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One of the central issues in the Solvency II process will be an appropriate calculation of the Solvency

Capital Requirement (SCR). This is the economic capital that an insurance company must hold in

order to guarantee a one-year ruin probability of at most 0.5%. In the so-called standard formula, the

overall SCR is calculated from individual SCRs in a particular way that imitates the calculation of the

standard deviation for a sum of normally distributed risks (SCR aggregation formula). However, in

order to cope with skewness in the individual risk distributions, this formula must be calibrated

accordingly in order to maintain the prescribed level of confidence. In this paper, we want to show that

the methods proposed and discussed thus far still show stability problems within the general setup.
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1. Introduction

In the European Solvency II project, one of the major topics is the appropriate

determination of the so-called Solvency Capital Requirement (SCR).

The SCR corresponds to the economic capital a (re)insurance undertaking needs to hold in order to limit

the probability of ruin to 0.5%, i.e. ruin would occur once every 200 years . . . The SCR is calculated using

Value-at-Risk techniques, either in accordance with the standard formula, or using an internal model: all

potential losses, including adverse revaluation of assets and liabilities, over the next 12 months are to be

assessed. The SCR reflects the true risk profile of the undertaking, taking account of all quantifiable risks,

as well as the net impact of risk mitigation techniques.1

Further comments on this topic can be found in Ronkainen et al. (2007) and Sandström

(2007). A suggestion for the ‘standard formula’ (and, in part, also for internal models) is

to aggregate the capital requirements SCRi of n different lines of business (lobs) to an

overall SCR by the so called ‘square root formula’2

*Corresponding author. E-mail: dietmar.pfeifer@uni-oldenburg.de
1 Quoted from Proposal for a Directive of the European Parliament and of the Council on the taking-up and

pursuit of the business of Insurance and Reinsurance � Solvency II, Commission Of The European Communities,

Brussels, 10 July 2007.
2 The notation used here and in the sequel makes it clearer that the SCRs also depend on the ruin probability a

that is presently set to a�0.005 by the European Commission.
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SCR(a)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1

SCR2
i (a)�2

X
iBj

rijSCRi(a) SCRj(a)

vuut (1)

where rij denote the linear correlation coefficients between the risks of the different lobs

(see e.g. Sandström (2007) p. 127, formula (1b), or Sandström (2006) Chapter 9). This

formula is correct in the sense that the prescribed overall confidence level of 99.5% (or,

more generally, 1�a for a given ruin probability 0BaB1) is maintained within the world

of normal risk distributions, for the Value-at-Risk (VaR) as well as for the Tail-Value-at-

Risk (TVaR) as underlying risk measures (see e.g. Koryciorz (2004) Chapter 2). In

particular, we have:

VaRi(a)�mi�k(a)�si; TVaRi(a)�mi�
e�((k(a))2=2)ffiffiffiffiffiffi

2p
p

a
si�mi�t(a) �si (2)

where k(a)�F�1(1�a) denotes the 1�a-quantile of the standard normal distribution

with cumulative distribution function (cdf)

F(x)�
1ffiffiffiffiffiffi
2p

p g
x

��

exp

�
�

u2

2

�
du; x �R: (3)

Here, mi �R denotes the expectation of the risk of lob i, and si]0 its corresponding

standard deviation. From the above formulas it follows, according to Sandström (2006,

p. 214), that in the world of normal distributions, the capital requirements SCRi are given

by appropriate multiples of the standard deviations, as differences of the risk measure and

the individual expectation:

SCRi(a)�d(a)�si with d(a)�
k(a) for VaR(a)

t(a) for TVaR(a)
:

�
(4)

Note that the two types of SCR discussed in Sandström (2006), based on the standard

deviation principle as well as on the VaR/TVaR, coincide in the normal world. There is,

however, a major problem arising if the risks of the individual lobs are not normally

distributed. This affects the square root formula in two ways: firstly, in a general

misspecification of the overall SCR even if the risks are independent (and hence all rij

are zero); secondly, in a misspecification of the overall SCR if the risks are uncorrelated

but dependent. The first point has already been addressed in several publications before

(see e.g. Sandström (2007) and references therein, or Sandström (2006) Chapter 9),

considering certain calibration techniques that are based on the Cornish�Fisher

expansion for the risk measures above and the skewness of the underlying risks. Thus

far, the second point, to our knowledge, has not found that kind of attention.

