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1 Introduction

Unit-linked life insurance contracts differ from traditional insurance contracts in that be-
nefits (and possibly premiums) are linked directly to the value of a unit of some investment
portfolio. We study unit-linked contracts in their most basic form, which specify a lump
sum payment (to the policy-holders) determined as a function of the value of a single stock
at a given future time conditional on survival. It is assumed that the insurance company
can invest in the same stock and in a savings account with a risk free interest. The problem
is then to determine optimal self-financing investment strategies for the company. The
integrated financial and insurance claim cannot be hedged perfectly since we are dealing
with an incomplete market, see Møller and Steffensen (2007) and references therein.

We study the shortfall probability criterion (and similar criteria) for the optimization prob-
lem and compare these results with previous results on quadratic hedging that have been
obtained in the literature. Quadratic hedging has been applied in life insurance, see Møller
(2001a), where the above problem with unit-linked insurance contracts is considered in
a discrete time setting, and Møller (2001b), where more general payment processes in a
continuous time setting are treated. For further developments and applications allowing
for systematic mortality and longevity effects, see Dahl and Møller (2006) and Dahl, Mel-
chior and Møller (2008). When studying risk-minimizing strategies, a key quantity is the
so-called cost process, defined as the current value of the strategy reduced by trading gains.
A strategy is said to be risk-minimizing if it, at any time during the term of the policy,
minimizes the expected squared value of all future (discounted) costs. One advantage of
the quadratic hedging approach is that it is analytically tractable and provides solutions
that agree well with intuition, e.g. for the above basic problem with unit-linked insurance.
Moreover, as the above references show, it has proven applicable for advanced applica-
tions. However, one possible drawback of quadratic hedging is that the hedging error is
symmetric, i.e. redundant capital is punished in the same manner as lack of capital.

A different approach is to apply so-called efficient hedging methods, see Föllmer and Schied
(2002) for a detailed account in the discrete time case; continuous time problems have
been studied in Föllmer and Leukert (1999, 2000). Within the efficient hedging approach,
quantile hedging adopts the shortfall probability as the object for the minimization. This
amounts to minimizing an expected hedging error, where the hedging error is 1 if the
capital is smaller than the claim and 0 otherwise. This criterion may be modified to the
case of expected shortfall, where the hedging error is defined as the deficit in case of lack
of capital and 0 otherwise.

The methodology used in the literature is typically based on the Neyman-Pearson Lemma
from statistical test theory, combined with martingale measures and appropriately chosen
knock-out options. Clearly, efficient hedging differentiates between redundant capital and
lack of capital as opposed to quadratic hedging. However, the mathematical tractability
is typically lost. Methods for obtaining optimal strategies by efficient hedging in complete
markets have been derived, whereas typical results only provide existence proofs in case of
incomplete markets such that the approach is not readily applicable for our use. Instead we
apply dynamic programming methods. Dynamic programming can be applied in virtually
any problem with a sequence of decisions to be taken. Numerous applications appear in
economics, see e.g. Stokey and Lucas (1989). Life insurance also benefits from dynamic
programming, in particular in a continuous time setting through the well-known HJB-
equation, see e.g. Björk (2004). A more advanced mathematical treatment can be found
in e.g. Yong and Zhou (1998). The HJB-equation re-appears in many stochastic control
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problems in insurance, e.g. for optimal consumption and investment combined with life
insurance, see Schmidli (2008) and references therein.

The paper is organized as follows. In Section 2, the one-period problem for hedging
basic unit-linked contracts is stated. Solely from an algebraic point of view, analytical
solutions for strategies and shortfall probabilities are presented for the case with a single
policy-holder and a single period. These solutions do not really contribute to the overall
understanding of the structure of the solutions. However, realizing that hedging the claim
for a any number of (surviving) policy-holders imposes a linear relation between initial
capital and the number of stocks to be purchased, we can explain the one-period results
and a basis for multi-period considerations is established.

Section 3 contains a brief introduction to the finite time horizon dynamic programming al-
gorithm providing a backward recursion procedure for a problem with sequential decisions
and costs in each step, specialized to costs at the terminal time only. The presentation
draws upon Hernández-Lerma and Lasserre (1995). For a comprehensive review on dis-
crete time dynamic programming, see also Bertsekas and Shreve (1978). In Section 4,
computational procedures for the general multi-period and multi-policy-holder case of the
basic unit-linked contract are developed using dynamic programming. First, the basis for
a näıve discretization approach is outlined. We refer to this method as the brute force
approach, due to its computational requirements. The brute force approach is mainly rel-
evant for verification of alternatives. Then, with the observations from Section 2 in mind,
we exploit that in the one-period case the minimum expected shortfall probability is a
piecewise constant function of the initial capital. Moreover, this property propagates in
the backward recursion in the dynamic programming algorithm. These observations lead
to an algorithm with the shortfall probability criterion which is solely based on discrete
properties of the problem and not a discretization of a continuous problem. We refer to the
procedure as the discrete properties approach. Section 5 contains a number of numerical
examples.

2 The model and main problem

We consider a portfolio of unit-linked life insurance contracts in a discrete time setting,
where the sum insured, which may depend on the value of some stock, is payable at a
fixed time conditional on survival of the policy-holders. We first introduce the financial
market and define the basic hedging criterion. In addition, we solve the problem in the
one-period case.

2.1 The financial market and trading strategies

Consider a financial market consisting of a stock S and a savings account B. We denote
by St the value of the stock at time t = 0, 1, . . . , T , where T is a fixed finite time horizon.
Formally, the stock price process and all other processes introduced in the following are
defined on some probability space (Ω,F , P ) equipped with a filtration IF = (Ft)t∈{0,1,...,T}.
We assume that the underlying price process S = (St)t∈{0,1,...,T} can be traded in the
financial market in addition to a savings account with price process B given by Bt =
(1 + r)t. Thus, the savings account pays a fixed interest r during each time period. We
mainly work with the discounted price processes S∗ = S/B and B∗ = B/B, where we
have used the savings account as numeraire.

A trading strategy is a two-dimensional process ĥ = (h0, h1), where h1
t is the number of
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stocks held at time t and where h0
t Bt is the amount deposited in the savings account.

More precisely, h1
t is the number of stocks chosen at time t− 1 and held until time t. This

means that h1
t needs to be determined based on the information available at time t − 1.

The (undiscounted) value at time t of the portfolio ĥt = (h0
t , h

1
t ) is given by

Vt(ĥ) = h0
t Bt + h1

t S
1
t , (2.1)

and the discounted value is V ∗
t (ĥ) = Vt(ĥ)/Bt. We restrict to self-financing strategies, i.e.

strategies ĥ, where the value process V ∗(ĥ) has dynamics given by

V ∗
t (ĥ) = V ∗

t−1(ĥ) + h1
t ∆S∗

t , (2.2)

and where ∆S∗
t = S∗

t −S∗
t−1. Thus, the value process at time t depends on the strategy via

the initial value V0(ĥ) and the number of stocks held h1
1, . . . , h

1
t . We take St = (1+ρt)St−1,

such that

S∗
t = S∗

t−1(1 + ρt)/(1 + r). (2.3)

In the present paper, we work with the so-called binomial model, where the random
variables ρ1, . . . , ρT are i.i.d., and where ρ1 ∈ {a, b} and 0 < P (ρ1 = b) = p < 1. In
addition, we assume that a < r < b. It is convenient to introduce the quantities ρ̃t,
defined by 1 + ρ̃t = (1 + ρt)/(1 + r), which attain the values ã = a−r

1+r
and b̃ = b−r

1+r
. Thus,

S∗
t = S∗

t−1(1+ ρ̃t). For a thorough treatment of the binomial model, see e.g. Pliska (1997).

