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Abstract

Let Fn denote the Kaplan-Meier estimator computed from a sample
of possibly censored data, and let φ be a given function. In this paper
some of the most important properties of the Kaplan-Meier integral
/ φdFn are reviewed.

1 Introduction

Statistical inference on the common mean of a set of independent identically
distributed (i.i.d.) observations is dealt with in almost every textbook on
statistical methodology. To name only a few facts, if Xi,...,Xn are i.i.d.
random variables from some distribution function (d.f.) F, then the corre-
sponding sample mean

constitutes a consistent unbiased estimator of the unknown expectation μ :=
/ xF(dx) (assumed to exist):

(1.1) E 5 n = μ and Sn —• μ with probability one.

The first statement is trivial while the second is just the SLLN. Moreover,
under a finite second moment assumption, the CLT guarantees

(1.2) nιl2[Sn - μ) -> Λf(0, σ2) in distribution,

with

= VarXx = ί x2F(dx) - [ ί xF(dx)] .σ2
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(1.2) may be utilized, for example, to establish confidence intervals for μ.

In more complicated setups, (1.1) and (1.2) are often needed for proper

transformations of the X's rather than the X's themselves. For any such φ,

we then get

n

(1.3) S% = n " 1 ^2<p(Xi) —> / ψdF = Sφ with probability one

and(1.4) nλl2[S^ - Sφ] -+ Λf(0, σ2) in distribution,

where now

(1.5) σ2= ί φ2dF- \ ί φdF\ .

For smooth but nonlinear statistical functional T(Fn) of the empirical d.f.

i=l

asymptotic normality of T(jFn), for example, is obtained by expanding T(Fn)

into a linear part / ψdFn = S% and a remainder, where now φ equals the

influence function associated with T.

A typical feature which comes up in the analysis of lifetime data is censorship.

Quite often, X represents the time elapsed from a patient's entry into a

follow-up study until death. If at the time of statistical analysis the patient

is still alive or withdrew from the study for some reason, the variable of

interest will not be available. A convenient way to model this situation has

been to introduce a random variable Y being independent of X such that

only

(1.6) Z = min(X, Y) and δ = l{χ<γ}

are observable. We shall refer to (1.6) as independent censorship. 6 indicates
whether X has been censored or not. Given a set (Z2 , ί z ), l < i < n, of
independent replicates of (Z, £), it is then our goal to draw some inference
on the true but unknown lifetime distribution F, while G, the d.f. of Y, is
considered a nonparametric nuisance parameter.

Coming back to the case of completely observable data and recalling Fn,
(1.4) becomes

nV2J<pd(Fn-F)-+Af(0,a2).

Under random censoring it is tempting to estimate Sφ by
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in which Fn is a nonparametric substitute for Fn computable from the
(Z,δ)fs. Now, it is well known that the nonparametric maximum likelihood
estimator of F is given by the Kaplan-Meier (1958) product-limit estimator
defined by

Here, Z\:n < ... < Zn:n are the ordered Z-values, where ties within lifetimes
or within censoring times are ordered arbitrarily and ties among lifetimes
and censoring times are treated as if the former precedes the latter. δu:n]
denotes the concomitant associated with Zj : n, i.e. δ[i:n] = δj if Zi:n = Zj.
The Kaplan-Meier integral S% may then be written as

where for 1 < i < n

i~1 Γ ^ _ A 1 δ[j.n)

n —

is the mass attached to the i-th order statistic Z^n under Fn. When all
ί's equal one, i.e., when all data are uncensored, each Win becomes ^ and
therefore S% = 5£. Under censorship, however, S% is a complicated sum
of functions of the Z-order statistics properly weighted by the random If's.
Consequently results which are valid for sums of independent random vari-
ables are of no use for the analysis of S%.