In this paper, we firstly want to demonstrate that even if the individual SCRs (of the

second type, based on VaR as the underlying risk measure) are exactly known, and the

resulting aggregate risk distribution is symmetric (and hence no calibrations are

necessary), the square root formula can severely underestimate the true SCR. Second,

we show that under a certain kind of dependence structure (so called grid type copulas), it
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is easy to construct cases of uncorrelated risks for which the square root formula fails in a

similar manner.

2. Aggregated SCRs for independent Beta distributed risks

In this section, we investigate the behaviour of the square root formula for certain

independent Beta distributed risks. This class of risk distributions, for example, is used in

certain geophysical modelling software tools in connection with ‘secondary uncertainties’

(for a survey of this topic, see Grossi & Kunreuther (2005) or Straßburger (2006)). Beta

distributions are an appropriate modelling tool if the possible damages from the risk

under consideration are bounded above, for example, by the sum insured in a windstorm

portfolio. A further advantage of this family is the possibility of calculating explicitly the

convolution density and cdf for integer values of the parameters that make a

mathematical analysis easier.

In what follows, we consider Beta distributed risks X with densities

fX (x; n;m)�(n�m�1)
n�m

n

� �
xn(1�x)m; 05x51; n;m �Z��N@f0g: (5)

FX(x;n,m) denotes the corresponding cdf. Since the densities in Eq. (5) are polynomials,

the convolution density for the aggregated risk S�X�Y for independent summands with

parameters n1, m1, n2, m2 is piecewise polynomial, and can easily be calculated via the

following formula:

fS(x; n1;m1; n2;m2)�
g
x

0

fX (y; n1;m1)�fY (x�y; n2;m2)dy; 05x51

g
1

x�1

fX (y; n1;m1)�fY (x�y; n2;m2)dy; 15x52

:

8>>>>>>><
>>>>>>>:

(6)

Likewise, the cdf FS for the aggregated risk S is also a piecewise polynomial and can be

calculated via

FS(x; n1;m1; n2;m2)�
g
x

0

fS(u; n1;m1; n2;m2)du; 05x51

FS(1)�g
x

1

fS(u; n1;m1; n2;m2)du; 15x52

:

8>>>>>><
>>>>>>:

(7)

The Appendix contains some explicit expressions for the cdfs from a selection of

parameters that will be considered in more detail in the course of the paper.

With the help of these results, it is possible to calculate (in the final step numerically)

the true SCRs for the individual risks as well as for the aggregated risk. Note that for a

risk X with density given in Eq. (5), we have E(X)�(n�1)/(n�m�2), and, hence
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SCRX (a)�VaRX (a)�E(X )�F�1
X (1�a; n;m)�

n � 1

n � m � 2
: (8)

Table 1 shows some selected results.

Table 2 contains the true SCR values for the aggregated risk S�X�Y, with

independent Beta distributed risks X and Y, in comparison to the values SCR
ffip

obtained

via the square root formula (1).

It is evident that the square root formula in most cases significantly underestimates the

true SCR, particularly in cases where the distribution of the aggregate risk is skewed to

the left (lines 2�4); but this also holds true in some cases where the distribution of the

aggregate risk is symmetric. Lines 5 and 6 show cases where the distributions of the

aggregate risk are skewed to the right, yet the square root formula produces deviations in

both directions! Interestingly, a major deviation also occurs if the individual risks, and,

hence, also the aggregated risk are symmetrically distributed (line 1). However, there are

also symmetric cases where the square root formula overestimates the true SCR, as can be

seen from the last line in Table 2.

A closer analysis shows that for a special case of symmetry, namely for parameters of

the form (n1,m1,n2,m2)�(0,n,n,0) we have

FS(x; 0; n; n; 0)�
n � 1

n � 2
xn�2 (9)

for small values of x which, by symmetry, leads to

SCRS(a; n)�SCRapp(a; n)�1�
�

n � 2

n � 1
a

�1=(n�2)

(10)

for small values of a . Table 3 shows the corresponding values for a�0.005.

On the other hand, an asymptotic expansion of SCR
ffip
(a; n) for this case shows that

SCR
ffip
(a; n)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
(1�a)1=(n�1)�

n � 1

n � 2

�2

�
�

n � 1

n � 2
�a1=(n�1)

�2
s

�SCR
ffip

app(a; n)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n � 1)2 � 1

q
n � 2

�
n � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n � 1)2 � 1

q a1=(n�1) (11)

for small values of a . Table 4 shows the corresponding values for a�0.005.