It is often relevant to introduce some additional constraints on the strategies. In the
following sections, we typically require that the self-financing strategies are chosen such
that the value process remains non-negative. In particular, this condition ensures that one
cannot use so-called doubling strategies. In Section 2.4, we consider the one-period case
without this non-negativity constraint.

2.2 The liability and the choice of criterion

We study a portfolio of n policy-holders and denote by Yt the number of survivors at
time t. The policy-holders’ remaining life-times are modeled via some random variables
T1, . . . , Tn, which are assumed to be independent of the traded price process S. The
discounted liability payable at time T is given by

H∗ = YT f(ST )B−1
T = YT f̃(S∗

T ), (2.4)

where f is some measurable function. Thus, the sum payable upon survival to T is assumed
to be a function of the terminal value of the stock only. We assume that the insurance
company receives some premium at time 0, which is invested in the financial market via
a dynamic trading strategy ĥ in order to hedge the risk associated with the liability H.

A liability H payable at time T is said to be attainable if there exists a self-financing
strategy ĥ such that the terminal value of the investments VT (ĥ) coincides with the liability
H almost surely, i.e. if VT (ĥ) = H, P -a.s. In this case, we say that the liability is
hedged perfectly. A self-financing strategy ĥ is said to be a super-hedging strategy for
H if VT (ĥ) ≥ H, P -a.s., i.e. if the value process at time T exceeds the liability H with
probability 1.

Since the liability (2.4) is assumed to depend on the number of survivors at time T ,
which is considered to be a non-traded risk, it is in general not possible to hedge the

3



liability perfectly, see Møller (2001a). We therefore study the criterion of minimizing
the probability of a shortfall, i.e. the probability of having insufficient capital at time T ,
where the liability is payable. For a self-financing strategy ĥ and a liability H, the shortfall
probability is given by

Psf (ĥ) = P (VT (ĥ) < H) = E
[
1
{VT (ĥ)<H}

]
. (2.5)

In addition, we study the so-called expected shortfall given by

Esf (ĥ) = E

[(
H − VT (ĥ)

)+
]

, (2.6)

which measures the expected deficit associated with the liability H and the trading strat-
egy ĥ. We determine dynamic self-financing strategies ĥ that minimize Psf (ĥ) and Esf (ĥ)
by use of dynamic programming methods in a multi-period setting. First, however, we
study the problem in the one-period case, where dynamic programming is not needed.
The study of the one-period problem already allows for some important observations.

2.3 The role of the information available

It is of relevance to study the impact of the amount of information that is available to the
insurer. We denote by IG the natural filtration associated with the traded price processes
and let IH be the natural filtration associated with the process for the number of survivors
Y . One example is the natural situation, where the insurance company observes the
current number of survivors at each time t ∈ {0, 1, . . . , T}. This is the case where the
process Y is adapted to the filtration IF . For example, we could define IF = (Ft)t∈{0,1,...,T}

by Ft = Gt∨Ht = σ(Gt∪Ht), such that we have access to the full information from Gt and
Ht at time t. Thus, the insurance company can base investments at each time on exact
information about the current number of survivors.

Another example is the case, where the insurance company receives information about the
financial market but is restricted to information about the number of policy-holders at time
0 and the final number of survivors at time T . At the intermediate times t = 1, 2, . . . , T−1,
the insurance company does not observe Yt. This can for example be modeled by working
with a filtration IF ◦ defined by F◦

t = Gt for t < T and F◦
T = GT ∨ HT . We compare the

minimum obtainable shortfall probability in these two cases and show in an example in
Section 5.2 that the optimal strategies based on the filtration IF may indeed lead to lower
shortfall probabilities than the ones based on IF ◦ in the general case. This underlines the
importance of the choice of the filtration and shows that the insurance company in general
will benefit from adapting their investment strategies to the current number of survivors.

2.4 Minimizing the shortfall probability in the one-period case

We study the problem of minimizing (2.5) in the case where T = 1 via direct calculations.
It follows from (2.2) that V ∗

1 (ĥ) = V ∗
0 + h1

1ρ̃1S
∗
0 . Thus, the terminal value V ∗

1 of the
strategy depends on the initial value of the portfolio v∗ = V ∗

0 , the initial value of the
stock s∗ = S∗

0 , the number h1
1 of stocks purchased at time 0 and the relative change ρ̃1 in

the discounted value of the stock. Since we are working with the binomial model, where
ρ̃1 ∈ {ã, b̃}, we see that

P (V ∗
1 = v∗ + h1

1b̃s
∗) = p = 1 − P (V ∗

1 = v∗ + h1
1ãs∗).
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We denote by FY1(y) = P (Y1 ≤ y) the distribution function for Y1, and we let Y =
{0, 1, . . . , n}. Then, we may write the expected shortfall probability on the form

E
[
1
{V1(ĥ)<H}

]
= E

[∫

Y
P (V ∗

1 (ĥ) < yf̃(S∗
1))FY1(dy)

]

=

∫

Y

(
p1{v∗+h1

1b̃s∗<yf̃(s∗+b̃s∗)} + (1 − p)1{v∗+h1
1ãs∗<yf̃(s∗+ãs∗)}

)
FY1(dy).

Here, the second equality follows by conditioning on the two possible outcomes at time
1 for the stock price process. If we in addition assume that the remaining life-times are
i.i.d. with one-period survival probability 1px = e−µx , the number of survivors at time 1 is
binomially distributed with parameters (n, 1px). Thus, the minimum shortfall probability
Psf,min is given by

Psf,min = min
h1
1

[ n∑

y=0

(
p1{v∗+h1

1b̃s∗<yf̃(s∗+b̃s∗)}

+(1 − p)1{v∗+h1
1ãs∗<yf̃(s∗+ãs∗)}

) n!

(n − y)!y!
1px

y(1 − 1px)n−y
]
. (2.7)

Finding Psf,min amounts to minimizing a sum of 2(n+1) terms, where each term involves

the indicator function of the event v∗+hρ̃s∗ < f̃(s∗+ ρ̃s∗)y, ρ̃ ∈ {ã, b̃}, and y = 0, 1, . . . , n.

One policy-holder
In the case of a single policy-holder with y = 1 and with PY1(1) = 1px = 1 − PY1(0), the
equation (2.7) reduces to:

Psf,min = min
h1
1

[
(p1

{v∗+h1
1b̃s∗<0}

+ (1 − p)1{v∗+h1
1ãs∗<0})(1 − 1px) (2.8)

+ (p1
{v∗+h1

1 b̃s∗<f̃(s∗+b̃s∗)}
+ (1 − p)1

{v∗+h1
1ãs∗<f̃(s∗+ãs∗)}

)1px

]
.

If we further impose the natural assumptions ã < 0, b̃ > 0, and s∗ > 0, we see from (2.8)
that Psf,min = 0, if the following four inequalities are met by the optimal value hopt of h1

1:

hopt ≥ − v∗

b̃s∗
(b0),

hopt ≤ − v∗

ãs∗
(a0),

hopt ≥ f̃(s∗+b̃s∗)−v∗

b̃s∗
(b1),

hopt ≤ f̃(s∗+ãs∗)−v∗

ãs∗
(a1).

(2.9)

Each of these criteria represents a possible combined outcome of the stock price process
and the number of survivors. One can interpret the 4 criteria (2.9) as follows. The first one,
referred to as criterion b0, is related to the first term in (2.8) and represents the situation
where the policy-holder does not survive and the stock jumps upwards. In this case, the
inequality implies that the capital requirement 0 is hedged, i.e. the capital is non-negative
at time 1, and this is sufficient to super-hedge the liability in this scenario. Similarly,
the second criterion (criterion a0) is the case where the stock jumps downwards and the
policy-holder does not survive. The last two criteria (criterion b1 and a1, respectively)
represent the case where the policy-holder survives and the stock jumps either upwards
or downwards. In these outcomes, the conditions on h1

1 are sufficient to require that the
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value process at time 1 exceeds the liability.

