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Abstract. We apply a simple model to project the Solvency Capital Requirement (SCR) over sev-

eral years, using an ORSA perspective, in order to assess the probability of achieving a solvency 

coverage ratio. To do so, we rely on a simplified framework proposed in Guibert [10] which pro-

vides a detailed explanation of the SCR. Then, we take into account temporal dynamics for liabili-

ties, premiums and asset returns. Here, we consider guarantees in non-life insurance. This context, 

when simplified, allows us to use a lognormal distribution to approximate the distribution of the 

liabilities. It leads to a simple and tractable model for measuring the uncertainty of the solvency 

ratio in an ORSA perspective. 
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1 Introduction 

With the introduction of the Own Risk Solvency Assessment (ORSA) under Pil-

lar 2 of Solvency II (see Planchet and Juillard [12]), regulators require insurance 

companies to prove their ability to meet the regulatory margin requirements not 

only on the date of inventory but also prospectively, under the horizons of their 

strategic plans (see CEIOPS [5]). Accordingly, an insurer must be able to project 

the main characteristics of its balance sheet over a period of 3 to 5 years depend-
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ing on the duration of the strategic plan in addition to accounting for new business 

plans written over the period.  

In particular, to prove the ability to cover the Solvency Capital Requirement 

(SCR), the insurer must be able to estimate the uncertainty associated with the 

future value of its assets and its liabilities in order to predict the probability of 

failure to cover the regulatory margin over the required duration.  

This estimation is potentially tricky as it requires forecasting the main balance 

sheet items and regulatory ratios over the period chosen in order to approximate 

the distribution of the solvency coverage ratio at each date. Implementing a model 

at a level of detail similar to that used for inventory calculations is unsuitable here 

because of its complexity and its lack of potential robustness. The issues associat-

ed with a multi-year model approach are already described for example in 

Diers [6] and a more general framework for internal models and their potential 

use for multi-year calculus can be found in e.g., Liebwein [11]. The main draw-

back of these approaches is that they may potentially lead to very complex and 

intractable models. At this point, ORSA aims to provide for an insurance compa-

ny a global view of the main risks it underwrites. As a consequence, the quantita-

tive part of the ORSA framework must be easy to use and updated on a regular 

basis. 

Therefore, we turn to more holistic approaches that model the risks through some 

state variables. To achieve this, one can use the general ruin theory (see for exam-

ple Asmussen and Albrecher [2] for a complete overview of this topic). Thus, We 

choose to use a model inspired by the ruin theory taking into account financial 

risk, underwriting risk, and business risk. 

In this paper, we propose an extension of Guibert et al. [10] by introducing a time 

dynamic to the aggregate model in a non-life insurance context. 

The article is organized as follows: first, we describe in Section 2 a generic model 

which accounts for interactions between three types of risks – financial risk, un-

derwriting risk, and business risk associated with the uncertainty of future premi-

ums perceived in order to project the future SCR. In Section 3, we set the tem-

poral dynamics for the key drivers of the balance sheet which can reasonably be 

used for non-life insurance and we deduce in Section 4, the way to value the sol-

vency coverage ratios for future year. A numerical illustration is then given in 
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Section 5. A separate Section (Section 6) is devoted to the possible extensions of 

the model in an ORSA context to reflect the provision of premium imposed by the 

standard model of Solvency II and to allow for multiple lines of business. The 

article ends by presenting adjustments to be made when using such a model for 

life and health insurance. These adjustments are only shown in theory; their de-

velopment will be the subject of ensuing studies. 

2 General Structure and Notations 

Under a discrete time model, the periods are indexed by 0, ,t T  to a time hori-

zon of T. We take similar notations from Guibert et al. [10] in this paper, where t 

refers to the end of the period [t, t+1[ (i.e. the time is considered to be discrete): 

─ tA  denotes the market value of the theoretical assets invested in asset tS  of 

return tR ; all financial interest is credited at the end of the period. The risk 

free discount rate used is assumed to be constant and is denoted as r. 

─ tL  denotes the technical reserves and is equal to the sum of the best estimate 

tBEL and the risk margin tRM , so t t tL BEL RM  . tD  denotes the duration 

of the liabilities at time t. 

─ tP  and tC  represent the premiums earned and the claims paid, respectively. 