Table 1. Solvency capital requirements for individual risk distributions.

(n,m) (0,0) (1,0) (2,0) (3,0) (0,1) (0,2) (0,3) (1,2) (1,3) (1,4) (2,1) (3,1) (4,1)

SCRX (0.01) 0.4900 0.3283 0.2466 0.1974 0.5666 0.5345 0.4837 0.4900 0.3283 0.2466 0.1974 0.5666 0.5345

SCRX (0.005) 0.4950 0.3308 0.2483 0.1987 0.5959 0.5790 0.5340 0.4950 0.3308 0.2483 0.1987 0.5959 0.5790
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Table 2. Solvency capital requirements for aggregate risk distributions.

(n1,m1,n2,m2) Density fs SCRS (0.01) /SCR
ffip
(0:01) Error in% SCRS (0.005) /SCR

ffip
(0:005) Error in%

Line 1: (0,0,0,0) 0.8585 0.6929 �19.28 0.9000 0.7000 �22.21

Line 2: (1,0,1,0) 0.5942 0.4643 �21.85 0.6158 0.4678 �24.02

Line 3: (2,0,2,0) 0.4512 0.3488 �22.70 0.4658 0.3511 �24.61

Line 4: (3,0,3,0) 0.3633 0.2792 �23.12 0.3743 0.2810 �24.91

Line 5: (0,1,0,1) 0.8384 0.8013 �4.41 0.9171 0.8428 �8.10

Line 6: (0,2,0,2) 0.7352 0.7559 2.81 0.8187 0.8188 0.01

Line 7: (0,3,0,3) 0.6436 0.6841 6.30 0.7229 0.7553 4.47

Line 8: (0,1,1,0) 0.7479 0.6549 �12.44 0.8008 0.6816 �14.89

Line 9: (0,2,2,0) 0.6478 0.5887 �9.13 0.7056 0.6300 �10.71

Line 10: (0,3,3,0) 0.5656 0.5225 �7.61 0.6239 0.5698 �8.66

Line 11: (1,2,2,1) 0.6331 0.5822 �8.04 0.6851 0.6136 �10.44

Line 12: (1,3,3,1) 0.5758 0.5367 �6.79 0.6276 0.5729 �8.70

Line 13: (1,4,4,1) 0.5252 0.4933 �6.06 0.5760 0.5321 �7.62

. . . . . . . . . . . . . . . . . . . . . . . .

Line 14: (4,8,8,4) 0.3643 0.3910 7.33 0.3816 0.4251 11.41
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Some further analysis shows that for large values of n, we obtain

lim
n0�

SCR
ffip
(a; n)

SCRapp(a; n)
�L(a)��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � lna)2 � (1 � ln(1 � a))2

q
lna

: (12)

This indicates that for the considered kind of symmetry, (n1,m1,n2,m2)�(0,n,n,0), the

square root formula produces SCR values that are systematically too low compared with

the true SCR values for the aggregate risk (Figure 1).

3. Aggregated SCRs for uncorrelated risks

In this section, we investigate the behaviour of the square root formula for uncorrelated,

but stochastically dependent risks. As a modelling tool, we use grid type copulas that were

Table 3. Corresponding values for a�0.005.

n 0 1 2 3

SCRS (a;n) 0.9000 0.8008 0.7056 0.6239

SCRapp (a;n) 0.9000 0.8042 0.7142 0.6376

Table 4. Corresponding values for a�0.005.

n 0 1 2 3

/SCR
ffip
(a; n) 0.7000 0.6816 0.6300 0.5698

/SCR
ffip

app(a; n) 0.7035 0.6821 0.6283 0.5666

Figure 1.

66 D. Pfeifer & D. Strassburger

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
C
B
L
 
1
 
-
 
I
S
F
A
]
 
A
t
:
 
1
0
:
2
9
 
1
1
 
J
u
n
e
 
2
0
0
9



introduced in Straßburger & Pfeifer (2005) (see also Straßburger (2006)). Recall in brief

that a copula C is a multivariate distribution function of a random vector that has

continuous uniform margins. Its general importance is described in the following

theorem.