For further discussion note that (1.7) may also be motivated by incorpo-
rating a one-to-one relationship between a distribution function F and its
pertaining cumulative hazard function

F(dy) _ f F(dy)^ f F(dy) f ι

F(y-Y
0 [0,x]

where in the following F-(y) = F(y-) = ]imx]yF(x) and F{y} = F(y) -
F{y-). Similarly for KF. We then have, cf. Shorack and Wellner (1986), p.

301,
(1.8) 1 - F(x) = e-Λ<W Π [1 - ΛF{α, }],

α GΛ
α,i<x

with Λc denoting the continuous part of Λ^ and A being its atoms. Now,
introduce H, the d.f. of Z, and set

<x,δ= 1).
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By independence of X and Y,

(1 - H) = (1 - F)(l - G)

and

H\x) = f (1 - G(y-))F(dy).
Jo

Conclude that

(1.9)

H and H1 may be consistently estimated by their empirical counterparts

n

Hn(y) = n'1 J2 ι{Zi<y}

and

Plugging them into the R.H.S. of (1.9) we obtain the Nelson-Aalen estimator
of Λi?:

(x) - f Hjjdy)
n { ) " / [1 - Hn(y- )}

γ
{r[[n- RankZi + 1]'

Since Λn is purely discrete, an application of (1.8) yields for the correspond-
ing survival function

(1.10) 1 - Fn(x) =

Check that Fn = Fn.
It is the purpose of the present paper to review and discuss some of the most
important properties of S%, namely

Strong Consistency
Distributional Convergence

Bias
Jackknife

Finally, in the last section, we report on a small simulation study for φ(x) =
x, i.e., the mean lifetime estimator.
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Since our main emphasis will be on a general φ but most work on Kaplan-
Meier integrals has been done for indicators, i.e., on the Kaplan-Meier esti-
mator itself, this survey will be necessarily rather incomplete. This drawback
may be excusable, however, since there already exist excellent monographs
on the Kaplan-Meier estimator and its role in survival analysis; see Andersen
et al. (1993), GiU (1994), Fleming and Harrington (1991) and Shorack and
Wellner (1986). In contrast our choice of the material will mainly focus on

1. techniques which are designed to offer a powerful alternative to the
usual counting process approach.

2. results which are valid without the model-assumption (1.6) of indepen-
dent censorship.

The last point needs some further clarification. Though for the derivation of
(1.10) the independence of X and Y was crucial, the Kaplan-Meier estimator
(together with its integrals) makes sense also in the case when this assump-
tion is violated. Actually,since we only observe the (Z, <5)'s, independent
censorship can never be checked so that the investigation of 5^, irrespective
of whether (1.6) is satisfied or not, becomes an important issue.

2 Strong Consistency

For indicators l[o,a?]> (1.8) applied to Fn and Λn allows for a reduction of the

analysis of Fn(x) to that of the Nelson-Aalen estimator, which has a simpler

structure. In particular, if one restricts oneself to x < T < τ#, where

rjj = inf{x : H{x) = 1} < oo

is the least upper bound for the support of H, then the denominator in
the integral defining Λn causes less troubles. Tools from classical empirical
process theory may then be applied to obtain consistency with rates.

To be more precise, expand the integrand in An(x) into

1 _ 1 - J n - 2 (Hn.-H.y

l -JΓ n - ~ ( l - i f - ) 2 + l-if- ( l - # - ) 2 ( l - # n - ) '
By the LIL for empirical d.f.'s, the last term tends to zero as n"1 In In n with
probability one and uniformly in x < T < τH Consequently

+ O(n"1 In Inn).



236 W. Stute

By the SLLN and a standard uniformity argument, we obtain for the second
integral with probability one

(2.2) lim sup
n-¥O° x<T

f H^(dy) f_H
J l-H(y-) J 1 -

H\dy)

H(y-)
= 0.

