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Abstract 
 
Concentrating on the minimum death guarantee, this paper first compares the actuarial and 
financial approaches for pricing guarantees in unit- linked life insurance contracts.  We end up 
with the conclusion that, at least at the reinsurer level, only the actuarial approach can be 
consistently applied.  Using Monte Carlo simulations, we then obtain the probability 
distribution of the future costs associated with this guarantee.  This allows us to determine the 
necessary elements to fill in a cash flow model that is used to fix the price for this cover.  
Using a cash flow model raises some questions that are not completely resolved yet.  How 
much capital should we allocate?  How to release it?  What is the cost of capital?  In this 
paper, we propose simple solutions but the questions are still open. 
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Introduction 
 
Unit- linked life insurance contracts are now very popular in many markets. They started in 
North America and the UK, but they have rapidly spread to other countries, including 
continental Europe. Basically, in such contracts, the return obtained by the policyholder on its 
savings is linked to some financial index. Various types of guarantees can then be added to the 
pure unit- linked contract and the insurers have been quite inventive in this field: maturity and 
death guarantees, premium refunding, rising floors, ratchets, … These features introduce risk 
in the form of implicit options and this additional risk has to be managed and priced correctly. 
 
The first theoretical analysis of this problem dates back to (Brennan & Schwartz,1976) and 
(Boyles & Schwartz,1977). In these papers, they apply the Black-Scholes option pricing 
methodology to the pricing of guarantees in equity- linked life insurance policies. The  
underlying assumption is the completeness of the market. Assuming that the financial market 
is complete, this implies that the insurer is “risk-neutral” with respect to the mortality risk. 
This is only approximately true for very large portfolios. 
 
Since then, there has been a growing interest for this problem and many papers appeared in 
the literature. Most of them are based on the same completeness assumption. More recently, 
some authors have questioned this assumption and have developed pricing and hedging 
strategies in incomplete markets. The idea originated from (Föllmer & Söndermann,1986) and 
(Föllmer & Schweizer,1988). Möller (1998 and 2003)  introduced further developments and 
applied this theory to unit-linked contracts. 
 
All these approaches can be quoted as “financial” in the sense that they rely on hedging the 
financial risk. This hedging can be “perfect” in the case of (assumed) complete market or only 
“risk-minimizing” in the more realistic case of incomplete markets. As a matter of fact, this 
approach is only valid if the underlying hedging is actually applied. And this is not always the 
case in practice… 
 
This approach can be contrasted with the “actuarial” approach that relies on the equivalence 
principle. Based on the law of large numbers, the pure premium is simply determined as the 
mean of the future losses. While risk management consists in hedging the position on 
financial markets in the first approach, the actuarial approach implies reserving and raising 
capital in order to cover the future losses with a given probability. Since the financial risk is 
not completely diversifiable, this usually gives rise to large capital costs. 
 
The actuarial approach also received some attention in the literature, for example in papers by 
Hardy in which both approaches are contrasted regarding reserving and risk management 
using Monte Carlo simulations (Hardy, 2000 and 2002). 
 
In this paper, we shall concentrate on the minimum death benefit guarantee. In this case, the 
insurer’s liability for a death at time t will be: max(K, St)= St + max(K-St,0) where max(K-St,0) 
corresponds to the sum at risk and is similar to the terminal cash-flow of a european put 
option with strike price K. It is so that some insurers prefer not to bear this risk and, as a 
reinsurer, we were asked for a protection of the sum at risk for such unit- linked contracts. In 
this case, the insurer leaves 100% of the risk to its reinsurer that has to manage this risk and 
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ask for a “correct” price for taking it. That is the problem we faced and this paper tries to 
solve it, or at least answer some questions it raised. 
 
The first question is: should we use the financial or the actuarial approach to price this 
cover? This is a crucial question as the “pure” prices obtained according to each approach can 
be quite different. This is easily explained by the fact that, in both approaches, the famous 
Black-Scholes put pricing formula can be used. But the difference between the two types of 
pricing is that the actuarial one is obtained under the physical probability measure P and the 
financial one under the risk-neutral measure Q. 
 