SKLAR’S THEOREM. Let H denote a d-dimensional distribution function with margins

F1, . . ., Fd. Then there exists a d-copula C such that for all (x1; . . . ; xd ) �Rd ;

H(x1; . . . ; xd )�C(F1(x1); . . . ;Fd (xd)): (13)

If all the margins are continuous, then the copula is unique, and is determined uniquely on the

ranges of the marginal distribution functions otherwise. Moreover, the converse of the above

statement is also true. If we denote by F�1
1 ; . . . ;F�1

d the generalized inverses of the marginal

distribution functions, then for every (u1, . . ., ud) in the unit d-cube,

C(u1; . . . ; ud )�H(F�1
1 (u1); . . . ;F�1

d (ud )): (14)

Copulas can be estimated below and above by the so called Fréchet-Hoeffding bounds:

W(u1; . . . ; ud)�max(u1�� � ��ud �d�1; 0)5C(u1; . . . ; ud)

5min(u1; . . . ; ud )�M(u1; . . . ; ud ): (15)

Note, however, that the lower Fréchet-Hoeffding bound is a copula only for d�2,

while the upper bound is a copula for all d �N: In two dimensions, the pair (U,1�U)

has the lower Fréchet-Hoeffding bound as copula, while the d-dimensional random

vector U�(U, . . .,U) has the upper Fréchet-Hoeffding bound as copula; here U

denotes a uniformly distributed random variable over the unit interval. For further

detail on copulas, especially in connection with risk management, see McNeil et al.

(2005).

A grid type copula is defined as:

Definition. Let d; n �N and define intervals Ii1;...;id
(n):��d

j�1

ij � 1

n
;
ij

n

 #
for all possible

choices i1, . . ., id �Nn:�{1, . . ., n}. If ai1,. . ., id
(n) are non-negative real numbers with the

property

X
(i1;���;id ) � J(ik )

ai1 ;���;id (n)�
1

n
(16)

for all k �{1, . . .,d} and ik �{1, . . .,n}, with J(ik):�f(j1; . . . ; jn) � Nd
n ½jk� ikg; then the

function cn:�nd a
(i1;...;id ) �Nd

n

ai1;...;id
(n) Ii1 ;...;id

(n) is the density of a d-dimensional copula, called

grid-type copula with parameters fai1 ;...;id
(n)½(i1; . . . ; id) �Nd

n g: Here, A denotes the

indicator random variable of the event A, zas usual.

It is easy to see that in case of an absolutely continuous d-dimensional copula C, with

continuous density

c(u1; . . . ; ud )�
@d

@u1 . . . @ud

C(u1; . . . ; ud ); (u1; . . . ; ud ) � (0; 1)d ; (17)
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c can be approximated arbitrarily close by a density of a grid-type copula. A this point,

the classical multivariate mean-value-theorem of calculus tells us that we only have to

choose

ai1;...;id
(n):� g

(id=n)

id�1

n

� � � g
(i1=n)

i1�1

n

c(u1; . . . ; ud )du1 . . . dud ; i1; . . . ; id � Nn: (18)

Another interpretation of grid type copulas is given by the observation that a random

vector U�(U1, . . .,Ud) possesses a grid type copula type iff

PU(+½U � Ii1;...;id
(n))�R(Ii1;...;id

(n)) (19)

with P(U � Ii1;...;id
(n))�ai1 ;...;id

(n); i.e. the conditional distribution of U given the hypercube

Ii1,. . .,id
(n) is d-dimensional continuous uniform (denoted by R(� � �)):

A major advantage of grid type copulas is that they allow the explicit calculation of

sums of dependent uniformly distributed random variables. This is essentially due to the

following result.

LEMMA. Let U1, . . .,Ud be independent standard uniformly distributed random variables

and let fd and Fd denote the density and cdf of Sd :�a
d

i�1Ui; resp., for d �N: Then

fd (x)�
1

2(d � 1)!

Xd

k�0

(�1)k d

k

� �
(x�k)d�1sgn(x�k) [0;d](x)

Fd (x)�
1

2d!

Xd

k�0

(�1)k d

k

� �
((�k)d �(x�k)dsgn(x�k)) [0;d](x)� (d;�] (x) (20)

for x �R: This follows the example from Uspensky (1937), Example 3, p. 277, who

attributes this result already to Laplace.

THEOREM. Let U�(U1, . . .,Ud) be a random vector whose joint cdf is given by a grid-type

copula with density cn:� a
(i1;...;id ) �Nd

n

ai1 ;...;id
(n) Ii1 ;...;id

(n): Then the density and cdf f̃ d (n; +) and/

F̃ d (n; +); resp., for the sum Sd :�a
d

i�1
Ui is given by

f̃ d (n; x)�n
X

(i1;...;id ) �Nd
n

ai1 ;...;id
(n)�fd

�
nx�d�

Xd

j�1

ij

�

F̃ d(n; x)�
X

(i1;...;id ) �Nd
n

ai1;...;id
(n)�Fd

�
nx�d�

Xd

j�1

ij

� for x �R; (21)

with fd and Fd as defined in Eq. (20).