As to the first integral in (2.1), a combination of Glivenko-Cantelli (for Hn)
together with (2.2) leads to

lim sup 1 - Hn(y-) 6 ι ( d ) J H
1-H(y-Wtin{dy) J 1-

H\dy)

-)
= 0

so that in summary

(2.3) lim sup \An(x) - A(x)\ = 0 w.p.l.
n~"°° x<T

Replacing Glivenko-Cantelli by a proper LIL (2.3) may be improved to

I >

/In Innsup \An(x) - Λ(x)| = 0
x<T

w.p.l.

We have discussed the derivation of (2.3) in somewhat greater detail not
because it is very exciting. It has been included mainly to show that in view
of existing results for empirical d.f.'s the uniform convergence on compacta
of the Nelson-Aalen estimator is obtained almost for free.
On the other hand, since Λn is bounded but Λ is unbounded whenever F
is continuous, we cannot expect uniform convergence on the whole real line
in this case. The best we can hope for in general is that Λn —• Λ (with
or without rates) uniformly on a; < Tn, where Tn —> TH as n —• oo at
appropriate rates. Needless to say that since now 1 — Hn is no longer bounded
away from zero, the above reasoning requires some serious modifications. See
Stute (1994a).
Recall that in this paper, rather than Λn, our main interest is in the Kaplan-
Meier estimator (integral). The last somewhat pessimistic remarks about the
uniform convergence of Λn to Λ may lead one to believe that the same is true
for Fn and F. Actually, the problems with the right tails occur only if one
traces the analysis of Fn - F, via (1.8) and (1.10), back to that of Λn - A. In
Stute and Wang (1993) a new approach has been proposed which does not
utilize the cumulative hazard function as a vehicle to study Fn. This new
approach has the advantage that

(i) ψ may be a general F-integrable function rather than an indicator
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(ii) the crucial assumption (1.6) of independent censorship becomes super-
fluous in the sense that convergence of S% can be shown to hold (with
probability one and in the mean) without (1.6). Moreover the limit
equals the target value in case (1.6) is true.

The idea is as follows: instead of utilizing Λn it is tempting to look at

itself. At this stage it is worthwhile recalling the different techniques which

are available to prove the SLLN for ordinary sample means:

(a) Kolmogorov's original proof and Etemadi's (1981) beautiful modifica-
tion. Both proofs heavily rely on the fact that S% = n " 1 Σφ(Xi) is a
normalized sum of i.i.d. random variables.

(b) Recalling that an i.i.d. sequence is strictly stationary and ergodic the

SLLN is also implied by the ergodic theorem.

(c) Note that for a proper sequence of σ-fields (S%)n is a reverse time
martingale. So the martingale convergence theorem applies. That the
limit is constant follows from the 0-1 law.

As may be expected the arguments needed for (a) and (b) cannot be extended
to handle S%. Also, as to (c), it can be seen that under censorship E 5 ^
may differ from n to n. Consequently there is no hope that in general
S% is a reverse martingale in n. Though this looks pessimistic it turns
out, fortunately enough, that S% still carries a rich structure so as to make
standard martingale theory applicable. For this, let

Then, clearly, S% is adapted to Tn with Tn j JΌo, say. Moreover, by the

Hewitt-Savage zero-one law, T^ is trivial. The following equation is taken

from Lemma 2.2 in Stute and Wang (1993):

(2.4) nS%\fn+l) = S:+1-Rn+1,

where

1 7]zl\ n-j
Rn+1 = ^ f Γ l ¥ ) ( Z n + 1 : n + 1 ) ^ + 1 : n + 1 ] ( 1 " *[*:n+l]) 11 [ n _ J +

As a first trivial consequence

^ Sφ

n+λ for ¥>>(),



238 w. Stute

i.e. (S%)n is a reverse-time supermartingale. Proposition 5-3-11 in Neveu
(1975) immediately yields convergence with probability one and in the mean
of (S%)n when φ > 0. Decompose φ into its positive and negative part when
it attains both signs to handle a general φ. By Hewitt-Savage the limit must
be a constant. To state the result note that if we don't assume independent
censorship (1.6) there will be no Y and hence no G. It is thus necessary
to formulate the result in terms of quantities which uniquely determine the
distribution of the observed (Z,tf)'s. We already introduced H, the d.f. of
Z. If we put

the joint distribution of (Z, δ) is completely determined by H and m. Putting

0

Lemma 2.7 of Stute and Wang (1993) (formulated there only for a continuous
H) asserts that the limit of 5£ equals

