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Abstract

This paper proposes an alternative option pricing model in which
the stock prices follow a diffusion process with non-affine stochastic
volatility and random jumps.

Approximative European option pricing formulae are derived by
transforming a non-linear PDE in an approximate linear PDE which
is explicitly solved by using Fourier transformations. We check that
these approximative prices are close to the Monte Carlo estimates and
compare them with the prices in an affine stochastic volatility jump
diffusion model.

Model parameters are estimated by using the method of simulated
moments. We evaluate the impact of the different submodels on option
prices and on implied volatility.
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1 Introduction

In the last decade, there has been evidence that stochastic volatility processes
with jumps in the returns are important to model index return and volatility,
but some recent studies on option pricing prove that most models still are
incapable to capture some empirical characteristics observed in data. In
particular the mean squared errors by the parameter estimation remain high
and the derived implied volatility graphs are not satisfactory.

Some authors use the square root process to represent the dynamics of
the instantaneous variance (e.g. Heston (1993)) but this square root model
is generally rejected by many authors. The cause is principally due to the
insufficient kurtosis generated by the model (see, e.g., Benzoni (1998) and
Pan (2002)). They find that the parameter estimates are inconsistent with a
time series analysis of the implied volatility series. Many recent papers (e.g.
Bakshi et al. (1997, 2000), Bates (1996) and Duffie et al. (2000)) indicate
that the square root model is incapable to explain the high moments of the
spot volatility. Jones (2003) proves that the moments of stock return depend
mainly on the variance of the volatility.

The purpose of this paper is to introduce a more general form of the
stochastic volatility model which includes the affine class of random intensity
models studied by Bates (1996) and Bakshi et al. (1997, 2000). Our class
of models generalizes the square root model by allowing the instantaneous
variance of the volatility to be proportional to any power of the variance,
and then to be a non-affine process. We will call this a non-affine stochastic
volatility jump diffusion model (NA-SVJD). The main goal of this paper is
to check whether the NA-SVJD model might contribute to a better fit of
the data by its supplementary parameter of the power of the variance, and
this by analogy of the paper of Chan et al. (1992) in interest rate modelling
where the generalisation of the square root in the Cox-Ingersoll-Ross (1985)
process has been studied.

We first turn to the estimation of its parameters, a problem which is quite
challenging. Several studies have pointed out that implicit volatility from
option prices should theoretically summarize a rich information regarding
expected future volatility. Therefore, we will use both the underlying asset
prices and the prices of options on them in order to estimate the parameters
of the model. Indeed, we propose to use a method of simulated moments
(MSM) for estimating all parameters of the NA-SVJD model except the
current return variance, and this by using both spot prices of the underlying
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assets and option prices on them. The method of simulated moments (MSM)
approach has been developed by McFadden (1989), Pakes and Pollard (1989)
and has been used in the financial literature by e.g. Duffie and Singleton
(1993) and Bakshi, Cao and Chen (2000). The MSM technique is quite
easy to use for complicated estimation problems in econometrics and it only
asks a reasonable computation time. The daily initial return variance is
then estimated by looking at the Mean Squared Error (MSE) between the
approximative option prices and the observed market prices.

In the NA-SVJD model, however, explicit European call option prices
can only be obtained in an approximative way. Indeed, the partial differ-
ential equation (PDE) approach introduced by Heston (1993), Bates (1996)
and Bakshi et al. (1997) leads to a non-linear PDE which we will linearize
in order to be able to solve it in an explicit way by using Fourier transforma-
tions. We compare the approximative European call option prices with the
corresponding Monte Carlo estimates and the results in an affine stochastic
volatility model.

This paper is composed as follows. In Section 2, we present the non-
affine stochastic volatility jump diffusion model (NA-SVJD) that we study
in this paper. Section 3 develops an approximative option pricing formula
in this model. Section 4 describes the MSM estimation technique and the
volatility filtering technique and reports the estimation results of the general
model and various submodels. Section 5 compares the performance in option
pricing among the different models, and this by studying the implied volatil-
ity graphs. Section 6 uses the previous estimated parameters to test the
precision of the approximative European call option prices by Monte Carlo
simulations.

