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Abstract

We compare two different valuation models for assets and liabilities
that can be considered in the standard approach to solvency assessment
and in particular, in determining the required target capital. The first
model is suggested by a joint working party by members in CEA, Comité
Européen des Assurances, and is based on the duration concept and the
second one is based on ideas from Arbitrage Pricing Theory (APT). An
application of these valuation approaches to two specific insurance con-
tracts one from life insurance and another from vehicle insurance shows
that, among other things, the duration-based approach to solvency as-
sessment suggests larger target capital requirement than the one based on
APT.
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1 Introduction

The objective of this paper is to describe quantitative methods to assess the
asset and liability risk in an insurance company. The International Actuarial
Association (IAA) (2004)[20] suggested that a Standard Approach to solvency
assessment should be a robust and simple method to determine a minimum
level of capital that has to be maintained by an insurance company for one or
several lines of business. In particular, the method should include a minimum
number of parameters and be analytically tractable. Henceforth, this approach
for solvency assessment will be referred to as the standard approach. In this
report we will compare two different valuation models for assets and liabilities
that can be considered in the standard approach. One model is a joint work
by members in CEA, Comité Européen des Assurances, and is based on the
duration concept. This model will be referred to as Model A. The other model,
henceforth referred to as Model B, is based on ideas from the powerful Arbitrage
Pricing Theory.

We must underline that this paper will only focus on the asset and liability
risk. This risk results from the uncertainty in market value of future cash flows
from the insurers assets and liabilities. Of course, an insurance company is
exposed to many other forms of risk such as mortality risk, surrender and lapses
risk, reinsurance risk etc. (see [20] for a discussion on different types of insurance
risk). However, it is possible to extend the models so that they include more
risk sources than solely asset and liability risk, as we will show at the end of
this paper.

The report is structured as follows. In Section 2 we give a mathematical
formulation of the concepts solvency requirement and target capital. These
concepts are closely related to risk measures. In Section 2 we will also describe
three classes of risk measures. In Sections 3 and 4 we describe the valuation pro-
cesses of a typical asset portfolio for an insurance company, consisting of bonds,
equity, and property (real estate), and the liabilities according to Models A and
B. In Section 5 we derive analytical formulas that are useful to compute the tar-
get capital. In Section 6 we address the issue of calibration of the parameters
included in the models. In Section 7 we apply the results to a D(10)-contract
from life insurance and a vehicle insurance contract. In the final section, Section
8, we discuss how one may include other risk factors in the models.

2 Solvency Assessment

In this section we give a mathematical formulation of the concepts solvency re-
quirement and target capital. These concepts are closely linked to risk measures
that are discussed in the first part of this section.

2.1 Risk Measures

A risk measure is a function that maps random variables to real numbers. The
random variable may for instance describe a future loss of a business line. The
risk measure should reflect the risk associated with the random variable: it
should be monoton increasing in the sense that its value increases with higher



risk. Moreover, it should be subadditive in the sense that the overall risk mea-
sure of a portfolio including several lines of business should be less than the sum
of the risk measures of the corresponding individual lines of business simply be-
cause the correlation between the business line acts as adiversifier of risk. A
comprehensive treatment can be found in Artzner et al. [2] and Delbean [9].

Among the large number of different risk measures that have been suggested
in the literature, the Standard Deviation Principle, Value-at-Risk, and Expected
Shortfall (also known as the Tail VaR) are the most widely used by practioners
and also discussed by CEA and IAA. In the sequel, we will briefly introduce
these measure and mention some of their properties. Let X denote a random
variable describing a future loss of a business line. The Standard Deviation
Principle, SDPδ, is defined as

SDPδ(X) = E
[
X

]
+ δ

√
Var

[
X

]
, (2.1)

where δ is a positive number. This measure suffers from the fact that it is not
monoton increasing. Moreover, there is no obvious choice of δ (see Delbaen [9]
for a further discussion). We will discuss the value of δ in more details below.
Another very popular example of risk measure is Value-at-Risk, usually denoted
by VaR or VaRα, defined as

VaRα(X) = inf{x ∈ R : P (X > x) ≤ α}, (2.2)

where 0 < α < 1. It describes the highest value of the loss for more than 100(1−
α) % of all outcomes. Typically α equals 5, 1, or 0.5 %. VaR only measures
the probability for loss and not its magnitude. Moreover, the measure is not
in general subadditive, but comapred to other risk measures, it is analytically
tractable, verifiable and easy to communicate. The third example of a risk
measure that has got a lot of attention in recent years is Expected Shortfall or
Tail VaR. This risk measure is defined as

ESα(X) = E
[
X |X > VaRα(X)

]
, (2.3)

where 0 < α < 1 (see Artzner et al. [2] for further details). In the IAA-report
[20] it is recommended to use expected shortfall, at least in more advanced
models for solvency assessment. However, in many cases it is not possible to
compute this measure analytically and therefore it is not useful as a standard
approach.

In this report we will compare two risk measures. The first one is the Stan-
dard Deviation Principle suggested in the standard approach as described in
Rantala [29]1 and Sandström [34]. The second one is Value-at-Risk suggested in
Model B. The value of δ in the definition of Standard Deviation Principle will,
unless stated otherwise, be set to

δ = Φ−1(0.99) ≈ 2.33, (2.4)

where Φ−1 is the inverse of standard normal distribution. This is motivated,
see Rantala [29], by the fact that if X is normal distributed then

SDPδ(X) = VaRα(X) (2.5)

if and only if δ = Φ−1(1 − α). If not stated otherwise, in Model B we put
α = 1% in the definition of Value-at-Risk

1Rantala actually uses Value at Risk. However, after some approximations he obtains a
risk measure identical with the Standard Deviation Principle.
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2.2 Solvency Requirement and Target Capital

Let A(t) denote the value at time t of the assets in an insurance company and
suppose V (t) denotes a best estimate at time t of the liability. Think of A and
V as stochastic processes. Moreover, suppose t = 0 means today and let T > 0
denote a fixed future date. Finally, let ρ be a given risk measure.

The so called solvency requirement is defined as the requirement that, at a
prescribed future date T , the risk that the value of the liability is larger than
the value of the assets should be negative:

ρ
(
V (T )−A(T )

) ≤ 0. (2.6)

The initial value A(0) of the assets that satisfies ρ
(
V (T )−A(T )

)
= 0 is referred

to as the target capital and plays an important role in solvency assessment (see
Sandström [34] for a further discussion about the target capital). Henceforth
the quantity ρ

(
V (T )−A(T )

)
will be referred to as the asset & liability risk.

The value of T in the definition of the asset & liability risk varies. In [20] it
is suggested that T equals one year. Another alternative is to put T equal to
a number that better reflects the payment date of the liability, for instance the
duration of the liability. In the examples in Section 7 we will see that the value
of T may have a great affect on the asset & liability risk.

In the next section we review some models of the assets. The liability mod-
elling will be discussed in Section 4.

3 Asset valuation models

A typical portfolio of assets of an insurance company includes the classical asset
classes bonds, equity and property. In this section we review valuation models of
these assets, as suggested by Model A and Model B respectively. The valuation
described in Model A is based on the duration concept. Duration measures the
sensitivity of an asset to changes in the interest rates. The concept of duration
was first developed by Macaulay [26] and is frequently used in asset & liability
management. The valuation suggested in Model B relies on ideas from Arbitrage
Pricing Theory that goes back to the seminal work by Ross and extended by
Samuelson and Vasicek. An obvious reason of choosing these valuation models
among others heavily lies on their simplicity, in the sense that they consist of few
parameters and are analytically tractable, verifiable and easy to communicate,
which is desirable for a standard model.

In Section 3.1 we discuss interest rates and bond portfolios. Section 3.2 considers
equities and Section 3.3 describes valuation methods of property (real estate)
as asset class.

