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In this paper
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simulations for the pricing of the embedded options in life insurance contracts. We propose a very 
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realized by L2-Norm. L2 distance decreases according to the number of trajectories of the discretized 
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be reduced to less than 5%. 
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1 Introduction 

The implementation of an asset / liability management (ALM) model for the management and 

economic capitalevaluation of life insurance contracts requires a very important volume of 

computations within the framework of Monte Carlo simulations. Indeed, for each trajectory of 

the asset, the whole of the liability must be simulated, because of the strong interactions 

between the asset and the liability through the ratchet and through the redistribution of the 

financial and technical results (cf. PLANCHET and al. [2011]). This leads to the well known 

problem of nested simulations (cf. BAUER and al. [2010] and GORDY and JUNEJA [2008]). 

Various approaches were developed to overcome the practical difficulty of implementing the 

nested simulations approaches, among which the most used are optimizations inspired from 

the importance sampling (cf. DEVINEAU and LOISEL [2009]) and the techniques of replicating 

portfolio (cf. REVELEN [2009], SCHRAGER [2008] and CHAUVIGNY and DEVINEAU [2011]). 

More recently, BAUER and al. [2010] use LSMC approach initially proposed in LONGSTAFF 

and SCHWARTZ [2001] for the pricing of American options. However, optimization techniques 

are conceived generally for the estimation of the quantile of the excess asset / liability in the 

framework of the determination of the economic capital and are not always suited to compute 

the best estimate of the provision. Replicating portfolio approaches are wrongly adapted to the 

context of French insurance life contracts because of the complexity required when 

implementing clauses of redistribution of the financial discretionary benefit. 

Therefore, practitioners sometimes use a method consisting in summarizing the possible 

evolutions of the asset process in a limited number of characteristic trajectories. This results in 

proposing a limited number of scenarios of evolution for the asset process, each of these 

scenarios being characterized by a probability of occurrence. The difficulty is to build the 

scenarios in an optimal way in order to obtain a good approximation of the value of the 

provision. 

The objective of this paper is to propose a method to build these characteristic trajectories and 

to provide tools to measure the impact of this simplification on the results. So we provide here 

a tool for best estimate computing which can be used together with other optimization 

techniques. 

To achieve this goal in an objective manner, we propose a simple discretization of the 

distribution of the underlying trajectories in an L
2
 Hilbert space. Many papers deals with the 

question of the time discretization of the path of the process (see for example the work of 

GOBET [2003] and the numerous references therein) and the question of the bias reduction. 

We will adopt in this paper a different point of view and focus on the discretization of the 

distribution of the paths. More precisely, a stochastic process S such as those considered here 

can be viewed as a random variable in a L
2
 space. The probability distribution of S is in 

practice considered as continuous. What we want to do is to find a discrete probability 

distribution that is "not too far" from the true one. We don't think there is many works on this 

topics. 
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2 General characteristics of the discretized process 

2.1 Definition 

We consider a stochastic process  S t  in    0, , , ,      observed on the time 

interval  0,T . In practice,  S t  can represent a market value or a total return of assets 

portfolio. We replace the sample of trajectories of this process by the following simplified 

trajectories: 

- At time t, we choose a partition of  ,  1
1

t j t j
s s j p


    , ,

, , ; 

- We then write        1j t j t j
t S t S t s s


   , ,

E , ;   (0.1)  

- We define the process  t  by selecting one of the p trajectories of  j
t , each 

trajectory being characterized by its probability   1t j t j t j
S t s s


   , , ,

Pr , . 

Technically speaking, we replace the continuous distribution of the random variable S, which 

takes its values in a set of functions, by the discrete distribution of the variable  . We then 

make a package of trajectories according to the quantiles of the initial process  S t . For 

example, we can choose  the intervals so that 
1

,t j
p

  , which is the approach retained in this 

paper. In practice, we generally simulate trajectories of initial process S,  i
S t , 1 i N  , and 

we usually estimate     1t j t j
S t S t s s


  , ,

E ,  by the following estimator: 

   
1

j

j i

ij

t S t
N




   where   1j i t j t j
i S t s s


    , ,

,  and 
j j

N   . 