Further, we take f̃(s∗) = f(s)/((1 + r)T ) > 0, where s∗ = s(1 + r)−T . One example is the
case f(s) = max(K, s), K > 0. If f̃ is strictly positive, we see that

f̃(s∗ + ãs∗) − v∗

ãs∗
< −

v∗

ãs∗
,

and
f̃(s∗ + b̃s∗) − v∗

b̃s∗
> −

v∗

b̃s∗
.

This shows that the probability of insufficient capital is zero for

hopt ∈

[
f̃(s∗ + b̃s∗) − v∗

b̃s∗
;
f̃(s∗ + ãs∗) − v∗

ãs∗

]
, (2.10)

if f̃(s∗+b̃s∗)−v∗

b̃s∗
< f̃(s∗+ãs∗)−v∗

ãs∗
. If the condition f̃(s∗+b̃s∗)−v∗

b̃s∗
< f̃(s∗+ãs∗)−v∗

ãs∗
is not satisfied,

there are several cases, depending on the ordering of the r.h.s. in the four inequalities
above, to be considered. It is noted that if the initial capital v∗ is such that the condition
f̃(s∗+b̃s∗)−v∗

b̃s∗
< f̃(s∗+ãs∗)−v∗

ãs∗
is not satisfied, it is not possible to obtain a zero shortfall

probability.
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Figure 1: Optimal amount of stock h versus start capital v shown as grey areas for a =
−0.10, b = 0.15, r = 0, p = 0.7, f(s) = max(s,K), K = 100, S0 = 100, and µ = 1.

The approach outlined above provides complete results regarding shortfall probabilities
and the corresponding (non-unique) optimal strategies. However, the considerations do not
really contribute much to the general understanding of the overall structure of solutions.
Moreover, they do not appear to be constructive when considering multi-period problems.
The four inequalities representing criteria a0, a1, b0, and b1 in (2.9) can be translated
into lines which characterize the optimal solution. Indeed, the first inequality leads to
combinations of h and v∗ such that h ≥ − v∗

b̃s∗
, which gives a lower bound on the optimal
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number of stocks h. Analogously, the 2nd, 3rd, and 4th inequalities give upper, lower, and
upper bounds, respectively, represented by lines.

The above lower and upper bounds on the number of stocks h as a function of the initial
capital v given by lines and corresponding optimal combinations of v and h (grey areas) are
shown in Figure 1. The three areas, which represent optimal combinations of h and v, are
labeled I, II and III, respectively. In addition, we have shown the 4 optimality lines derived
from the criteria (2.9). Area I represents combinations of initial capital v and number of
stocks h, where, irrespective of the outcome of the stock and the number of survivors, the
integrated claim is super-hedged. In area II, the case of 1 (and 0) survivors is hedged,
provided that the stock jumps upwards. If the stock jumps downwards, no survivor is
hedged (criterion a0). Finally, in area III, 1 (and 0) survivors are hedged (criteria b1
and b0) if the stock jumps upwards. If the stock jumps downwards, the capital becomes
negative.

3 Dynamic programming with finite time horizon

In this section, we reformulate the main problem in a dynamic programming framework
with a finite time horizon. For a general treatment of discrete time dynamic programming,
see Hernández-Lerma and Lasserre (1995). Since we restrict to self-financing strategies,
we may focus on the component h1

1 of the strategy (h0, h1) and refer to this component

as h̃ = (h1, . . . , hT−1). Further, denote by Xt(h̃) = (V ∗
t (h̃), S∗

t , Yt)
tr the vector-valued

process consisting of the current (discounted) value V ∗
t (h̃) of the investment strategy, the

(discounted) value of the stock S∗
t and the current number of survivors Yt. In the general

case, this process can be observed by the insurance company. Moreover, the company is
able to control the process V ∗

t (h̃) via the initial value V ∗
0 and the number of risky assets

held. We assume that h̃ is a Markov control, i.e. ht+1 = ht+1(V
∗
t (h̃), S∗

t , Yt). Thus, the
process Xt(h̃) is a Markov process.

The goal is to minimize the finite horizon performance criterion given by

J h̃(t, x) = Et,x
[
cT

(
XT (h̃)

)]
= E

[
cT

(
XT (h̃)

)∣∣∣ Xt(h̃) = x
]
, (3.1)

for all t = 0, 1, . . . , T , for x = (v, s, y)tr. As above, we study shortfall probability min-
imization with cT (v, s, y) = 1

{v<yf̃(s)}
and the expected shortfall, where cT (v, s, y) =

(yf̃(s) − v)+.

We denote by Jopt the optimal value function

Jopt(x) = inf
h̃∈H̃

J h̃(0, x), (3.2)

where H̃ is the set of all admissible strategies. This problem can be solved by a simplified
version of the general dynamic programming theorem, see Hernández-Lerma and Lasserre
(1995, Theorem 3.2.1), which provides an algorithm for finding both the value function
Jopt and an optimal strategy hopt. In order to formulate this result we introduce some
additional notation. We denote by

Q(dy|x, h) = P (Xt+1(h̃) ∈ dy|Xt(h̃) = x, ht+1 = h),

the distribution of Xt+1(h̃) given that Xt(h̃) = x and given the control ht+1 = h. In
addition, we introduce the sets H(x) of possible values for the control ht+1 given the
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present state Xt(h̃) = x. For example, if we are working with the condition that the
process Vt(h̃) may not attain negative values, this leads to a condition on the admissible
values for the number of stocks held h. Finally, we denote by X the space of possible
values for the process Xt(h̃). We can now formulate the dynamic programming theorem.

Theorem 3.1 Let J0, J1, ..., JT be functions defined by

JT (x) = cT (x), (3.3)

and

Jt(x) = min
h∈H(x)

[∫

X
Jt+1(y)Q(dy|x, h)

]
, (3.4)

for t = T −1, T −2, ..., 0. Suppose that these functions are measurable and that there exists
a strategy h̃ = {h1, ..., hT } such that ht+1 = ht+1(x) ∈ H(x), t = 1, . . . , T , and ht+1(x)
attains the minimum in (3.4) for all x ∈ X and t = 1, ..., T , i.e.,

Jt(x) =

∫

X
Jt+1(y)Q(dy|x, ht+1). (3.5)

Then the strategy h̃ = {h1, ..., hT } is optimal and the value function Jopt equals J0, i.e.,

Jopt(x) = J0(x) ∀x ∈ X . (3.6)

Proof. See Hernández-Lerma and Lasserre (1995).

The main result in the theorem is that the value function Jopt(x) which is defined in (3.2)
as the infimum with respect to all strategies of the performance criterion in (3.1), can
be calculated as J0(x) from the backward recursion (3.4). A further assumption, the so-
called measurable selection condition, ensures that we obtain a minimum, and not just an
infimum in (3.4). The measurable selection condition, see Hernández-Lerma and Lasserre
(1995), adapted to the current presentation, can be stated as in the following assumption.