2 Non-affine Stochastic Volatility Jump Dif-

fusion Model

Throughout this paper, we consider a complete probability space (Ω,F , P )
with an information filtration {Ft}0≤t≤T satisfying the usual conditions. We
denote by S = {St, 0 ≤ t ≤ T} a stock price process (the risky asset price),
where T is a finite time horizon.

We assume that under a risk-neutral probability measure Q, the asset
price follows a jump diffusion with the instantaneous conditional variance
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V following a non-affine stochastic process:

dS(t)/S(t) = (r − λµJ)dt+
√
V (t)dZs(t) + J(t)dq(t) (1)

dV (t) = k(θ − V (t))dt+ σvV
γ/2(t)dZv(t) (2)

with

cov(dZs(t), dZv(t)) = ρdt and Q(dq(t) = 1) = λdt (3)

and

ln(1 + J(t)) ∼ N(ln(1 + µJ)− 1

2
σ2
J , σ

2
J) (4)

where r is the riskless interest rate which is assumed to be constant, λ is the
annual frequency of the jumps and J is the percentage jump size (conditional
on a jump occurring), identically and independently distributed over time,
with unconditional mean µJ . q is a Poisson jump counter with intensity λ
and the parameters k, θ and σv are respectively the speed of adjustment, the
long-run mean, and the variation coefficient of the diffusion volatility V (t).

q and J are assumed to be independent and moreover, they are supposed
to be independent with the correlated standard Brownian motions Zs and
Zv.

The non-affine stochastic volatility model generalizes the square root
model by allowing the instantaneous standard deviation of volatility to be
proportional to any power of the volatility.

The above processes for asset prices contain models used by many authors,
e.g., Merton (1993), Bates (1996), Bakshi et al. (1997), Duffie et al. (2000).
The non-affine stochastic volatility model itself is also called the ”Constant
Elasticity of Variance” (CEV) model and has been investigated in many
papers in interest rate modelling, and has been used by Chacko and Viceira
(2003) and Jones (2003) to model stochastic variance processes.

3 European call option price

In this section, we want to price a European call option by using the PDE
approach which is by now quite standard in literature (see e.g. Heston (1993),
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Bates (1996) and Bakshi et al. (1997)). We let Ct denote the price at time
t of a European-style call option on St with strike price K and expiration
time T = t + τ . Using the fact that the terminal payoff of an European call
option on the underlying stock S with strike price K is max(ST −K, 0) and
assuming that the short-term interest rate r is constant over the lifetime of
the option, the price of the European call at time t equals

C(S(t), V (t), t) = e−r(T−t)EQ
t (ST −K)+ (5)

= e−r(T−t)(

∫ ∞
K

STPt(ST )dST −K
∫ ∞
K

Pt(ST )dST )

= S(t)π1 −Ke−r(T−t)π2

where EQ
t (resp. Pt(.)) is the conditional expectation operator with respect to

the risk neutral probability measure Q of Section 2, (resp. is the conditional
density function of ST ) conditional to the information Ft.

π2 = Q(ST > K) is one minus the risk-neutral distribution function and
π1 =

∫∞
K

ST
Et(ST )

Pt(ST )dST is also a probability. In fact, we compute some ap-
proximations of π1 and π2. Indeed, we have employed the partial differential
equation (PDE) approach and we obtained non-linear PDE’s for the charac-
teristic functions f1 and f2 corresponding to π1 and π2. Therefore, we uti-
lized a Taylor approximation to obtain linear PDE’s, like Chacko and Viceira
(2003) have done in another setting, and by solving these linearized PDE’s,
we obtain approximative characteristic functions f1 and f2 corresponding

to π1 and π2. If θγ(1 − γ) + γθγ−1Vt > 0 and
∣∣∣ρ(θ

γ+1
2 (1−γ

2
) + γ+1

2
θ
γ−1

2 Vt)
∣∣∣ ≤

√
Vt

√
θγ(1− γ) + γθγ−1Vt, the approximative characteristic functions f1 and

f2 correspond in fact to the linear SDE system with a time-dependent cor-
relation between the Brownian motions:

dSt
St

= (r − λµJ)dt+
√
VtdZs(t) + Jtdqt (6)

dVt = k(θ − Vt)dt+ σv

√
θγ(1− γ) + γθγ−1VtdZv(t) (7)

with

ln(1 + J(t)) ∼ N(ln(1 + µJ)− 1

2
σ2
J , σ

2
J) (8)

and
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Q(dq(t) = 1) = λdt and cov(dZs(t), dZv(t)) = ρ̃tdt (9)

with

ρ̃t =
ρ(θ

γ+1
2 (1−γ

2
) + γ+1

2
θ
γ−1

2 Vt)
√
Vt

√
θγ(1− γ) + γθγ−1Vt

. (10)

The explicit expressions and the details of the derivation of the approx-
imative characteristic functions f1 and f2 are given in Appendix A. In this
Appendix, the link with the linear SDE system (6)-(10) is explained as well.

