of evaluations of F (θ).

are re-explored and thus fewer sites are observed.
The distance between the set of explored points
to a real minimizer may thus be greater than the
one with a systematic subdivision of the search do-
main. The re-exploration criterion may be useful if
one wishes to ensure a better accuracy of the esti-
mated value of f at observed points. It can also be
important in engineering problems when each de-
sign point is expensive not only in time but also in
cash, when one needs to reduce design points (e.g.
when each design point requires a specific measure-
ment device, for example a meteorology station).
We observe that the algorithm avoids repeating
observations far from minimizers, and reduces the
noise more frequently when f is close to its minimal
value.

3.4 Comparison with other algo-
rithms

Let us use the same objective function as in pre-
vious Section 3.3. We present here a very short
benchmark, to get an idea of the performance of
the algorithm compared with other algorithms. We
define first several indicators in order to check the
global exploration of the objective function around
each minimizer. For a point θ ∈ Θ and the fi-
nite set Θobs of explored points, Θobs ⊂ Θ, define
first the distance between θ and the set Θobs as

d(θ,Θobs) = minθobs∈Θobs
d(θ, θobs). Consider now

the (here finite) solution set S of minimizers of f .
This set is supposed to be known (which is usually
the case for test functions only).
The best and worst explored solutions are defined
respectively as

S− = arg min
S∈S

d(S,Θobs) and S+ = arg max
S∈S

d(S,Θobs) ,

with corresponding distances to explored set

d− = d(S−,Θobs) and d+ = d(S+,Θobs) .

These distances aim at determining the ability of
an algorithm to find a local or a global solution:

• The distance d− is small if there exists a so-
lution point close to the set of explored points
(good local exploration of one solution).

• The distance d+ is small if all solution points
are close to the set of explored points (good
global exploration of all solutions).

Recall Br(S) = {θ ∈ Θ, d(θ, S) 6 r}. The pro-
portion of evaluations of F around a solution S is
defined as

pr(S) =

∑
θi∈Θobs∩Br(S) n(θi)∑

θi∈Θobs
n(θi)

.

The best and worst proportions are then defined
respectively as

p+
r = max

S∈S
pr(S) and p−r = min

S∈S
pr(S) .

Consider a given global minimizer S of the objec-
tive function. The proportion pr(S) gives the rel-
ative number of evaluations of F in the neighbor-
hood of this solution point S (among all evaluations
of F ). This proportion is high if many exploration
points were at distance lower than r from the solu-
tion S. Now considering all known global minimiz-
ers:

• The best proportion p+
r is high if the neighbor-

hood of at least one solution point has been
explored. It thus gives an indication of the
ability of the algorithm to find one solution
point.

• The worst proportion p−r is high if the neigh-
borhood of all solution points have been ex-
plored. It thus gives an indication of the abil-
ity of the algorithm to find all solution points.

12



In short, as previous indicators d− and d+, p+
r gives

an indication of the local performance of the algo-
rithm, whereas p−r gives an indication of the global
performance of the algorithm. The indicators p−r
and p+

r also indicate how many explorations were
made in the neighborhood of each minimizer. With
two global minimizers, the sum p−r + p+

r indicates
the relative number of explored points in the whole
neighborhood Br of minimizers. When p−r is close
to p+

r , the algorithm uses similar exploration bud-
get for each minimizer, which indicates a good equi-
librium of the exploration. In the presence of two
minimizers, best values of (p−r , p

+
r ) are thus close

to (50%, 50%) if we look for all global minimizers,
or (0, 100%) if we look for one minimizer only.

At last, the dispersion of the estimator f̂ in the
neighborhood of a solution is measured by

σe(Br) = average {σ̂e(θi), θi ∈ Θobs ∩Br} .

This indicator is the only one which is using the
values of F at explored points. It is particularly
useful to see how much can the noise be reduced
with re-exploration strategies.

The algorithm has a stochastic behavior. In or-
der to quantify its behavior, we will also present
some usual statistics of these performance measures
over a given number of runs. Random numbers are
issued from a Mersenne Twister generator, using
in all cases the same initial seed, which was chosen
before running the algorithms.