Assumption 3.2 The model and a given measurable function w : X → IR are such that

ŵ(x) = inf
h∈H(x)

[∫

X
w(y)Q(dy|x, h)

]
, x ∈ X , (3.7)

is measurable, and there exists a measurable function g : X → H satisfying g(x) ∈ H(x)
for all x ∈ X , such that the function within brackets attains its minimum at g(x) for all
x, i.e.,

ŵ(x) =

∫

X
w(y)Q(dy|x, g) ∀x ∈ X , (3.8)

It is noted that we have confined ourselves to stationary Markov control models in that X ,
H, H(x), Q, and ct, t < T , are time-invariant (ct = 0 for t < T ).
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3.1 Reduced information on the number of survivors

In order to investigate the role of the amount of information available, we also study the
situation where the insurance company is restricted to information concerning the number
of survivors in the insurance portfolio. This situation may be described by the process
X◦

t (h̃) = (V ∗
t (h̃), St, Y

◦
t )tr, where Y ◦

t := Y0 for t < T and Y ◦
T = YT . This means that the

company does not observe the current number of survivors during t = 1, . . . , T − 1. An
alternative approach is discussed below. We consider the case from Section 2.3, where the
insurance company only receives information about the number of policy-holders at time
0 and the final number of survivors YT at time T . Such a state component for which the
value is unknown at intermediate time points cannot be dealt with directly by the dynamic
programming algorithm, since it assumes full information on all state components entering
the control. Generally, methods for imperfect state information in dynamic programming
may be employed, see e.g. Bertsekas and Shreve (1978). However, if the number Y of
survivors is not observed, it may be eliminated from the dynamic programming algorithm,
if it is also uncontrollable and independent of the other components. Thus, Y enters the
dynamic programming algorithm through the cost function cT only. Hence, assuming a
full state vector X = (Y,Ztr)tr, where Z represents all state components except for Y , we
adopt the modified costs with Y averaged out,

c̃T (z) =

∫

Y
cT (z, y)PT (dy).

Here, PT is the probability distribution for YT . Finally, we have the dynamic programming
algorithm

Jt(z) = min
h∈H(z)

[∫

Z
Jt+1(z̃)Q(dz̃|z, h)

]
,

where H(z) = {h ∈ H(z, y)|y ∈ Y}, i.e. feasible controls expressed through the observable
state component Zt, t = 0, 1, . . . , T , only.

The restriction to information on the number of survivors is also studied in case of stochas-
tic survival probabilities. For this application, a standard Bayesian updating procedure is
adopted with the survival probabilities being Beta distributed with a uniform prior.

4 Computational procedures

4.1 Introduction

In this section, a computational procedure for shortfall probability hedging is proposed for
handling the general case with an arbitrary number of periods and an arbitrary number
of policy-holders. A similar procedure for expected shortfall hedging is commented.

We start out in Section 4.2 with a straightforward discretization with respect to capital
and strategy (number of stocks). This approach is extremely computationally intensive
and is thus unsuitable for practical applications. However, due to its simplicity, it is useful
for verification of more advanced alternatives. We refer to the approach as the brute force
approach.

We proceed in Section 4.3 by observing that the value function for shortfall probability
hedging is piecewise constant considered as a function of capital for given stock value (in
each step). Alternatively formulated, the value function as a function of the capital can
attain a finite number of different values only in each step. We obtain a dramatic reduction

9



in the computation effort as compared to the above brute force approach by utilizing this
property systematically for propagating the point selection in the backward recursion in
the dynamic programming algorithm and in the minimization within each time step. We
refer to the new procedure as the discrete properties approach.

It is important to note that the discrete properties approach does not provide a discretiza-
tion of a continuous problem but rather utilizes discrete properties of the problem and thus
leads to calculations that are exact within the limitations of floating point arithmetics.

Further optimization of the algorithms for large scale problems is considered to be outside
the scope of this paper. Naturally, it would then be necessary to give up the property that
calculations be exact in the above sense by introducing resolution limits on capital and
strategies. Moreover, one could consider the vast literature on sub-optimal methodologies,
see e.g. Bertsekas (2005), possibly combined with the discrete properties approach.

A detailed derivation of the discrete properties approach for shortfall probability hedg-
ing, see Section 4.3 and Appendix A, leads to a dynamic programming algorithm, see
Proposition 4.1. For expected shortfall hedging, see Remark 4.2.

4.2 Brute force approach

The straightforward way for solving the multi-period problem by dynamic programming
is by introducing a discretization of capital and strategy. Irrespective of the criterion,
e.g. shortfall probability or expected shortfall hedging, the value function as a function of
v∗ is treated as constant between discretization points for v∗. The basis for the brute force
approach is outlined below. The method is mainly interesting for verification of and as a
first step to more advanced approaches. Since the value of the stock only takes a finite
number of values, discretization is irrelevant for the stock. We introduce:

v∗` = vmin + `∆v∗, ` = 0, 1, . . . , Lv,

h∗
` = h∗

min + `∆h∗, ` = 0, 1, . . . , Lh,

where (discounted) capital v∗ is limited to the interval [v∗min, v∗max] and is discretized with
resolution ∆v∗ = (v∗max − v∗min)/Lv . Similarly, the strategy is limited to the interval
[h∗

min, h∗
max] with resolution ∆h∗ = (h∗

max − h∗
min)/Lh. For notational convenience, we

introduce
s∗t,u := s0(1 + b̃)u(1 + ã)t−u, t = 0, 1, . . . , T, u = 0, 1, . . . , t, (4.1)

which is the (discounted) stock price at time t, given that the number of jumps upwards
is u within time steps 1, 2, . . . , t, and s0 is the value of stock at time 0. Hence, for
m = 0, 1, . . . , Lv, we have for t = 0, 1, . . . , T − 1, the dynamic programming equation
corresponding to (3.4),

Jt(v
∗
m, u, y) = min

h∈{h∗

0,h∗

1,...,h∗

Lh
}

[ y∑

k=0

pk|y (4.2)

×
(
pJt+1(v

∗
m + hb̃s∗t,u, u + 1, k) + (1 − p)Jt+1(v

∗
m + hãs∗t,u, u, k)

) ]
,

where s∗t,u is represented by u in the value function Jt and pk|y is the probability of k
surviving policy-holders at the end of a time step, given that the number is y at the start
of the step. It is noted that the J-values entering the sum in (4.2) are found by locating
the capital value intervals at the prior time t+1 (in the recursion) that contain v∗m +hb̃s∗t,u
and v∗m+hãs∗t,u corresponding to the case where the value of the stock jumps up and down,
respectively.
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4.3 Discrete properties approach for shortfall probability hedging

Single-period case
We calculate the shortfall probability after one period starting with y policy-holders, see
also Section 2.4. We have the shortfall probability

Psf (h) =

y∑

k=0

(p1
{v∗+hb̃s∗<kf̃(s∗+b̃s∗)}

+ (1 − p)1
{v∗+hãs∗<kf̃(s∗+ãs∗)}

)pk|y (4.3)

=

y∑

k=0

(p1{h<hb,k} + (1 − p)1{h>ha,k})pk|y,

where pk|y is the probability of k survivors after one period starting with y survivors and

hb,k =
kf̃(s∗ + b̃s∗) − v∗

b̃s∗
, k = 0, 1, . . . , y, (4.4)

ha,k =
kf̃(s∗ + ãs∗) − v∗

ãs∗
, k = 0, 1, . . . , y. (4.5)

We see from (4.3) that minh[Psf (h)] is determined by the ordering of the joint sequence
consisting of both ha,k and hb,k, k = 0, 1, . . . , y. Hence, we may change v∗ without affecting
minh[Psf (h)] as long as the ordering of ha,k and hb,k, k = 0, 1, . . . , y is not changed. The
idea is essentially to identify values v∗ at (time T − 1) at which the ordering of the
ha,k’s and hb,k’s is changed. The ordering is changed for v∗-values for which ha,j = hb,k,
j = 0, 1, . . . , y and k = 0, 1, . . . , y, i.e. values where

jf̃(s∗ + ãs∗) − v∗

ãs∗
=

kf̃(s∗ + b̃s∗) − v∗

b̃s∗
,

considered separately for different pairs j, k. Thus, we need to focus on values for v∗ on
the form

jb̃f̃(s∗ + ãs∗) − kãf̃(s∗ + b̃s∗)

b̃ − ã
=: v∗,T−1

jk , j = 0, 1, . . . , y, k = 0, 1 . . . , y. (4.6)

It is noted that the above outlined procedure for selection of v∗-values according to (4.6)
can alternatively be obtained as a special case of the procedure for an arbitrary step in
the multi-period problem, see Appendix A.1.2.

