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Confidence bands for a survival curve from censored data

By W. J. HALL axp JON A. WELLNER
Department of Statistics, University of Rochester, New York

SUMMARY

For arbitrarily right-censored data, the Kaplan-Meier product-limit estimator 8¢, provides
a nonparametric estimate of the survival function S§° = 1—F° We provide large-sample
simultaneous confidence bands for 8, centred at 5. The derivation uses the weak conver-
gence of N#{S(¢)—S°(¢)}, on a finite interval, to a Gaussian process, a theorem of Breslow &
Crowley (1974), and transforms both the time and space axes of the limiting process to
achieve a Brownian bridge limit. Parameters in the transformation are replaced by uniformly
consistent estimates to form the bands. The new bands reduce to the well-known Kolmogorov
bands in the absence of censoring. Comparisons are made with recent bands of Gillespie &
Fisher (1979) and V. N. Nair. The bands are illustrated by imposing some different kinds of
random censorship on a set of uncensored data.

Some key words: Brownian bridge; Censored data; Goodness-of-fit test; Kaplan—Meier estimator;
Survival function.

1. INTRODUCTION

Consider the problem of estimating a survival function S° =1-—F° and of providing
simultaneous confidence bands for S°. In the case of complete, or uncensored, data, the usual
empirical survival function estimates S° and confidence bands are provided by the well-
known bands based on the Kolmogorov statistic (Birnbaum, 1952). Also see Doksum (1977)
for other bands and related work in the case of complete data. The Kolmogorov bands have
been extended to completely truncated or censored samples, in which detailed data are
available only up to a fixed time 7' or up to an order statistic X,, for a fixed r, by Barr &
Davidson (1973); see also Koziol & Byar (1975) and Dufour & Maag (1978).

For arbitrarily right-censored data, which often occur in medical applications, the Kaplan
& Meier (1958) ‘product-limit’ estimator provides a nonparametric estimate of the survival
function 8° But confidence bands to accompany the Kaplan—-Meier estimator have been
unavailable.

Our object here is to provide such bands, at least for moderate or large sample sizes. We
confine attention to the ‘random censorship’ model (Breslow & Crowley, 1974), but see
Meier (1975) for interesting results concerning ‘fixed censorship’. Section 2 contains pre-
liminary results and notation. In § 3 we present confidence bands for S° and their asymptotic
justification, based on transformation of the Breslow—Crowley weak convergence result to a
Brownian bridge form. These bands become, essentially, the usual Kolmogorov bands in the
absence of censoring. In §4, we give width comparisons in several cases of interest and
speculate on size of samples necessary for adequate approximation. In §5 we illustrate the
bands by imposing random censorship on some complete survival data given by Bjerkedal
(1960). Appropriate tables appear in § 6, and an Appendix contains some proofs and comments
on derivations.

Recently, other work, one paper (Gillespie & Fisher, 1979) and an unpublished report of
V. N. Nair, have come to our attention; both contain alternative large-sample confidence
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bands based on the Kaplan—-Meier estimate, the Breslow—Crowley weak convergence theorem
for it, and Efron’s (1967) observation that the limiting process can be transformed to Brown-
ian motion. Nair presents two alternative bands: one is based on Efron’s transformation to
Brownian motion, instead of our transformation to Brownian bridge, and it does not reduce
to anything recognizable in the uncensored case. The other uses a weighted metric and a
resulting transformation to an Ornstein-Uhlenbeck limit process. It can be modified so as
to reduce to the corresponding bands in the uncensored case. The bands of Gillespie & Fisher
are based on the same transformation to Brownian motion used by Nair, but employing
linear boundaries; they also fail to reduce to the Kolmogorov bands in the uncensored case.
In contrast to ours, none of these bands as given is symmetric around the Kaplan—-Meier
estimate, although they could be so modified. Aalen (1976) has suggested Kolmogorov-type
tests for cumulative hazard functions in a more general multiple decrement model; although
Aalen’s Corollary 1, p. 24, and the discussion following it is related to the present work, our
perspective is quite different.

Our statistic, and its asymptotic distribution, can, of course, also be used for goodness-of-
fit testing when testing a simple null hypothesis as in the usual Kolmogorov test; see also § 6.
The natural analogue of the two-sample Kolmogorov—Smirnov test and other extensions will
be treated elsewhere.