For comparison of performances with other algo-
rithms, we tried on the same test function several
algorithms, with the same evaluation budget of n =
1000 iterations (explorations or re-explorations):

• Systematic Scission and Reexploration algo-
rithms are the two variants of the algorithm
presented in this paper, using respectively a
systematic scission procedure (scission crite-
rion always set to the value true), or using the
scission criterion of Equation 8.

• EGO adaptation is an adaptation of EGO al-
gorithm [cf. 19]. At each step of the algorithm,
explored points allow to built a kriging predic-
tor of the function f . One uses this predic-
tor to compute an Expected Improvement [19]
for a set of candidate points. The candidate
point with highest Expected Improvement is

then chosen for exploration. Practically, we
used 1000 candidate points at each step, cho-
sen uniformly over the initial simplex [37]. Due
to a too high complexity of this algorithm, the
kriging predictor at each step was built using
the last 500 explored points (instead of 3 points
per area in our algorithm in dimension d = 2).
As in our algorithm, kriging parameters are
given at the beginning of the algorithm and
are not re-estimated at each step, and refine-
ments may be found to propose better suited
candidate points, or for improving the kriging
predictor. The computation of f is here very
fast compared to the optimization itself, and
thus this variant of EGO was more than sev-
eral thousand times slower than our algorithm.
For this reason, we only used 30 runs for this
algorithm, instead of 1000 runs for other algo-
rithms.

• Kiefer-Wolfowitz algorithm (KWB) We
also tried the Kiefer-Wolfowitz-Blum algo-
rithm [21, 6, 9], initialized with quite standard
parameters (the one proposed in the first page
of [21], an = (n + ν)−1 and cn = (n + ν)−1/3,
where the integer parameter ν has been added
and chosen as the one giving the best average
optimization results on a large number of
runs, leading here to ν = 262). On each run
of this algorithm, the starting position was
chosen randomly, uniformly on the search
domain [cf. 37]. This algorithm is a stochastic
optimization algorithm designed for finding
one unique solution on a convex part of a
noisy function. It is given here in order to
compare the ability of another algorithm to
find one local minimizer of the function.

• Genetic Algorithm (GA) We also tried a stan-
dard genetic algorithm. The considered algo-
rithm is given in [25]. The parameters used are
50 generations of 20 individuals, with an elite
of 5 individuals and a mutation probability of
20%. These parameters were not deeply opti-
mized, but changes on the chosen parameters
had little impact on the performance indica-
tors.

The Table 1 gives the mean, standard deviation
(std-dev), minimum and maximum (min and max),
and some quantiles (q25, q50, q75) of performance in-
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with noise: σB = 0.1
algorithm indicator mean std-dev min q25 q50 q75 max

EGO d− 2.73E-03 1.95E-03 3.72E-04 1.25E-03 2.10E-03 3.94E-03 7.94E-03
(30 runs) d+ 6.26E-03 3.63E-03 2.14E-03 3.20E-03 5.04E-03 9.74E-03 1.64E-02

KWB d− 4.52E-02 2.92E-02 3.25E-04 2.62E-02 4.73E-02 5.77E-02 2.56E-01
(1000 runs) d+ 4.96E-01 1.25E-01 2.46E-01 3.95E-01 4.96E-01 6.22E-01 6.90E-01

GA d− 6.31E-03 4.05E-03 5.12E-05 3.23E-03 5.57E-03 8.56E-03 2.93E-02
(1000 runs) d+ 1.69E-02 8.31E-03 9.99E-04 1.06E-02 1.56E-02 2.19E-02 6.13E-02

Systematic Scission d− 2.15E-03 1.65E-03 1.38E-04 1.42E-03 2.21E-03 2.21E-03 8.84E-03
(1000 runs) d+ 5.47E-03 4.69E-03 5.52E-04 2.21E-03 4.18E-03 8.84E-03 3.54E-02