We introduce the strictly increasing sequence v∗,T−1
` , ` = 0, 1, . . . , LT−1 where v∗,T−1

0 <

v∗,T−1
1 < · · · < v∗,T−1

LT−1
are obtained by rearrangement of v∗,T−1

jk , j = 0, 1, . . . , y, k =

0, 1 . . . , y and skipping multiples. Hence, LT−1 + 1 ≤ (y + 1)2 (equality corresponding
to no multiples). In order to deal properly with intervals and not only points between
intervals, we add a point corresponding to a capital value greater than any of the above
values. We choose to add v∗,T−1

LT−1+1 = ∞.

Now we are able to limit the number of capital values to be considered in value functions,
i.e.,

JT−1(v
∗, s∗, y) =

LT−1+1∑

`=1

1
{v∗∈[v∗,T−1

`−1 ;v∗,T−1
`

)}
JT−1(ζ`,T−1, s

∗, y), (4.7)

where ζ`,T−1 ∈ [v∗,T−1
`−1 ; v∗,T−1

` ) can be chosen freely. The single step (or first step) de-
termination of capital values is a special case of the general procedure depicted for an
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arbitrary step in Figure 2. The input points appearing on the vertical axis for the first
step are: v∗,t,u+1

` = `f̃(s∗ + b̃s∗), ` = 0, . . . , y, and v∗,t,u` = `f̃(s∗ + ãs∗), ` = 0, . . . , y.

Multi-period case
We present a proposition for the multi-period case mainly based on the observation that
the limitation of capital into a finite number of values in the one-period case propagates
to the subsequent time steps in the backward recursion (not necessarily the same capital
values and same number of capital values). The results are formulated as Proposition 4.1,
and Remarks 4.2–4.4 below.

Proposition 4.1 The minimum shortfall probability Psf,min = min Prob(f̃(S∗
T )YT > V ∗

T ),

given that the initial capital is v∗,0,0
m , is J0(v

∗,0,0
m , n), which is determined from the sub-

sequent dynamic programming algorithm. The corresponding optimal number of stocks
to be purchased at time 0 is the h-value by which J0(v

∗,0,0
m , n) is attained. The dynamic

programming algorithm:
JT (v∗,T,u

m , y) = 1{y>m}, (4.8)

where v∗,T,u
m = mf̃(s∗T,u), y = 0, 1, . . . , n, m = 0, 1, . . . , n, and u = 0, 1, . . . , T . For

t = 0, 1, . . . , T − 1, we have:

Jt(v
∗,u,t
m , y) = min

h∈H
(t+1,u)
a (v∗,u,t

m )∪H̃
(t+1,u)
b

(v∗,u,t
m )

[
y∑

k=0

pk|y

[
1
{h∈H̃b(v

∗,u,t
m )}

× (4.9)

Lt+1,u+1∑

`=0

1
{h=h

(t+1,u+1)
b,`

(v∗,u,t
m )}

(
pJt+1(v

∗,t+1,u+1
` , k) + (1−p)Jt+1(v

∗,t+1,u+1(`(t+1,u)
a,m ), k)

)

+

Lt+1,u∑

`=0

1
{h=h

(t+1,u)
a,`

(v∗,u,t
m )}

(
pJt+1(v

∗,t+1,u(`
(t+1,u+1)
b,m ), k) + (1−p)Jt+1(v

∗,t+1,u
` , k)

) ]

 ,

for m = 0, 1, . . . , Lt,u with v∗,t,um the strictly increasing sequence corresponding to

v∗,t,u
m̃,m̂

=
b̃v∗,t+1,u

m̃
− ãv∗,t+1,u+1

m̂

b̃ − ã
, m̃ = 0, 1, . . . , Lt+1,u, m̂ = 0, 1, . . . , Lt+1,u+1,

and

h
(t+1,u)
a,` (v∗) =

v∗,t+1,u
` − v∗

ãs∗t,u
, ` = 0, 1, . . . , Lt+1,u,

h
(t+1,u+1)
b,` (v∗) =

v∗,t+1,u+1
` − v∗

b̃s∗t,u
, ` = 0, 1, . . . , Lt+1,u+1,

`(t+1,u)
a,m = max{`|v∗,t+1,u

` ≤ v∗,t,um + h
(t+1,u+1)
b,` (v∗,t,um )ãs∗t,u},

`
(t+1,u+1)
b,m = max{`|v∗,t+1,u+1

` ≤ v∗,t,um + h
(t+1,u)
a,` (v∗,t,um )̃bs∗t,u},

v∗,t,u(`) = v∗,t,u` ,

H(t+1,u)
a (v∗) = {h

(t+1,u)
a,0 (v∗), h

(t+1,u)
a,1 (v∗), . . . , h

(t+1,u)
a,Lt+1,u

(v∗)},

H
(t+1,u)
b (v∗) = {h

(t+1,u+1)
b,0 (v∗), h

(t+1,u+1)
b,1 (v∗), . . . , h

(t+1,u+1)
b,Lt+1,u+1

(v∗)},

H̃
(t+1,u)
b (v∗) = H

(t+1,u)
b (v∗) \ H(t+1,u)

a (v∗).
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Proof: see Appendix A.

Remark 4.2 An analogous dynamic programming algorithm can be derived for the ex-
pected shortfall criterion. The capital value point selection is similar, whereas the use of
constant J-functions between selected points is replaced by linearly varying J-functions.

Remark 4.3 According to the proof, see Appendix A.1.2, we have Lt,u + 1 ≤ (Lt+1,u +
1)(Lt+1,u+1 + 1) with equality in case of no multiples. Note that the number of points
increases exponentially. Hence, it is is highly advantageous with regard to performance to
carry out a screening after calculation of J(v∗,t,um ), m = 0, 1, . . . , Lt,u, only keeping v∗,t,um

where the J-function as a function of v∗ is discontinuous. After the screening (and renum-
bering), a reduced vector is kept for the backward recursion for the following dynamic
programming step.

Remark 4.4 If the non-negativity constraint on capital, see Section 2.1, is imposed, this
is reflected in corresponding constraints on the strategy h. For each h-value, it is checked
that the implied capital in the previous step is non-negative, both for jumps up and down
for the stock value. If this condition is not satisfied, the h-value is discarded.

Accounting for the number of survivors Y , too, in the capital value points selection proce-
dure might seem relevant since fewer survivors imply fewer points to be included. However,
we do not know Y (looking ahead from time 0) and hence must account for the case that all
policy-holders survive. Moreover, introducing Y into the point selection procedure com-
plicates matters severely and has not been used. The procedure according to Proposition
4.1 is described in the following. For details, see Appendix A.

Points selection
The procedure for deriving a set of capital values to be considered at time t based on the
corresponding values for time t + 1 is illustrated in Figure 2. Here, one sees the capital
v∗,t+1,u
0 , . . . , v∗,t+1,u

2 and v∗,t+1,u+1
0 , . . . , v∗,t+1,u

3 for u and u + 1 jumps upwards realized at

time t + 1. In this algorithm, v∗,t+1,u
0 = v∗,t+1,u+1

0 = 0. The values are determined by
the points selection procedure in the dynamic programming algorithm. The three lines
with slope −1/(ãs∗t,u) through one of the points with v∗ = 0 and h = v∗,t+1,u

0 , . . . , v∗,t+1,u
2

represent h∗t+1,u
a,` (v∗), ` = 0, . . . , 2, in Proposition 4.1. Similarly, the four lines with slope

1/(̃bs∗t,u) through one of the points with v∗ = 0 and h = v∗,t+1,u+1
0 , . . . , v∗,t+1,u+1

3 , rep-

resent h
(∗,t+1,u+1)
b,` (v∗), ` = 0, . . . , 3. The functions h

(∗,t+1,u)
a,` and h

(∗,t+1,u+1)
b,` determine

the number of stocks h to be purchased at time t such that, given that the stock price
jumps down and up, respectively, we obtain the `’th capital value according to the points
selection procedure for time t + 1 in the recursion. Next, we find the intersections be-

tween the lines corresponding to h
(∗,t+1,u)
a,` (v∗) and h

(∗,t+1,u+1)
b,` (v∗). The v∗-values in the

intersection points, i.e. (v∗,t,u0 , . . . , v∗,t,u8 ) = (v0, . . . , v8) in the current example, constitute
the set of v∗-values to be considered in the dynamic programming algorithm for time t
assuming u upward jumps of the stock up to this time. It is noted that since the v∗-value
from the intersection generated by v∗,t+1,u+1

2 and v∗,t+1,u
2 coincides with the one from the

intersection generated by v∗,t+1,u+1
1 and v∗,t+1,u

1 , it is discarded (both intersections result
in v∗,t,u2 = v2 only).