For simplicity, we assume that any fluctuations in these values occur at the 

end of the period. 

─ t  denotes the combined ratio at time t, such that for premiums collected tP  

we associate a cost of t tP  . 

─ tSCR  denotes the margin requirement amount set by Solvency II and there-

fore equals the negative value of the 0.5% quantile of the one-year forecast-

ed net assets.  

Finally, we observe that the following variable plays a central role 

 
1

t t t
t

t

C L P

R


 



. 

We call t  the discounted net liability at time t. 

The risk margin must be computed according to the Solvency II rules on the cost 

of capital: so we choose a cost of capital of 6%  . For an analysis of the issues 
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associated to account the risk margin for SCR calculation in a non-life framework, 

see Robert [14]. 

This relies on the balance sheet analysis proposed by Guibert et al. [10] observing 

that the basic relationship 

 1 1
0

1

,99.5%
1

C L
SCR VaR L

R

 
  

 
, 

which can be rewritten at any given instant, taking future premiums into account, 

as 

 1 1 1

1

,99.5%
1

t t t
t t t

t

C L P
SCR VaR L

R

  



  
  

 
, (1) 

with t t tL BEL RM  . 

The subscript t on the value at risk (VaR), expectations and variances indicates 

that the values are conditional on information available at time t. Furthermore, we 

need to make two assumptions to account for the risk margin. First, by retaining 

the assumption of proportionality between the Solvency Capital Requirement 

(SCR) and the best estimate (see Guibert et al. [10]), we observe that 

 1 1 1 1 1 1
1

1 11 1

t t t t t t t
t

t t

C L P C h BEL P

R R
      



 

    
 

 
, 

with 
11 t

t t

t

SCR
h D

BEL
     . Second, this term is approximated in practice

2
 by 

 1 t
t t

t

SCR
h D

BEL
    , 

to remove the randomness introduced by the presence of duration 1tD   in the defi-

nition of th . Hence, the Equation (1) defining SCR becomes 

 1 1 1

1

,99.5%
1

t t t t
t t t t t

t

C h BEL P
SCR VaR BEL SCR D

R
  



   
     

 
, 

and therefore, 

                                                           

2
 This justifies index t and not t+1. 
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
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. (2) 

This expression is not easy to handle as it is an implicit equation of tSCR  which 

can only be solved numerically, as will be shown later. 

To start with, the behavior of the various elements accounted for in this projec-

tion, such as the value of assets, value of liabilities, claims, premiums, etc., must 

first be specified. 

3 Defining the Dynamics of the Model 

The calculations are carried out in two stages. First, we specify the dynamics for 

the four risk factors appearing in the model: premiums, best estimate (past pricing 

risk), combined ratio (future pricing risk and risk of expenses), and assets return. 

Next, we deduce the expressions of other variables of interest, such as claims and 

asset value. 

3.1 Risk Factor Dynamics 

We assume that, conditionally on the information available at time t, the variables

1tBEL  , 1tP , 1t   and 1tS   (the asset with yield 1
11t

t

t

S
R

S


  ) follow lognormal 

random walks, 

 1t t pP P X   with 
2

2,
2

p

p p pX


 
 

  
 

, 

  
2

2ln ,
2

t






  

 
  

 
, 

 1 1 1t t t t lBEL P BEL X       with 
2

2,
2

l
l l lX


 
 

 
 

, 

 1t t aS S X    with 
2

2,
2

a
a a aX


 
 

 
 

, 
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where   is a fixed target combined ratio and the parameters  ,  ,p p  , 

 ,l l   and  ,a a 
 
describe the distribution of the independent lognormal risk 

factors. 

The rate of change of reserves l  must be affected by discounting and the level of 

claims paid. We propose to retain the simple relation of  ln 1l r     with   a 

constant decrease in claims payable between two dates to take into account these 

effects. Based on this notation, the equation defining 1tBEL   is 

  
2 2

1, 1,
2 2

1 1 1

l l
l t l l t lr

t t t t tBEL e e BEL P BEL e

 
   

 
      



          , 

or 

 

2 2

1, 1,
2 2

1 1 1

l l
l t l l t lr r

t t t t tBEL P BEL e BEL e

 
   

 
      

         , (3) 

 

with 1,t   , 1,t p  , 1,t l   and 1,t a   are independent Gaussian white noises. 