Two errors are being made with this approximation: 

- first, when replacing the trajectories of the continuous process  S t  by the 

discretized process  t  obtained by selecting one of the p trajectories  j
t  with 

its probability   1t j t j t j
S t s s


   , , ,

Pr , ; 

- second, the method of construction per simulation leads to replacing the theoretical 

expectation by an empirical estimation which introduces sampling fluctuations. 

Generally speaking, this approximation is made within the framework of the valuation of 

options in life insurance contracts, and the projections are thus made under the risk neutral 

probability, which we shall suppose henceforward. In this context, for 0r   interest free rate, 

 rtt e S t is a martingale under the risk neutral probability. In this paper, we are interested 

in the properties of the discretized process  t , which we call the discretized process 

associated with  S t . We try to quantify and minimize the error generated by using this 

process to pricing embedded options of life insurance contracts. 
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First of all, we are going to study some characteristics of the discretized process   
t T

t


. We 

begin by estimating distribution of this process. This distribution is established in a general 

context not requiring knowing characteristics of initial process  S t  (section 2.2). The L
2
-

norm between the initial process and the discretized process gives a first vision of the error 

due to using discretized process  t  (section 2.3). 

2.2 Distribution of the discretized process 

 t  is a discrete process because it can take a finite number of values. Indeed,  t  takes p 

possible values   , 1j t i p   with probabilities  , , 1t j i p  . We note that  j t  

are deterministic because the partitions of  ,  1
1

t j t j
s s j p


    , ,

, ,  are not random. The 

process  t  is well defined and the mean of the random variables  t  is identical to the 

mean of the initial process  S t  at the same time:      t S t E E  

Proof: where  
 

 
1

1E E
Pr

A
X A X

A
 , we can write: 

    

    

  
 

  
1

1

1

1

1 1

1

, ,

, ,

,

, ,

E

E ,

E 1 .
Pr , t j t j

p

j j

j

p

j t j t j

j

p

j S t s s
j t j t j

t t

S t S t s s

S t
S t s s

  












  
 



    

 
 
     







 

By using the definition   1t j t j t j
S t s s


   , , ,

Pr ,  we have 

    
 

 
  

  
1

1

1

1
, ,

, ,

,
,

E E 1 E 1 Ep
t j t j

t j t j

j

p

S t s s
S t s sj

t S t S t S t






      

 
          

 

  

because  1
1

, ,
, ,

t j t j
s s j p


      is a partition of  . 

2.3 L
2 
– Norm between  t  and  S t  

We want to estimate the L
2
- Norm between the initial process and the discretized process. 

This norm is defined by: 

     2

1

2
2

0

E

T

L
S S t t dt 

 
   

 
  (0.2) 

It can be correctly calculated by using 
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      2

1 10 0

Var Var

T Tp p

j jL
j j

S X t dt X t dt
 

 
   

 
    (0.3) 

where       1j t j t j
X t S t S t s s


   , ,

, . The proof of this result is showed below: 

Proof 

We are interested in calculating     
2

0

E

T

S t t dt
 

 
 
 . Because  1

1
t j t j

s s j p


    , ,
, ,  is a 

partition of  , the intersection of two distinct sets   1t j t j
S t s s


  , ,

,  is empty. Thus, we 

can write 

           

      

      

1

1

1

2

2

10 0

2

1 0

2

1 0

, ,

, ,

, ,

,

,

,

E E 1

E 1

E 1 .

t j t j

t j t j

t j t j

T T p

j S t s s
j

Tp

j S t s s
j

Tp

j S t s s
j

S t t dt S t t dt

S t t dt

S t t dt

 











  


  


  


    
      
     

 
  

 

 
  

 

 



 

 

If       1j t j t j
X t S t S t s s


   , ,

, , we have 

          
22

10 0

E E E

T Tp

j j

j

S t t dt X t X t dt


   
     

   
  . 

An application of the Fubini's theorem shows that, for all j 

            
2 2

0 0

E E E E

T T

j j j j
X t X t dt X t X t dt

 
   

 
  . 