Minimization within each time step

We exploit that we only need to consider the strategies h
(∗,t+1,u+1)
b,` (v∗), in case the stock
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value jumps up, see Appendix A.1.3. The reason is that we then obtain capital values in
the previous step that are selected according to the points selection algorithm. Similarly,

we need only consider h
(∗,t+1,u)
a,` (v∗), if the stock jumps downs. Hence, the strategies

h
(∗,t+1,u+1)
b,` (v∗) and h

(∗,t+1,u)
a,` (v∗) cover all relevant strategies, and we may pick separately

from each group (inner sums in (4.9)). However, since it is unknown in advance whether
the stock jumps up or down, capital values have to be located if we are considering

h
(∗,t+1,u+1)
b,` (v∗), in case the stock jumps down (analogously for h

(∗,t+1,u+1)
b,` (v∗)). Located

capital values appear e.g. in the second J-function in the first inner sum in (4.9).
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Example:

(v∗,t+1,u+1
2 , v∗,t+1,u

1 ) →

v∗,t,u2,1 = v∗,t,u3 (= v3)

Figure 2: Illustration of backward recursion for selection of capital values to be considered
in the dynamic programming algorithm, Proposition 4.1.

5 Numerical examples

In this section, a number of numerical examples are presented. Throughout, we impose the
non-negativity constraint on capital. In Section 5.1, an example is presented considering
all times and time steps with one policy-holder and four periods. It is demonstrated that
the strategies for the first time step are equal for the shortfall probability and the expected
shortfall hedging criteria and that the strategies corresponding to the same outcomes of
the financial market (number of jumps upwards of stock) in subsequent time steps are
quite similar. Moreover, comparisons with the quadratic hedging criterion indicate that
the above criteria imply that it is optimal to buy more stocks than according to quadratic
hedging.

In Section 5.2, a number of examples are presented focusing on the first time (time 0)
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and the first time step (time step 1). Firstly, expected shortfall hedging with 8 or 9
policy-holders and one period is treated. It seems that adding a single policy-holder may
affect the optimal strategy significantly. Secondly, the focus is on observing the number
of survivors or not. An example calculation (not reported herein) for shortfall probability
hedging with two policy-holders and two periods indicates that the effect from observations
is moderate. However, taking the survival probability to be stochastic with a uniform
prior, see Section 3.1, in an example with three policy-holders and four periods shows
that the importance of observing the number of policy-holders can be high. Finally, an
example with three policy-holders and three periods, covering both shortfall probability
and expected shortfall hedging, is reported. It is demonstrated that the value for p is
of great significance. Moreover, the results from shortfall probability and from expected
shortfall hedging are qualitatively not very different but there are differences with regard to
complexity of strategy versus start capital and the effect from optimal investment relative
to no action.

Unless otherwise stated, the following parameter values are applied: relative (signed) stock
jump down a = −0.10, relative stock jump up b = 0.15, probability of stock jumping up
p = 0.7, risk-free interest rate r = 0, purely financial claim at time T , f(ST ) = max(ST ,K)
with K = 100, initial value of stock s0 = 100, mortality-intensity µ = 0.25, and initial
capital v0 = 100.

5.1 Example considering all times and steps

We study the case with one policy-holder and four periods. The aim is to illustrate optimal
strategies and the corresponding shortfall probabilities. Depending on how the financial
market develops, the strategies and minimization results for all time steps are shown.
The strategy also reflects the development of the number of survivors. However, since
we impose the non-negativity constraint on capital, zero survivors trivially lead to zero
shortfall probability. Hence, we only show results conditional on survival of the (one)
policy-holder.

Even though strategies are non-unique, we may set up rules for selection of a single strategy
in each time step, thus obtaining a unique strategy. Without much consideration on the
choice of such a rule, we adopt the following principle: Out of all optimal strategies, we
select the one which is numerically smallest. Value functions are found for a single capital
value in each time point, where this capital value follows from a forward calculation as
opposed to the backward calculation in the dynamic programming algorithm.

In Figure 3, optimal strategies and minimum shortfall probabilities from shortfall proba-
bility hedging are shown. Optimal strategies and corresponding shortfall probabilities are
shown above and below the tree nodes. It is noted that whereas the value of the stock can
be represented by a recombining tree, the present trees are not recombining.

At time points 0, 1, and 2, super-hedging does not occur. At time point 3, it occurs only
if the stock value has jumped up in all three of the preceding time steps (jump sequence
111). At time point 4, 7 jump sequences imply super-hedging. Out of 6 sequences with
2 jumps up, only the 0011 and 0101 sequences give super-hedging, i.e. the two sequences
with two jumps up that are located as late as possible. Moreover, all of the 4 sequences
with 3 jumps up and the one sequence with 4 jumps up lead to super-hedging.

Calculations as in Figure 3 based on expected shortfall have been carried out but are
not included here. However, it is mentioned that the two hedging criteria give the same
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Figure 3: Tree showing the optimal strategy (the upper numbers) and the minimum shortfall
probability (lower numbers) in case of shortfall probability hedging in example with one
policy-holder and four periods. The results are conditional on survival of the policy-holder
(up to the time in question).

strategy at time 0. Furthermore, the strategies according to the two hedging criteria are
not very different at later time points, and the outcomes of the financial market that lead
to super-hedging are common for the two criteria.

In Figure 4, strategies corresponding to shortfall probability hedging and quadratic hedg-
ing, as described in Møller (2001a) (interest rate set to 0), are compared. It appears
that the initial number of stocks is more than three times bigger for shortfall probability
hedging than quadratic hedging. At later time points, this factor is in most cases even
bigger. However, later time points are not directly comparable, since the quadratic hedg-
ing strategy depicted is not self-financing, i.e. it is based on different capital at later time
points. Intuitively, the observation that shortfall probability hedging results in a larger
strategy than quadratic hedging may be explained by the fact that with quadratic hedging,
a large strategy may lead to a large amount of redundant capital which is punished just
as much as lack of capital. With the shortfall probability strategy, such considerations on
redundant capital are irrelevant, since redundant capital is not punished according to this
strategy.

5.2 Illustrations for the first time point and time step

Eight or nine policy-holders and one period
In this section, we study two cases with a single period, one with 8 and one other with
9 policy-holders. The purpose is to demonstrate that significant differences in optimal
strategies can occur in cases that appear to be very similar.

In Figure 5, the optimal strategy h versus start capital v is shown for 9 policy-holders.
In the following, we focus on large initial values for the initial capital such that the non-
negativity constraint on capital is not active. Hence, we consider initial capital values of
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Figure 4: Tree showing optimal strategies according to shortfall probability hedging (the
upper numbers) and quadratic hedging (lower numbers) in example with one policy-holder
and four periods. The results are conditional on survival of the policy-holder (up to the
time in question).