3.1 Interest Rate and Bond Portfolios

To begin with, we introduce some notation that will be used throughout the rest
of this report. Suppose B(t) denotes the value at time t of a portfolio consisting
of default–free bonds, typically government bonds. Without loss of generality,
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we may assume that the portfolio consists solely of zero-coupon bonds. Next,
define the duration dB(t) at time t of the bond portfolio as

dB(t) =
1

B(t)

∑

k

(τk − t) πk(t)p(t, τk), (3.1)

where p(t, τ), t ≤ τ , is the price at time t of a zero-coupon bond with maturity
τ and πk(t) is the number of bonds with maturity τk held in the portfolio at
time t. Thus, duration can either be seen as the negative log-derivative of the
value of a bond portfolio with respect to a fix interest rate or as a measure of
how long, on average, the holder of the portfolio has to wait before receiving
the cash payment.

3.1.1 Valuation according to Model A

Suppose ∆B(t) = B(t) − B(0), t > 0, is the value of the bond in [0, t]. In [29]
and [30] Rantala suggests that2

∆B(T ) = IBB(0)− dB(0)
1 + ī(0)

B(0)∆ī(T ), (3.2)

where IB is the expected income on bonds with the present interest rate levels,
dB(0) is the duration of the bond portfolio, and ∆ī(T ) = ī(T ) − ī(0) is the
change over the time period [0, T ] for an annual compounded ‘flat’ and risk free
interest rate ī. A flat interest rate should be understood as a constant approxi-
mation of the yield curve. Rantala ([29],[30]) gives no further details about this
approximation. Moreover, he assumes that ∆ī(T ) is a random variable with
mean zero and standard deviation ςi. This model includes three main approxi-
mations; a simple model for the interest rate change, no reinvestment risk, and
a first order Taylor approximation in the Macaulay approximation.

3.1.2 Valuation according to Model B

In Model B the valuation of a bond is based on an Arbitrage Pricing argument
(see e.g. Brigo et al. [5]). Assume that the risk free instantaneous spot rate
{i(t)}0≤t≤T is a mean-reverting Gaussian process (Vasicek model) i.e. solves
the stochastic differential equation

di(t) = κ
(
θ − i(t)

)
dt + σidWi(t) (3.3)

where κ, θ, and σi are positive constants and {Wi(t)}0≤t≤T is a Brownian
motion. The solution of Eq. (3.3) equals

i(t) = θ + (i(0)− θ)e−κt + σi

∫ t

0

e−κ(t−s)dWi(s). (3.4)

The Gaussian process {i(t)}0≤t≤T has mean

µi(t) = θ + (i(0)− θ)e−κt (3.5)
2Rantala has a plus sign instead of a minus sign, i.e. IB+

dB(0)
1+ī

· · · instead of IB− dB(0)
1+ī

· · · .
However, our formulation is closer to Macauley’s formulation. Moreover, we find it more
suitable to specify the dependence of IB on B(0). Thus, we use IBB(0) in Eq. (3.2) instead
of IB .
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and covariance

γi(s, t) =
σ2

i

2κ

(
e−κ|t−s| − e−κ(t+s)

)
. (3.6)

The constant θ is the long term average of the short interest rate in the sense
that

lim
t→∞

E
[
i(t)

]
= θ. (3.7)

This property can also be gathered from Eq. (3.3), since the drift term κ(θ−i(t))
is positive if i(t) < θ and negative if i(t) > θ. The parameter θ can also be viewed
as the interest rate equilibrium. Moreover, the quotient σ2

i /2κ can be seen as
the lowest upper bound for the variance of the spot rate. The constants σi, κ,
and θ can be estimated from historical values of the spot rate. Alternatively,
the parameters σi and κ can be assessed by fitting the theoretical yield curve
given by the model with the market yield curve, see Section 6 for further details.

The price at time t of a zero coupon bond p(t, τ) with maturity date τ is then
given by

p(t, τ) = EQ
[
exp (−

∫ τ

t

i(s)ds)
∣∣Ft ], t ≤ τ, (3.8)

where, (Ft, 0 ≤ t ≤ T ) denotes the filtration generated by {Wi(t)}0≤t≤T i.e.
the information in inflow is carried out by the driving Brownian motion, and
Q is the martingale measure of the market. The Q-dynamics of {i(t)}0≤t≤T is
given by

di(t) = κ
(
θ̃(t)− i(t)

)
dt + σidWQ

i (t), (3.9)

where θ̃(t) is some (random) function related to the choice of the probability
measure Q and {WQ

i }0≤t≤T is a Q–Brownian motion. Assuming that θ̃(t) is a
(non-random) constant with θ̃(t) = θ̃ for all t, {i(t)}0≤t≤T will be a Gaussian
process under Q as well. Thue, the distribution of p(t, τ) is log-normal. To be
more specific, the zero coupon bond price is given by

p(t, τ) = a(t, τ)e−b(t,τ)i(t) (3.10)

where

b(t, τ) =
1
κ

(
1− e−κ(τ−t)

)
,

a(t, τ) = exp
{(

θ̃ − σ2
i

2κ2

)
(b(t, τ)− τ + t)− σ2

i

4κ
b(t, τ)2

}
,

(3.11)

see e.g. Brigo et al. [5]. In particular, the parameter θ̃ may be estimated by
fitting the theoretical yield curve with the observed yield curve using for e.g. a
least square method, see Section 6 for further details.

The Vasicek model has one obvious drawback, the short rate is not neces-
sarily positive or even bounded from below. However, the probability for the
interest rate i(t), 0 ≤ t ≤ T , to fall below zero is in practice close to zero, at
least if the value of T is small or moderate. Moreover, the interest rate is prob-
ably not a diffusion process as in the Vasicek model. Indeed, recent empirical
studies indicate that the interest rate has a jump component–see Zhou [38] and
the references therein. However, the hypothesis that interest rates are mean
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reverting is, according to Fama et al. [10], prominent in old and new models
of the term structure and has been empirically supported in e.g. Fama et al.
[10]. For further details on interest theory in general and the Vasicek model in
particular, see Brigo et al. [5].

The value of a bond portfolio depends on the chosen trading strategy. One
simple strategy is to perform a perfect matching i.e. to purchase bonds, if
available in the market, with a duration equal to the duration of the liabilities
(cf. Section 4). If dV denote the duration of the liabilities then the value at
time T ≤ dV of this strategy, from now on denoted B′(T ), can be approximated
by

B′(T ) = B(0)
p(T, dV )
p(0, dV )

. (3.12)

That is, at time t = 0 the amount B(0) is invested in zero coupon bonds
with maturity dV . This hedge of interest rate risk is a simplification of the
immunization principle, first introduced in life insurance by Redington, see [31].

Another widely used strategy in the market is to re-balance the portfolio after
each (often small) time interval ∆t so that the duration in the bond portfolio
is kept at a constant level. The value of this strategy at time T , henceforth
denoted B′′(T ), is easily seen to be equal

B′′(T ) = B(0)
n0−1∏

k=0

p((k + 1)∆t, dB + k∆t)
p(k∆t, dB + k∆t)

(3.13)

where dB is the (constant) duration of the portfolio and n0 is an integer such
that n0∆t = T .

The expression of B′′(T ) can be simplified by letting ∆t → 0. Note that

B′′(T ) =
B(0) p(T, dB + T −∆t)

p(0, dB)

× exp
( n0−1∑

k=1

ln p
(
k∆t, dB + (k − 1)∆t

)− ln p
(
k∆t, dB + k∆t

))
.

(3.14)

If f denotes the instantaneous forward rate with maturity τ , i.e.

f(t, τ) = − ∂

∂τ
ln p(t, τ), (3.15)

then, by letting ∆t → 0 and simultaneously n0 → ∞, we get the price process
of the bond portfolio in Model B:

B(T ) = B(0) exp
( ∫ T

0

f(t, dB + t)dt
) p(T, dB + T )

p(0, dB)
. (3.16)

The random variables in Eq.(3.13) or (3.16) are log-normally distributed. The
relevant parameters, the mean and the variance, are easily computed. One may
interpret Eq.(3.16) as the value of a bank account on the forward rate times a
factor p(T, dB + T )/p(0, dB) that reflects the reinvestment risk. Note as well
that if dB = 0 then

B(T ) = B(0)e
R T
0 i(t)dt.