EXAMPLE. Consider the weights aij(n), n�3 for a copula density given in matrix form

A(3)� [aij(3)]�
a b 1=3�a�b

c 1�4a�2b�2c �2=3�4a�2b�c

1=3�a�c �2=3�4a�b�2c 2=3�3a�b�c

2
4

3
5 (22)
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with suitable real numbers a,b,c � [0,1/3]. It follows that the covariance of the

corresponding random variables (U1,U2)�(X,Y) is given by

E(XY )�E(X )E(Y )�
1

9

X3

i�1

X3

j�1

aij(3)(i�2)(j�2)�0;

i.e. the random variables (risks) X,Y are uncorrelated but in general dependent (unless a�
b�c�1/9). If we denote g�(a,b,c) for short, the above theorem implies the following

explicit representation of the cdf F̃ 2(3; g; x) of the aggregated risk S�X�Y:

F̃ 2(3; g; x)�

0; x50
9a

2
x2; 05x5

1

3

9

2
(�a�[b�c])x2�3(2a�[b�c])x�

1

2
(�2a�[b�c]);

1

3
5x5

2

3

5

2
(3�18a�12[b�c])x2�(�10�36a�27[b�c])x�

1

6
(20�66a�57[b�c]);

2

3
5x51

9

2
(�3�14a�6[b�c])x2�(32�144a�63[b�c])x�

1

6
(�106�237a�213[b�c]); 15x5

4

3

9

2
(2�22a�4[b�c])x2�(�28�156a�57[b�c])x�

1

6
(134�726a�267[b�c]);

4

3
5x5

5

3

3

2
(�6�9a�3[b�c])x2�3(4�6a�18[b�c])x�(�11�54a�18[b�c]);

5

3
5x52

1; x]2

:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(23)

Figure 2 shows visualizations of these cdfs, for various parameter choices.

From Eq. (23), we also obtain explicitly the corresponding quantile functions

Q2(3; g; + ) because only quadratic equations have to be solved for this purpose. The

following formula shows the results for three selected parameter vectors g in the range

relevant for solvency purposes:

Figure 2.
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Q2(3; g; 1�a)�

2�
ffiffiffi
a

p
; 05a5

1

9
;

4

3
�

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�9a

p
;

1

9
5a5

2

9
;

2�
ffiffiffiffiffi
2a

p
; 05a5

2

9
; g�

�
1

9
;
1

9
;
1

9

�
: case [2]

5

3
�

1

2

ffiffiffiffiffi
2a

p
; 05a5

2

9
; g�

�
2

9
; 0; 0

�
: case [3]

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(24)

Note that case [1] (‘upper positive dependence’) and case [3] (‘upper negative dependence’)

correspond in a sense to the extreme cases under the above setup (see Figure 2). Case [2]

corresponds to the independent case (cf. the first line in Table 2). Using Eq. (24), we can

explicitly calculate the correct SCR values for the aggregate risk; in Table 5 these are

compared with the former results of the square root formula (note that due to the zero

covariance of X and Y, no correction term is necessary).

It is perhaps surprising to see again a huge amount of instability in the square root

formula here, from severe underestimation of the true SCR (as we have seen for left-

skewed aggregated � independent � risks before), up to a significant overestimation of the

true SCR. Note that the original risks as well as the aggregate risk have a symmetric

distribution in all three cases.

4. Further problems with the aggregation formula

In this section, we return to the setup of Section 2, but this time we allow for dependencies

for the risks X and Y based on the upper and lower Fréchet-Hoeffding copulas as extreme

cases of stochastic dependence. For simplicity, we concentrate on the symmetry case

(n1,m1,n2,m2)�(0,n,n,0) again. According to the comment after relation (15) and Sklar’s

Theorem, we can represent the risks X and Y as functions of just one uniformly

distributed random variable U via

X �F�1
X (U ; 0; n)�U1=(n�1)

Y �F�1
X (1�U ; n; 0)�1�(1�U)1=(n�1) (25)

for the lower Fréchet-Hoeffding copula, case [l] (this follows readily from Eq. (5); see also

Appendix, Table 10) and

Table 5.