For the user, the confidence bands are described in § 3 and illustrated in §5.

2. PRELIMINARIES
Let XY,..., X% be independent positive random variables with common continuous dis-
tribution function F° and survival function 8 = 1 — F°. Let 1], ..., Yy be independent positive
random variables having common left-continuous distribution function H, and suppose
that the X°’s and Y’s are independent. For any distribution function G, let

Te=inf{{>0: Q(t) = 1} < co0.

Suppose that we observe the N pairs (X;,3;), with X; = min (X?, Y;) and §; the indicator
function of X?<Y, for i = 1, ..., N. Thus the X’s are a random sample from the distribution
function F with 1 — F = (1—F°) (1 — H), and the subdistribution functions of the uncensored
and censored observations are given by
Fla)=pr(X<z,8=1) = fx(l—H)dF% A@)=pr(X<z,8=0) = J$(1—F°)dH,
0 0
respectively, so that F = F + H ; note that Tj, = min (T, T%). This is the random censorship
model for arbitrary right censoring.
The Kaplan—Meier product-limit estimate F% = S% of F0 is
- I {(N-Rp)[(N-R,+1)P* (t<Xpy),
89,(t) = {k: X<t} (2-1)
0 (= Xiw),

where Xy, = max (X, ..., Xy) and R, is the rank of (X}, 1 —8§,) in the lexicographic ordering
of (X;,1—8,), ..., (X, 1—-8y).

TaEOREM 1 (Breslow & Crowley, 1974). If F° and H are continuous and T <Tp with
F(T) <1, then the process Z3(t) = N¥S%(t) — 8°(t)}, 0<t< T, converges weakly to a zero mean
Gaussian process Z* with covariance function

cov {Z*(s), Z*(t)} = C(s) 8°(s) S°(t) (s <t), (2-2)
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where
C(s) = r(l —F)2dF = js(l —F)=2(1—H)1dF° (s<Ty). (2-3)
0 0

The theorem remains true when H is degenerate, the ‘truncation case’. Meier (1975) gives
a similar theorem for the fixed censorship model; his theorem suggests that our bands given
in § 3 remain valid for this case as well.

The function C, which reflects the ‘heaviness’ of censoring through the factor (1—H)1in
its integrand, plays a basic role in the formation and interpretation of our bands. Associated
with C is the distribution function K defined by

K@) =00 {1+0@)) (0<t<Ty),
and K(t) = 1 for ¢ > Ty. By writing (1—-H)! =1+ H(1-H),

C(t) = Fo(t){1 — Fo(¢)}* +ftH(1 —H)™Y(1—-F%-2dF°> FO(¢) {1 — F°(t)} 1,
0
and, using F+ H = F, we obtain
t t .
C(t) = f (1-F)2dF —f (1-F)2dH < F(t){1-F()}.
0 0

Hence for 0<¢< o0,
Fo(t) < K(8) < F(t). (2-4)

Now let K =1—K = (1+C)~! and let B® denote a tied Brownian motion, or Brownian
bridge process, on [0,1]. Note that the process Z* is well defined on [0, T%) and that in law

{Z*()}oatary = {BUE ()} S°(t)/ K (Yot s

since they are both zero mean Gaussian processes with covariance (2-2). Equivalently, in law
on [0, T'x) (Doob, 1949)

Z*K|S° = B% K, (2-5)

where o denotes functional composition. Thus the limiting process Z* is related to a Brownian
bridge process B° by a rescaling of the state space and a monotone transformation of the
time axis, and K enters as a ‘natural time scale’. Notice that (2-5) reduces, in the absence of
censoring, to the standard fact that in law {Z*(t)} = {B*{F°(t)}}. Subject to such a reduction,
the transformation in (2-5) can be shown to be unique.