We finally obtain the result wanted. In particular, we deduce the following property 

   2

0

Var

T

L
S S t dt    (0.4) 

Proof 

By construction, the process p  converges almost surely towards S  when p and the 

function   2L
f p S    is decreasing. Thus,    1 , 1f f p p   , which gives the result. 

 

3 The particular case of Geometric Brownian motion 

After having specified the main properties of the discretized process within a general 

framework, we are now considering the case when  S t  is a geometric Brownian motion, as 

in the model of BLACK and SCHOLES [1973]. In the first two sections of this part, we deduct 
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some properties of the discretized process. In the third section, we show that the process  t  

allows the correct estimation of the price of a European option. 

3.1 Density distribution of the process 

We suppose that  S t  is a Geometric Brownian motion: 

    
2

0
2

S t S r t B t



  

    
  

exp  (0.5) 

In this case,  0  , .  
 

0

S t
Y t

S
  has a log-normal distribution with parameters 

2
2 2

2
t t

m r t t


 
  

    
  

, . The density of log-normal distribution is given by 

  
 

2

1 1

22

t

tt

y m
f y

y  

  
    
   

ln
exp . (0.6) 

We can deduce the density of the truncated log-normal distribution     1j j j
Y Y t Y t y y


   ,  

  
 

 
1

2

1 1

22 j j

t

j y y
tt j

y m
f y x

y    
 
 

  
    
   

,

ln
exp 1  (0.7) 

where 

0

j

j

s
y

S
 ,    1j j j

F y F y


   and  
 y m

F y


 
  

 

ln
 with   being the 

cumulative distribution function of a standard normal distribution. Note that 

      
   

0 0 0 0

1

1

j j j

t j t j

Y Y t Y t y y

s sS t S t

S S S S





   

  
   
    

, ,

E E ,

E ,

 

and we deduce that    
0

E E
j j

X S Y  . But we also have 

 
 

1

2

1 1

22

j

j

y

t

j

tyt j

y m
Y dy

 


  
    
   


ln

E exp . 

Let 
  t

t

t

y m
u 




 

ln
 ,   2

t t t

t t

dy dy
du m u

y
 

 
     exp , we find that 

     
1

2 21 1

22

j t

j

b

j t t t t

b tj

Y u m u du  
 



 
     

  


,

,

E exp exp , 
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where 
 j t

j t t

t

y m
b 




 

,

ln
and 

 
   

   
1

2

22
1

1

2 1

2 22

j t

j

t
bt

j j t
j t

j b t j t t j t t

m
b t b tu

Y du m
b b





  






 
       

     
      


,

*

, , ,

exp
, ,

E exp exp . 

We can find, with a unique interval 
0 t

b  
,

 and 
1 t

b  
,

, the expectation of a log-normal 

distribution:  
2

1
2

t
t

Y m
 

  
 

E exp . Finally 

      
   

   

2
1

1 0 0

1
2

j t j t t
t j t j j t

j t t j t t

b b
S t S t s s S Y S m

b b



 







   
        

     

, ,

, ,

, ,

E , E exp  

  
   

   
 

1

0

1

j t j t

j

j t t j t t

b b
t S rt

b b


 





 
 

   

, ,

, ,

exp  (0.8) 

where 
0

t j

t

j t t

t

s
m

S
b 



 
 

 
  

,

,

ln

. 

To summarize, in a Black & Scholes model, the discretized process  t  has a discrete 

distribution and      0

j t

j

j

t t S rt


 


 

'

,
exp  with probability 

j
  such that 

       

0

1 1

2
2 2

 et  

 et   
2

'

, , , , ,

,

,

ln

j t j t j t j j t t j t t

t j

t

j t t

t

t t

b b b b

s
m

S
b

m r t t

   





 

 
        

  
  

    

  
    
  


 

3.2 L
2
- Norm 

We can establish a close formula of the L
2
-Norm between the initial process  S t and the 

discretized process  t . To get it, we only need to determine the second moment of j
Y  

 
 

1

2

2 1 1

22

j

j

y

t

j

tyt j

y m
Y y dy

 