The Equation (3) reflects the consumption of reserves in the run-off – the varia-

tion trend of the best estimate is caused by the effect of reduced discounting of the 

claims paid. By identifying the two terms in the equation, we find that the claims 

are equal to 

  
2

1,
2

1 1 1 1

l
l t lr

t t t t tC e BEL BEL P


 

  
  

          , 

with 
1








. On the basis of these assumptions, and in the absence of new pre-

miums, the martingale property of the process of the best estimates holds, 

   1 1 1 1

r

t t t t t tBEL E e C BEL P

        . 

3.2 Evolution Equations of Other Factors 

Once the processes describing the evolution of various balance sheet items are 

defined, we need to analyze the distribution of the discounted net liability 

1

t t t
t

t

C L P

R


 



. In the absence of a risk margin, we get an expression of the form 
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with   as defined in 3.1,which helps determine the distribution so as to calculate 

the SCR using the relation (2) presented in Section 2. In the presence of a risk 

margin, we use 

 
   1 1 1

1

1

1

1

t t t t

t

t

h BEL P

R

  
   





     



, (4) 

with th  as defined in Section 2. Since it leads to simpler calculation and in order 

to to avoid circularity dependence between the both quantities, the QIS5 (see 

CEIOPS [5]) computes the SCR without taking into account the risk margin ef-

fect. But this simplification leads to an overestimation of the SCR. As exact calcu-

lus can here be achieved, we choose to take the risk margin into account to avoid 

a bias in our model. 

Once tSCR  is determined, all other interest variables are easily obtained: 

─ The value of assets:  1 1t t t t tA A R C P     , 

─ The value of liabilities: t t t t t tL BEL RM BEL D SCR      . 

Then, the  solvency coverage ratio of the regulatory margin is calculated by 

 t t
t

t

A L
s

SCR


 . 

However, we must first determine the distribution of 1t   conditional on the in-

formation available at time t. This will be discussed in the next Section. 

 Calculating the Distribution of the Net 

Discounted Liability

The random variable 1t   is a weighted sum of lognormal variables in the numera-

tor over a lognormal variable in the denominator (see Equation (4)). The form of 

this distribution is not particularly simple due to the numerator and we can esti-

mate this random variable by a lognormal distribution whose parameters are ob-

tained by the method of moments (Fenton-Wilkinson approximation described in 

Fenton [9]). Hence, the ratio is approximated by a lognormal distribution as the 

denominator is assumed to be lognormal. 



8 F. Planchet, Q. Guibert, M. Juillard 

This approximation of the net discounted liability leads to an implicit equation of 

tSCR  easily resolvable compared to Equation (2). 

4.1 Distribution of the Net Liability 

The net liability 1

N

t  , corresponding to the numerator of 1t  , is the sum of two 

lognormal variables minus a another lognormal variable 

 
   

 
2

1,

1 1 1 1

2
1 1 1

1

l
l l t l

N

t t t t t

t t t t t t

h BEL P

h BEL e h P P


  

   

 


   

  

  

      

       

. 

Upon dividing by 1tP , we have 

  

22

1, 1,1 2 2
1 1

pl
l p l t l p t p

N

t t
t t t

t t

BEL
h e h

P P


     

 
       


       , 

and we deduce than 1

N

t

tP

   can be represented as 
1X Y

Z

 
 with X , Y  and Z  

lognormal variables. Consequently, studying if 1

N

t   is lognormal can be reduced to 

studying if the variable 1X Y   is lognormal, i.e., searching the range of pa-

rameters where the lognormal approximation is appropriate. 

A large amount of literature is dedicated towards the approximation of the sum of 

lognormal distributions (see Fenton [9], El Faouzi and Maurin [8] or Schwartz 

and Yeh [16]). However, in situations where volatility is not too significant (see 

Dufresne [7]), we can use the lognormal approximation. It is well known that, for 

higher standard deviation values, this approximation tends to underestimate the 

mean and overestimate the variance of the sum of lognormal distributions. This 

approximation can also be applied when taking the difference of lognormal distri-

butions, but it is only valid for situations where 1X Y , i.e., the premiums are 

relatively small in comparison to stock commitments to ensure a positive numera-

tor with high probability
3
. 