400 or larger. It appears that for n = 9 policy-holders, it is always optimal to choose
a strategy which hedges survival of all n policy-holders when the stock value jumps up,
except for two intervals of capital, where the triangles in the figure are located below the
line defining the bottom sides the other triangles. Below, we refer to the two v-intervals
by 1 and 2 (1 for the interval with the larges v-values). In these intervals, the survival of
only n−1 = 8 policy-holders, is hedged in case the stock value jumps up. In case of n = 8
policy-holders (not shown), no such exceptions occur, i.e. in the considered capital levels,
it is always optimal to hedge all n policy-holders.

The above mentioned differences can be justified by looking at the probabilities more
closely. Below we show that for n = 9, referring to the above v-intervals, 1 and 2:

1 It is more optimal to 1-i) hedge n − 1 survivors, irrespective of the outcome for the
stock than to 1-ii) hedge n and n− 2 survivors provided that the stock value jumps
up and down, respectively.

2 It is more optimal to 2-i) hedge n− 1 and n− 2 survivors provided that the stock value
jumps up and down, respectively, than to 2-ii) hedge n and n− 3 survivors provided
that the stock value jumps up and down, respectively.

With py|n, the probability of y survivors, given that the number of policy-holders is n, we
find the shortfall probability using the strategies 1-i) and 1-ii) introduced above:

Psf,1i = ppn|n + (1 − p)pn|n = pn|n,

Psf,1ii = p × 0 + (1 − p)(pn−1|n + pn|n) = (1 − p)(pn−1|n + pn|n).

Strategy i) is more optimal than ii) if

∆Psf,1 =: Psf,1ii − Psf,1i = (1 − p)pn−1|n − ppn|n > 0.
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In our case with pn|y being the Binomial probability distribution function with parameters
(n, q) (and argument y), we find ∆Psf,1 = qn−1[(1 − p)(1 − q)n − pq], i.e. Psf,1 > 0,
i.e. strategy 1-i) is more optimal than 1-ii), for n ≥ n1 where n1 = min{n ∈ IN |n ≥

pq
(1−p)(1−q)}. With q = exp(−0.25) and p = 0.7, we find n1 = 9. Hence, for n = 8 policy-

holders, strategy 1-ii) is optimal, whereas strategy 1-i) is optimal for n = 9. Similarly, one
finds that strategy 2-i) is more optimal than 2-ii) for n ≥ n2 where n2 = min{n ∈ IN |n ≥
2pq2

(1−q)2 }. Again, with q = exp(−0.25) and p = 0.7, n2 = 9.
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Figure 5: Optimal strategy h versus start capital v in example with 9 policy-holders and 1
period using shortfall probability hedging.

Three policy-holders and four periods - importance of restrictions to observations
We adopt a stochastic survival probability as discussed in Section 3.1. We consider 4
periods and 3 policy-holders. Shortfall probabilities in case of observations and no ob-
servations are shown in Figure 6. A considerable reduction of the shortfall probability
obtained through observations is seen. For start capital 200 and above, the probability is
roughly reduced by 50 %. Naturally, choosing a uniform prior as in this example would
be too conservative in most applications. The interpretation is then that for the case
considered, we have roughly an upper bound for the effect from observations.

Three policy-holders and three periods
Here we study an example with minimum shortfall probabilities and expected shortfall
and corresponding strategies for the case with three policy-holders and three periods.

Optimal strategies for shortfall probability hedging are given in Figure 7 for p = 0.7.
The corresponding minimum shortfall probabilities are shown in Figure 8 for p = 0.7 and
p = 0.5, including shortfall probabilities with no action for comparison. It appears that the
relationship between non-unique strategies and start capital level is rather complicated.

Even though the shortfall probability without investment is higher for p = 0.7 than for
p = 0.5, the minimum shortfall probability from optimal investments is much lower with
p = 0.7 than p = 0.5, see Figure 8, as expected due to the more efficient control possibility.

Analogous results based on expected shortfall hedging are reported in Figure 9 and 10. The
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Figure 6: Minimum shortfall probability p versus start capital v in example with three
policy-holders and four periods. The one-period survival probability is stochastic with a
prior uniformly distributed on [0;1]. From top: 1) optimal investment without observation
of survivors, and 2) optimal investment with observation of survivors.
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Figure 7: Optimal strategy h versus start capital v in example with 3 policy-holders and
3 periods using shortfall probability hedging. Probability of the stock value jumping up
p = 0.7.
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Figure 8: Minimum shortfall probability P versus start capital v in example with 3 policy-
holders and 3 periods using shortfall probability hedging. The probability of stock jumping
up is p = 0.5 or p = 0.7. For comparison, shortfall probabilities without investment are
included.
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Figure 9: Optimal strategy h versus start capital v in example with 3 policy-holders and 3
periods using expected shortfall hedging. Probability of the stock value jumping up p = 0.7.
Super-hedging strategies are not shown (same as for shortfall probability hedging, see Figure
7). Areas that are enclosed by lines should be interpreted as zones with optimal h versus
v.
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Figure 10: Minimum expected shortfall ES versus start capital v in example with 3 policy-
holders and 3 periods using expected shortfall hedging. The probability of stock jumping
up is p = 0.5 or p = 0.7. For comparison, expected shortfalls ES without investment are
included.

qualitative findings are similar to those above from shortfall probability hedging. However,
the optimal strategies from expected shortfall hedging as functions of start capital are more
unique and less complicated. Moreover, the gain with respect to the expected shortfall
from optimal investment as compared to no action is very moderate for p = 0.5.

In conclusion, the results indicate that the choice of p-value is crucial for optimal strategies,
shortfall probabilities, and expected shortfalls. Different values for sizes of jumps in stock
values (derived from parameters a and b) have not been considered here. However, it is
obvious that parameter triples (a, b, p) that imply the same expected value for the value
of the stock after a jump (for given start value), will give significantly different results for
varying p values.

A Appendix

A.1 Proof for the dynamic programming algorithm, Proposition 4.1

The proof considers mainly three issues: i) Single period case generalized, ii) Propagation
of points selection procedure, and iii) Minimization within each time step.

A.1.1 Single period case generalized

It is necessary to keep track of the particular s∗-values used for finding v∗kj. As a general-
ization of (4.6) using s∗t,u defined by (4.1), we introduce

v∗,T−1,u
jk =

jb̃f̃(s∗T−1,u + ãs∗T−1,u) − kãf̃(s∗T−1,u + b̃s∗T−1,u)

b̃ − ã
(A.1)

=
jb̃f̃(s∗T,u) − kãf̃(s∗T,u+1)

b̃ − ã
, j = 0, 1, . . . , y, k = 0, 1 . . . , y,
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where u = 0, 1, . . . , T−1. The v∗,T−1,u
jk -values are rearranged into v∗,T−1,u

` , ` = 0, 1, . . . , LT−1,u,

where v∗,T−1,u
1 < v∗,T−1,u

2 < · · · < v∗,T−1,u
LT−1,u

. We set v∗,T−1,u
LT−1,u+1 = ∞.

A.1.2 Propagation of points selection procedure

In the following, the state component corresponding to the discounted stock value is
replaced by the number u of jumps upwards for the stock (up to the time considered).
Hence,

Jt(v
∗, u, y) =

Lt,u+1∑

`=1

1{v∗∈[v∗,t,u

`−1 ;v∗,t,u

`
)}Jt(ζ`,t,u, u, y), (A.2)

where t = T − 1, ζ`,t,u ∈ [v∗,t,u`−1 , v∗,t,u` ). We may choose ζ`,t,u = v∗,t,u`−1 , ` = 1, 2, . . . , Lt,u,
t = 0, 1, . . . , T , and u = 0, 1, . . . , t.