  
    
   


ln

E exp . 
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Let 
  t

t

t

y m
u 




 

ln
 , we have  2

t t t
y u m   exp  and 

  2

t t t

t t

dy dy
du m u

y
 

 
     exp , and we find that 

     
1

22 21 1
2 2 2

22

j t

j

b

j t t t t

b tj

Y u m u du  
 



 
     

  


,

,

E exp exp , 

where 
 j t

j t t

t

y m
b 




 

,

ln
 and thus 

 

 

 

1

1

1

1

2 2 2 2

2 2 2

2 2

2

2

1 1 1
2 2 2

2 22

1 1 1
2 2

2 22

1 1
2 2

22

2 2 1 1

22

,

,

,

,

,

,

,

E exp

exp

exp

exp
exp

j t

j t

j t

j t

j t

j t

j t

b

j t t t t t

bj

b

t t t t

bj

b

t t t

bj

t t

j b

Y u u m u du

u u m du

u m du

m
v dv

   
 

  
 

 
 



 









 
       

  

 
      

  

 
     

  

  
  

 







   
 1 22 2

,

, ,
exp .

j t t

t

b

j t t j t t

t t

j

b b
m





 









   

 



 

The variance is deduced from this last expression 

  
   

 
2

2 1 22
j t j t

j t t

j

b b
Y m 




  
  
 
 

, ,
E exp . 

      

   
 

   
 

 
   

 
   

2
2

2

1 12 2

2

1 12 2

Var

2 2 2

2

j j j

j t t j t t j t j t

t t t t

j j

j t t j t t j t j t

t t t

j j

Y Y Y

b b b b
m m

b b b b
m

 
 

 

 
 

 

 

 

 

      
    
 
 

       
    
  

  

, , , ,

, , , ,

E E

exp exp

exp exp

 

3.3 Valuation of an european option 

We are interested in the error due to the valuation of a European option when we replace the 

initial process  S t  by discretized process       1j t j t j
t S t S t s s


   , ,

E , . We remind 
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that these options are for example used in unit-linked life insurance contracts with minimum 

death guarantee. We thus have to compare   Ec K T 


     and   E
S

c K S T


    . 

Using the Black and Scholes formula we remind that: 

          0 2 0 1S
c S T K r K d T S d T rT     , , , exp  (0.9) 

with  
   2

0 0

2

2 T

T

K
m

S K r T S
d T

T





 
      

ln
ln

,      1 2 2 T
d T d T T d T     . 

We have 

       0

1

p

j j

j

c S T K r K T K T   




         , , , E . (0.10) 

We note that  j
T  increases with j  because    1 1j T j j

T s T 
 

 
,

. If  j
T K   j  then 

0c   which case is not interesting. We suppose that 0j  so that    
0 0 1j j

T K T 


   thus 

    
0

0

1

j

j j

j

c S T K r K T  


    , , , . (0.11) 

Using (0.10) and the results of section 3.1 we have 

    0 0

1

p
j T

j

j j

c S T K r K S rT










 
   

  


'

,
, , , exp . (0.12) 

When we combine (0.11) and (0.12), we have: 

   

 

           

0

0

0 0

0 0

1

0

1

1 1 0

j
j T

j

j j

j

j j T

j

j T T j T T

c S T K r K S rT

K S rT

b b K b b S rT








 

 





 
   

  

     

         





'

,

'

,

, , , ,

, , , exp

exp

exp

. 

but 
1 T

b  
,

 (because 
1

0
T

s 
,

) thus 

        
0 00 0j T j T

c S T K r b K b S rT     
, ,

, , , exp  (0.13) 

with 

0

0

0

j

T

j T T

T

s
m

S
b 



 
 

 
  

,

ln

. If we choose a partition so that 
*j  

T j
s K*,

 then we would 

have 
0

j j*  and 
0T j

s K
,

 and then 
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  0 0

0 1

T T

j T T T

T T

K K
m m

S S
b d T 

 

    
     

               
 
 
 

,

ln ln

 

and    
0 1 2j T T

b d T d T       . Finally 

         

       

 

0 2 0 1

2 0 1

0

, , , exp

exp

, , , .
S

c S T K r K d T S d T rT

K d T S d T rT

c S T K r

       

      



 

In the Black & Scholes model, the price of the option in the discretized process is equal 

to the price of the option in the initial process if the partition of  0, , 

 1
1

T j T j
s s j p


    , ,

, , is selected like 
*j  

j
s K* . 