Consideration of the convergence in Theorem 1 together with the distributional identity
(2:5) leads naturally to large-sample bands for the survival function 8° in terms of the
unknown function K. To implement our bands we will estimate C, and hence K, as follows.
Let Fy and Fy denote (Breslow & Crowley, 1974, p. 445) the left-continuous empirical
distribution function of all the observations and the left-continuous empirical distribution
function of those observations that are uncensored respectively, and let F3 be the right-
continuous version of Fy; NF7(x) is the number of X; <x. Define

Cylt) = f[ U=Fy 1 -Eytafy (0<t<Xu), (2+6)

and Cy(¢) = oo for ¢> Xy, and Ky = Cy(1+Cy)~t. This estimator agrees with standard
practice: 8% () {Cy(t)/ N} is the estimated standard error of S(t) as an estimate of SO(¢) for
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fixed ¢ (Greenwood, 1926; Dixon & Brown, 1977, p. 752). To calculate Cy and K, we use the
formulae

Oy(t) = N2y xcpp (N —2) (N =2 +1)713,, Ky(t) = {1+Cy()} . (2:7)

The following proposition gives two additional properties of €y which will be of use in
forming confidence bands for S°.

PROPOSITION.
(a) (Consistency). If F(T) <1,

sup [Cy(t) = C(8)| = 0,(1).

o<i<T

(b) (Reduction). If all the observations are uncensored then
SHB/En(t) = (1 +0p(e)}S(t) =1 (0<t<c0)

with the convention that c0-0 = 1.

See the Appendix for proofs. While (a) of the Proposition remains true for other obvious
estimators of C such as [j, (1—Fy)~2dFy or [, (1 —F%)-2dFy, the ‘reduction property’ (b)
fails for these estimators. Although the convergence in Theorem 1 is equivalent to conver-
gence on [0, Ty), it may fail at T as may (a) above.

We conclude this section by introducing notation for some limiting distributions. Let B°
denote a Brownian bridge process on [0, 1], and for 0<a<1, 0<A <00 set

GE(A) = pr {sup B(t) <A} = 1 —DAa(l —a)} ] —e 2 DA(1 — 2a) {a(l —a)}?], (2:8)

o<i<a

G, () = pr{sup | BY(1)| <A}

o<i<a
— 1-2Ba(l—a) 423 (= e NP2k —d))— B2k +d)}],  (2°9)
k=1

where @ is the standard normal distribution function, ® = 1—®, r = X{(1—a)/a}} and
d=(1-a)L
Thus

GH\) = Gf(N) = 1—e X < GFH(N) (a<1),

D
=

I
k)
=

Il
—
+
[\
Ms

(—Lke 22 <G, (A) (@<]).

&
1
-

The distribution functions G+ and G are simply the well-known and extensively tabulated
one- and two-sided Kolmogorov—Smirnov limiting distributions respectively. The distribu-
tions @ and G, are easily obtained from results concerning linear barriers for Brownian
motion with drift (Cox & Miller, 1965, p. 211; Anderson, 1960); see the Appendix for further
details. Selected percentiles of the distributions G} and @, are given in §6, and for more
extensive tables for ¢, see Koziol & Byar (1975).

3. CONFIDENCE BANDS FOR S°

We now give the confidence bands.
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THEOREM 2. If T < Ty so that F(T) <1, and F° and H are continuous, then as N — o0
pr{S°(t) <S¢ )+/\DN(t) for all 0<¢<T}—GE(N) >GH(), (3:1)
pr {S3(t) — ADy () < 8°(t) <8} (¢) +ADy(¢) for all 0<¢ < T}—>G,(2) > G), (3-2)

where
Dy(¢) = N—%S?v(t)/KN(t), (3-3)
a = K(T) = C(T){1+C(T)}* and Ky is given by (2-7).

Proof. Tt suffices to prove (3-2); the proof of (3-1) is similar. The left-hand side of (3-2) equals
pr{N|88(£) —8°(t)| < AS(t)/Ky(t) for all 0<¢< Ty~ pr{|Z*(f)| <AS°(t)/K(¢) for all 0<¢< T}
= pr{|Z*(t)| K(t)/S°(t) <A for all 0<¢< T}
= pr[| B¥K(¢)}| <Afor all 0<t<T]
= G, (),

with @ = K(T'), where the convergence holds by virtue of Theorem 1 and (a) of the Propo-
sition, and the next to last equality holds by (2-5).

For fixed T, smaller than the largest uncensored observation to ensure 7' < T}, and large
N, we obtain conservative one- or two-sided 8 confidence bands for §° in the interval
[0, 77 from (3-1) or (3-2) by choosing A = A, so that G*(A) = B or G(A) = B respectively; see
Table 1. From (b) of the Proposition, the reduction property, it follows that these bands are
precisely the usual Kolmogorov bands restricted to [0,7] when all the observations are
uncensored.