The approximative probabilities π1 and π2 can be calculated by finding
the inverse Fourier transforms of the approximative characteristic functions
and are given by

π1(S,K, T, r, t) =
1

2
+

1

π

∫ ∞
0

Re(
e−iφ lnKf1(S,K, T, r, t, φ)

iφ
)dφ (11)

and

π2(S,K, T, r, t) =
1

2
+

1

π

∫ ∞
0

Re(
e−iφ lnKf2(S,K, T, r, t, φ)

iφ
)dφ (12)

where Re[.] denotes the real component of a complex number.
The infinite integrals involved by the inverse Fourier transforms can be

evaluated by some numerical integration method like Simpson’s Rule.
In Section 6, we will test the approximative pricing formula with Monte

Carlo results and with results for an affine stochastic volatility model.
First, we will estimate the parameters of the NA-SVJD model and discuss

the empirical results obtained.
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4 Empirical results

4.1 Data description

Figure 1: Time series of the S&P 500 stock index

The empirical analysis of this paper is based on a joint time series {Sn, Cn} of
the S&P 500 spot and option prices. The sample consists of daily CBOE clos-
ing prices, and have previously been used by Aı̈t-Sahalia, Wang and Yared
(2001) and Duffie, Pan and Singleton (2000) among others. The time series
data covers the period from 1/4/1993 to 12/31/1993 providing 14431 obser-
vations. A time series plot of the S&P 500 stock index and a plot of the
Black & Scholes implied volatilities can be found in Figure 1 and Figure 2
respectively. Summary statistics of the data are reported in Table 1.
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Figure 2: Black & Scholes implied volatilities

Statistics Mean Std dev Skewnes Kurtosis Max Min
S&P500 6.1210 0.0227 −0, 4821 −0.7007 6.1617 6.0619

Table 1: Summary statistics of stock returns

From Table 1 we see that the distribution of the S&P 500 stock returns
is slightly negatively skewed (-0.4821) and have negative excess Kurtosis.
When we look at the frequency distribution of the S&P 500 daily log return
(Figure 3), we see that this distribution is highly peaked and heavily tailed
in comparison with a normal distribution.
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Figure 3: Frequency distribution of the S&P 500 daily log return compared
with a Normal distribution

4.2 Estimation procedure

In this section, we focus on the estimation of the parametric model specified
in Section 2 using the joint time series data {Sn, Cn} of spot and option
prices. The conditional likelihood function of the state vector S(t) is not
known for general non-affine models. Therefore we propose to use the method
of simulated moments (MSM) proposed by Duffie and Singleton (1993) and
Bakshi, Cao and Chen (2000).

Among many potential applications, the MSM technique is well suited to
the estimation of systems of stochastic differential equations.

Following Bakshi et al. (2000), we first divide the option data into several
categories based on moneyness and maturity. By the time to maturity, an
option contract can be classified as:

(i) short-term (T ≤ 45 days)
(ii) medium-term (45 ≤ T ≤ 90 days)
(iii) long-term (T ≥ 90 days).
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Let Ft = er(T−t)St be the forward value at time t of the stock to be deliv-
ered at time T . Then a call contract is defined as being at-the-money (ATM)
at time t if 0.95 ≤ Ft/K ≤ 1.05; out-of-the-money (OTM) if Ft/K ≤ 0.95;
or in-the-money (ITM) if Ft/K ≥ 1.05. The sample was further partitioned
into three categories in terms of moneyness: short term (ST), medium term
(MT) and long term (LT). Therefore, the proposed moneyness and maturity
classification produces 9 categories. Table 2 below, shows the number of ob-
servations that falls within each category.