SCRS (a)

a Case [1] Case [2] Case [3] /SCR
ffip
(a)

0.01 0.9000 0.8585 0.5960 0.6929

Error in% �23.01 �19.28 16.25

0.005 0.9293 0.9000 0.6167 0.7000

Error in% �24.67 �22.21 13.50

g�
�

0;
2

9
;
2

9

�
: case [1]
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X �F�1
X (U ; 0; n)�U1=(n�1)

Y �F�1
X (U ; n; 0)�1�U1=(n�1) (26)

for the upper Fréchet-Hoeffding copula, case [u]. Thus, the aggregated risk S has the

representation

S� 1�U1=(n�1)�(1�U)1=(n�1) for case [l]

1 for case [u];

�
(27)

which by monotonicity arguments, implies that the corresponding quantile function Q+
S is

similarly given by

Q+
S(u; 0; n; n; 0)�1�u1=(n�1)�(1�u)1=(n�1) for 05u51; for case [l]: (28)

As a simple consequence, the exact SCR for the aggregate risk for case [l] can be written

as follows:

SCR+
S(a; n)�(1�a)1=(n�1)�a1=(n�1) (29)

while the adjusted SCR from the square root formula (1) is given by

SCR
ffip
(a; n)�

�
(1�a)1=(n�1)�

n � 1

n � 2

�2

�
�

n � 1

n � 2
�a1=(n�1)

�2

�2rn

�
(1�a)1=(n�1)�

n � 1

n � 2

�
�
�

n � 1

n � 2
�a1=(n�1)

�s
(30)

for 05a51/2, where rn denotes the correlation between U1/(n�1) and 1�(1�U)1/(n�1).

This, again, can be exactly calculated via the following intermediate formula, with

m�n�1,

g
1

0

u1=m(1�(1�u)1=m) du�
m

m � 1
�g

1

0

(u(1�u))1=m du�
m

m � 1
�

41=m
ffiffiffi
p

p
G
�

1 �
1

m

�

2 G
�

3

2
�

1

m

� (31)

which gives

rn�(n�1)(n�3)�
(n � 2)2(n � 3)

n � 1
�
41=(n�1)

ffiffiffi
p

p
G
�

1 �
1

n � 1

�

2 G
�

3

2
�

1

n � 1

� : (32)

Note that limn0�rn�(p2=6)�1�0:6449 . . . Table 6 shows some numerical results.

Table 6. Numerical results.

/SCR+
S(a; n) /SCR

ffip
(a; n)

a n�0 n�1 n�2 n�3 n�0 n�1 n�2 n�3

0.01 0.9800 0.8949 0.7812 0.6812 0.9800 0.8806 0.7584 0.6561

Error in% 0.00 �1.60 �2.91 �3.68

0.005 0.9900 0.9267 0.8273 0.7328 0.9900 0.9120 0.8038 0.7068

Error in% 0.00 �1.58 �2.83 �3.54
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The asymptotic error for n0� is �6.19% for a�0.01 and �5.57% for a�0.005. This

again indicates that the square root formula systematically underestimates the required

SCR for this symmetry case, even with the proper correction term for correlation. Figure

3 shows the asymptotic ratio L+(a)� limn0�((SCR
ffip
(a; n))=(SCR+

S(a; n))) for 05a5.25.

The explicit form of this limit function is given by

L+(a)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9(A(a) � B(a))2 � (36 � 3p2)(A(a) � B(a)) � 3p2A(a)B(a) � (36 � 3p2)

q
3(A(a) � B(a))

(33)

for 05a51/2, with A(a)�ln(1�a), B(a)�ln a. Note that lima¡0L+(a)�1:

For case [u], it is easy to see that because S is a constant, the true SCR is zero, while now

SCR
ffip
(a; n)�

�
(1�a)1=(n�1)�

n � 1

n � 2

�2

�
�

n � 1

n � 2
�a1=(n�1)

�2

�2rn

�
(1�a)1=(n�1)�

n � 1

n � 2

�
�
�

n � 1

n � 2
�a1=(n�1)

�s
(34)

for 05a51/2 which is strictly positive for all n, with limit zero for n0� (Table 7). (Note

that the correlation rn from Eq. (32) changes its sign here.)

The correlation adjusted square root formula hence significantly overestimates the true

SCR, except for the trivial case n�0.

Figure 3.

Table 7.