To summarize,  1
1

T j T j
s s j p


    , ,

, ,  is a partition of  0, , we can find a unique 0j  so 

that 
0 0 1T j T j

s K s


 
, ,

 and the price of the European option obtained with the discretized 

process of process  S t  is given by 

  
   

   

0 0 0

0 0 0

0 1

0

0 1 1 1

, when <  

, when 

S T j T j j

S T j j T j

c S T s r s K T
c S T K r

c S T s r T K s








  

 
 

 

, ,

, ,

, , ,
, , ,

, , ,
 (0.14) 

In the case of a sequence of options with different maturities (as for example in the valuation 

of unit-linked life insurance contracts with death minimum guarantee), the choices of the 

partition at time t  used to construct the discretized process allows the control of the price of 

every option. 

3.4 Illustration 

We suppose that the value of asset is a Black & Scholes model with parameters 
0

1S  , 

8 5, %   et 25%   and interest free rate is 5r  % . We make 100 000 simulations. The 

discretized process is selected by choosing 
,t j

s  like 
1

,t j
p

  . The quantiles used for the 

borders of the intervals of discretization are estimated empirically using trajectories of initial 

process.  

 

The simulations are made for maturity 1 year ( 1T  ). The graphs below compare the 

trajectories of the initial process to those of the discretized process. 
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Figure 1 – Initial process vs. discretized process 

 

We note that the increase in the number of trajectories of the discretized process gives a better 

estimation. However, a discretization of 100,000 trajectories of the initial process in 100 

discretization trajectories already allows to obtain a good estimate of the density distribution 

of the initial process. 
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Figure 2 – Densities of probability (1 year) of initial process and discretized process 

 

With a discretization of 100 trajectories, that is to say 1,000 times less trajectories than those 

of the initial process, the density of the discretized process is very close to that of the initial 

process. This good approximation of the density of the initial process leads us to reduce the 

distance between the initial process and the discretized process: 
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Figure 3 – L2-Norm between the initial process and the discretized process 

 

We can note that the marginal profit in precision decreases very quickly as the number of 

trajectories of the discretized process raises, and we quickly obtain a satisfactory compromise 

between precision and cost in terms of computing time. 

 

4 Application in valuation portfolio of life insurance contracts 

The technique of discretization of the trajectories of an asset is used to reduce the computing 

time while optimizing the results. In this section, we are interested in the evaluation of a 

guarantee of minimum rate of return on a contract in Euros, which is classical in French life 

insurance contracts. 

4.1 Description of the contract 

We consider a life insurance contract in which the premium were revalued at a 3.50% rate 

(minimum rate guaranteed over one year of 60% of the TME, and profit-sharing under 

deduction of the guaranteed minimum rate and at least equal to 85% of the profits of the 

financial management and to 90% of the technical profits). 

In practice, the rate of revalorization of the savings is the maximum between the guaranteed 

minimum rate (here 3.5%) and 85% of the profits of the financial management for which it is 

advisable to add 90% of the technical profits 

  R 85 90max ; % %
g f

t t t
TMG R R   (0.15) 

with : 

- TMG   :  the  annual minimum rate guaranteed, 

- f

t
R   : the financial rate of return of the portfolio of assets at year t, 
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- 
t

R   : a technical rate of return. 

If we set 85 90% %
n f

t t t
R R R  , then we can write 

  max ;
g n n n

t t t t
R TMG R R TMG R



       (0.16) 

n

t
TMG R



    can be similar to the payoff of an option of the interest rate floor type. 

However, the distribution of the process net return n

t
R  is not explicitly known. Indeed, n

t
R  

depends on the evolution of the financial assets but is also impacted by the technical risks 

such as the mortality and the ratchet, but also by the decisions of management. The explicit 

form of this distribution is thus difficult to determine. The evaluation of this contract requires 

having recourse to some techniques of simulations. 