A more complicated, but less conservative, way to proceed is as follows: fix 7' smaller
than the largest uncensored observation, estimate @ by d = Ky(T'), use this d to find an
estimated A = A; in Table 1, call it A, and then assert, in the case of two-sided bands, that

pr{S%(t) —ADy(t) < S(t) < 8Y(t) +ADy(¢) for all 0<t < T}=B (34)

for large N with K, and Dy given by (2-7) and (3-3) and SY by (2-1). It is not difficult to
formalize this as a limit theorem, but we will not do so here. It is clear from Table 1 that
this more complicated procedure will be of interest only when d differs substantially from
1, e.g. less than 3.

We conjecture that the present bands remain valid for the interval 0 <¢<max{X;: §; = 1}
with @ = K(Ty); a proof would require an extension of Theorem 1.

By comparison, a pointwise confidence interval for S°(¢) at any given fixed ¢ with asymp-
totic confidence coefficient B is

S8 N(t) £ 258%(0) {Cy(t)/NR, (3-5)

where CT)(zﬂ) = 1(1—p). See Thomas & Grunkemeier (1975) for information about these and
other intervals.

4. PROPERTIES OF THE BANDS

To get some feeling for the ‘price of censoring’ it is natural to compare the width of the
bands provided by Theorem 2 with the width of similar bands in the uncensored case. In the
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presence of censoring, however, we are frequently only able to make confidence statements
about §° for a bounded subset of its support, and hence it seems unfair to compare the
bands of Theorem 2, valid on [0,7'], with the usual Kolmogorov bands, valid on [0, c0).
Thus we will compare, for a fixed confidence coefficient B, the bands of Theorem 2, with
a = K(T) and A, chosen so that G,(A) = B, with the Kolmogorov bands for the interval
[0,T] using

b=F(T)<K(T)=a

and the corresponding critical constant A, <A,.

It is easily seen that the asymptotic width of the bands in Theorem 2, for the less con-
servative procedure suggested in the discussion following the theorem, is 21, N—*S°(¢)/K(¢),
while the asymptotic width of the Kolmogorov bands is 2)A,NN—%. Hence the ratio of the
asymptotic widths is

Ay S°(¢)
A K ()
Since A, <A, and K(t)<8°(t) by (2-4), both factors are >1, so that »>1 always. Also, it is
easily shown, using C < F(1— F)~1, that r is nondecreasing in ¢.

To examine the effect of censoring on 7, and on functions C and K, consider the following

four cases, arranged in increasing severity of censorship. Cases 3 and 4 are probably of
greatest interest for typical medical settings. All four cases will be illustrated in § 5.

r(t) = r(censored : uncensored) = (4-1)

Case 1: uncensored. If H = 0, then C = FO(1 —-F°)1 = F°/8° so that K = F°, and (2:2)
reduces to F(s) {1 — F°(t)} for s <¢ the familiar covariance function of the empirical process
for complete data. Of course r(¢) = 1 identically in this case.

Case 2: censoring with unbounded support. If T = Ty = o0 and H is continuous, then
O(s) = F(s)/8°(s) with strict inequality for some s and K(t) > F°(¢) increases continuously to
1 as ¢t —>o00. In this case r(¢)—o0 as £—>o00, by L’Hopital’s rule, and hence the bands will be
quite wide in the tail, but will still be valid for most of the support of S°.

For example, if 1 — H(t) = {S°(¢)}’ with 0 <8< o0, then as o0

SO(t)/ K (t) = (1+6)71[08%(2) + {S°(t)} ] - co.

Case 3: ‘light’ censoring with bounded support. If T = T <00 and C(T% —) < oo, then
K(Ty—)=C0Tyg—-){1+0(Tyg—)}"<1 while K(Ty) =1, so that K has a jump of height
{1+C(Ty—)y* at Ty. Hence K(t)>K(Ty—)>0 and 1<8°()/K(t) <8(Ty)/K(Ty—) < 00
for all 0<¢<Ty. Therefore

A 8°(T )
sup r(t) = & = —=—— <
AW
in this case, but the bands are valid only for intervals [0, 7] with 7' < T.