                                                           

3
 In the case of a negative numerator with high probability (e.g. new product), this ap-

proximation can be applied by considering the opposite of the numerator. 
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The validation procedure of 1X Y  ; with 
2

2,
2

X
X XX


 
 

 
 

, 

2
2,

2

Y
Y YY


 
 

 
 

, as a lognormal variable is carried out by Jarque-Bera (Bera 

and Jarque [3]) and Anderson-Darling tests (Anderson and Darling [1]). 1X Y   

is said to be approximately lognormal if the p-value is greater than 5%. Naturally 

this lognormal approximation depends on the values of the parameters 
X , 

Y , 

X  and 
Y . By denoting 

2 2

X YC     which is a simple criterion to handle, we 

compute the set of parameters where the lognormal approximation is justified. On 

Fig. 1. Limit of the, we provide the upper limit of the criterion C  as a function of 

X  and 
Y  for 1X Y   to be log normally distributed. 

 

Fig. 1. Limit of the set of admissible parameters for lognormal approximation 

Since Z is also lognormal, the random variable 
1X Y

Z

 
 has an approximate 

lognormal distribution provided that the parameters satisfy numerically the condi-

tion illustrated on Fig. 1. Limit of the set of admissible parameters for lognormal 

approximationIn practice, this approximation should be validated on a case by 

case basis following example of validation process given in Section 5.2. 
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4.2 Approximation of the Net Discounting Liability 

In approximating the variable 1 1 1t t tC BEL P     conditionally to the information 

available at time t  by a lognormal distribution attained by the method of mo-

ments, we find that the solvency coverage ratio 1t   can be approximated by a 

lognormal distribution. Therefore, we have an explicit expression of the quantile 

of 1t  , as a lognormal distribution of X with parameters  ,  , we have 

     1expp px VaR X p      , 

where   is the distribution function of the standard normal distribution. 

Calculate this quantile comes down to calculating the parameters  , 
 
of the 

lognormal approximation of the solvency coverage ratio 1t  . As the mean m  and 

variance 
2v  of the lognormal distribution X  are given respectively by  

 
2

exp
2

m



 

  
 

 and  
22 21v e m   (see Saporta [15]), 

and using the method of moments, we get an explicit expression of tSCR
 
in terms 

of tBEL , t , tP  and 1 tR . 

To do so, we observe that the variance of the underlying normal distribution is 

calculated simply by using the coefficient of variation of the lognormal distribu-

tion  

  2 2ln 1   , (5) 

where 
v

m
  . Once this parameter is known, the expectation of the underlying 

normal distribution is calculated using  
2

ln
2

m


  
 
or 

2
ln

1

m




 
  

 
. 

The calculation of the conditional expectation and the conditional variance of the 

variable    1 1 11t t t th BEL P           is described in Appendix 8.1 and then 

we use a lognormal approximation with the followings parameters 

  2 2ln 1t t   , 
   

2

1
ln

1

pl

t t t t

t

t

h BEL e h P e
 




        
 
  

.
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Finally, the distribution of the net discounted liability 

 
   1 1 1

1

1

1

1

t t t t

t

t

h BEL P

R

  
   





     



, 

conditional on information at time t, is lognormal with the parameters of the un-

derlying normal distribution 

  
2

2

a
t t a


      ,  2 2 2

t t a     . 

We finally derive from Equation (2) the following implicit equation of tSCR  

        11
exp 99.5%

1
t t t t

t

SCR BEL
D

   


   
 

. (5) 

Actually,  t   and  2

t   are dependent on tSCR  because  depends on th  as 

defined in Section 2. This equation can only be solved numerically using some 

standard root-finding algorithms. 

The value of assets is determined using  1 1t t t t tA A R C P      and finally, the 

amount of liabilities is given by t t t t t tL BEL RM BEL D SCR      . 

5 A Simple Example of Implementation in ORSA 

In this Section we illustrate the above model in the context of establishing an 

ORSA process. The purpose of this example is to show that the model fits natural-

ly within this framework and provides the quantitative requirements. 

This Section presents the application of the model to a non-life insurance compa-

ny, in a more general context of an ORSA
4
 process (as defined in Solvency II). 