That is, {B(t)}0≤t≤T with dB = 0 describes the value process of a bank account.
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3.2 Equity

Equity is probably the most profitable and most risky asset class. This section
will consider two different models of the price process of an equity index. The
first model, Model A, is proposed by members in Fédération Fraincaise des
Sociétés d’Assurances, see [11], and further discussed in Sandström [34]. The
other model, in Model B, is the Samuelson or Black-Scholes model.

In the sequel we let S(t) denote the price at time t of equity in the asset
portfolio. We assume that all dividends paid out by the equities are reinvested
in the portfolio. Thus, we will not, as is common in more advanced models (e.g.
Koivu et al. [21]) decompose equity in a volatile component and a dividend
component.

3.2.1 Valuation according to Model A

In Model A (see [11]), the valuation method for equity is duration based. More
precisely, if ∆S(t) = S(t) − S(0) denotes the value of equity in [0, t] then it is
suggested in [11] that

∆S(T ) = ISS(0)− dS(0)S(0)∆ī(T ) + S(0)εS , (3.17)

where IS is the expected return on equity with the present interest rate level,
dS(t) is the modified duration at time t of the equity portfolio (see below), εS

is a random variable with mean 0 and variance ς2
S that represents the change of

the equity returns not explained by the interest rate, and ∆ī(T ) is defined as in
Section 3.1.1. The distribution of εS is not further specified. In the same way
as for bonds, we specify the dependence of the expected income and residual on
the underlying price. In particular, we assume that the variance of the residual
increases linearly with the underlying price, as is common in many models, see
e.g. Granger and Morgenstern [15] for a further discussion.

Formally, the modified duration dS(0) at time 0 is defined as

dS = −1 + ī(0)
S(0)

∂S

∂ī
(0), (3.18)

see Brown [6]3 or [11]. The duration can thus be seen as the elasticity of the
equity portfolio with respect to the interest rate.

There are different ways to estimate the modified equity duration dS(0). Ac-
cording to [11], the duration as well as the other parameters in Eq.(3.17) can be
estimated using regression analysis. This approach will be discussed in more de-
tails in Section 6. Alternatively, one may assess the duration using the Gordon-
Shapiro model, also known as the dividend discounted model, that stipulates
that the price of an equity is the discounted value of all future dividends, i.e.

S(t) =
∞∑

k=1

δk

(1 + ī)(tk−t)
1k(t) (3.19)

3Actually, Brown defines the duration based on the instantaneous spot rate instead of the
“flat” interest rate
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where δk denotes the dividend amount paid out by the equity at time tk and
the function 1k(t) is defined as

1k(t) =

{
1, t < tk,

0, otherwise.
(3.20)

If δk = δ for all k where δ is a positive constant, then the duration dS can be
computed simply by differentiating Eq. (3.19) with respect to ī and subsequently
use Eq. (3.18). However, this approach is based on the unrealistic assumption
that all the dividends are equal. The model may be improved by assuming
that the dividends δk = δ exp(gtk) for some factor g. However, it may be quite
difficult to estimate g as well.

Different methods to assess the duration may give rise to totally different
values. Empirical methods based on regression analysis give values on the dura-
tion for equity indexes ranging from two to six years whereas the method based
on the Gordon-Shapiro model produce values on the duration ranging from 20
to 50 years, see Leibowitz [23] or Leibowitz et al. [24].

The duration based model in Eq.(3.17) have some other drawbacks besides
the calibration of the parameters. The model is mainly inspired by ideas from
Fixed Income. For bonds, duration and interest rate sensitivity are virtually
synonymous. For equity, however, duration is only one of several factors de-
scribing risk (cf. Leibowitz et al. [24]). For a more comprehensive discussion
about equity duration, see Boquist et al. [3] and Leibowitz et al. [24].

3.2.2 Valuation according to Model B

Model B assumes that the price process of an equity index is described by a
geometric Brownian motion:

dS(t) = (i(t) + µS)S(t)dt + σSS(t)dWS(t), (3.21)

where the drift term µS and the volatility σS are held constant and {WS(t)}0≤t≤T

is a Brownian motion. Moreover, assume (Wi,WS) is a two-dimensional Brow-
nian motion. The instantaneous spot rate i is defined as in Section 3.1.2. This
model was introduced in Samuelson [33]. The stochastic differential equation
has the explicit solution

S(t) = S(0)e
R t
0 i(s)ds+(µS− 1

2 σ2
S)t+σSWS(t). (3.22)

The parameters µS and σS can be estimated from historical observations (cf.
Section 6) or be defined by experts. The parameter µS is often referred to as
the risk premium and is the subject of extensive research, due to the difficulty
to estimate it (see e.g. Merton [27] and Rogers [32]. A natural assumption is
that µS is positive. For further details on the risk premium, see Arnott et al.
[1].

Let γiS denote the correlation between the driving Brownian motions of i(t) and
S(t):

γiS = Cor[Wi(t),WS(t)].
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In Munk et al. [28] it is argued that the correlation γiS is mostly negative. That
is, if the short rate i increases, then the equity price has initially a tendency to
fall.

The Samuelson model can be improved in several directions such as consider-
ing stochastic volatility, fat tailed distributed returns, more sophisticated de-
pendence structures between i(t) and S(t), and time-dependent risk premium
function.

3.3 Property

Property, and then typically domestic property is a common asset class in an
insurance portfolio. The general opinion about investing in this asset class relies
on risk diversification and inflation hedge, see Hoesli et al. ([17]) and Liu et
al. ([25]) for a general discussion. According to Koivu et al. ([21]), property
resembles stocks in some ways. The return from property consists of large price
fluctuations and a fairly stable cash income. However, in contrast to stocks, the
cash income component forms the majority of the total return. It is important
to remember that there is a distinct difference between the value of a property
index and the real market value of the underlying property. The property index
is mainly based on appraisals rather than market values. The appraisals make
the index smoother than the true market value, see for e.g. Geltner [14] and
Fischer et al. ([12]). In the literature there are several methods designed to
recover the true market value from appraisal based indexes. These methods are
often referred to as unsmoothing techniques. Here is a short review of a simple
unsmoothing technique due to Geltner.

Suppose P ∗(t) denotes the value of an appraisal based index at time t and
P (t) denotes the true market price of properties underlying the index. Geltner
([14]) argues that the relation between P and P ∗ can be recovered by the relation

r∗(t) = ar(t) + (1− a)r∗(t− 1) (3.23)

where r∗ and r are annual returns, i.e.

r∗(t) =
P ∗(t)− P ∗(t− 1)

P ∗(t− 1)
, r(t) =

P (t)− P (t− 1)
P (t− 1)

, (3.24)

and 0 ≤ a ≤ 1. Moreover, Geltner argues that a ≈ 0.4. In the literature there
are more sophisticated unsmoothing techniques, see e.g. Fischer et al. ([12]) or
Cho et al. ([8]). Next, we will discuss two different models of the price dynamics

of P .

3.3.1 Valuation according to Model A

In [11] property is modelled in the same way as equity. That is, the gain
∆P (T ) = P (T )− P (0) due to property is given by (see Footnote 2 above)

∆P (T ) = IP P (0)− dP (0)P (0)∆ī(0) + P (0)εP , (3.25)

where IP is the expected return of the property with the present interest rate
level, dP (0) is the modified duration of the property at time 0 and defined in
analogy with dS(0), and εP is a random variable with mean 0 and variance
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ςP that represents the change in the price of the property not explained by
the interest rate. The distribution of εP is not further specified. The Gordon-
Shapiro model can be used to estimate dP here as well, then with dividends
replaced by rents.