For example, if H puts mass 1 at Ty, then C(t) = FO(¢)/S°(¢) for 0<¢< Ty, and is infinite

for ¢ > Ty, so that K(¢) = F°(t) and 1, respectively. This is truncation-type censoring, corres-

ponding to all patients entering a study simultaneously in a medical setting (Barr & Davidson,
1973).

Note that Case 3 also includes ‘lighter than uniform’ censoring 1 — H(¢) = (1 —¢/Ty)* with
0<y<1, assuming FO(Ty)<1. To illustrate this concretely, if somewhat unrealistically,
suppose that 1 —H(f) = (1—¢)} (0<f<1) and 1 —F°(t) = 1 —}¢ (0<¢<2). Then

C(t) =1+7—(1—¢)}(1—%)1—4arctan {(1 —¢)}} (0<i<1),
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so that C(1—) = 147 and K(1—) = (1+m) (2+m)~1=0-806 < 1. Thus
8o(t)/K(t) < S°(1)/K(1 ) = }(2+7) =257

for all 0<é< 1. Since b = FO(1) = 4, a = K(1—) = 0-806, for 8 = 0-90 we find A, = 1-133 and
A, = 1-222, Therefore
sup 7(t) = (A/Ap) {S°(1)/K (1 — )}=2-77.
0<i<1
Case 4: ‘heavy’ censoring with bounded support. If Tf = Ty <0, H is continuous, and
C(Ty—) = oo then, as ¢} Ty, limK(t) = 1 and K is continuous. Therefore, if SO(Ty)> 0,
SO(t)/ K (t) >0 as t— Ty and

sup 7(¢) = oo
<Tw

in this case.

For example, if 8%(T%) >0 and 1-H(t) = 1—t/Ty (0<t<Ty), then K(Ty—) = K(Ty) = 1
and r(t) increases logarithmically as ¢ — T;.

For extremely heavy censorship the upper band of Theorem 2 may fail to be nonincreasing,
since N—48%,(¢)/Ky(t)=N-*8°(t)/ K (¢) may increase more rapidly than §%(¢)==S(¢) decreases.
In such cases the upper band may obviously be replaced by its greatest nonincreasing
minorant without affecting any of the probability statements. This should not be a serious
problem in practice.

We now comment on the size of samples needed for adequate approximation using these
asymptotic methods. Since our bands are not distribution-free except asymptotically, due to
censoring, no general conclusions are possible. But some guidance can be obtained from the
uncensored and truncation cases.

For the uncensored case with a = 1, our bands reduce to the Kolmogorov bands on an
unrestricted interval. If we use the critical constants from Table 1 to construct bands, then
the true finite-sample coverage probability B, may be found by interpolation from Table 42
of Odeh ef al. (1977). At N = 15, the true coverage probability is 0-994 corresponding to
nominal 8 = 0-99 and 0-791 corresponding to nominal 8 = 0-75; at N = 50, the corresponding
coverage probabilities are 0-992 and 0-772. From another perspective, use of the asymptotics
has led to bands which are unnecessarily wide: 4%, too wide when N = 15, 3%, when N = 25
and 2%, when N = 50, for 8 between 0-75 and 0-99. Further comparisons are given by
Birnbaum (1952, Table 2).

Using computations of Dufour & Maag (1978), we can do a similar evaluation for the case
of truncated samples, corresponding to H degenerate at Ty, for N = 10(5) 25 and B ranging
from 0-85 to 0-99. Comparison of their critical constants with ours in Table 1, for a ranging
from 0-5 to 1, shows bands based on asymptotic theory to be 4-5%, too wide when N = 15
and 3%, too wide when N = 25. The conservative nature of all of these comparisons is note-
worthy.

It seems likely that our two-sided bands can be used for sample sizes in this range without
serious difficulty.

By contrast, the computations of Gillespie & Fisher (1979) suggest that sample sizes well
in excess of 200 may be needed to validate asymptotic theory for their bands, even in the
uncensored case. Moreover, asymptotic theory apparently overestimates true coverage
probability for their bands, and their bands are highly asymmetric in contrast to the sym-

metry of ours; the latter could be corrected by using asymptotically equivalent symmetric
bands.
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5. ILLUSTRATION OF THE CONFIDENCE BANDS

Here we illustrate the confidence bands by imposing random censorship on data given by
Bjerkedal (1960). Bjerkedal gave various doses of tubercle bacilli to groups of 72 guinea pigs
and recorded their survival times. We concentrate on his Regimen 4.3, which contains no
censored observations, so that we have a complete data set initially.