It appears that different capital values are to be considered depending on time and the
number of jumps upwards of the stock up to the time. In each step of the dynamic
programming algorithm, we need to determine

Jt(v
∗, u, y) = min

h

[
y∑

k=0

py|k (A.3)

×



p

Lt+1,u+1+1∑

`=1

1
{v∗+hb̃s∗t,u∈[v∗,t+1,u+1

`−1 ;v∗,t+1,u+1
`

)}
Jt+1(v

∗,t+1,u+1
`−1 , u + 1, k)

+(1 − p)

Lt+1,u+1∑

`=1

1{v∗+hãs∗t,u∈[v∗,t+1,u

`−1 ;v∗,t+1,u

`
)}Jt+1(v

∗,t+1,u
`−1 , u, k)






 .

We introduce:

h
(t+1,u)
a,` (v∗) =

v∗,t+1,u
` − v∗

ãs∗t,u
, ` = 0, 1, . . . , Lt+1,u, (A.4)

h
(t+1,u+1)
b,` (v∗) =

v∗,t+1,u+1
` − v∗

b̃s∗t,u
, ` = 0, 1, . . . , Lt+1,u+1,

where t = 0, 1, . . . , T − 1 and u = 0, 1, . . . , t. Thus:

Jt(v
∗, u, y) = min

h

[
y∑

k=0

pk|y (A.5)

×



p

Lt+1,u+1+1∑

`=1

1
{h∈[h

(t+1,u+1)
b,`−1 (v∗);h

(t+1,u+1)
b,`

(v∗))}
Jt+1(v

∗,t+1,u+1
`−1 , u + 1, k)

+ (1 − p)

Lt+1,u+1∑

`=1

1
{h∈(h

(t+1,u)
a,`

(v∗);h
(t+1,u)
a,`−1 (v∗)]}

Jt+1(v
∗,t+1,u
`−1 , u, k)






 .

It is seen that as a function of h, each of the two inner sums in (A.5) is piecewise constant.
We may rewrite (A.3) as

Jt(v
∗, u, y) = min

h

[
y∑

k=0

py|k

(
pwt+1(v

∗ + hb̃s∗t,u, u + 1, k) + (1 − p)wt+1(v
∗ + hãs∗t,u, u, k)

)]
,

(A.6)
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where we have introduced:

wt(v
∗, u, y) =

Lt,u+1∑

`=1

1{v∗∈[v∗,t,u

`−1 ;v∗,t,u

`
)}Jt(v

∗,t,u
`−1 , u, y). (A.7)

Utilizing that the inner sums in (A.5) are piecewise constant a functions of h, wt+1(v
∗ +

hãs∗t,u, u, k) and wt+1(v
∗ + hb̃s∗t,u, u + 1, k) in (A.6) are illustrated as functions of h in

Figure 11. For increasing v∗, wt+1(v
∗ + hãs∗t,u, u, k) and wt+1(v

∗ + hb̃s∗t,u, u + 1, k) are
shifted to the right and left, respectively (exemplified through v∗ = α and v∗ = β, where
β > α). The v∗-values for which the J-function in the l.h.s. of (A.5) is discontinuous as a
function of v∗ (constant between such values) are within the list of v∗-values for which both
wt+1(v

∗ + hãs∗t,u, u, k) and wt+1(v
∗ + hb̃s∗t,u, u + 1, k) as functions of h are discontinuous.

The solutions with respect to v∗ of h
(t+1,u)
a,` (v∗) = h

(t+1,u+1)
b,m (v∗), ` = 0, 1, . . . , Lt+1,u and

m = 0, 1, . . . , Lt+1,u+1, provide the potential discontinuity v∗-values, i.e.,

v∗,t+1,u
` − v∗

ãs∗t,u
=

v∗,t+1,u+1
m − v∗

b̃s∗t,u
⇔ (A.8)

v∗ =
b̃v∗,t+1,u

` − ãv∗,t+1,u+1
m

b̃ − ã
:= v∗,t,u`m ,

where ` = 0, 1, . . . , Lt+1,u, m = 0, 1, . . . , Lt+1,u+1, t = 0, 1, . . . , T − 2, and u = 0, 1, . . . , t.
As earlier, we rearrange v∗,t,u`m , ` = 0, 1, . . . , Lt+1,u,m = 0, 1, . . . , Lt+1,u+1 into a strictly

increasing sequence v∗,t,u` , ` = 0, 1, . . . , Lt,u where v∗,t,u1 < v∗,t,u2 < · · · < v∗,t,uLt,u
skipping

multiples, implying that Lt,u + 1 ≤ (Lt+1,u + 1)(Lt+1,u+1 + 1). We add v∗,t,uLt,u+1 = ∞.
Hence, we are evaluating Jt only at the given v∗ values.
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Figure 11: Illustration of the piecewise constant value function.

A.1.3 Minimization within each time step

Now we exploit that the two inner sums in (A.5) are piecewise constant with respect to

capital in the minimization procedure. Only h
(t+1,u+1)
b,` (v∗), ` = 0, 1, . . . , Lt+1,u+1 need
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to be considered if the value of the stocks jumps up. Similarly, only h
(t+1,u)
a,` (v∗), ` =

0, 1, . . . , Lt+1,u need to be considered if the stock value jumps down. Hence, taking e.g. h =

h
(t+1,u+1)
b,` (v∗) implies that we immediately have the J-value, J(v∗,t+1,u+1

t+1,` , u+1, k) available
in the dynamic programming step to be used if the stock jumps up. However, taking h =

h
(t+1,u+1)
b,` (v∗) implies that if the stock jumps down, the J-value is not directly available.

Thus, we have to locate the interval defined by two consecutive points amongst v∗,t,u` ,

` = 0, 1, . . . , Lt+1,u, which contains v∗,t,um + h
(t+1,u+1)
b,` (v∗)ãs∗t,u where we start out with

a (discounted) capital value v∗,t,um , m = 0, 1, . . . , Lt,u, according to the above backward
recursion scheme. The interval in question is

[v∗,t+1,u(`(t+1,u)
a,m ); v∗,t+1,u(1 + `(t+1,u)

a,m )),

where we for convenience have introduced the alternative notation v∗,t,u(`) = v∗,t,u` and

`(t+1,u)
a,m = max{`|v∗,t+1,u

` ≤ v∗,t,um + h
(t+1,u+1)
b,` (v∗,t,um )ãs∗t,u}.

By choosing h = h
(t+1,u)
a,` , ` = 0, 1, . . . , Lt+1,u, we make completely analogous consid-

erations, i.e. we find the interval defined by two consecutive points amongst v∗,t+1,u+1
` ,

` = 0, 1, . . . , Lt+1,u+1, containing v∗,t,um + h
(t+1,u)
a,` b̃s∗t,u. The interval is

[v∗,t+1,u+1(`
(t+1,u+1)
b,m ); v∗,t+1,u+1(1 + `

(t+1,u+1)
b,m )),

where
`
(t+1,u+1)
b,m = max{`|v∗,t+1,u+1

` ≤ v∗,t,um + h
(t+1,u)
a,` (v∗,t,um )̃bs∗t,u}.

A.1.4 Concluding remarks

Combining Sections A.1.1, A.1.2, and A.1.3 concludes the proof. However, two comments
are in place. Is is easily verified that the J-functions in the l.h.s. of (4.8) and (4.9) are
only indirectly dependent on u (through capital values, selected according to the algorithm,
that are depending on u). Moreover, it is straightforward to verify Assumption 3.2 for an
arbitrary step in the dynamic programming algorithm, since the J-functions, at any given
time t, are piecewise constant functions with a finite number of values and g : X → H in
(3.8) may be chosen as e.g. a piecewise continuous function g̃ : X → IR, i.e. a measurable
function.
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Föllmer, H. and Leukert, P. (1999). Quantile Hedging, Finance and Stochastics 3, 251–273.

24
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