4.1.1 Valuation of the rate guarantee 

The evaluation is made contract by contract. The individual mathematical reserves are 

calculated according to a retrospective approach which aims at capitalizing the premiums 

invested by the insurants reduced of ratchets. The individual reserve is obtained by applying 

the following formula: 

     1
1 1 1g

t t t C t t
EA EA C R R p


           (0.17) 

t
EA = savings acquired at  time t; 

t
C = premium at  time t; 

t
R = ratchet at time t; 

c
 = rate of loading on the premium (c= 3.5 %); 

g

t
R = interest rate of capitalization at time t; 

p =  rate of tax and social security deduction (11.8%). 

We can write the payoff related of the guaranteed TMG:  

  1
1 n

t t t C t t
F EA C R TMG R




           . (0.18) 

4.1.2 Finance strategy and modeling of the portfolio of assets. 

We suppose that the portfolio of assets is constituted by a risk-free asset and a risky asset. The 

risk-free asset produces an annual return equal to 5%. We suppose that the risky asset is a 

Black & Scholes process, which produces an annual return on 8.5% with a 25% volatility. The 

target allocation of the portfolio of assets is composed of 80% of risk-free asset and 20% of 

risky asset. The objective is to recompose the portfolio of assets at the end of every year with  

respect to the target allocation. 
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4.2 Evaluation of a contract using simulations 

4.2.1 Initial process 

By using the initial process  S t , the price of the guaranteed TMG can be obtained with the 

following formula 

 1
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(0.19) 

where 

-  ,
f

it iR r R t     ; 

-        1R t S t S t  ln ln  is a return of risky asset between t and t -1; 

-   allocation of the risk-free asset; 

-   allocation of the risky asset. 

4.2.2 Discretized process 

In our example, we considered that the portfolio of asset was affected by a single source of 

risk. The TMG is a guarantee of return, the technique of discretization will apply to the 

process of return. Thus, the application consists of five steps: 

- Step 1: simulation of trajectories for the risky asset  S t , 

- Step 2: calculation of the return process of the risky asset 

       1R t S t S t  ln ln , 

- Step 3: determination of the partition of possible values of the process of return on 

the risky asset  1
1

t j t j
r r j p


    , ,

, ,  . In our case, the sets of this partition are 

intervals the borders of which are the quantiles of the process of the returns, 

- Step 4 : discretization of the process  R t :       1j t j t j
R t R t R t r r


   , ,

E , , 

- Step 5: determination of   1t j t j t j
R t r r


   , , ,

Pr ,  the probability of occurrence 

of each trajectory. 

We can estimate the value of the TMG at time t 
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where 

-  ,
f

jt jR r R t      ; 

-   allocation of risk-free asset; 
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-   allocation of risky asset. 

4.2.3 Hypothesis of simulation 

We have a 1,000 policy-holders aged 45 years which have subscribed to a contract on 8 years. 

The TMG is fixed to 3.5%. We suppose that the mortality of the portfolio is modeled by 

TH00-02. The annual ratchets are fixed to 1 % of the number of contract. All the parameters 

are resumed in the following table 

Hypothesis 

 Parameters 

Insurance portfolio 1,000 insured aged 45 

Maturity of insurance portfolio 8 years 

Ratchet (% of contracts) 1% 

Mortality TH 00-02 

Initial premium 100 € 

Periodic premium 0 € 

TMG 3.50% 

expenses rate of management 0.50% 

rate of tax and social security deduction 11.80% 

Number of simulation 100,000 

 

4.2.4 Results 

The evaluation of the rates guarantee on the contract in Euros in both models (initial Model 

and discretized model) shows that when the number of trajectories of the discretized process 

is higher than 1, the difference between the two evaluations is lower than 12%. The following 

graph allows the visualization of the value of rates guarantee on the contract in Euros 

according to the number of trajectories of the discretized process: 

Figure 4 – Price of the TMG in the initial model and in the discretized processes 

 

The following graph shows the evolution of the ratio between the value of rates guarantee in 

the discretized model and the value of rates guarantee in the initial process: 
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Figure 5 – Evolution of the ratio between the value of TMG guarantee in the discretized model and in the initial 

process  

 

We note a very high volatility of the ratio when the number of trajectories of the discretized 

process is lower than 25. The ratio starts to be stabilized around 95% when the number of 

trajectories is higher than 100. Then, the ratio converges very slightly towards 100%, in the 

sense that an increase in a trajectory (p with p+1) results in a marginal profit on the precision 

of the results obtained.  