Whatever under P or Q, we use the Black-Scholes formula to obtain a pure premium 
corresponding to the average of the Discounted Future Costs (DFC). With this premium we 
do not know anything about the standard deviation of the DFC or more generally about their 
distribution. This could be very dangerous considering the actual fluctuations of the financial 
markets. Regarding the standard deviation of the DFC, we can easily imagine that the one 
resulting from the actuarial pricing is larger than its financial counterpart, mainly because of 
the assumed hedging strategy applied on the financial markets when we are under the 
probability measure Q. To answer this question concerning the standard deviation and to 
compare the actuarial and the financial prices, we proceed to stochastic simulation of two 
elements: the underlying asset St and the death process Nt of a cohort of Bt insured persons at 
time t. Mainly for applicability reasons, at least at the reinsurer level, we eventually have to 
go for the actuarial approach.  
 
At the end of this step we obtain a Single Pure Premium (SPP) but the risk still has to be 
reflected in the price.  And here comes the second question: based on the loss distribution 
obtained, how to fix the price? A cash-flow model is built to answer this question. This model 
includes capital allocation during the whole “life” of the contract - this capital is equivalent to 
a solvency margin. This finally raises the question of the amount of capital needed. This 
difficult question still does not have a definitive answer in the literature, particularly for a 
multi-periodic setting as the one we face here. 
 

1. Actuarial versus financial pricing 
 
The actuarial and the financial approaches are in opposition by the way of tackling the 
question.  
 
The financer will say that the unit- linked life insurance contract with minimum death 
guarantee is a contingent claim. He will therefore use a hedging argument to determine the 
price of such a contract. In our case (the guarantee K does not depend on t), the insurer’s 
liability for a death at time t is similar to the terminal cash-flow of a European put option and 
we end up with a Black-Scholes like put pricing formula (under the risk-neutral measure Q). 
 
We will see that the equivalence principle or actuarial approach brings the same type of 
formula (except that we are under the physical probability measure P) but the way of 
analysing the problem is completely different. The actuary doesn’t want to duplicate the flows 
of a financial instrument; by applying the equivalence principle, he will determine the single 
pure premium by evaluating the average of the future losses. 
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The first question to be answered is then: should we use the financial or the actuarial 
approach to price this cover? 

a. The underlying asset 
 
We assume that the underlying asset of our contract follows a classical geometric Brownian 
motion, described by the following stochastic differential equation under the physical P 
measure: 
 

tttt dWSdtSdS σµ += , 

(1) 

with the unique solution 
 

( )tt WtSS σσµ +−= )2/(exp. 2
0 . 

(2) 

Applying Girsanov’s theorem, the asset price can be shown to follow the following process 
under the risk-neutral probability measure Q: 
 

tttt WdSdtrSdS
~σ+=  

(3) 

with the unique solution 
 

( )tt WtrSS
~

)2/(exp. 2
0 σσ +−= , 

(4) 

where: 
 

§ St is the price of the underlying asset at time t, 
§ µ is the expected rate of return of the underlying asset and σ its standard deviation, 
§ Wt is a standard Brownian motion under the P measure and  tW

~
 a standard Brownian 

motion under Q. 
 
Here and throughout the paper, we make the hypotheses that the financial market is complete 
and arbitrage-free and that the risk-free interest rate r is constant. 
 
Now we have a description of the financial market, we would like to express the price of our 
contingent claim (financial approach terminology) and the future losses (actuarial approach 
terminology) in this setting. 
 
 

b. Expected loss in t for a death in T 
 
We know, using (2) and (4), that 
 



 5

( ))(),)(2/(log 22

P
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t
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(5) 

( ))(),)(2/(log 22

Q

tTtTrNS
S law

t

T −−−−≈ σσ . 

(6) 

 
This means that the return of the asset follows a log-normal distribution with parameters (µ-
σ 2/2)(T-t) and σ 2(T-t) under the physical P measure of probability and a log-normal 
distribution with parameters (r-σ 2/2)(T-t) and σ 2(T-t) under the risk-neutral Q measure of 
probability. 
 
Given (5) and (6) we can now evaluate the expected loss in t for a death in T according to each 
type of pricing. Thus we define: 
 

[ ]tT
tTr SKeETtV ℑ−= −− )0,max(),( )(

P
P , 

 
and 
 

[ ]tT
tTr SKeETtV ℑ−= −− )0,max(),( )(

Q
Q , 

 
where the filtration ℑt represents all the information generated by the evolution of the asset 
price and the mortality up to time t. 
 
The difference between the two formulas lies in the expected rate of return of the underlying 
asset under each probability measure: 
 

§ µ under the P-measure for the actuarial approach, 
§ r under the Q-measure for the financial approach. 