3.3.2 Valuation according to Model B

We use the same approach as in Section 3.2.2. That is, we assume that P (t) is
given by:

dP (t) = (i(t) + µP )P (t)dt + σP P (t)dWP (t), (3.26)

where µP and σP are constants and {WP (t)}0≤t≤T is a Brownian motion. The
parameters µP and σP are called risk premium and volatility, respectively, here
as well.

A closely related model has been proposed by Buttimer et al. [7]. Similar
ideas as in Eq. (3.26), developed using the efficient market hypothesis, can
be found in Fischer et al. [12]. However, there are findings showing that the
property returns are not normally distributed, see Young et al [37].

4 Liability Valuation Models

In this section we review the valuation models for the liability suggested in
Model A and in Model B.

4.1 Valuation according to Model A

We follow Rantala [29] to derive a best estimate of future liabilities V (t) at some
time T . One may decompose the liability as

V (T ) = V (0) + ∆iV (T ) + ∆gV (T ) + ∆pV (T ), (4.1)

where ∆iV (T ) is the variation in the liabilities between today and time T that
are due to changes in the interest rate, ∆gV (T ) is the variation due to interest
rate guarantees and other more or less binding bonus declarations, and ∆pV (T )
is the change in net premiums (premiums minus claims).

The initial value V (0) can be computed in several different ways. We will
come back this question in Sections 7 and 8. For the moment we will assume
that the quantity V (0) is given.
To describe ∆Vi(T ), let dV (t) denote the duration of the liabilities at time t.
The duration of the liabilities is defined in analogy with the bond duration (cf.
Eq. (3.1)). Here the zero coupon bonds are replaced by discounted insurance
claims. Of course, dV (t) is a stochastic process since the payoff of an insurance
policy depends on the state of the insured like the mortality rate among other
things. However, for the sake of simplicity, we assume dV (0) constant. dV (0)
can be evaluated as best estimate of the duration of future liabilities. The
change over the time period [0, T ] due to interest rate is described in Model A
by

∆iV (T ) = IV − dV (0)
1 + ī(0)

V (0)∆ī(T ), (4.2)

11



where IV is the expected increase of the liability with the present interest rate
level and ∆ī(T ) is defined as in Section 3.1.1.
According to Rantala [29], in a standard approach one may assume ∆gV (T )
constant. For instance, in Sweden, the actual gross guaranteed interest rate for
life insurance is equal 3% on average.
For life insurance we will thus assume

∆gV (T ) = V (0)(1.03T − 1) (4.3)

and for non-life insurance we assume that

∆gV (T ) = 0. (4.4)

Finally we consider the assets. Rantala [29] assumes that

A(T ) = B(T ) + S(T ) + P (T ) + ∆pV (T ). (4.5)

where as above ∆pV (T ) is the change in net premiums (premiums minus claims)
and B, S, and P are defined as in Section 3.1.1, 3.2.1, and 3.3.1, respectively.
One may remark that the model of the assets probably would be more realistic
if the model included more advanced portfolio strategies. For a discussion on
other portfolio strategies, see e.g. Koivu et al. [21].

To sum up, in Model A, the balance equation of an insurance company in
terms of the difference between the value of the liabilities and the assets, at time
T , can be described by

V (T )−A(T ) = V (0) + ∆iV (T ) + ∆gV (T )−B(T )− S(T )− P (T ). (4.6)

4.2 Valuation according to Model B

In Model B will use a model of the liability that can been seen as a simplification
of the ideas in Grosen et al. [16]. Assume that ig is the continuous interest rate
guarantee. In our case this means that

ig = ln(1 + 0.03) ≈ 0.03 (4.7)

for life insurance and
ig = 0 (4.8)

for non-life insurance. One may assume that the continuous policy interest rate
at time t equals max[ig, i(t)]. That is, the insured are given the maximum of the
gross guaranteed interest rate and nominal interest rate. Moreover, if i(t) ≥ 0
we find that max[ig, i(t)] is bounded by the sum ig +i(t). Thus, an upper bound
for the liability is given by

V (T ) = V (0) exp
( ∫ T

0

ig + i(s)ds
)
. (4.9)

We assume here as well that V (0) is a known quantity. Now, the balance of an
insurance company is given by

V (T )−A(T ) = V (0) exp
(∫ T

0

ig + i(s)ds
)
−B(T )− S(T )− P (T ). (4.10)

Note in particular that this model is independent of the liability duration, which
is desirable in a standard approach since the duration may be difficult to esti-
mate, see Rantala [30].
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5 Computing the Target Capital

In this section we compute the target capital using the valuation methods of
Model A and Model B. Recall that the target capital is the initial value of assets
A(0) for which the asset & liability risk, at time T , i.e. the risk the value of the
labilities are larger than the assets value, is zero:

ρ
(
V (T )−A(T )

)
= 0. (5.1)

The choice of the risk measure ρ depends on the valuation model chosen by
either the supervisory authority or the company. The risk measure suggested
in Model A is given by the Standard Deviation Principle, SDPδ, and the one
suggested in Model B is the Value-at-Risk, VaRα.

5.1 Valuation according to Model A

Consider the processes defined in Sections 3.1.1, 3.2.1, 3.3.1 and 4.1. Proposition
1 below gives an analytical expression of the asset & liability risk, given by the
Standard Deviation Principle.

SDPδ

(
V (T )−A(T )

)
= E

[
V (T )−A(T )

]
+ δ

√
Var

[
V (T )−A(T )

]
. (5.2)

First, let πB , πS and πP denote the proportions of the bonds, equities, and
property in the asset portfolio. Let %SP = Cov[εS , εP ], mB = dB(0)/(1 + ī(0)),
and mV = dV (0)/(1 + ī(0)). Moreover, set

α0 = V (0) + IV + ∆gV (T ),
α1 = 1 + πBIB + πSIS + πP IP ,

and

β0,0 = m2
V V (0)2ς2

i ,

β0,1 = −mV V (0)mBπBς2
i ,

β0,2 = −mV V (0)dS(0)πSς2
i ,

β0,3 = −mV V (0)dP (0)πP ς2
i ,

β1,1 = m2
Bπ2

Bς2
i ,

β1,2 = mBπBdS(0)πSς2
i ,

β1,3 = mBπBdP (0)πP ς2
i ,

β2,2 = dS(0)π2
Sς2

i + ς2
S ,

β2,3 = dS(0)πSdP (0)πP ς2
i + %SP πSςSπP ςP ,

β3,3 = dP (0)2π2
P ς2

i + π2
P ς2

P .

If k < l then βl,k = βk,l.
If X0 = V (0) + ∆iV (T ) + ∆gV (T ), X1 = −B(T ), X2 = −S(T ), X3 = −P (T )
then it is easily seen that

E
[ 3∑

k=0

Xk

]
= α0 − α1A(0),

Cov
[
Xk, Xl

]
= βk,lA(0)min(k,1)+min(l,1), 0 ≤ k, l ≤ 3,
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and

V (T )−A(T ) =
3∑

k=0

Xk.

We are now in the position to compute the asset & liability risk.

Proposition 1 The asset & liability risk in Model A is given by the following
formula:

SDPδ

(
V (T )−A(T )

)
= α0 − α1A(0) + δ

√√√√
3∑

k,l=0

βk,lA(0)min(k,1)+min(l,1). (5.3)

In particular, if there exists a target capital then this is given by the positive
solution to the equation

(α2
1 − δ2

3∑

k,l=1

βk,l)A(0)2 − 2(α0α1 + δ2
3∑

k=1

βk,0)A(0) + α2
0 − δ2β0,0 = 0.