A discretized process with 100 trajectories gives a value estimated at nearly 95% of the real 

price of TMG guarantee. Thus, it is not necessary to indefinitely increase the number of 

trajectories of the discretized process; a discretization in 100 trajectories is enough to provide 

a correct approximation of the value of the TMG. However, it is advisable to correctly 

estimate the probabilities of occurrence of each of the 100 trajectories. This last point requires 

to know the distribution of the initial process. 

The price of TMG guarantee is determined from the values lower than the TMG, thus the 

convergence towards the real price is faster than the convergence of the discretized process 

towards the initial process. 

In the following, we will work with a discretization of 100 trajectories. 

4.2.4.1 Impact of the maturity of contract 

The following graphs show the impact of maturity on discretization: 
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Figure 6 – Evolution of prices in both models (discretized process and initial process) 

 

Figure 7 – Ratio of prices in both models (discretized process and initial process) 

 

When the maturity of the contract is equal to 1 year, the error of valorization of TMG 

guarantee using the discretized process is null, the ratio between the price obtained from the 

discretized model and the price in the initial model is 100%. Then, this ratio decreases 

continuously to be fixed at nearly 87.5% for a contract of maturity of 20 years. 

4.2.4.2 Impact of the age of the policy-holders 

The following graphs show the impact of the age of the policy-holder on discretization: 
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Figure 8 – Evolution of the price of the TMG in both models (discretized process and initial process)  

 

Figure 9 – ratio of prices in the two models related to the age of policy-holders 
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The increase in the age of the policy-holder slightly impacts the error of valorization of TMG 

guarantee, related to the replacement of the 100,000 trajectories of the initial process by the 

100 synthetic trajectories of the discretized process. For policy-holders of age ranging from 21 

to 67 years, the variation of this error is in the absolute strictly lower than 0.30%. This 

variation is of the same scale and same width as the error related to the technique of 

simulation of the 100,000 trajectories. We can thus conclude that the age of the policy-holders 

does not have impact on the error related to the discretization of the trajectories of the initial 

process. 

 

5 Conclusion 

In this paper we are interested in a simple technique of reduction of the computing time when 

using Monte-Carlo simulations for the pricing of the embedded options in life insurance 
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contracts. This technique is very easy to implement, it consists in grouping together the 

trajectories of the initial process according to the quantiles of the distribution all the time. 

The discretized process is then used in the valuation of the life insurance contracts. We note 

that a wise choice of the partition of  0 ,  allows the correct estimation of the price of a 

European option. These options are met in unit-linked life insurance contracts with death 

minimum guarantee. 

We also show that the error due to the valuation of a contract in Euro using the discretized 

process can be reduced to less than 5% when we replace 100,000 of the trajectories of the 

initial process by 100 trajectories of discretized process. This error increases with the maturity 

of contract but is independent of age of policy-holder. 

To use this technique, it is necessary to know the distribution of the initial process. Indeed, in 

addition to the constitution of the trajectories discretized, it is essential to be able to estimate 

the probability of occurrence of those. 

The comparison of the sample of trajectories of the initial process to that of the discretized 

process shows clearly that the latter underestimates strongly the extreme values of the initial 

process. Thus, if the technique of discretization can give good results of TMG guarantee or 

MCEV, its use within the framework of estimating the extreme values (SCR, VAR…) can 

lead to biased results. However, the choice of a partition whose extreme values are strongly 

refined could possibly lead to reduce errors. This aspect was not treated in this article and 

could be the object of future developments.
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