 
But it is important to remind that the financial pricing approach relies on the assumption that a 
defined hedging strategy in the financial market is applied. Otherwise, the price obtained is 
meaningless. 
 
This last remark is crucial. Indeed, this is certainly a practical disadvantage of the financial 
approach. Intuitively, this however also leads to some advantages over the actuarial approach: 
 

§ the premium is independent of the expected rate of return of the underlying asset 
whereas the actuarial premium could be affected by errors in its estimation, 

§ most of the financial risk is eliminated through the hedging portfolio; the remaining 
financial risk is due to the fact that the mortality risk is never completely diversified. 

 

c. Single Pure Premium 
 
We obtain an expression for the single pure premium SPP according to each type of pricing. 
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where: 
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We verify that the two formulas look quite similar. The financial premium is nothing else but 
a sum of Black-Scholes put prices and the actuarial premium has the same form. Only the 
risk-free rate r is replaced by the expected return µ. As pointed out in (Devolder,1993), this 
unavoidably leads to higher financial pure premiums as soon as µ > r. 
 
In order to further compare both approaches, we are not only interested in the pure premiums 
(that is, the expected discounted future costs DFC), but also in the whole probability 
distribution of the discounted losses. This can only be done using Monte Carlo simulations. 
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2. Stochastic simulation 
 
As we want  to obtain the distribution of the DFC, we need to simulate the value of the 
underlying asset and the death process.  In order to keep the expressions simple, we shall 
make the hypothesis that the sum at risk is the same for each insured person.  This assumption 
can easily be relaxed. 
 

a. Simulation methodology 
 

1. The underlying asset 
 
We use a basic methodology to simulate the underlying asset. We fix a time step ∆t and 
approximate the stochastic differential equation (1) at time n∆t by: 
 







∆+∆+=

=

+ )1(1

00

ttXX

SX

nn σεµ
 

 
where ε has a standard normal distribution. 
 

2. The death process 
 
If we consider a cohort of Bt insured persons of age x at time t, we can show that the random 
variable Yt counting the number of deaths in this cohort between t and t+1 follows a binomial 
distribution with parameters Bt and qx+t.   
 

b. Adaptation of each approach to stochastic simulation 
 

1. Actuarial approach 
 
For the simulation i and the insured j, the amount to be paid in time t is: 
 

{ } )(1).( )(
)(

)(
)(),( tSKM

tTKS

i
t

ji
t i

jx
i

t =∩<
−= , 

 

where )(
)(

i
jxT  is the time to death of the jth person (aged x(j)) in simulation i.  In order to obtain 

a realisation of the random variable DFCAct, we only have to sum up the discounted 
realisations Mt

(i,j) over the time t and the B0 insured persons. An estimation of the single pure 
premium is then obtained by averaging over the N simulations: 
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2. Financial approach 
 
The financial approach is somewhat more difficult to adapt than the actuarial one because we 
have to reflect the impact of the hedging strategy in the price of the contract. 
 
We first define the cost of re-hedging of the underlying risky asset and the risk free asset at 
time t (this amount can be positive or negative): 
 

)
~~

()
~

,,,( 1−
− −= ttt

rt
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)~~()~,,( 1

r
tt

rt
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where )(

~
Ttξ  is the quantity of underlying risky asset and tη~ (T) the amount of risk-free asset 

held at time t. We can prove that: 
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The coefficients ξt(k) and ηt(k) represent respectively the quantity of risky and risk-free asset 
that is necessary at time t to duplicate the terminal flows of a European put option of price K 
and maturity k. 
 
The process Tttt ÔÔ ≤≤0))()(( ξη ~

,~  corresponds to the number of assets to be held at t to 
duplicate the flows generated by our contract (that ends in T). This is in fact the sum of the 
duplication coefficients of a traditional European put option weighted by the mortality 
densities at ages x(j). This hedging strategy (as well as the corresponding pricing formula (8)) 
relies on the assumption that the insurer is “risk-neutral” with respect to the mortality risk, 
that is that he holds a sufficiently large portfolio. 
 
A realisation of the random variable DCFFi is obtained by summing the discounted mortality 
and hedging costs. We finally obtain an estimation of SPPFi by averaging: 
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c. Results 
 
All the results presented hereunder were obtained under the following hypotheses: 

• S0 = 1, K = 1, 
• µ = 8.5%, σ = 25%, 
• r = 5%, 
• 1,000 insured persons aged 45, 
• 10,000 simulations. 