/SCR
ffip
(a; n)

a n�0 n�1 n�2 n�3 n�10 n�20 n�50 n�100

0.01 0 0.2869 0.3434 0.3399 0.2074 0.1249 0.0563 0.0293

0.005 0 0.3119 0.3842 0.3870 0.2460 0.1501 0.0682 0.0356
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5. Discussion

The foregoing analysis clearly shows that necessary calibrations of the standard SCR

aggregation formula based on skewness and/or correlation alone cannot be sufficient for

general purposes. For the class of risk distributions considered above, the square root

formula tends to underestimate the true aggregate SCR considerably, for both kinds of

skewness, although in some cases also the converse is true. Table 2 shows examples where

the square root formula overestimates the true SCR even in cases of skewness to the right!

This seems to be a general drawback of the standard deviation oriented SCR aggregation

formula outside the world of normal or, more generally, elliptically contoured risk

distributions. In our opinion, the general implementation of such a rule in a European

standard formula should be performed only after a very thorough market-wide

investigation of the type and shape of risk distributions that occur in practice. Otherwise,

there is a danger that companies that use more sophisticated internal models are

‘punished’ by higher SCRs in comparison with those companies that only use a standard

approach.

From a mathematical point of view, the only reasonable ‘all-purpose’ calibration seems

to be the application of the maximum possible value 1 for the correlations in the square

root formula, which is equivalent to the additivity rule for aggregate SCRs, i.e.

SCR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1

SCR2
i �2

X
iBj

SCRi SCRj

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Xn

i�1

SCRi

�2

vuut �
Xn

i�1

SCRi: (35)

This would at least be generally consistent with the use of coherent (in particular, sub-

additive) risk measures R for the calculation of the individual SCRs as

SCRi�R(Xi)�E(Xi) (36)

where Xi denotes the risk pertaining to lob i because of the inequality

SCRtotal�R

�Xn

i�1

Xi

�
�E

�Xn

i�1

Xi

�
5
Xn

i�1

R(Xi)�
Xn

i�1

E(Xi)�
Xn

i�1

SCRi: (37)

Formula (35) would hence produce a value that is generally sufficiently large to maintain

the prescribed 99.5% confidence level. Although VaR is not coherent in all cases (see e.g.

the discussion in McNeil et al. (2005), Chapter 6; or Straßburger (2006), Chapter 7), there

are certainly more situations in which formula (35) provides a sufficiently large SCR on

the VaR basis compared with formula (1). This holds at least true for all of the examples

considered in this paper. For instance, the modified Table 2 reads (with SCR�(a)

denoting the SCR according to rule (35)) as Table 8.

As is clearly seen, the overestimation of the true SCR is moderate for left skewed risk

distributions (where formula (1) produces a severe underestimation), but certainly un-

acceptably high for right skewed distributions. Similarly, the modified Table 5 reads as

Table 9.
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Table 8.

(n1,m1,n2,m2) Density fs SCRS (0.01) SCR� (0.01) Error in % SCRS (0.005) SCR� (0.005) Error in %

Line 1: (0,0,0,0) 0.8585 0.9800 14.15 0.9000 0.9900 10.00

Line 2: (1,0,1,0) 0.5942 0.6566 10.50 0.6158 0.6616 7.44

Line 3: (2,0,2,0) 0.4512 0.4932 9.31 0.4658 0.4966 6.61

Line 4: (3,0,3,0) 0.3633 0.3948 8.67 0.3743 0.3974 6.17

Line 5: (0,1,0,1) 0.8384 1.1332 35.16 0.9171 1.1918 29.95

Line 6: (0,2,0,2) 0.7352 1.0690 45.40 0.8187 1.1580 41.44

Line 7: (0,3,0,3) 0.6436 0.9674 50.31 0.7229 1.0680 47.74

Line 8: (0,1,1,0) 0.7479 0.8949 19.66 0.8008 0.9267 15.72

Line 9: (0,2,2,0) 0.6478 0.7811 20.58 0.7056 0.8273 17.25

Line 10: (0,3,3,0) 0.5656 0.6811 20.42 0.6239 0.7327 17.44

Line 11: (1,2,2,1) 0.6331 0.8171 29.06 0.6851 0.8596 25.47

Line 12: (1,3,3,1) 0.5758 0.7451 29.40 0.6276 0.7919 26.18

Line 13: (1,4,4,1) 0.5252 0.6788 29.25 0.5760 0.7271 26.23
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The same effect as before is visible here: the overestimation error decreases for ‘upper

positively’ dependent risks (case [1]), while the converse is true for ‘upper negatively’

dependent risks (case [3]).