This process consists of the following step: 

─ Step 1: Define the risk appetite of the company, the risk metrics and the 

horizon used to manage the company,  

─ Step 2: Compute these metrics and check if the risk appetite constraints are 

satisfied on the first projection year: this is a necessary condition to meet the 

risk appetite constrains, 

                                                           

4
 A description of the general ORSA structure can be found in Planchet and Juillard [12]. 



12 F. Planchet, Q. Guibert, M. Juillard 

─ Step 3: Defined operational risk limits in accordance with the step 2 results, 

─ Step 4: Check if the risk appetite constrains are verified on the duration of 

the strategic plan, 

─ Step 5: Perform a sensitive analysis to assess the robustness of the strategic 

plan. 

The model is programmed with the R software (R Development Core Team [13]) 

and the code is available upon request. We work with a sample size of 5000.  

5.1 Description of the Company 

We consider, for our example, an insurance company selling a single health con-

tract with the following general structure: 

─ average combined ratio of 0 100%  , 

─ average premium sales of 0C  €75 million, 

─ asset allocation consisting of 20% stock and 80% bonds (1 year treasury 

bonds), 

─ initial SCR coverage ratio of 0 204%s  , 

─ the strategic plan is to maintain the current risk profile of the structure (i.e. 

stable sales and allocation), 

─ to simplify our example below, we assume that the duration of liabilities is 

stable over time 0 2D   (this assumption is particularly appropriate for 

health care contracts). This value of 0D is based on a statistical analysis of a 

French insurance portfolio (medical expenses). 

Based on a statistical analysis of its portfolio, the company confirmed lognormal 

characteristics of its risks, whose respective parameters are as follows: 

─ mean and volatility of the premiums: 0,  1%p p   , 

─ volatility and decrease speed of claims: 10%, =80%l  , 

─ volatility and target value of the combined ratio: 2%, =100%  , 

─ mean and volatility of the asset: 3,6%, 6,3%a a   . 

Upstream of the numerical application and after setting a base scenario in the fol-

lowing Section, we validate the lognormal distribution of the key risk driver 1t  . 

After that, we describe the ORSA process by using the model as described above.  
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5.2 Validation of the Lognormal Approximation 

After checking the parameters satisfy the test defined in Section 4.1, we assess the 

fit of the lognormal approximation of the conditional distribution of 1t   by com-

paring the approximated lognormal distribution with the empirical distribution 

obtained by simulation. That is, we use simulations to compute the empirical dis-

tribution of (see Section 3.2) 

 
   1 1 1

1

1

1

1

t t t t

t

t

h BEL P

R

  
   





     



.

 

 

The resulting empirical distribution of 1  is plotted in Fig. 2 

 

Fig. 2. Comparison of the histogram of the simulated and the fitted density of the net discounted 

liability 

Thus, the fit seems graphically (Fig. 2) correct. Using the Jarque-Bera test (Bera 

and Jarque [3]), generally intended for large sample sizes, to match  1ln   to a 

normal distribution, we get a p-value of 35%. Therefore, the lognormal approxi-

mation seems acceptable. 

The base scenario gives the following results (Table 1) of solvency coverage ratio 

for years 0 through 5 
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Table 1. Statistics of the evolution of solvency coverage ratio 

 

5.3 Choice of Risk Appetite 

As part of the risk appetite process, the Board of Directors aims to control two 

indicators: the solvency and the profitability of its stockholders’ equity. The inter-

pretation of this risk appetite is set out below: 

─ to present 95% of the time an SCR coverage ratio of 130% over 5 years 

(which is the duration of the strategic plan), 

─ to present 80% of the time a loss on return on equity (measured by 

1 1

1 t t
t

t t

A L
W

A L 


 


) of 13.5% over at least 1 year. 

On the basis of the projection model proposed, the empirical correspondence be-

tween the company’s strategic plan and its policy for risk appetite is initially veri-

fied by its structure: 

 

Fig. 3. Empirical distribution function of the one-year solvency ratio and the equity return 

The graphs above (Fig. 3) represent the empirical cumulative distribution func-

tions of the one-year solvency coverage ratio and the one-year return of equity. 