(2.5) S = j φ(x)m(x)Ίo(x)H(dx),

so that, under / |y>|d.F < oo,

(2.6) lim S% = S with probability one and in the mean.
n—> o o

Under independent censorship S becomes

(2.7) S = / φ(x)F(dx) + ^{THeA}ψ{τH)F{τjj},

{x<τH}

where A is the set of if-atoms (possibly empty).
(2.6) is the extension of the SLLN to the case of general censorship. The
discussion in Stute and Wang (1993) also shows that in many situations S
in (2.7) equals the target value Sφ. Originally, the result had been proved
under the additional assumption that F and G have no jumps in common,
which is enough for practical purposes. An extension to the general case is
possible, however, by incorporating a new time scale, similar to Stute (1995)
in derving the CLT for Kaplan-Meier integrals. As pointed out previously
in practice it is not possible to check the validity of (1.6). (2.5) and (2.6)
may then be useful in a simulation study to find out in selected situations
how much S%, S and Sφ may differ when (1.6) is violated.
We only mention that the SLLN for S% is the key tool to prove consistency
also for more involved estimators, like M-, L- or minimum distance estima-
tors, under random censorship.
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3 Distributional Convergence

In their landmark paper Kaplan and Meier (1958) not only derived the for-
mula for the product-limit estimator Fn(x), but also added - on heuristic
grounds - some useful comments on the (limit) covariance of Fn(x) and
Fn(y). In particular, they pointed out that the variance has many similari-
ties with Greenwood's (1926) and Irwin's (1949) formula in connection with
actuarial estimates. They also mention (p. 476) that "in the derivation of
approximate formulas any bias that Fn(x) may have is neglected". For the
limit covariance of Fn(x) and Fn(y) (properly standardized) they come up
with the expression (in our terms)

X

(3.1) (1 - F(x))(l - F(y)) j Λz^-dF, x<y.
o

Since upon integrating by parts

oo

μ = ]EX = ί[l- F(x)]dx

o

they proposed to estimate μ by

oo

(3.2) μn = j[l-Fn(x)]dx,
o

at least in cases when the last observation is uncensored. In this situation
Fn is a proper d.f. so that μn is well defined. Writing μ£ as a double integral
and then using (3.1) they argued that the limit variance of μn equals

oo oo

(3-3) j J(l-F(v))dv
Lx

F(dx)

In the context of distributional convergence (3.1) was first justified by Bres-
low and Crowley (1974). In their extension of Donsker's invariance principle
for the empirical process, they showed that the Kaplan-Meier process

άn(x) = n^2[Fn(x) - F(x)}, 0<x<T<τH

weakly converges in the Skorokhod space 2}[0,T] to a centered Gaussian
process with covariance as given in (3.1). The technique elaborated in section
7 of their paper became by now standard and was adopted by many authors
in subsequent work. A somewhat different approach was presented in Burke,
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Csόrgδ and Horvath (1981, 1988). They derived a strong approximation of

ά n , n > 1, by a sequence of Gaussian processes, in the spirit of Komlόs,

Major and Tusnady (1975). Lo and Singh (1986) and Major and Rejtδ (1988)

obtained almost sure representations of άn in terms of sums of independent

processes (plus a remainder). See also Stute (1994a). This method requires

a deeper analysis of the first integral appearing in (2.1), being a U-statistic

process of degree two rather than a (simple) sum of independent quantities.