1. Probability distribution functions 
 
The following graphs show the distribution of the DFC obtained respectively using the 
actuarial and the financial approaches. 
 
 

Distribution of DFC
Act
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We can observe that the actuarial approach results in a very dispersed distribution of the DFC 
in comparison with the financial approach. In the financial case, we are tending to the 
probability distribution of a classical death benefit cover. This comes from the fact that the 
DFCAct are very sensitive to a small fluctuation of the underlying asset whereas almost all the 
financial risk has been removed by hedging in the financial approach (note that not all the 
financial risk is eliminated because the mortality is random and we are not completely “risk-
neutral” with respect to mortality risk, so that the hedging cannot be perfect). 
 

2. Sensitivity analysis 
 
When doing stochastic simulations to estimate the distribution of the DFC, we fixed several 
parameters like the risk-free rate r, the expected rate of return µ, the volatility σ. The 
distribution of the DFC is a function of all these parameters. They are however not perfectly 
known and are subject to estimation errors. The aim of this section is to test the sensitivity of 
the DFC distribution to these parameters in both approaches. We shall restrict ourselves here 
to the expected return µ and volatility σ of the underlying asset. 
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With respect to µµ  
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Mean Standard 
deviation

Mean Standard 
deviation

-10% 44,15 12,46 10,45 4,11
-5% 34,04 16,13 10,40 3,49
0% 21,18 16,81 10,26 2,71
5% 9,94 12,93 10,16 1,99

8,5% 5,04 9,04 10,10 1,60
10% 3,51 7,28 10,12 1,45
15% 1,22 3,57 10,17 1,10
20% 0,42 1,42 10,20 0,92

Sensitivity to µµ
Actuarial approach Financial approach
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As expected, the financial premium (mean of DFCFi) is nearly independent of µ whereas the 
actuarial premium increases with the expected return and is very sensitive to this parameter. 
The more µ decreases, the more SPPAct increases. When µ becomes negative, the shape of the 
distribution of the DFCAct tends to the shape of a classical death insurance (without any 
financial component). The variance of the DFCAct reaches its maximum for µ = 0 because, in 
this case, the price of the underlying asset oscillates around S0 (= K, the amount of the 
minimum death guarantee). Even in the financial approach, the shape of the distribution is 
affected. It is more and more centred around its mean as µ increases. 
 
With respect to σσ 
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We see that the DFC distribution is influenced by σ in both approaches. The mean as well as 
the variance of the DFC are increasing with the volatility of the underlying asset. The 
variance is however much less sensitive in the financial approach. 
 

d. Conclusion 
 
As a matter of fact, these results plead in favor of the financial approach. However, it implies 
that the underlying hedging strategy must be followed and this is not always desirable or even 
feasible in practice, at least for the reinsurer. Passive hedging is not possible since the 
corresponding put options are hardly found (mainly due to the very long maturities involved). 
Active hedging implies constant rebalancing of the hedging portfolio and could result in high 
costs. Moreover, it is so that the underlying index is not always precisely defined, at least at 
the reinsurer level, so that a perfect hedging is never possible. 
 
As a consequence, the reinsurer ends up with the conclusion that he can hardly put the 
financial approach into practice and that he fina lly has to resort to actuarial pricing. And here 
comes the second question: based on the loss distribution obtained, how to fix the price? The 
answer we suggest is based on a cash-flow model and is developed in the next section. 
 

3. Cash-flow model 
 
In section 1, we obtained an expression for the single pure premium SPPAct. In section 2, the 
distribution of the discounted future costs DFC was estimated and the SPPAct is nothing else 
but the mean of this distribution. We now want to determine what is the price the (re)insurer 
should ask in practice for this cover (leaving aside management expenses). We shall call it 
here the Technico-Financial Premium TFP. The loading applied with respect to the pure 
premium should depend in some way on the “riskiness” of the cover. 
 
We propose here to consider the underwriting of this contract as an investment by the 
shareholders and to build a cash-flow model similar to what is used in evaluating any 
investment decision. Our simulation process provides us with the distribution of the DFC at 
each time t (as viewed from time 0 and not from time t), and this is all we need to determine 
the various cash-flows (including capital allocation) involved. 
 