ST MT LT
OTM F/K ≤ 0.95 2101 2503 882
ATM F/K ∈ (0.95, 1.05) 3950 3134 408
ITM F/K ≥ 1.05 349 681 415

Table 2: Number of observations within each category

For each category j = 1, ..., 9, we define the ratio of the observed option

price on the strike price
COBSj,t

Kj,t
at day t, and we let gt denote the 9-dimensional

vector with
COBSj,t

Kj,t
in the jth position defined as:

gt =


COBS1,t

K1,t

.

.
COBS9,t

K9,t


where t = 1, ..., N, and whereKj,t is the strike price of the observed call option
in category j on day t, and N the number of days available in the dataset.
We assume that the initial spot price and initial volatility to be equal to the
averages of respectively the initial stock prices and of the market implied
volatilities in the data base. We further denote the vector of the parameters
to be estimated by Θ.

For an initial fixed value of the parameter vector Θ, and an arbitrarily
largeM , we simulateM series spot volatility and spot prices and calculate the
call price in the jth moneyness-maturity category by Monte Carlo simulations
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(see e.g. formula (15) below). Let ht(Θ) denote the 9-dimensional vector
with the average of the M simulated call prices divided by the strike price
E(Csimj,t (Θ))

Kj,t
in the jth category:

ht(Θ) =


E(Csim1,t (Θ))

K1,t

.

.
E(Csim9,t (Θ))

K9,t


From gt and ht we build the corresponding means G = 1

N

∑N
t=0 gt and

H(Θ) = 1
N

∑N
t=0 ht(Θ). We then search for the value of Θ for which G and

H(Θ) are as close as possible in the sense that we minimize

θTH = argmin
Θ

(G−H(Θ))′Ω(G−H(Θ)) (13)

where Ω is an arbitrary weighting matrix which is symmetric and positive
definite. If θTH is not sufficiently small enough, we repeat the procedure by
using the obtained Θ as the initial value and we repeat this until θTH becomes
small enough. The finally obtained value of Θ is the MSM estimator of the
parameter vector.

Table 3 reports in the case of r = 3.19% and zero dividend yield, the
estimations of the parameters obtained by the MSM and the standard devi-
ations for each estimation. We also include the spot volatility and the ratio
of the mean squared error (MSE) for each model to that of the Stochastic
Volatility (SV) model.

The estimated volatility for each model can be backed out from option
prices and parameter estimates of this model via non-linear least square
methods by solving:

min
V (t)

N∑
j=1

∣∣∣∣Cj(St, K, T )−
∧
Cj(St, K, T,Θ)

∣∣∣∣2 (14)

where Cj(St, K, T ) is the actual price of an option with exercise price K

and expiring at time T, and where
∧
Cj(St, K, T,Θ) is the price of the option

predicted by the model, given the parameters estimation Θ. N equals the
number of options in the dataset on November 2, 1993, i.e. N = 87.
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From the literature, it is clear that the parameter estimations depend a
lot on the kind of dataset which has been used. Chacko and Viceira (2003)
find for example higher values of γ and σv but they consider weekly and
monthly stock prices. The estimates of the SV and SVJ models from Duffie
et al. (2000) can neither be compared with ours since all parameters are
estimated with only the data of November 2, 1993. Our estimated jump
parameters in the SVJ model and the correlation parameters are consistent
with the findings of Eraker et al. (2003).

SV NA− SV SV J NA− SV JD

k
2.6557
(0.018)

2.0284
(0.017)

1.5120
(0.021)

1.9678
(0.018)

θ
0.0508
(0.048)

0.1188
(0.053)

0.1122
(0.047)

0.1118
(0.068)

σv
0.7518
(0.040)

0.6950
(0.042)

0.6666
(0.041)

0.5969
(0.048)

ρ
−0.3644
(0.014)

−0.4521
(0.022)

−0.3930
(0.027)

−0.4116
(0.021)

γ 1.0
1.5328
(0.044)

1.0
1.4406
(0.069)

λ
0.0667
(0.012)

0.0537
(0.012)

µJ
−3.3785
(0.0517)

−3.1544
(0.0501)

σJ
2.1681
(0.061)

1.8269
(0.062)

MSE
%

2.5317
100%

1.7477
69.03

0.8863
35.01

0.8387
33.17√

V0 9.06% 11.89% 12.19.% 14.91%

Table 3 : MSM parameter estimations of the four nested models

To compare the different submodels, we observe the ratios of the mean
squared error (MSE) for each model to that of the Stochastic Volatility (SV)
model. It turns out that the NA-SVJD superperforms the other subcases.
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Indeed, the NA-SV model reduces the SV squared pricing error by more
than 30 percent. The stochastic volatility with jumps (SVJ) model is a
more powerful model, cutting SV errors by more than 60 percent and thus
explaining an important part of the volatility smile. The NA-SVJD combines
NA-SV and jump models and reduces the SV errors, but not in a significant
way.