From our discussion in the previous section it becomes apparent why re-

striction to compact intervals [0,Γ] with T < τjj was essential. Gill (1983)

was the first to establish weak convergence on the whole real line, under

some natural technical assumptions guaranteeing that censoring effects do

not dominate the variable of interest in the extreme right tails. See also Ying

(1989). Their method of proof was based on by now well-known martingale

techniques elaborated in the context of survival analysis in Gill (1980).

As to general Kaplan-Meier integrals much less has been known for a long

time. Sander (1975), in discussing (3.2), came to the conclusion that "it

is extremely difficult to obtain the distribution theory for the estimators of
T
/(I - F(x))dx whenever T = oo". Susarla and Van Ryzin (1980) apparently
o
were the first to provide a rigorous treatment for the mean lifetime estimator
truncated at M n , but such that Mn —> oo at appropriate rates, as n —• oo.
Gill (1983) applied convergence of the Kaplan-Meier process plus integration
by parts to obtain, under some additional tail assumptions on the censoring
mechanism, distributional convergence of the mean lifetime estimator and
Kaplan-Meier integrals for φ's which are nonnegative, continuous and non-
increasing. Schick, Susarla and Koul (1988) obtained, for this class of φ\ a
weak representation of / ψdFn in terms of a sum of i.i.d. random variables
plus a remainder. In all of these papers integration by parts was essential.
Yang (1994) was able to extend distributional convergence of f φdFn, under
regularity conditions on F, to those φ*s satisfying

(3.4) I j^dF < oo.

The integral (3.4) becomes part of the limit variance so that (3.4) is in-
dispensable. Stute (1995) obtained a representation of / ψdFn as a sum of
i.i.d. random variables plus a remainder which is valid under no regular-
ity assumptions on F and G. Moreover, the paper was written within the
framework (1.6) only as a historical tribute but may be readily extended to
the case of general censorship, in which as in section 2 the distributional
characteristics of the observed (Z, <5)'s are H and m and not F and G. The
key observation of our approach is the fact that the Kaplan-Meier integral
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/ ψdFn may be written as

in which is defined as in the previous section and correspondingly,

n

Expansion of the logarithmic term and neglecting error terms leads one to
a U-statistic of degree three. Its Hajek projection is the desired (simple)
sum of i.i.d. random variables to which the ordinary CLT applies. For a
large class of φ's the error terms are o(l) with probability one so that an
application of the LIL also establishes the law of the iterated logarithm for
Kaplan-Meier integrals.

The general formula for the limit variance of / ψdFn was discussed in Stute
(1994d). For the purpose of the present paper it is enough to consider
independent censorship (1.6) with a continuous F. We then have

(3.5) n

with

1/2 j ψdFn- j ψdF Λ/"(0, σ\) in distribution

Γ τH "j 2 Γ TH

j φ d F -J JψdF

Lo J lχ

1 - F(x)
- H{x)f

G(dx).

Note that in this three-terms formula for σ ,̂ the last term vanishes if there
is no censorship (G = 0) so that in this case σ\ reduces to σ2 from (1.5):
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4 Bias

We heard in section 2 that the bias of Fn(x) was already briefly discussed in
Kaplan and Meier (1958). A first rigorous treatment may be found in Gill's
(1980) thesis. In his formula (3.2.17) he showed that

-F{x)Hn(x) < ΈFn(x) - F(x) = BiasFn(x) < 0

i.e., Fn(x) is always biased downwards. What the left inequality also suggests

is that the bias increases as x gets large and that it may then become a

nonnegligible quantity. Mauro (1985) extended the right inequality to a

general Kaplan-Meier integral:

\hip \ ίBias \ ψdFn\ < 0 for φ > 0.

Zhou (1988) was able to also establish a lower bound whenever ψ > 0 is
continuous and Riemann integrable:

- f φ{t)Hn(t)F(dt) < Bias

In Stute (1994c) we were able to derive a formula and an expansion for the

bias in such a way that (see p. 476):

(a) unbiasedness was readily recovered if there is no censorship

(b) Bias —> 0 as n —> oo for a general φ

(c) sharp lower and upper bounds are easily available

(d) all expressions only depend on the joint distribution of the ob-

served (Z,ί) 's

(e) the effect of light, medium of heavy censoring on the bias may be

easily discovered.