Proof The formula for the asset & liability risk follows at once from the
definition of Standard Deviation Principle. To prove the statement about the
target capital, note that the equation

SDPδ

(
V (T )−A(T )

)
= 0

may be rewritten as

(α1A(0)− α0)2 = δ2
(
β0,0 + 2A(0)

3∑

k=1

βk,0 + A(0)2
3∑

k,l=1

βk,l

)

or, alternatively,

(α2
1 − δ2

3∑

k,l=1

βk,l)A(0)2 − 2(α0α1 + δ2
3∑

k=1

βk,0)A(0) + α2
0 − δ2β0,0 = 0.

2

We note that using Model A there are cases where there does not exist a
target capital. In Section 7 we discuss an example of such a case.

5.2 Valuation according to Model B

In Model B it is not possible to compute the target capital analytically. However,
one may derive a (sharp) upper bound for the target capital. This upper bound
is given in Proposition 2, below. To this end consider the processes defined in
Sections 3.1.2, 3.2.2, 3.3.2, and 4.9 and let πB , πS and πP denote the proportions
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of the bonds, equity, and property in the asset portfolio. Moreover, introduce
the functions

Λ(t) =
∫ t

0

b(0, s)ds =
1
κ

(
t− b(0, t)

)
,

Γ(t) =
∫ t

0

γi(s, t)ds =
σ2

i

κ2

(
1 + e−2κt − 2e−κt

)
,

Θ(t) =
∫ t

0

∫ t

0

γi(s, u)dsdu =
σ2

i

κ3

(
κt− 1

2
e−2κt + 2e−κt − 3

2

)
,

Υ(t) =
∫ t

0

µi(s)ds = θt + (i(0)− θ)b(0, t),

Ψ(t) =
(
θ̃κ− σ2

i

2
b(0, t)

)
b(0, t).

In addition, define

ν1 =igT − πBΨ(dB)T − πB ln
(a(T, dB + T )

p(0, dB)

)
+ πBb(T, dB + T )µi(T )

+ (1− πBe−κdB − πS − πP )Υ(T )− πS(µS − 1
2
σ2

S)T − πP (µP − 1
2
σ2

P )T

and

ν2 = π2
Bb(T, dB + T )2γi(T, T ) + (1− e−κdBπB − πS − πP )2Θ(T )

+ π2
Sσ2

ST + π2
P σ2

P T + 2πBb(T, dB + T )(1− e−κdBπB − πS − πP )Γ(T )

− 2πBπSb(T, dB + T )γiSσiσSb(0, T )− 2πBπP b(T, dB + T )γiP σiσP b(0, T )

− 2πS(1− e−κdBπB − πS − πP )γiSσiσSΛ(T )

− 2πP (1− e−κdBπB − πS − πP )γiSσiσP Λ(T ) + 2πSπP γSP σSσP T.

Proposition 2 The target capital corresponding to the asset & liability risk in
Model B satisfies the following upper bound:

A(0) ≤ V (0) exp
(
ν1 −√ν2Φ−1(α)

)
. (5.4)

Proof Let

B0(t) =
B(t)
B(0)

, S0(t) =
S(t)
S(0)

, P0(t) =
P (t)
P (0)

,

and note that the relation between arithmetic and geometric means yields that

VaRα

(
V (T )−A(T )

) ≤ VaRα

(
V (T )−A(0)B0(T )πBS0(T )πS P0(T )πP

)
.

Thus, if a0 satisfies

P
(
V (T )− a0B0(T )πBS0(T )πS P0(T )πP ≥ 0

)
= α (5.5)
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then a0 will be an upper bound for the target capital.

Note that the righthand side in Eq. (5.5) may be written as

P

(
eX ≥ a0

V (0)

)

where

X = igT +
∫ T

0

i(s)ds− πB ln
(a(T, dB + T )

p(0, dB)

)
+ πBb(T, dB + T )i(T )

− πB

∫ T

0

f(s, dB + s)ds− (πS + πP )
∫ T

0

i(s)ds

− πS(µS − 1
2
σ2

S)T − πP (µP − 1
2
σ2

P )T − πSσSWS(T )− πP σP WP (T ).

Since the forward rate satisfies

f(t, dB + t) =
1
κ

(
θ̃κ− σ2

i

2κ
(1− e−κdB )

)
(1− e−κdB ) + e−κdB i(t)

= Ψ(dB) + e−κdB i(t)

we find that

X =igT − πBΨ(dB)T − πB ln
(a(T, dB + T )

p(0, dB)

)

+ πBb(T, dB + T )i(T ) + (1− πBe−κdB − πS − πP )
∫ T

0

i(s)ds

− πS(µS − 1
2
σ2

S)T − πP (µP − 1
2
σ2

P )T − πSσSWS(T )− πP σP WP (T ).

Thus, the random variable X is normal distributed with

E
[
X

]
=igT − πBΨ(dB)T − πB ln

(a(T, dB + T )
p(0, dB)

)
+ πBb(T, dB + T )µi(T )

+ (1− πBe−κdB − πS − πP )Υ(T )− πS(µS − 1
2
σ2

S)T − πP (µP − 1
2
σ2

P )T

and

Var
[
X

]
= π2

Bb(T, dB + T )2γi(T, T ) + (1− e−κdBπB − πS − πP )2Θ(T )

+ π2
Sσ2

ST + π2
P σ2

P T + 2πBb(T, dB + T )(1− e−κdBπB − πS − πP )Γ(T )

− 2πBπSb(T, dB + T )γiSσiσSb(0, T )− 2πBπP b(T, dB + T )γiP σiσP b(0, T )

− 2πS(1− e−κdBπB − πS − πP )γiSσiσSΛ(T )

− 2πP (1− e−κdBπB − πS − πP )γiSσiσP Λ(T ) + 2πSπP γSP σSσP T.

In the last equality we used that

Cov[i(t),WS(t)] = γiSσib(0, t), t ≤ T,
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and

Cov[
∫ t

0

i(s)ds,WS(t)] = γiSσiΛ(t).

In particular, E[X] = ν1 and Var(X) = ν2
2 .

Hence

P

(
eX ≥ a0

V (0)

)
= Φ

( ln
(V (0)

a0

)
+ ν1√

ν2

)

and therefore the target capital is bounded by

A(0) ≤ V (0) exp
(
ν1 −√ν2Φ−1(α)

)
.

The proof is complete. 2

6 Model Calibration

In this section we address the calibration issue of the valuation processes sug-
gested in Models A and B. There are mainly two ways to assess the model
parameters; they can be estimated from historical data or be determined by
experts. In practice, insurance companies managers often have their own opin-
ion about the parameters, see e.g. Koivu et al. [21]. However, in this section
the parameters will be estimated using historical data. We start by considering
Model A.

6.1 Calibration of the valuation processes in Model A

Table 1 below collects the parameters in the valuation processes according to
Model A.

dV (0) liability duration
IV expected increase of the liabilities
ςi standard deviation of the change in interest rate level
IB expected income on bonds with the present interest rate levels
ςS standard deviation of the change in equity not explained

by the interest rate
dS(0) equity duration

IS expected income from equity
ςP standard deviation of the change in property not explained

by the interest rate
dP (0) the duration of the property

IP expected income from property
%SP correlation between the residuals of the

the equity and the property

Table 1: The parameters in Model A. The parameters are described in greater detail
in Section 3.1.1, 3.2.1, and 3.3.1.
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The duration dV (0) and expected increase IV of the liabilities depend of
course on the insurance contracts. In the next section we give two examples
that show how the liability parameters can be assessed.

First, we estimate the standard deviation of the change in interest rate level
ςi. To this end we suppose that the shift in the yield curve is given by the
change in the instantaneous spot rate over time period [0, T ] i.e. ∆ī(T ) = i(T )−
i(0). Moreover, assume the interest rate is sampled at the times t = k∆t,
k = 1, 2, . . . , N , and denote the observations by ik = i(k∆t). A common model
for estimating the interest rate (see e.g. Fama et al. [10]) is to assume ik is an
AR(1) process, that is

ik = φi + ψiik−1 + εk,

where εk, k = 1, 2, . . . are i.i.d. random variables and φi and 0 < ψi < 1
are constants. The parameters ψi and Var[ε1] can be estimated with standard
regression analysis, see e.g. Larsen et al. [22]. This yields an estimate of ςi as

ς2
i = lim

k→∞
Var

[
ik

]
=

Var[ε1]
1− ψ2

i

.