We find that the initial volatility
√
Vt increases when comparing the dif-

ferent submodels. This fact is also observed in Eraker et al. (2003) when
studying affine stochastic volatility jump models.

5 Implied volatility graph

In this research, another main diagnostic of relative model misspecification
is to compare the implied volatility model pattern of each model across both
moneyness and maturity. Also for this exercise, we use the subsample data
on November, 2 1993, in which there are six different maturities.

Figure 4 and 5 compare the different nested submodels among each others.
Figure 4 shows the implied volatility curves for short term maturity (17-days),
who have the same form with the minimum around the moneyness equal to
one.

In Figure 5, which focuses on a long term maturity (318 day), the implied
volatility exhibits a moneyness-related U-shaped smile under the SV, NA-SV
and NA-SVJD models, but under the SVJ model, the U-shaped form is diffi-
cult to be recognized. The SVJ’s implied volatilities are always persistently
higher (by about 1 percent on average).

Figure 6 shows the volatility smiles for different values of the parameter γ
(gamma) in the power of volatility in the NA-SV model, namely for γ equal
to resp. 0.5, 1.4406 and 2.0. We observe that the implied volatility curve is
increasing in γ.

Figure 7 shows the volatility smiles for different values of the correlation
coefficient ρ (rho), who have the same form and are much at the same level.
For in-the-money-options, an increase of the correlation implies a small in-
crease of the implied volatility, where as for out-of-the-money options it leads
to a decrease.
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Figure 4 : Implied volatility curves for 17 days to maturity and for the
different models

Figure 5 : Implied volatility curves for 318 days to maturity and for the
different models
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Figure 6 : smile curves for different values of gamma and maturity 17 days

Figure 7 : : smile curves for different values of correlation and maturity 17
days
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6 Explicit approximations versus Monte

Carlo estimates.

In this section, we present and discuss the results of a comparison of the
explicit approximative European call option prices versus the corresponding
Monte Carlo estimates:

Ct = e−r(T−t)
1

N

N∑
l=1

(max(0, Sl −K)) (15)

where Sl is the l − th realization of the state variable at time T and N is
the number of the simulations. In order to test the approximative but closed
formula for a European call option (5), we use the parameters summarized
in Table 2 and perform N =1,000,000 iterations to obtain Monte Carlo es-
timates (15). For different maturities and different types of moneyness, the
obtained values and corresponding CPU-times can be found in Table 4. The
standard error of the Monte Carlo estimates are given between parentheses.

T
days

F/K Monte
Carlo

CPU
(∗104)

NA-
SVJD

CPU

90

1.1467

1.0297

0.8957

77.4107
( 0.0423 )
41.2622

( 0.0271 )
19.9262
(0.0090)

3.7363

3.5842

1.9358

77.9350

41.6118

20.0981

0.1167

0.1333

0.1833

180

1.1467

1.0297

0.8957

97.6754
(0.0515 )
66.0112

(0.0363 )
32.7123

( 0.1457 )

3.6781

2.7396

2.2357

97.0183

66.4425

35.3652

0.1000

0.2167

0.2251

252

1.1467

1.0297

0.8957

113.9127
( 0.0621)
85.0112
(0.0260)
52.0735
(0.1347)

3.3112

2.7501

2.3017

113.1437

85.9635

54.4086

0.1333

0.1811

0.2307

SVJD CPU

77.3546

41.2380

19.8885

0.1167

0.1480

0.1821

97.5584

66.0425

34.0695

0.1167

0.1333

0.2011

113.5184

85.0902

53.6663

0.1333

0.1491

0.2136

Table 4: Comparison of MC estimates, approximating NA-SVJD prices and SVJD prices.