The solution to this program is surprisingly complicated. But what comes
out is that informally speaking the bias of a Kaplan-Meier integral may

- be zero , if there is no censoring

- decrease to zero expo- , if, e.g., φ is bounded
nentially fast and vanishes right of

some T < TH>
decrease to zero at any , if, e.g., 0 < φ(x) | oo as
polynomial rate x —> oo and censoring is

heavy.
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In particular, the bias may decrease to zero at a rate slower than n" 1 / 2

and therefore becomes an important quantity in assessing the quality of the
approximation of / ψdF by / ψdFn.

For indicator functions ψ = l[o,φ the reduction of the bias has been the
subject of some discussion before. See Chen et al. (1982) and Wellner
(1985). Chen et al. (1982) proposed to replace Fn by

~ \ 1 for y > Zn:n

Note that F* reduces to Fn if we artificially set £[n:n] = 1, irrespective

of whether Zn:n has been censored or not. Wellner (1985) compared Fn

with F* and was led to prefer Fn, because in the cases investigated by

him the upward bias of F* was worse than the downward bias of Fn. Stute

(1994b) proposed another modification of Fn which is based on the following

observation. Suppose that all X's were observable. Then the empirical d.f.

based estimate of Ap would be

t = l

In order to measure the impact of censoring under(l.β) we compute the

conditional expectation of the Nelson-Aalen estimator w.r.t. the ordered

X's. It then turns out that

IE I

Compared with (4.1) we see that censoring causes an additional bias term

(4.2)

This is particularly large if G compared with F has short tails. Since (4.2)

is unknown one may be tempted to replace G by its Kaplan-Meier estima-

tor Gn and then to substitute the (unknown) X-sample by some bootstrap

replicates Xf, ...,X* from F*. Utilizing (1.8) again we finally come up with

the following modified version of Fn:

x Π

1{%:n<*.g[«:nl=l}
L n-i+1

n-i + l
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Since Fn and F* only jump at the Z\ we obtain for some weights W}n:

Likewise,

It is easily seen that W}n > W{n so that for φ > 0 the modified procedure
reduces the downward bias of 5£. The difference between W}n and W{n

becomes negligible for small to moderate i while for i = ra, n - 1,... there
may be a difference resulting in an upweighing of the extreme order statistics.
The asymptotic theories for S% and S** are the same. For finite sample size,
Stute (1994b) pointed out through an extensive simulation study that S^φ

may have a significantly smaller bias and, somewhat unexpectedly,also a
smaller variance.

In section 6 the confidence intervals for the mean lifetime were centered at
Slφ rather than S%.

5 The Jackknife

The jackknife has been proposed to serve two purposes, see Quenouille (1956)

and Tukey (1958):

(i) If Tn happens to be a biased statistic, the jackknife is expected to

provide a modification of Tn with a smaller bias. For later reference,

let Tn = S(Fn) be a statistical functional evaluated at the (ordinary)

empirical distribution function Fn. Denote with Fn the empirical d.f.

of the sample X\,..., Xk-i ? Xk+i ? ? Xn a n ( i

Then the bias-corrected substitute for Tn is defined as

fn = Tn-(n- l){fn - Tn}.

(ii) In the above notation the jackknife estimate of variance of Tn is defined

as
Ύ) — 1 U

Ti ,
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with

A general account of the jackknife may be found in Gray and Schucany
(1972) and Efron and Tibshirani (1993). For Tn = f φdFn, there is no need
for a bias correction. This is also confirmed by the jackknife, in view of
Tn — Tn. The jackknife estimate of variance equals n" 1 times the sample
variance, which is one would expect.