In Table 2 below, we display estimated values of ςi, given different sampling
periods ∆t. The historical data for the spot rate are based on the the Swedish
interbank rate, STIBOR, during the time period 1994-01-01 - 2003-12-31.

∆t 1/250 1/12 1
ςi 0.018 0.018 0.019

Table 2: Value of the interest rate parameter.

As for the expected income for bonds, if T is smaller than the longest available
maturity time in the bond market, the parameter IB can be extracted from
the yield curve. Otherwise one has to determine IB by extrapolating the yield
curve. For a discussion on the estimation of long-term interest rates, see Yong
[36], [19], and the references therein.

To estimate the equity parameters, denote the price observations by Sk =
S(k∆t), k = 0, 1, 2, . . . , n and assume that the equity returns satisfy

Sk − Sk−1

Sk−1
= φS + ψS(ik − ik−1) + εk, (6.1)

where εk, k = 1, 2, . . . , n, are i.i.d. random variables and φS and ψS are con-
stants. The constants φS and ψS can be assessed using a standard linear regres-
sion. Let T = n∆t for some integer n. By Eq. (6.1), a first order approximation
of ∆S(T ) = S(T )− S(0) equals

∆S(T ) = φSS(0)n + ψSS(0)
(
i(T )− i(0)

)
+ S(0)

n∑

k=1

εk.

It is now immediate that the standard deviation ςS , the duration dS(0), and the
expected income IS are given by the relations

ς2
i =

T

∆t
Var[εk], dS(0) = −ψS , and IS =

T

∆t
φS . (6.2)
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Table 3 below, shows the estimated values of ςS , dS(0), and IS estimated with
different sampling periods ∆t. The values in the parenthesis describes a 95%
confidence interval under the assumption that the residuals εk are normal dis-
tributed. The historical data are based on the SAX-index during the time
period 1996-01-01 - 2003-12-31. The dividends are reinvested in the index. The
SAX-index is a Swedish equity index. Note the large confidence interval for
the duration and the expected income. Moreover, the duration is very sensitive
to the sampling frequency. In the examples in Section 7 we have chosen the
parameter values corresponding to ∆t = 1/12. This choice gives an estimation
of the duration that is closer to the results in Leibowitz [23].

∆t 1/250 1/12 1
ςS 1.90 (± 0.07) 1.91 (± 0.28) 2.67 (± 2.00))

dS(0) 0.31 (± 1.18) 3.12 (± 6.71) 6.82 (± 20.20)
IS 1.04 (± 1.31) 0.86 (± 1.40) 0.72 (± 3.07)

Table 3: Equity parameter values

To estimate the parameters associated with property, define Pk = P (k∆t),
k = 1, . . . , n, and assume

Pk − Pk−1

Pk−1
= φP + ψP (ik − ik−1) + εk,

where εk, k = 1, 2, . . . are i.i.d. random variables and φP and ψP are constants.
The parameters ςP , dP (0), and IP can now be computed in a similar way as in
Eq. (6.2). Estimated values are shown in Table 4 below, where the values in
the parenthesis describe a 95% confidence interval under the assumption that
the residuals εk are normally distributed. The historical data are given by the
SFI-index over the time period 1994-01-01 - 2004-01-01. The SFI-index is an
annual Swedish property index. The value of ∆t is thus 1. The index has been
unsmoothed with the technique described in Section 3.3.

ςP dP (0) IP

1.25 (± 2.07) -2.33 (± 6.83) 1.42 (± 1.00)

Table 4: Property parameter values.

It remains to assess the correlation between the residuals of the equity and
the property. The value of the parameter %SP is estimated to

%SP = 0.22

with the the same historical data as in Tables 3 and 4. Alternatively, in a
conservative standard approach one may put %SP = 1.0, see Sandström [34] for
further details. Much more can of course be said about the estimation of equity
and property duration, see for instance Brown [6] or Leibowitz [23].

19



6.2 Calibration of the valuation processes in Model B

This section will discuss the calibration of the parameters in the valuation pro-
cesses according to Model B. The parameters are collected in Table 5 below.

σi volatility of the interest rate
κ mean reversion coefficient for the interest rate, see Section 3.1.2
θ long term interest rate or interest rate equilibrium
θ̃ interest rate equilibrium under the martingale measure
σS volatility of the equities
µS risk premium for the equities
σP volatility of the properties
µP risk premium for the properties
γiS correlation between the volatile part of the interest rate and the equities
γiP correlation between the volatile parts of the interest rate and the properties
γSP correlation between the volatile parts of the equities and the properties

Table 5: The parameters in Model B. The parameters are described in greater detail
in Section 3.1.2, 3.2.2, and 3.3.2.

To begin with we consider the interest rate parameters. Assume the spot
rate is described as in Section 3.1.2 and its level has been observed at the times
t = k∆t, k = 1, 2, . . . , n and denote the observations with ik = i(k∆t). It holds

ik = φi + ψiik−1 + εk

where εk, k = 1, 2, . . . , N , are i.i.d. normal random variables and φi and ψi are
constants. One may show, see e.g. Brennan et al. [4], that

κ = − ln ψi

∆t
, θ =

φi

1− ψi
, and σ2

i =
Var[εk ] ln ψi

∆t(1− ψ2
i )

.

Using a linear regression, we get estimates of the parameters φ, ψi and Var[εk].
By these estimates we can assess the parameters σi, κ, and θ. The values are
shown in Table 6. The historical data are the same as in Table 2.

∆t 1/250 1/12 1
σi 0.011 0.008 0.008
κ 0.178 0.092 0.093
θ 0.026 0.005 0.005

Table 6: Interest rate parameter values.

The small value of κ indicates that the interest rate is slowly mean reverting.
This property has been observed previously, see Fama et al. [10] and Brennan
et al. [4]. Note the surprisingly small value of the equilibrium θ of the interest
rate. This value on θ is partly explained by the fact that the interest rate
has been decreasing over the last decade. We may add that the estimates of
κ are sensitive to the sampling period. Other choices of sampling periods give
estimates of κ that may be greater than one as well as negative. The parameter
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θ̃, denoting interest rate equilibrium under the martingale measure, is chosen
as the number that minimizes the quadratic sum of the differences between the
theoretical yield curve given by the Vasicek model and the yield curve given by
the market. To be more specific, ϑ = θ̃ minimizes

∑

k

{
−

(
ϑ− σ2

i

2κ2

)b(0, τk)− τk

τk
+

σ2
i

4κ

b(0, τk)2

τk
+

b(0, τk)
τk

i(0)−R(0, τk)
}2

(6.3)

where R(0, τ) is the market yield of a bond with time to maturity τ . Based on
the yield curve at time 2004-01-01 for Swedish government bonds with time to
maturity 3/12, 6/12, 9/12, 1, 2, 5, and 10 years one obtain the estimate

θ̃ = 0.052.

Next, denote the discounted log-return of the stock over the time period
(k − 1)∆t ≤ t < k∆t by rk, that is

rk = ln
SD(k∆t)

SD((k − 1)∆t)
, k = 1, 2, . . . , n,

where

SD(t) =
S(t)

exp(
∫ t

0
i(s)ds)

= S(0)e(µS− 1
2 σ2

S)T+σSWS(T ).

The Samuelson model in Section 3.2.2 stipulates, among other things, that

rk = φS + εk, k = 1, . . . , N,

where εk are i.i.d. normal random variables and φS is a constant. It is easily
seen that

σ2
S =

Var[εk]
∆t

and µS =
φS

∆t
+

1
2
σ2

S .

Using a linear regression one can estimate the parameters φ and Var[εk] and
thereby determine σS and µS .