We also plot the risk appetite constrains with the vertical lines at 130% and 86.5% 

(the limits on SCR coverage ratio and return of equity) and the horizon lines at 

5% and 20%, which are the limit on the probability. The graphs show that while 

Projection year Min 1st Quartile Median Mean 3rd Quartile Max

0 2.037 2.037 2.037 2.037 2.037 2.037

1 0.5236 1.7850 2.0600 2.0540 2.3200 3.4800

2 -0.1324 1.7330 2.0990 2.1240 2.5100 4.3880

3 -0.2213 1.7040 2.1690 2.1940 2.6700 5.2240

4 -0.1557 1.6790 2.2420 2.2650 2.8160 5.5960

5 -0.6712 1.6800 2.3060 2.3450 2.9630 6.1900
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the strategic plan can meet the risk appetite constraints applied by the company 

since the empirical distributions are lower the intersection points. This first step 

helps avoiding performing calculation on the duration of the strategic plan and 

save computing time, but it does not provide operational limits as it consists of 

points rather than interval allocations. To address this issue, two solutions are 

available: 

─ to test several types of arbitrarily fixed allocations, 

─ to define the set of allocations able to meet the risk appetite as defined by 

company policy. 

Testing arbitrarily a set of strategic allocations is not advisable in a risk appetite 

context since this process aims to seek optimal strategies while remaining within 

the feasible risk tolerance set by the company. The company therefore has to de-

fine the set of acceptable allocations representing the 5% quantile of a one-year 

solvency coverage ratio over the set of all possible allocations. Fig. 4 represents 

the set of strategic allocations (defined by the percentage of the portfolio invested 

in bonds) and the amounts of future premiums for which the SCR coverage ratio 

exceeds 130% in 95% of cases. 
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Fig. 4. Evolution based on the strategic allocation (Bond allocation in % and Contributions in € 

million) of the constraint on SCR  

The Fig. 4 shows that: 

─ the greater the company’s volume of premiums, the lower its share alloca-

tion (this explains the concept of capital transfer between risks), 

─ certain amounts of premiums appear to be a minimum share allocation con-

straint as well as an inability to comply with SCR constraints. 

At first, the company analyzes the restrictions on the return on investment of 

stockholders’ equity and then it defines the investment limits. The Fig. 5 shows 

the set of strategic allocations (defined by the percentage of the portfolio invested 

in bonds) and the amounts of future premiums for which the return on equity ex-

ceeds 86.5% in 80% of cases. 

 

 

Fig. 5. Evolution of strategic allocation (Bond allocation in % and Contributions in € million) of 

performance constraint  

The graph above (Fig. 5) shows that the “return” dimension (i.e. the evolution of 

the return on investment) defines the minimum limits of risky investments, while 
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the “solvency” dimension (i.e. the evolution of the solvency coverage ratio de-

scribed in Fig. 4) mainly shows the maximum investment constraints.  

At this stage, the company must first express its risk preference – it must decide 

whether it prefers to allocate its risk to assets or to liabilities. Generally, the fact 

that risk’s liabilities are related to business development lead to concentrate the 

risk capital on liabilities. Thus, the company initially chooses the operational lim-

its concerning pricing risk, marketing between €75m and €78m of premiums over 

the 5 upcoming years (or an increase of about 5%). Secondly the company adapts 

the limits on assets as the risk appetite constrains are verified. 

Given the changes in risk based on the premium amounts, the constraints related 

to the target allocations are based on a target premium of €78m.  

 

Fig. 6. Operational limit shares caused by a constraint on the SCR 

 

 

Fig. 7. Operational limit shares caused by a constraint on the yield 
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Fig. 6 and Fig. 7 show how the SCR coverage ratio at 95% and the return on equi-

ty at 80% evolve according to the equity allocation chosen with €78m of premi-

ums and give the range of allocation percentages that satisfy the risk appetite con-

strains on the first year. We deduce that keeping within the one year SCR con-

straint for a €78m sale of premiums involves retaining an equity allocation be-

tween 10% and 24%, and that a compliance with the constraint relative to the one 

year return of investment requires retaining an equity allocation between 16% and 

32%. The company decided to set the following operational limits: 

─ earning between €75 to €78 million of premiums, 

─ allocating equity between 16% and 24%. 