Note that the crucial thing about (i) and (ii) is that the statistic of interest
is a function of Fn and therefore attaches mass 1/n to each of the data. As a
consequence deletion of one point just results in a change of the mass 1/n to
l/(n — 1). For the Kaplan-Meier integral the situation is completely different
since now the statistic is a sum of (functions of) order statistics weighted
by the complicated random W{n's. Denoting with Fn the Kaplan-Meier
estimator from the entire sample except (Z^ : n ,^ : n i ) , then S(Fn ) not only
involves changes of the standard weights, but also incorporates replacement
of the weights W{n by new ones depending on the labels #r;:n],l < i < n.
This may be one of the reasons why the jackknife under random censorship
has been dealt with only in few papers. Gaver and Miller (1983) proved
that the jackknife corrected Kaplan-Meier estimator at a fixed x < TJJ has
the same limit distribution as Fn(x). Stute and Wang (1994) derived, for an
arbitrary φy a finite sample formula for the jackknife modification of / φdFn:

(5.1) S^ = S^ + ^φ(Zn:n)6[nm](l-δ[n.1:n])
nf[ [ " ~ * T J ] ":nJ.

Hence the correction term depends on the largest Z-observation only but on
all ^-concomitants. Also the jackknife is much more cautious about attach-
ing masses to the last observation when it is censored than what has been
recommended in the ad-hoc proposal leading to F* in the previous section.
It is also worthwhile to compare the correction term in (5.1) with Rn+i in
(2.4). First, both vanish unless the largest observation is uncensored and
the second last is censored. Only in this case the extreme right data contain
enough information on F to make a slight change of Wnn desirable.
As to the variance, (3.5) suggests that

2

Var[S%] -asn^oo.
n

So what Var(Jack) is expected to do is

(5.2) nVar(Jack) -> σ\ with probability one.
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Since (omitting φ)

(5.3) nV^r(Jack) = (n - 1) ̂ [ S ^ ] 2 - n(n - l)S2

n.

and

k-1 ,Λ>χ. \£__ . i-1 r-__- j - i ^ j

+ Σ ^] +

[7] Π [ V j J ' .Π [n

n-jί
already is a complicated expression to be squared in (5.3) it is a priori not

obvious at all if Var(Jack) is able to work out the three terms in the expres-

sion (3.6) for σ\. In Stute (1994d) a finite sample formula for Y%=1[S^]2

was derived from which one obtains that up to a complicated error term

nVar(Jack) = (n - 1) \\ φ2(Zi:n)δri:n\ — TT —,—

i = i
n -si

n-l n

j=l k=\

n

_ φiZi^Wi,

where

This somewhat mysterious representation of nVar(Jack) in fact constitutes
the empirical analog of the three-terms expression (3.6) for σ\. By the SLLN
for Kaplan-Meier integrals the second term converges to — S2. The first and
third expressions need some special care. But after all it can in fact be
shown that they converge to the desired limits. Provided the error term
is negligible these pieces altogether would imply (5.2). Unfortunately, and
somewhat unexpectedly, this holds true only when ψ{x) —• 0 as x —• r# . So,
in particular, the Jackknife yields a consistent estimate of σ\ for φ = l[0^]
with t < Tff. For a general </?, it may be inconsistent due to the observation
that the remainder term becomes nonnegligible iff \φ(Zn:n)\ is moderately
large and

(5.4) £[n-l:n] = 0 a n d S[n:n] = l
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If, under (5.4), we redefine <*y.n] by artificially putting δ[n:n] = 0, we obtain a

slightly changed version of Vαr(Jαck), for which the remainder term vanishes

and the three leading terms still converge. In other words, this modification

satisfies (5.2) under the only assumption that σ\ is finite.