When comparing the CPU-times necessary to calculate the Monte Carlo
estimates and the other prices, the difference is striking: in order to obtain
a Monte Carlo estimate with a reasonable standard error, a CPU-time is
necessary which is 100,000 larger than the CPU-times for the other prices!

From Table 4, one observes that the approximating European call option
prices in the NA-SVJD model are fairly precise in the ITM and ATM cases,
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whereas for the OTM cases a relative error of about 5% is possible. However,
in all cases the prices obtained in the affine SVJD model are closer to the
Monte-Carlo values than the approximating prices of the NA-SVJD model.
Therefore, we conclude from Table 4 that for this dataset of Aı̈t-Sahalia,
Wang and Yared (2001), it might be better to use the affine SVJD model for
option pricing than using the approximating prices obtained in the NA-SVJD
model.
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Appendix A
The price of a European option C(S(t), V (t), t) depends on the current

value of the underlying asset, the current volatility and the time. When dif-
ferentiating C(S(t), V (t), t) with respect to L(t) = ln(S(t)) and the residual
time τ = T − t, the value of the European call option C(L(t), V (t), t) must
satisfy the following partial differential equation (PDE):

1

2
V CLL + [r − λµJ −

1

2
V ]CL + ρσvV

γ+1
2 CLV +

1

2
σ2
vV

γCV V + k(θ − V )CV

−Cτ − rC + λEt(C(L+ ln(1 + J), V, t)− C(L, V, t)) = 0 (A: 1)

The option pricing formula given by (5) has a structure like the Black &
Scholes formula. Bakshi, Cao and Chen (1997) prove that the probabilities
π1 and π2 must also satisfy the some corresponding PDE’s. Consequently
we obtain two new PDE’s which are respectively given by:

1

2
V π1LL + [r − λµJ +

1

2
V ]π1L + ρσvV

γ+1
2 π1LV +

1

2
σ2
vV

γπ1V V + [k(θ − V ) + ρσvV
γ+1

2 ]π1V

−π1τ − λµJπ1 + λEt((1 + ln(1 + J))π1(L+ ln(1 + J), V, t)− π1(L, V, t)) = 0
(A: 2)

subject to the boundary condition at the expiration time T :

π1(L, V, T ) = 1L(T )≥lnK

and

1

2
V π2LL + [r − λµJ −

1

2
V ]π2L + ρσvV

γ+1
2 π2LV +

1

2
σ2
vV

γπ2V V + k(θ − V )π2V
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−π2τ + λEt(π2(L+ ln(1 + J), V, t)− π2(L, V, t)) = 0 (A: 3)

subject to the boundary condition at the expiration time T :

π2(L, V, T ) = 1L(T )≥lnK

Equation (A: 2) and (A: 3) are non-linear PDE’s. In order to have linear
PDE’s, we use the expansion of Chacko and Viceira (1999) of the power of
V to get:

V
γ+1

2 ≈ θ
γ+1

2
1− γ

2
+
γ + 1

2
θ
γ−1

2 V (A: 4)

V γ
≈ θγ(1− γ) + γθγ−1V (A: 5)

The simple transformation shows that

1

2
V π1LL + [r − λµJ +

1

2
V ]π1L + ρσv[θ

γ+1
2

1− γ
2

+
γ + 1

2
θ
γ−1

2 V ]π1LV

+
1

2
σ2
v[θ

γ(1− γ) + γθγ−1V ]π1V V + [k(θ − V ) + ρσv[θ
γ+1

2
1− γ

2
+
γ + 1

2
θ
γ−1

2 V ]]π1V

−π1τ − λµJπ1 + λEt((1 + J)π1(L+ ln(1 + J), V, t)− π1(L, V, t)) = 0
(A: 6)

and

1

2
V π2LL + [r − λµJ −

1

2
V ]π2L + ρσv[θ

γ+1
2

1− γ
2

+
γ + 1

2
θ
γ−1

2 V ]π2LV
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+
1

2
σ2
v[θ

γ(1− γ) + γθγ−1V ]π2V V + k(θ − V )π2V − π2τ

+λEt(π2(L+ ln(1 + J), V, t)− π2(L, V, t)) = 0 (A: 7)

Following Heston (1993), Bates (1996), Bakshi et al. (1997) and Scott
(1997), the different moments generated by the probability πj (j = 1, 2)
also satisfy the same PDE’s, in particular the corresponding characteristic
functions for πj denoted by fj(L, V, t, φ) satisfy the above PDE’s with the
boundary conditions:

fj(L, V, t, φ) = eiφL0 j = 1, 2 (A: 8)