Reexploration d− 4.39E-03 3.83E-03 5.52E-04 2.21E-03 2.21E-03 8.21E-03 3.54E-02
(1000 runs) d+ 1.02E-02 8.68E-03 1.42E-03 5.95E-03 8.84E-03 8.84E-03 3.54E-02

without noise: σB = 0
algorithm indicator mean std-dev min q25 q50 q75 max

EGO d− 1.10E-03 6.83E-04 1.24E-04 5.76E-04 9.33E-04 1.51E-03 3.10E-03
(30 runs) d+ 4.08E-03 1.95E-03 1.15E-03 2.59E-03 3.69E-03 5.07E-03 9.39E-03

KWB d− 4.57E-02 2.96E-02 2.30E-04 2.70E-02 4.77E-02 5.79E-02 3.02E-01
(1000 runs) d+ 4.97E-01 1.25E-01 2.46E-01 3.95E-01 4.96E-01 6.23E-01 6.90E-01

GA d− 1.12E-03 8.26E-04 8.13E-06 5.30E-04 9.25E-04 1.50E-03 6.74E-03
(1000 runs) d+ 1.89E-02 8.89E-03 5.73E-04 1.22E-02 1.79E-02 2.44E-02 7.01E-02

Systematic Scission d− 5.08E-06 3.37E-06 3.15E-07 1.80E-06 5.81E-06 8.63E-06 8.63E-06
(1000 runs) d+ 8.07E-06 1.76E-06 3.63E-07 8.63E-06 8.63E-06 8.63E-06 1.10E-05

Table 1: Usual statistics for performance measures d− and d+ over several runs. Case with noise, σB =
0.1 (up), or without noise σB = 0 (down). Common parameters are s = 0.1, w = 0.3, λ = 2, n = 1000.
Best results are indicated in bold font.

noise algorithm runs d− d+ p−r p+
r σe(Br) trun

σB = 0.1 EGO 30 2.73E-03 6.26E-03 30% 35% 9.12E-03 2675

KWB 1000 4.52E-02 4.96E-01 0% 39% 9.13E-03 < 0.01

GA 1000 6.31E-03 1.69E-02 4% 24% 9.13E-03 < 0.03

Systematic Scission 1000 2.15E-03 5.47E-03 36% 57% 9.13E-03 1

Reexploration 1000 4.39E-03 1.02E-02 30% 56% 6.92E-03 0.7

σB = 0 EGO 30 1.10E-03 4.08E-03 1% 95% < 2E-11 2678

KWB 1000 4.57E-02 4.97E-01 0% 39% < 2E-11 < 0.01

GA 1000 1.12E-03 1.89E-02 3% 26% < 2E-11 < 0.03

Systematic Scission 1000 5.08E-06 8.07E-06 40% 51% < 2E-11 1.2

Table 2: Average values of indicators over several runs. Case with noise, σB = 0.1 (up), or without
noise σB = 0 (down). Common parameters are s = 0.1, w = 0.3, λ = 2, r = 0.01. The column trun gives
an indication of relative execution times per run, with base 1 for Systematic Scission algorithm when
σB = 0.1. Best results are indicated in bold font.
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dicators d− and d+ over a given number of runs.
The Table 2 gives the average values of d−, d+, p−r ,
p+
r and σe(Br) over all runs.
With noise, the small number of runs of the EGO

variant algorithm does not allow to conclude if this
algorithm is more efficient than others or not, but
it gives an idea of its performance. One can check
here that performance indicators of this EGO vari-
ant in the presence of noise are of the same or-
der as the Systematic Scission algorithm (see Ta-
bles 1 and 2). The Reexploration algorithm leads
to higher average distances d− and d+ than the
Systematic Scission algorithm since less points are
explored (see Table 1). However, it leads to a bet-
ter knowledge of the objective function around the
minimizers: the average noise σe(Br) is reduced
compared to the Systematic Scission algorithm (see
Table 2). In both cases, with Systematic Scission
or with Reexploration, one can see that the aver-
age proportions of explored points around the best
and the worst solutions (p−r and p+

r ) are quite well
equilibrated.
Without noise, Systematic Scission and Reexplo-
ration algorithms lead to the same results, since no
reexploration is done when σB = 0 (which is a de-
sired property). These two algorithms behave very
well in this case. One major interest of the scission
procedure is that it leads to an efficient choice of
candidate points: EGO variant is here penalized
by the selection of the best point among only 1000
candidates, whereas the partition of the search do-
main in the Systematic Scission algorithm leads to
a choice among candidates mainly located around
the minimizers. This kind of dichotomic selection
allows a very good accuracy for the location of the
minimizers (see Tables 1 and 2).