Table 7 below displays estimated values on σS and µS for different values of
∆t. The values in the parenthesis describes a 95% confidence interval. The
historical data are the same as in Table 3. An important aspect of Table 7 is
the magnitude of the error in the estimation of the risk premium µS . For more
details on this subject, see Merton [27], Rogers [32], and the references therein.

∆t 1/250 1/12 1
σS 0.237 (± 0.008) 0.241 (± 0.036) 0.303 (± 0.209))
µS 0.082 (± 0.165) 0.082 (± 0.170) 0.084 (± 0.253)

Table 7: Equity parameter values

Next we will consider the parameters related to property, that is, σP and µP .
These parameters can be estimated in the same way as the equity parameters.
Using historical data as in Table 4, estimated values of σP and µP are displayed
in Table 8 below. The sampling period is ∆t = 1.

21



σP µP

0.119 (± 0.082) 0.053 (± 0.099)

Table 8: Property parameter values

Alternatively, according to for instance Fischer et al. [12], one can consider a
widely used assumption that the volatility of property is the half of the volatility
of an equity index, e.g. S & P 500, at least for properties in the U.S.A. Thus a
rough estimate of σP would be

σP =
1
2
σS .

This value could be applied in the standard approach.

Finally, we estimate the correlations. Table 9 shows estimated values of the
parameters γiS , γiP , and γSP . The values are based on yearly observations
during the time period 96-01-01 to 04-01-01. The property index has been
unsmoothed according to the techniques described in Section 3.3.

γiS γiP γSP

-0.15 0.13 0.24

Table 9: Estimated parameter values for the correlations.

Alternatively, in a conservative standard approach one may put

γiS = 0, γiP = 1, and γSP = 1.

For a further discussion about the estimation of parameters in a model similar
to model B, see Munk et al. [28] and Brennan et al. [4].

7 Applications

The objective of this section is to compute the target capital for two insurance
contracts; one from life insurance and the other one from vehicle insurance. We
will mainly focus on the effect different choices of asset portfolios may have on
the target capital and compare the outcomes from Models A and B.

7.1 The Target Capital for a D(10) Contract

In the first example we consider a life insurance contract called D(10). The
holder of a D(10)-contract pays annually a fixed amount to the insurer. In
return, after ten years or at the time of death of the insured the insurer pays
to the beneficiary a fixed amount. Suppose vk denotes the payments due to
death during year k, k = 0, 1, . . . , 9, and v10 denotes the payment to the insured
at year 10 provided the insured is alive after ten years. We suppose that vk,
k = 0, 1, . . . , 10 are given constants. The liability at time 0 will in this example
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be defined as the discounted value of future cash flows. For a D(10) contract
we thus have

V (0) =
9∑

k=0

vkp(0, k + 0.5) + v10 p(0, 10), (7.1)

where, as before, p(0, τ) is the value of a zero coupon bond with time to maturity
τ . To compensate that the payments due to death, i.e. vk, k = 0, 1, . . . , 9, may
be paid at any time during year k and not necessarily at the beginning of the
year, the payments are discounted k plus a half year and not just k year. We
may add that this definition of V (0) is just one of many possible definitions.
Section 8 discusses other more risk based approaches that may include mortality
risk and other insurance risks.
Note that the value of a zero coupon bond depends on the model. In model
A the bond prices have been computed using cubic spline interpolation of the
yield curve. In Model B the price of a zero coupon bond is computed by the
formula in Eq. (3.10). The values of vk are based on data given by Skandia Life
Insurance Company.

The liability duration dV (0) at time 0 is given by

dV (0) =
1

V (0)

( 9∑

k=0

(k + 0.5)vkp(0, k + 0.5) + 10v10 p(0, 10)
)
. (7.2)

Table 10 displays the estimated values and the duration of the liabilities. In
Model A the value of a zero coupon bond is based on interpolation of the yield
curve at time 2004-01-01 for Swedish government bonds with time to maturity
3/12, 6/12, 9/12, 1, 2, 5, and 10 years. The value of a zero coupon bond in
Model B is computed using Eq. (3.10)

Model A Model B
V (0) (103 SEK) 69 71
dV (0) (years) 9.23 9.28

Table 10: Estimated values of the liability and the liability duration.

Before we go on and compute the target capital we will make some remarks
about the model parameters. The values of the model parameters have been
estimated in Section 6. Recall that some of the parameters were estimated with
several different sampling frequencies. In the examples presented in this section
we have, with one exception, chosen the value estimated with smallest sampling
interval. The exception is the value of the equity parameters in Model A, i.e. ςS ,
dS(0), and IS . The value of these parameters is equal to the values estimated
with sampling interval ∆t = 1/12 (cf. Table 3). This gives a value on the equity
duration closer to estimates in the literature.

Recall that the target capital is defined as the initial value of assets, i.e.
A(0), satisfying

ρ
(
V (T )−A(T )

)
= 0.
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Proportions Model A Model B
Bond Equity Property Target Capital Target Capital
0.9 0.05 0.05 109 103
0.8 0.1 0.1 133 105
0.6 0.2 0.2 266 115
0.6 0.4 0.0 * 148
0.6 0.0 0.4 196 106
0.5 0.25 0.25 539 122
0.4 0.3 0.3 * 130
0.4 0.6 0.0 * 190
0.2 0.4 0.4 * 147
0.2 0.8 0.0 * 245

Table 11: Target capital for different choices of asset portfolios and T = dV (0). The
target capital is measured in 103 SEK. The symbol ∗ means that there is no portfolio
with the relevant proportions that satisfy the solvency requirement.

with ρ = SDPδ in Model A and ρ = VaRα in Model B. In the examples below
the value of δ is equal to Φ−1(0.99) ≈ 2.33 and α = 1% with the exception of
the example in Table 15, where δ = Φ−1(0.95) ≈ 1.64 and α = 5%.

In Table 11, we display the target capital for different asset portfolios. To
be more precise, for Model B the presented value is the upper bound of the
target capital derived in Lemma 5.4. In this example we have put T = dV (0).
This choice of T is motivated by the interpretation of the liability duration as
a (economic) mean value of the payment dates. Note that the target capital
is quite sensitive to the proportion of equities in the asset portfolio. A large
proportion of equity requires a large target capital. Note moreover that in
Model A there does not necessarily exist a target capital for all asset portfolios.
This is an unrealistic property of the model. Moreover, given an asset portfolio
satisfying the solvency requirement, if we increase the amount invested in one
asset class then it would be reasonable to assume that we can invest less money
in some of the other two asset classes and still the asset portfolio satisfies the
solvency requirement. However, this is not the case for Model A, compare for
instance the portfolios on row 1 and row 3.

Before we go on and present more examples we will motivate why there are
cases where there is no target capital in Model A. Consider the function

k 7→ SDPδ(v − kA(T )),

where A(T ) is a random variable, v > 0 is a constant, and k is a real number.
Think of k as units of an asset portfolio with value A(T ) and v as a constant
liability. The assumption that the liability is constant is not far from our models
where the variance of the liabilities are much smaller than the assets, at least if
the equity or property component is sufficiently large. Next, by differentiating
with respect k we obtain

d

dk
SDPδ(v − kA(T )) = −E

[
A(T )

]
+ δ

√
Var

[
A(T )

]
.
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Thus, the function SDPδ(v − kA(T )) is increasing with respect to k if

E[A(T )] ≤ δ
√

Var[A(T )]. (7.3)

Hence, if Eq. (7.3) is satisfied then there is no k so that SDPδ(v− kA(T )) ≤ 0.
In other words, no matter how much money we invest in the assets, there will
always be positive risk if the variance of the assets is sufficiently large.

In the next example, displayed in Table 12, we put T = 1. Note that the
target capital is now smaller than in the previous example with T = dV (0),
in some cases there is a great difference. In particular, in Model A the target
capital is always finite. Thus, we must emphasize that the value of T is of great
importance. Note as well that Model A still suggests a larger target capital,
thus ’more expensive’ for the company than Model B.