Mean Standard 
deviation

Mean Standard 
deviation

5% 0,01 0,02 0,03 0,02
10% 0,11 0,40 0,63 0,17
15% 0,71 2,21 2,75 0,57
20% 2,46 5,64 6,10 1,07
25% 5,11 9,22 10,14 1,61
30% 8,94 12,77 14,47 2,19
35% 13,17 15,88 18,90 2,65
40% 17,64 18,28 23,24 3,14

Actuarial approach Financial approach

Sensitivity to σσ
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a. Cash-flows 
 
Hypotheses: 
 
We assume the capital is invested in stocks and bonds. The proportion of stocks in this 
investment portfolio is denoted by p. It is assumed that the technical provisions are invested in 
bonds only. The bonds are considered to be risk-free and to earn the risk-free interest rate. We 
further define some parameters: 
 

§ γ is the corporate tax rate, 
§ δ is the mean rate of return on the stocks, 
§ r is the risk-free rate. 

 
Outflows: 
 

§ net mean claim payments: )1( γ−∆ tc , where 
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{ }∑∑
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=∩<

> −=∆
N

i

B

j
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§ net mean change in technical provisions: )1( γ−∆ tp , where 

 

{ } ∑
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−−
< ∆=

T

tk
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tkr
Ttt cetp

1

)()(1 , 

 
§ mean change of allocated capital: tk∆ . 

 
Inflows: 
 

§ net mean return on the provisions: )1)(( γ−pRt , where 
 

{ } )1(1)( 10 −= −>
r

ttt eppR , 
 

§ net mean return on the capital invested in bonds: )1()( γ−kRt , where 
 

{ } )1()1(1)( 10 pekkR r
ttt −−= −> , 

 
§ mean return on the capital invested in stocksi: ),( δkRt , where 

 

{ } pekkR ttt )1(1),( 10 −= −>
δδ , 

 
§ net premium income : )1( γ−TFP , where the technico-financial premium TFP has to 

be determined. 
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b. Evaluation of TFP 
 
In order to obtain the estimation of the TFP, we apply the net present value criteria and solve 
the following equation for TFP: 
 

[ ] ,0)1)((),()1))((()1()1(
0

)( =−−−∆+−−∆+−∆−− ∑
=

−
T

t
tttttt

COCt kRkRkpRpceTFP γδγγγ  

 
where COC stands for the cost of capital and is the return required by the shareholder on this 
type of business. We can easily show that the first two terms in the brackets reduce to the 
initial mean net change of provisions. The solution is then given by: 
 

[ ]
γ

γδ

−

−−−∆
+∆=

∑
=

−

1

)1)((),(
0

)(
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T

t
ttt

COCt kRkRke
pTFP . 

 
The way to obtain the solution is fairly simple because the premium is unique. This premium 
takes into account the mean level of the DFC at each time t viewed from 0 and the mean level 
of the capital that has to be allocated at time t for this business. Everything looks good since 
we got an expression for the price but we still face two important problems that were left 
aside up to now: 
 

§ How much capital should we allocate to this business and how to release it? 
§ What is the COC? 

 
These are open questions for which we do not have a satisfactory answer yet. In the following 
sections, we briefly explain how we handled these problems but further discussions and 
developments are undoubtedly needed. 
 

c. Risk measures and capital allocation 
 
All the insurance companies have liabilities and therefore they set up technical provisions 
calculated with prudential hypotheses. Nevertheless, insurance is still a risky business and the 
technical provisions can prove to be insufficient. Shareholders capital is needed to face this 
kind of unexpected event. We want now to evaluate the capital (or solvency margin) that is 
needed to underwrite this type of risk. 
 
It seems clear that the solvency margin depends on the “riskiness” of the product. This means 
that a pure death insurance does not need an amount of capital as large as a death guarantee in 
a unit- linked product. Several risk measures have been proposed to evaluate this riskiness. 
Axioms for a so-called coherent risk measures have been introduced in (Artzner et al., 1998) 
and various coherent risk measures do exist. 
 
In this paper, we decided to use a risk measure that has become very popular in the last years: 
Conditional Tail Expectation. We define the conditional tail expectation of threshold α for the 
random variable X  as: 
 



 15

])([)( XVXXXCTE αα >Ε=  
 
where 
 

[ ]{ }α≥≤Ρ= VXVXVá :inf)(  
 
corresponds to the “Value At Risk” of level α. 
 
Using the distribution of the discounted future costs at each time t, we define the capital to be 
allocated at time t as: 

ttt pDFCCTEk −= )(α . 
 