The Kiefer-Wolfowitz-Blum (KWB) algorithm is
not a global optimization algorithm, and it illus-
trates here the difference of approach with other
global optimization algorithms: the exploration of
the search domain is poor. This stochastic algo-
rithm is thus to be avoided if its application condi-
tions are not fulfilled, and in particular if the sup-
posed convexity of the objective function does not
hold. An illustration of the behavior of KWB algo-
rithm is given in Figure 10. We can see in Tables 1
and 2 that the Kiefer-Wolfowitz-Blum algorithm
performs less efficiently than the other algorithms,
even for finding only one of the two minimizers (i.e.
even when considering only the best distance d−).
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Figure 11: Simulation points with a genetic algo-
rithm for 1000 points with σB = 0.1

As this algorithm is designed to find one only so-
lution, one can expect that d+ distances are very
large. One can also expect that the optimization
performs better locally, which is not the case here,
even if one can surely propose improvements for the
parameters used.

Finally, we tried a standard genetic algorithm
to see how it behaves on this problem. The per-
formance of the considered Genetic Algorithm was
correct, especially without noise for the search of
a local minimizer (see Table 2). An illustration of
the behavior of this algorithm is given in Figure 11.
The parameters were not deeply optimized, but we
always found lower performance than with our al-
gorithm, even when considering only one solution.

At last, the column trun of Table 2 gives an indi-
cation of relative execution times per run, with base
1 for Systematic Scission algorithm when σB = 0.1.
It indicates how fast or slow is the method it-
self, when the computation time of F is negligible.
These relative execution times may depend on the
implementation, the compiler and the computer.

In Figure 9, we give the value of − log10(d−) and
− log10(d+) as a function of the number n of ex-
plored points. With noise, EGO and Scission al-
gorithms lead to comparable results. EGO seems
to be locally (i.e. considering d−) more efficient
for small number of explored points. It seems to
be globally (i.e. considering d+) a little bit less
efficient than Scission algorithm. Without noise,
the Scission algorithm is here clearly more efficient.
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For EGO variant, the choice of candidate points
reduces the performance of this algorithm: even
the best point among 1000 uniformly chosen can-
didates has a small probability to be at distance
10−6 from a minimizer. As stated previously, krig-
ing parameters were not reestimated at each step
(as in Scission algorithm), and only the last 500
points were used to build a predictor (versus 3 cho-
sen points in these applications of Scission algo-
rithm). The limited performance of EGO variant
is linked to these limitations and to the choice of
1000 uniform points for evaluation of maximum Ex-
pected Improvement. This highlights an advantage
of Scission algorithm: making a partition of the
search domain helps choosing good candidates.

The proposed Scission and Re-exploration algo-
rithm can also be applied with higher dimensions.
However, it is quickly trapped by the increase of
the dimension: when the dimension is too high,
the number of explorations to perform to get a cor-
rect idea of the function becomes very high [5], and
the increase of performance, compared to a uniform
exploration, tends to vanish.

4 Conclusion

We proposed an algorithm for the global optimiza-
tion of a function observed in the presence of noise.
The algorithm relies mainly on two steps. The first
step is a branching step, which is here suited to
the simplex search domain, and can be adapted to
any area that can be partitioned in a finite number
of simplexes. The second step is the selection of
potentially interesting areas, relying on a specific
indicator. The proposed indicator takes into ac-
count the estimated underlying local regularity of
the objective function by using kriging predictors.
It also takes into account the observed proximity of
the estimate values of the objective function with
the estimated global minimal value of the objec-
tive function. This leads to a compromise between
the exploration of the search domain, ensuring that
a proposed minimizer is a global minimizer, and
a focus around supposed minimizers, ensuring a
faster convergence than a uniform exploration of
the search domain.
In our experiments, the algorithm behaves quite
well, with faster empirical convergence than some
classical stochastic algorithms like the Kiefer-