The usual empirical survival function and 909, two-sided Kolmogorov confidence bands
for §° for the complete or uncensored set of 72 observations are shown by dotted lines in
Fig. 1. We used the asymptotic critical constant A = 1-224 from Table 1 for all the bands.

1-0

Uncensored

Probability

%
$

| | |
0 50 100 150 200 250 300

Survival time (days)
Fig. 1. Survival function estimates and 909, confidence bands: ‘uniform’ censoring and uncensored.

The plot has been truncated at 300 days; only eight survival times, 327, 342, 347, 361, 402,
432, 458, 555, exceed 300 days. The width of the band is 2AN—#=0-289 away from the tails.
All the graphs should be step functions, but we have interpolated linearly between observa-
tions for convenience in plotting.

The solid lines in Fig. 1 represent the Kaplan-Meier estimator and 909, two-sided
confidence bands for Bjerkedal’s data after applying uniform censoring: random variables
Y; were drawn from the uniform distribution H(f) = ¢/220 (0<¢<220) as if ‘patients’, or
guinea pigs, arrived at random during a 220-day study period, corresponding to Case 4 of § 4.
In other words, we treated Bjerkedal’s data as the X¢’s of the beginning of §2, generated
72 independent ¥;’s as noted, and obtained X,’s and §,’s as defined in §2.

This censoring resulted in 23 uncensored and 49 censored observations or 689, censoring,
with the last uncensored observation at 168 days. Note that the estimator has changed very



Confidence bands for a survival curve 141

little from the uncensored case over the interval for which data are available for estimation,
but that the confidence bands have widened substantially : for example the width at 160 days
is approximately 0-406 compared with 0-289 in the uncensored case. This is in keeping with
the discussion in §4.

We also applied ‘exponential’ censoring and light censoring with bounded support
corresponding to Cases 2 and 3 of §4. We have not displayed the results here. The confidence
bands were very similar to those for the uncensored case, over the period for which data
were available, but slightly wider.

We conclude by illustrating the less conservative bands (3-4) for the uniformly censored
data of Fig. 1 and the pointwise confidence intervals (3-5). We chose 7' = 160 since the last
uncensored observation was 168, and found @ = 0-66 and thence A = 1-200. The corresponding
909, confidence band on the interval [0,160] is virtually identical, only 29, narrower, to
that in Fig. 1 where A = 1-224 was used instead. If a band was desired over a shorter interval,
or if the censoring were of truncation type, it would be slightly narrower yet. By contrast,
an appropriate 909, confidence interval for S°(160), given in (3-5), is 0-481 + 0-129 with
width 0-258, whereas the simultaneous band has width 0:406 at ¢ = 160. For the uncensored
data, a 909, interval for S°(160) has width 0-193 and the band has width 0-289.

Programs for calculation of the bands are available from the authors.

6. CRITICAL POINTS OF G AND ¢/,
Table 1 gives selected critical points of the distributions G} and @, for a few values of a;

more extensive tables are available from the authors. For comments regarding computa-
tion, see the Appendix. Note that for a larger than about 0-75 and probabilities larger than

Table 1. Selected percentiles of G, with value of A such that G (X) = B, and selected percentiles of
G, with value of X such that G,(A) = B

B =010 a =025 a =040 ¢ =050 a=060 a=075 a=090 a=100
0-99 Gt 0-782 1:157 1-358 1-438 1-486 1-514 1-517 1-517
G, 0-851 1-256 1-470 1-552 1-600 1-626 1-628 1-628
0-95 Gt 0-599 0-894 1-062 1-134 1-181 1-217 1-224 1-224
G, 0-682 1-014 1-198 1-273 1-321 1-354 1-358 1-358
0-90 Gt 0-504 0-759 0-909 0-976 1-023 1-063 1-073 1-073
G, 0-599 0-894 1-062 1-133 1-181 1-217 1-224 1-224
0-75 Gt 0-357 0-546 0-665 0-723 0-768 0-814 0-832 0-833
G, 0-471 0-711 0-854 0-920 0-967 1-008 1-019 1-019
0-50 Gt 0-213 0-334 0-420 0-466 0-506 0-555 0-585 0-589
G, 0-356 0-544 0-663 0-720 0-765 0-809 0-827 0-828
0-25 Gt 0-102 0-167 0-218 0-250 0-280 0-324 0-366 0-379
G, 0-272 0-420 0-518 0-567 0-608 0-652 0-675 0-676