Proportions Model A Model B
Bond Equity Property Target Capital Target Capital
0.9 0.05 0.05 91 78
0.8 0.1 0.1 96 79
0.6 0.2 0.2 116 83
0.6 0.4 0.0 171 90
0.6 0.0 0.4 115 81
0.5 0.25 0.25 133 85
0.4 0.3 0.3 155 88
0.4 0.6 0.0 573 100
0.2 0.4 0.4 241 93
0.2 0.8 0.0 * 110

Table 12: Target capital for different choices of asset portfolios. The target capital is
measured in 103 SEK and T = 1. The symbol ∗ means that there is no portfolio with
the relevant proportions that satisfy the solvency requirement.

The next example, displayed in Table 13, shows the target capital for other
values of the model parameters than the values estimated in Section 6. The
values in Table 14 follow so called conservative standard approach, see Sand-
ström [34]. This means that in Model A the estimated value of %SP is replaced
with %SP = 1 and in Model B we put γiS = 0, γiP = 1, γSP = 1 instead of the
estimated values.

The final example in this section is presented in Table 15. The table presents
the target capital with δ = Φ−1(0.95) ≈ 1.64 and α = 5% in the definition of
the risk measures.
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Proportions Model A Model B
Bond Equity Property T Target Capital Target Capital

2 102 83
0.8 0.1 0.1 5 117 92

10 134 106
2 137 88

0.6 0.2 0.2 5 203 101
10 267 117
2 238 95

0.4 0.3 0.3 5 911 111
10 * 132
2 * 114

0.4 0.6 0.0 5 * 147
10 * 197

Table 13: Target capital for different choices of asset portfolios and values on T . The
target capital is measured in 103 SEK. The symbol ∗ means that there is no portfolio
with the relevant proportions that satisfy the solvency requirement

Proportions Model A Model B
T Bond Equity Property Target Capital Target Capital

0.8 0.1 0.1 101 79
1 0.6 0.2 0.2 133 84

0.4 0.3 0.3 220 91
0.8 0.1 0.1 162 104

dV (0) 0.6 0.2 0.2 981 120
0.4 0.3 0.3 * 145

Table 14: Target capital in the conservative standard approach for different choices
of asset portfolios and values on T . The target capital is measured in 103 SEK. The
symbol ∗ means that there is no portfolio with the relevant proportions that satisfy
the solvency requirement.

7.2 The Target Capital for a Vehicle Insurance

In this section we consider a vehicle insurance that covers both property damage
and bodily injuries. The objective is to compute the target capital for the costs
of a certain vehicle insurance issued by Länsförsäkringar Sak AB during year
1997.

Suppose vk, k = 0, 1, . . . denote the total payments during year 1997+k due
to accidents during year 1997. A best estimate of the liabilities is defined by

V (0) =
6∑

k=0

vkp(0, k + 0.5). (7.4)

In particular, we suppose that the payments after 6 years are negligible. The
definition of the liability duration is defined in analogy with the example in
the previous section. Table 16 below, collects the value of the liability and its
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Proportions Model A Model B
T Bond Equity Property Target Capital Target Capital

0.8 0.1 0.1 90 77
1 0.6 0.2 0.2 99 80

0.4 0.3 0.3 116 83
0.8 0.1 0.1 110 97

dV (0) 0.6 0.2 0.2 146 101
0.4 0.3 0.3 217 108

Table 15: Target capital for different choices of asset portfolios and values on T . The
target capital is measured in 103 SEK, δ = 1.64 and α = 5%.

Model A Model B
V (0) (106 SEK) 978 1027
dV (0) (years) 0.97 1.02

Table 16: Estimated value and duration of the liability. In model A the value of a
zero coupon bond is based on interpolation of the yield curve at time 2004-01-01 for
Swedish government bonds with time to maturity 3/12, 6/12, 9/12, 1, 2, 5, and 10
years. The value of a zero coupon bonds in Model B is computed using Eq. (3.10).

duration in both Models A and B. The data for the payments vk are given by
Länsförsäkringar Sak AB.
Table 17 shows the target capital for different asset portfolios. Model A still
gives higher values on the target capital than Model B. The target capital is
however always finite in this example.

The final examples displayed in Table 18 and 19, give the target capital in
the conservative approach and with δ = 1.64 and α = 5%. Recall that the
conservative approach meant that in Model A the estimated value of %SP is
replaced with %SP = 1 and in Model B we put γiS = 0, γiP = 1,γSP = 1 instead
of the estimated values.

8 Including Other Forms of Risk

We conclude this paper with a brief discussion on how one may include other
risk factors in the model. This section will only consider Model B. An extension
of Model A can be found in Sandström [34].
We start with a lemma.

Lemma 8.1 Suppose 0 < α < 1 and 0 < λ < 1. Then

VaRα(X + Y ) ≤ VaRλα(X) + VaR(1−λ)α(Y ).

Proof Suppose x = VaRλα(X) and y = VaR(1−λ)α(Y ) and introduce the sets
A = {X > x} and B = {Y > y}. Firstly, note that

P (X + Y > x + y) ≤ P (A ∪B)
= P (A) + P (B)− P (A ∩B)
≤ P (X > x) + P (Y > y)
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Proportions Model A Model B
Bond Equity Property Target Capital Target Capital
0.9 0.05 0.05 1144 1118
0.8 0.1 0.1 1242 1135
0.6 0.2 0.2 1555 1191
0.6 0.4 0.0 2416 1298
0.6 0.0 0.4 1477 1157
0.5 0.25 0.25 1790 1224
0.4 0.3 0.3 2103 1259
0.4 0.6 0.0 7658 1434
0.2 0.8 0.0 * 1586

Table 17: The target capital for different choices of asset portfolios. The target capital
is measured in 106 SEK and T = dV (0). The symbol ∗ means that there is no portfolio
with the relevant proportions that satisfy the solvency requirement.

Proportions Model A Model B
Bond Equity Property Target Capital Target Capital
0.8 0.1 0.1 1320 1129
0.6 0.2 0.2 1829 1209
0.4 0.3 0.3 3002 1306

Table 18: The target capital in the conservative standard approach for different
choices of asset portfolios. The target capital is measured in 106 SEK and T = dV (0).

Proportions Model A Model B
Bond Equity Property Target Capital Target Capital
0.8 0.1 0.1 1164 1105
0.6 0.2 0.2 1340 1141
0.4 0.3 0.3 1575 1185

Table 19: The target capital for different choices of asset portfolios. The target capital
is measured in 106 SEK, δ = 1.64, α = 5 and T = dV (0).
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and thus, since P (X > x) ≤ λα and P (X > y) ≤ (1− λ)α,

P
[
X + Y > VaRλα(X) + VaR(1−λ)α(Y )

] ≤ α.

The definition of Value-at-Risk now gives the desired result. 2

Suppose Ṽ (t) describes the value of the liability with mortality, lapse, surrender,
reinsurance, and other risk factors included. We want to find a minimum value
of A(0) so that

VaRα

(
Ṽ (T )−A(T )

) ≤ 0. (8.1)

Let the (simplified) liability V (T ) be defined as previous. Lemma 8.1 gives for
any 0 < λ < 1 the relation

VaRα

(
Ṽ (T )−A(T )

)

≤ VaRλα

(
Ṽ (T )− V (T )

)
+ VaR(1−λ)α

(
V (T )−A(T )

)
.

Thus, if

VaRλα

(
Ṽ (T )− V (T )

) ≤ 0 and VaR(1−λ)α

(
V (T )−A(T )

) ≤ 0

then Eq. (8.1) is satisfied. In other words, first we determine the initial value
V (0) so that VaRλα

(
Ṽ (T ) − V (T )

) ≤ 0 is satisfied. With this value we can
determine the target capital A(0) using the formula described by Proposition 2.
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