Wolfowitz algorithm, and comparable perfor-
mances with the EGO algorithm. Three advan-
tages of our algorithm are the good selection of can-
didate points, leading to good performances with-
out noise, easy reduction of the number of points
to be used for building a predictor, and as a con-
sequence very small computation time for the opti-
mization itself. Many extensions can be proposed:
the choice of the best measure for the potential of
one area is still open, and one can imagine measures
adapted from Expected Improvement, or based on
specific response surfaces. The estimation of the
noise affecting the estimated values of the objective
function relies on n0 replications of observations of
the noisy function F , and the choice of the best
value n0 or on other ways to estimate this noise
amplitude is still to be done. Specific estimation
procedures with conservative values of parameters
can be imagined, and taking into account nonlinear
constraints is an interesting perspective.
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Algorithm 1 Algorithm with possible re-
exploration

Input: evaluation budget n
Input: replicates number n0

Input: kriging parameters
Input: initial search domain Z0 = {Z0}
for j varying from 0 to n− 1
choose an area Z+ of Zj

estimate target interval J (Eq.6 and 7)

∀Zi ∈ Zj , calculate β(Zi) (Eq.6)

depending on {β(Zi)}i, pick Z+ ∈ Zj (Prop.2.1)

compute scission criterion for Z+
(Eq.8)

if scission criterion (Z+) true then
scission around a point θ+ of Z+

(Sec.2.1)

choose a separation point θ+ ∈ Z+

divide all areas containing θ+

update the new partition Zj+1

else
re-exploration of a point θ+ of
Z+

(Sec.2.3)

pick a vertex θ+ of Z+

Zj+1 = Zj , areas remain unchanged

end if
explorations at point θ+ ∈ Z+

sample n0 new values of F (θ+)

facultative update of kriging parameters

end for
Output: estimation of target interval J and m∗

Output: ∀Z ∈ Zn, V (Z), β(Z)

Output: ∀Z ∈ Zn,∀θ ∈ Z, E
[
f̃(θ)

]
, V
[
f̃(θ)

]
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(1996) A branch and bound method for
stochastic global optimization, Mathematical
Programming, vol 83, n1-3, pp 452-450.

[29] Picheny, V., Ginsourger, D., Richet, Y.
(2010), Optimization of Noisy Computer
Experiments with Tunable Precision, Work-
shop on Noisy Kriging-based Optimization,
(NKO Workshop), Bern, 22-24 nov. 2010.
Slides available at http://www.imsv.unibe.ch/

content/continuingeducation/nko_workshop/

program/index_ger.html.

[30] Robbins, H., Monro, S. (1951) A Stochastic
approximation method. Annals of Mathemati-
cal Statistics, 22, 400-407.

[31] Rullière, D., Ribereau, P. (2011) Information
aggregation and kriging alternative in a noisy
environment. Preprint. French version avail-
able on HAL.

[32] Sakata,S., Ashida, F.(2009) Ns-kriging based
microstructural optimization applied to min-
imizing stochastic variation of homogenized
elasticity of fiber reinforced composites. Struct
Multidisc Optim (2009) 38:443453.

[33] Schonlau, M. (1997) Computer Experiments
and Global Optimization, PhD. Dissertation,
University of Waterloo.

[34] Schubert, B. (1972) A sequential method seek-
ing the global maximum of a function. SIAM
J. Numer. Anal., 9:379-388.

[35] Shin, Y.S., Grandhi, R.V.(2001) A global
structural optimization technique using an in-
terval method. Struct Multidisc Optim 22, 351-
363.

[36] Simpson, T.W., Booker, A.J., Ghosh, D.,
Giunta, A.A., Koch, P.N., Yang, R.-J. (2004)
Approximation methods in multidisciplinary
analysis and optimization: a panel discussion.
Struct Multidisc Optim 27, 302313.

[37] Smith, N.A., Tromble, R.W. (2004) Sampling
uniformly from the unit simplex, Technical Re-
port, Johns Hopkins University.

[38] Strugarek, C. (2006) Approches variation-
nelles et autres contributions en optimisation
stochastique. ENPC, Thèse de doctorat.
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tions coteuses, Thèse de doctorat de physique,
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