0-50 or 0-75, in the upper right-hand corner of the table, the critical points of G+ = Gf and
G = @, will suffice for most practical purposes; this is to be expected since B°(1) = 0 and
hence the probability that

sup BO(t) > sup B(t)

o<i<1 o<i<a
is very small for values of @ near 1. Small values of @ will be of interest in situations in-
volving heavy or truncation-type censoring however.
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More extensive tabulations of percentiles of G, are given by Koziol & Byar (1975); our
values, computed independently, agree with theirs. They discuss the use of such tables for
goodness-of-fit testing and other related testing problems; of course our results can likewise
be used for hypothesis testing.

We acknowledge the assistance of Kartik Patel in preparing the figure. The research of the
second author was supported in part by the U.S. National Science Foundation.

APPENDIX
Proofs and derivations
To prove (a) of the Proposition, let

ox0 = [ a-Frady
0,
and write (00

O30 =00) = [[ (1=~ =Py by [ (1= F)aihy - F)
- [ =B+ PR Py — By 2(Fy— P By + By~ PO} 1~ Fo)

t
_2j (Fy—F)y(1—-F)3dF
0
after integration by parts. Hence, using the Glivenko—Cantelli theorem and F(7T)<1,

sup |C4()— C(8)| < sup | Fy(t)— F(t)| f (U =F)+ (1 - B} (1 - F)2(1— Fy)ydfy
o<i<T o<i<T 0

T
+ su<};)T|FN(t) —F(¢)| [2J; (1-F)3dF +{1 —-F(T)}‘{l

= 0,(1)0,(1)+0,(1) O(1) = 0,(1).
The conclusion now follows easily from

sup |COy(f) —CF(6)] = 0,(1).

0<I<T
To prove (b) let X;,<... <Xy denote the ordered sample. Since Cy and 8% are left-
continuous step functions, it suffices to prove the equality for { = X;,+ (j =1,...,N). But
when there is no censoring §; = 1 (j = 1,...,N), and hence
o J . . .
1+ 0 Xy + )53 &ip +) = {1+ 8 2 (V—0) (N +1 —@)‘1} (1-jIN)
P=

=1

forj =1,...,N—1 by an easy calculation.

We now provide some details concerning the derivation of (2-8) and (2-9). A Brownian
bridge process B° on [0, 1] may be obtained from a standard Brownian motion B on [0, 00)
since in law ¢

{B°(t)}octcr = {(1 =) B(f)} ;
0<i<1
this is simply a restatement of the well-known transformation of Doob (1949) that in law

{ (1+1) BO(T.%Z)}K,@ = {B(")}oct<oo-
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Hence ¢
{sup B(t) <A} = {(1 —t)B(———) <Aforalli<a

o<ti<a 1-¢
= {B(s) <A(1+s) for all s<b}
= {B_(s) <A for all s<b},

where B, is Brownian motion with drift x and b = a/(1 —a).

Hence our G (}) is precisely P(z,, z; t) of Cox & Miller (1965, p. 211), with their y, o, 2y, a,
x, t replaced by —A, 1, 0, A, A, b respectively. Their (28) may be evaluated by integrating their
formula (71) and thus we obtain (2-8); for an alternative derivation see Schey (1977).

To obtain (2-9), we proceed as above and note that G (A) = pr(|B(s)| <A(1+s) for all
s<b) (Anderson, 1960, equation (4-59)). Replacement of his ¢, d, u, T by our A, A, 0, b yields
(2-9). Formula (2-9) is also a special case of (5-9) of Anderson & Darling (1952).

The two distributions are of course related. It is easily verified that G, () > 2G}(A) — 1, with
near equality for large A or small @, and G is readily computed; see also Schey (1977).
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