In order to finish the risk appetite process, confirming compliance with SCR con-

straints over the duration of the strategic plan (i.e. 5 years) is necessary. Then, the 

model is revived by retaining the upper bound risk limits as well as a 5 year fore-

cast as the strategic plan. As, we consider an annual 95% probability, the quantile 

level for the year “n” is 0.95n
. 

Table 2. Evolution of the quantile of the solvency coverage ratio 

 

Table 2 shows that the operational limits can meet the risk appetite over the entire 

duration of the strategic plan. The constraint on the return of investment is veri-

fied as it lasts 1 year. 

We should also note that keeping within the constraints over the entire duration of 

the strategic plan is not acquired beforehand; the operational limits are set after 

analyzing one year results. Thus, a (relatively small) breach can occur and would 

involve reviewing operational limits. The development of the distribution of the 

coverage ratio over 5 years is presented in Fig. 8. 

Projection year Quantile level Solvency coverage ratio

1 95% 1.31

2 90% 1.3

3 85% 1.33

4 81% 1.41

5 77% 1.52
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Fig. 8. Analysis of compliance with the risk appetite over the duration of the strategic plan 

5.4 Sensitivity analysis 

The last stage of the ORSA process consists in making a sensitivity analysis of the 

model to parameters so that the insurance company can identify the key drivers of 

insolvency. Note that it is necessary to keep in mind two essential points: 

─ this sensitivity analysis has first to be done on the exogenous risk factors, 

because this risks are well- known (therefore the analyze of the premium’s 

uncertainty is not presented afterwards), 

─  the purpose of this sensitivity analysis has to be done on the risk capacity 

and not on the risk appetite (the risk appetite is naturally unchecked when 

risks increase).  

As a general rule, this analyze can be done in the following way:  

─ by taking into account the intrinsic volatility of the estimators relative to the 

main risk drivers, 

─ on the basis of the stress tests. This second method has the advantage to al-

low us to use the expert judgment. 

In a risk management perspective, we consider that the expert statements should 

be taking into account. The main risks of non-life insurance being the premium 

and reserve risks, we choose to analyze the evolution of the minimum coverage 

ratio (over the following five years):  

─ on the basis of stress tests which assess the impact of an increase of the re-

serve and combined ratio volatilities, 
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─ on the basis of statistical test which assess the robustness of the coverage ra-

tio in case combined ratio value increase to the upper 95% confidence inter-

vals bounds. 

We summarize the major points of this analysis into the Table 3 (reminder the 

reference situation points out a minimum coverage ratio over the following five 

years of 130 percents).  

Table 3. Sensitivity analysis 

 

 

The Table 3 points out the robustness of the ORSA’s results : the risk capacity is 

only outnumbered at extreme ends. The insurance company can have confidence 

in the capacity of the  strategic plan to reflect its risk appetite. 

6 Extensions 

Below, we describe two possible extensions of the model by considering in Sec-

tion 6.1 the inclusion of a premium reserve, and in Section 6.2 the presence of 

multiple lines of business.  

6.1 Inclusion of a Provision of Premiums 

The QIS5 (see CEIOPS [5]) provides a breakdown of the best estimate between: 

─ a best estimate of claims, relating to claims which already occurred as of the 

date of stocktaking, 

─ and a best estimate of premiums, relating to possible future claims arising 

from contracts in the portfolio at the date of inventory. The expected future 

premiums that these contracts will issue must therefore be considered. 

Parametring of the test
minimum coverage 

ratio over 5 years

increase of σβ by 10% 1.18

increase of σβ by 20% 1.06

increase of σβ by 25% 0.99

increase of σl by 10% 1.32

increase of σl by 20% 1.32

increase of σl by 50% 1.30

increase of β to the upper 95% confidence intervals bounds 0.99
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The accounting rules for future premiums are relatively complex in Solvency II. 

Indeed, the contract boundaries depend on the process of determining each insur-

er’s rates. Therefore, they lead to a large heterogeneity of situations even under 

identical risks. In the Pillar 1 calculations, and in the context of non-life insurance 

used here, we take a one year horizon into account for future premiums. As in the 

model presented earlier in the paper, the situation is projected over several years 

and the only impact of not strictly complying with the rule to determine future 

premiums included in calculating the one year margin requirement is a lag of time 

in collecting the premium considered. Consequently, the absolute level of margin 

requirements derived from the model may be biased, but its variation is not and it 

is the variations of this value (and of the solvency coverage ratio) that we seek to 

describe.  