The PDE’s for the characteristics functions have an exact solution given
by :

f1(L, V, t, φ) = exp(u(τ) + x(τ)V (t) + iφL(t)) (A: 9)

with the boundary conditions:

u(0) = x(0) = 0

and

f2(L, V, t, φ) = exp(z(τ) + y(τ)V (t) + iφL(t) + rτ) (A: 10)

with the terminal conditions:

z(0) = y(0) = 0

By substituting (A: 9) for f1(L, V, t, φ) in (A: 2) and separating the terms
we obtain the first term x(τ) :

x(τ) =
iφ(1 + iφ)(1− e∆xτ )

2∆x − (∆x + ηx)(1− e∆xτ )
(A: 11)

where ∆x =
√
η2
x − σ2

viφ(1 + iφ)γθγ−1 and ηx = ρσv
γ+1

2
θ
γ−1

2 (iφ+ 1)− κ.
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When substituting (A: 10) for f2(L, V, t, φ) in (A: 3) and separating the
terms we obtain an explicit form for y(τ):

y(τ) =
−iφ(1− iφ)(1− e∆yτ )

2∆y − (∆y + ηy)(1− e∆yτ )
(A: 12)

where ∆y =
√
η2
y − σ2

viφ(iφ− 1)γθγ−1 and ηy = ρσv
γ+1

2
θ
γ−1

2 iφ− κ
The other term u(τ) in the characteristic function f1(L, V, t, φ) is obtained

by an integration of x(τ) and x2(τ) as follows:

u(τ) = [riφ− λµJ(1 + iφ)]τ

− 1

γθγ−1σ2
v

[κθ + ρσv
1− γ

2
θ
γ−1

2 (iφ+ 1)][2 ln(1− (∆x + ηx)(1− e−∆xτ )

2∆x

+ (∆x + ηx)τ ]

+
σ2
v(1− γ)θγ

2(γθγ−1σ2
v)

2
[4ηx ln(1− (∆x + ηx)(1− e−∆xτ )

2∆x

+(∆x + ηx)
2τ − 2(∆x + ηx)]

+λτ(1 + µJ)[(1 + µJ)iφeσ
2
viφ(1+iφ) − 1] (A:13)

The other term z(τ) in the characteristic function f2(L, V, t, φ) is obtained
by an integration of y(τ) and y2(τ) as follows:

z(τ) = (r − λµJ)τiφ

− 1

γθγ−1σ2
v

[κθ + ρσv
1− γ

2
θ
γ+1

2 iφ][2 ln(1−
(∆y + ηy)(1− e−∆yτ )

2∆y

+ (∆y + ηy)τ ]

−σ
2
v(1− γ)θγ

2(γθ1−γσ2
v)

2
[4ηy ln(1−

(∆y + ηy)(1− e−∆yτ )

2∆y

+(∆y + ηy)
2τ − 2(∆y + ηy)]

−λτ [(1 + µJ)iφeσ
2
viφ(1+iφ)/2 − 1] (A:14)

When studying the PDE’s (A: 6) and (A: 7), it is easy to see that π1 and
π2 are in fact the probabilities corresponding to the system described by the
SDE:

dSt
St

= (r − λµJ)dt+
√
VtdZs(t) + Jtdqt

dVt = k(θ − Vt)dt+ σv

√
θγ(1− γ) + γθγ−1VtdZv(t)
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with

ln(1 + J(t)) ∼ N(ln(1 + µJ)− 1

2
σ2
J , σ

2
J)

and

Q(dq(t) = 1) = λdt and cov(dZs(t), dZv(t)) = ρ̃tdt

with

ρ̃t =
ρ(θ

γ+1
2 (1−γ

2
) + γ+1

2
θ
γ−1

2 Vt)
√
Vt

√
θγ(1− γ) + γθγ−1Vt

,

if at least θγ(1−γ)+γθγ−1Vt > 0 and
∣∣∣ρ(θ

γ+1
2 (1−γ

2
) + γ+1

2
θ
γ−1

2 Vt)
∣∣∣ ≤ √Vt√θγ(1− γ) + γθγ−1Vt.
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