6 Data Analytic Aspects Of Kaplan-Meier Inte-
grals

In this section we will consider estimation of the mean lifetime, i.e. φ(x) = x.
This is an important simple example of a φ- function which does not vanish
right of some T < TH Hence all of the data are needed to compute the
Kaplan-Meier integral and not just those which are bounded away from (the
unknown) TJJ. Moreover, since φ is nondecreasing large values of Z will give
a significant contribution to the value of the estimator.
In our simulation study only exponentially distributed variables were con-
sidered, namely

(6.1) 1 - F(x) = exp(-x) and 1 - G(x) = exp(-λx)

for x > 0, with varying λ's. Clearly,

Sφ = ί xF(dx) = 1 and / xG(dx) = 1/λ.

Under (6.1), Z and δ are independent with

The following choices of λ were investigated in detail:

λ

Percentage

of censored

data

λ = 1/5

16,66 %

A = 1/3

2 5 %

A = 1/2

33,33 %

The nominal confidence level was 1 — α = 0.95. Sample sizes were n =
10,30,50 and 100. As mentioned in section 4, confidence intervals were
centered at S^φ. For each sampling situation the number of runs was 200.
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The table below lists the actual percentages of times the true parameter 1
was contained in

ϊ :=

Here σ\ is the plug-in estimator of the limit variance σ\ in (3.6) and μ\-a/
is the 1 - α/2 quantile of a standard normal distribution.

λ =
λ =
A =

1/5
1/3
1/2

n •-

0
0

0

= 10
.87

.79

.73

n •

0
0

0

= 30
.92

.85

.86

n = 50

0.93
0.93
0.93

n -
0
0

0

= 100
.94
.94

.95

It becomes apparent that

• for a given n the actual coverage percentages decrease as censoring
effects become substantial

• for n > 50 they are almost constant and very close to the nominal level

• for n < 30 the results are satisfactory for λ = 1/5

• for n = 10 and λ = 1/3 and λ = 1/2 the loss of information due
to censoring results in an unstable estimate with a less satisfactory
behavior.

After all one can say that even for small sample sizes the proposed confidence
intervals enjoy excellent coverage properties if censoring is not too heavy
(λ = 1/5). For λ > 1/3, coverage becomes excellent already for n > 50.

It is also very instructive to look at the confidence intervals themselves rather
than only reporting on the coverage percentages. Below, for some selected
n and λ, the values of 100 5^'s together with the pertaining confidence
intervals are presented. For the sake of illustration, also the case of "no
censorship" is considered. For n = 50 and λ = 1/5 there is no big difference
to λ = 0. Only the Γs have a tendency to be slightly larger, which is
not at all surprising. For n = 50 and λ = 1/3, censoring effects are more
substantial. Few confidence intervals and values of S\φ are somewhat large.
Similarly for λ = 1/2 and n = 50 and n = 100.
The same effects will also appear in the non-modified Kaplan-Meier integral
S%. In view of the negative bias this seems a little unexpected. A closer
look at S% (and the data) reveals the following interesting fact: S% takes on
relatively large values if most of the large data are censored but the largest
is uncensored.
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Under heavy censoring this may happen, of course, in rare cases. It be-
comes a rule rather than an exception if we just replace Fn by F*, i.e., if
by definition we always set <5[n:n] = 1. Our discussion points out that under
heavy censoring the mean lifetime estimator is slightly non-robust. As we
have seen this kind of non-robustness is not caused by outliers but by the
underlying pattern of the <$'s in the extreme right tails.
A closer look at the plug-in estimator σ\ shows that relatively large values are
obtained if <5[n_1:n] = 0 and ί[n : nj = 1, i.e., in situations already discussed in
connection with (2.4), (5.1) and(5.2). In comparison the modified Jackknife
estimate of variance is much more stable. See Stute (1994d) for further
details.

Figure 1: No censorship n = 50 φ{%) = χ

4

3,5

3

2,5

2

1

0,5

0

•0,5

-1
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Figure 2: λ = 1/5 n = 50 φ(x) = x

Figure 3: λ = 1/3 n = 50 φ(x) = x
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Figure 4: λ = 1/2 n = 50 φ(x) = x

Figure 5: λ = 1/2 n = 100 φ(x) = i
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