That said, adding future premiums under Solvency II may be introduced simply 

by modifying the dynamics of tBEL , defined in Section 3.1, as follows 

  1 1 1 1 11t t l t t t tBEL BEL X P e P               , 

with   the contract renewal rate and p   the annual price adjustment rate. This 

adjustment only has a limited effect on the model’s results when the combined 

ratio is close to one. 

6.2 Considering Multiple Lines of Business 

In practice, one have to consider multiple lines of business leveraged by general 

assets, i.e., to distinguish between 
j

tBEL  and 
j

tP
 for 1, ,j n . In such a case, we 

have 
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
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Therefore, we can once again use a lognormal approximation of the conditional 

distribution of 1t   by matching the first two moments of the numerator. The de-

pendency between lines of business is measured by the correlation coefficients 

between the underlying normal distributions. This approach allows us to measure 

the effect of change of premiums on the mix product and to identify arbitrages in 

the underwriting policy. 
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Denoting by t  the coefficient of variation of the variable 
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the parameters of the lognormal approximation is then derived as 

 2 2ln 1t t   , 
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As in the case of a single line of business, the distribution of 1t  , conditional on 

the information available at time t, is approximated by a lognormal distribution 

with parameters 

  
2

2

a
t t a


      ,  2 2 2

t t a     . 

Conforming to the QIS5 requirements, the risk margin is generally calculated by 

taking the SCR into account using the coefficient t
t t

t

SCR
h D

BEL
   . The calcula-

tion of the variance used to evaluate t  is presented in Appendix 8.2. We also 

observe numerically (by broadening the scope of the example presented in Section 

5) that the lognormal approximation of the variable 1t   is valid. 

7 Conclusion 

In this paper, we present a simple model to determine the distribution of the sol-

vency coverage ratio by considering the key risk drivers (reserves, premiums and 

financial risk. This model allows taking into account margin requirement over the 

duration of the strategic plan. 

Such a model used in ORSA allows measuring the impact of management choices 

(related to the level of premiums, asset allocations, product mix, etc.) on covering 
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the insurer solvency coverage ratio. The model enables the company to assess the 

likelihood of non-coverage over a given horizon. In other words, the failure to 

comply with a minimum coverage threshold would comply internal governance. It 

is therefore a valuable tool for decision making. This model, which measures the 

effect of future production on the margin requirements and margin coverage, en-

ters the Pillar 1 framework of Solvency II. It enables risk management to assess 

the regulatory solvency requirements. This approach can in particular be deployed 

along with the standard model as an internal model and has the advantage of being 

inexpensive in terms of time computation, therefore making it suitable for daily 

use. 
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8 Appendix 

The calculation of the moments of the variable 1t   is presented in this Section for 

one or more lines of business. 

8.1 For one line of business 

Upstream of the presentation of the multiple- lines of business, we start by intro-

ducing the calculation of the moments of the variable 1t   in the presence of only 

one line of business.  

Thanks to the following expression 
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we find the value of the conditional expectancy 
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Also, given that 1,t   , 1,t p  , 1,t l   are independent, we have the conditional vari-
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and thus, we deduce of (5) the coefficient of variation of 

   1 1 11t t t th BEL P           is 
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8.2 For several lines of business 

We continue with model containing several lines of business supposing the 

lognormal approximation is validated. First, we calculate the first two moments of 

the numerator of 1t  , and then we deduce those of 1t  . We have calculated the 
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and its conditional variance 
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The first component of the conditional variance is obtained simply 
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The second term is obtained by noting that the covariance of the two random 

lognormal variables  1 2,Y Y  with parameters  1 1,   and  2 2,  , respectively, 

are obtained from the covariance of the underlying normal variables  1 2, 
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We finally infer the coefficient of variation of 
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and then the parameters of the lognormal approximation 
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As in the case of a single line of business (see Section 8.1), the distribution of 1t   

conditional on the information available at time t is approximated by a lognormal 

distribution with parameters 
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