This is only a possibility and many questions remain regarding the risk measure to adopt and 
the risk threshold to consider (parameter α). Another crucial problem comes from the 
multiperiodic nature of this insurance contract. Up to now, risk measures were considering 
only one-period risks. The difference mainly comes from the possibility of intermediate 
actions during the development of the risk. This problem was addressed only recently 
(Artzner et al., 2002) and we hope to have an answer to this question in a near future. 
 
Here we applied the one-period risk measure to the distribution of the total future losses at 
each time t. But is it necessary for an insurance company to have from the start of the contract 
an amount of capital that is sufficient to cover losses that will be spread over many years? 
Considering that the company can raise more capital in the next years if things go wrong, 
should the capital only allow the insurance company to pay the losses and set up sufficient 
provisions in a given time horizon? These are the type of questions involved in a 
multiperiodic setting. 
 
We also want to insist on the fact that these mean levels are viewed as from time 0.  Saying 
this, we mean that the probability distribution of the DFC at time t is given by the realizations 
obtained along each independent simulation trajectory.  The mean provision and capital at 
time t are then calculated based on this distribution: 
 

[ ]
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Another possibilityii would be to consider the distribution of the DFC at time t for each 
trajectory, given the information we have in t (that is St and Nt) to determine the mean 
provision and capital. The following figures schematically compare the two situations at time 
t=1. 
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Both methods lead to the same estimation of the provisions thanks to the recursivity property 
of the expectation. On the contrary, different values would be obtained for the capital.   
Indeed, in this case, the mean provision and capital at time t are given by 
 

 
Also our simulation approach does not embed ruin probability between two time steps for a 
given simulation trajectory.  In this case, it could be argued that the simulation should be 
stopped since the insurer becomes insolvent.  Here we considered that the insurer is always 
able to pay the losses. 
 
It is also interesting to have an idea of the riskiness of this business as compared with other 
reinsurance businesses. For non- life business, the losses are usually modelled using a 
compound Poisson-Pareto distribution. This model is characterized by two parameters: λ from 
the Poisson distribution, representing the mean number of losses, and α from the Pareto 
distribution, that is representative of the riskiness of individual losses.  We let α vary and 
adjusted λ in order to obtain the same pure premium. We then allocated capital and calculated 
technico-financial premiums based on both distributions. For usual values of parameter α in 
non- life business ( 5,25,1 ≤≤ α ), the results obtained are not significantly different. 

d. Cost of Capital (COC) 
 
The cost of capital is the rate of return required by the shareholders on the invested capital. 
Using the CAPM theory, the COC is determined by the sum of the risk-free rate and a risk 
premium that corresponds with the systematic risk for this type of contract: 
 

)( rrrCOC m −+= β , 
 
where (rm - r) is the market risk premium and β is a measure of the correlation with the 
market return. 
 
The problem finally amounts at determining the β of this contract. Can we use a β for the 
whole company? Or is it better to use a β specific to this line of business? Probably the 
second solution is better but then how to estimate it? 
 

Conclusion 
 
In this paper we propose a way to obtain the distribution of the discounted future costs in a 
unit- linked life insurance contract with minimum death guarantee according to the actuarial 
and the financial approaches. We are then able to estimate the pure premium and the 
variability of the DFC. In both cases, our pricing has been made under the Black-Scholes 
pricing hypotheses. We finally choose the actuarial approach (mainly for feasibility reasons) 
and evaluated the technico-financial premium including the cost of capital allocation. 
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Some questions are still open. How can we make the underlying asset modelling better and 
how is the price sensitive to a model error? We used the classical geometric Brownian motion 
in our simulations, but we also could have used other models, like a regime switching model 
as proposed in (Hardy,2001) for example. Other questions regarding capital allocation have 
been raised in the text, including the threshold α used for the CTE. This threshold is usually 
fixed at the company level and used to determine the total capital that is needed to support the 
business. This capital is then allocated to the various lines of business. Another solution could 
be to derive a threshold for this specific business, based on company’s α, that would take 
diversification effects into account. This threshold could also be imposed by rating agencies 
or control authorities. 
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i Note that, under the Belgian taxation system, the capital gains on stocks are not taxable , so that the tax on stock 
returns are small compared to tax on bonds returns.  We assumed here that the returns on stocks are not taxable 
at all. 
ii We would like to thank Prof. Artzner for pointing out this way of working. 