Finally, it should be noted that comparable results to those in Sections 2�5 hold true

under the (throughout coherent) risk measure TVaR (see e.g. Straßburger (2006), Chapter

7).

A pragmatic way out of the problems outlined so far does not seem to be easy; a

solution might be to allow the classical formula (1) only for certain classes of risk

distributions (or lobs) where such severe misspecifications typically do nor occur, while

formula (35) should be applied in all other cases.
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SCRS (a)

a Case [1] Case [2] Case [3] SCR� (a)

0.01 0.9000 0.8585 0.5960 0.9800

Error in% 8.16 12.40 39.18

0.005 0.9293 0.9000 0.6167 0.9900

Error in% 6.13 9.09 37.71
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Appendix

Table 10 shows the expanded cdfs for the individual risks with density given by Eq. (5), for

some selected parameters, in the range 05x51.

Table 11 shows the cdfs for the aggregated risk for some selected parameter choices.

Note that the corresponding densities fs(x;n1,m1,n2,m2) can easily be obtained from this by

differentiation.

Table 10.

(n,m) /FX (x; n;m)�f
x

0
fX (u) du

(0,0) x

(1,0) x2

(2,0) x3

(3,0) x4

(0,1) �x2�2x

(0,2) x3�3x2�3x

(0,3) �x4�4x3�6x2�4x

(1,2) 3x4�8x3�6x2

(1,3) �4x5�15x4�20x3�10x2

(1,4) 5x6�24x5�45x4�40x3�15x2

(2,1) �3x4�4x3

(3,1) �4x5�5x4

(4,1) �5x6�6x5
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Table 11.

FS (x;n1,m1,n2,m2)

(n1,m1,n2,m2) 05x51 15x52

(1,0,1,0) /
1

6
x4

/�
1

6
x4�2x2�

8

3
x�1

(2,0,2,0) /
1

20
x6

/�
1

20
x6�2x3�

9

2
x2�

18

5
x�1

(3,0,3,0) /
1

70
x8

/�
1

70
x8�2x4�

32

5
x3�8x2�

32

7
x�1

(0,1,0,1) /
1

6
x4�

4

3
x3�2x2

/�
1

6
x4�

4

3
x3�4x2�

16

3
x�

5

3

(0,2,0,2) /
1

20
x6�

3

5
x5�3x4�6x3�

9

2
x2

/�
1

20
x6�

3

5
x5�3x4�8x3�12x2�

48

5
x�

11

5

(0,3,0,3) /
1

70
x8�

8

35
x7�

8

5
x6�

32

5
x5�14x4�16x3�8x2

/�
1

70
x8�

8

35
x7�

8

5
x6�

32

5
x5�16x4�

128

5
x3�

128

5
x2�

512

35
x�

93

35

(0,0,0,0) /
1

2
x2

/�
1

2
x2�2x�1

(0,1,1,0) /�
1

6
x4�

2

3
x3

/
1

6
x4�

2

3
x3�

8

3
x�

5

3

(0,2,2,0) /
1

20
x6�

3

10
x5�

3

4
x4

/�
1

20
x6�

3

10
x5�

3

4
x4�2x3�6x2�

48

5
x�

23

5

(0,3,3,0) /�
1

70
x8�

4

35
x7�

2

5
x6�

4

5
x5

/
1

70
x8�

4

35
x7�

2

5
x6�

4

5
x5�

32

5
x3�

96

5
x2�

832

35
x�

349

35

(1,2,2,1) /�
9

70
x8�

36

35
x7�

14

5
x6�

12

5
x5

/
9

70
x8�

36

35
x7�

14

5
x6�

12

5
x5�

32

5
x3�

96

5
x2�

576

35
x�

163

35

(1,3,3,1) /
4

63
x10�

40

63
x9�

5

2
x8�

100

21
x7�

10

3
x6

/�
4

63
x10�

40

63
x9�

5

2
x8�

100

21
x7�

10

3
x6�8x5�40x4�

640

7
x3�

800

7
x2�

640

9
x�

1087

63

(1,4,4,1) /�
25

924
x12�

25

77
x11�

23

14
x10�

95

21
x9�

195

28
x8�

30

7
x7

/
25

924
x12�

25

77
x11�

23

14
x10�

95

21
x9�

195

28
x8�

30

7
x7�� � �

/ �
216

7
x5�

1080

7
x4�

6880

21
x3�

2560

7
x2�

16000

77
x�

10919

231
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