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ABSTRACT

In this paper I first define the regime-switching lognormal model. Monthly data from the Standard
and Poor’s 500 and the Toronto Stock Exchange 300 indices are used to fit the model parameters,
using maximum likelihood estimation. The fit of the regime-switching model to the data is
compared with other common econometric models, including the generalized autoregressive
conditionally heteroskedastic model. The distribution function of the regime-switching model is
derived. Prices of European options using the regime-switching model are derived and implied
volatilities explored. Finally, an example of the application of the model to maturity guarantees
under equity-linked insurance is presented. Equations for quantile and conditional tail expectation
(Tail-VaR) risk measures are derived, and a numerical example compares the regime-switching
lognormal model results with those using the more traditional lognormal stock return model.

1. INTRODUCTION

Traditional models for stock returns, including
the original Black-Scholes approach, assume that
returns follow a geometric Brownian motion. This
implies that over any discrete time interval the
return on stocks is lognormally distributed and
that returns in nonoverlapping intervals are inde-
pendent; that is, if St is the stock price at time t,
then

log
St

Sr
, N~m~t 2 r!, s2~t 2 r!!

for some m and volatility s. This independent
lognormal (ILN) model is simple and tractable
and provides a reasonable approximation over
shorter time intervals, but it is less appealing for

longer-term problems. Empirical studies indicate
in particular that this model fails to capture more
extreme price movements and stochastic vari-
ability in the volatility parameter.

A simple way to incorporate stochastic volatil-
ity is to assume that volatility takes one of K
discrete values, switching between these values
randomly. This is the basis of the regime-switch-
ing lognormal process (RSLN). This approach
maintains some of the attractive simplicity of the
ILN model but more accurately captures the more
extreme observed behavior. The subject of this
paper is a Markov regime-switching lognormal
model. Regime switching allows the stock price
process to switch between K regimes randomly;
each regime is characterized by different model
parameters, and the process describing which re-
gime the price process is in at any time is as-
sumed to be Markov (that is, the probability of
changing regime depends only on the current
regime, not on the history of the process).

The rationale behind the regime-switching
framework is that the market may switch from
time to time between, say, a stable low-volatility
state and a more unstable high-volatility regime.
Periods of high volatility may arise, for example,
because of short-term political or economic un-
certainty.

Regime switching was introduced in Hamilton
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(1989), who described an autoregressive regime-
switching process. In Hamilton and Susmel
(1994) several regime-switching models are ana-
lyzed, varying the number of regimes and the
form of the model within regimes. Their objective
is to model various weekly econometric series; for
these, the more complicated autoregressive con-
ditionally heteroskedastic (ARCH)-type models
within regimes seem to be necessary.

The simpler form that I consider in this paper,
using lognormal distributions within regimes, ap-
pears to be sufficiently complex for the monthly
total return data; details are given in Section 5.2.
It is also mathematically tractable, as I show in
Section 6. This model was also used by Bollen
(1998), who constructed a lattice for valuing
American options. He did not explore the empir-
ical evidence for the model. Harris (1997) has
developed a multivariate autoregressive regime-
switching model for actuarial use, fitted to quar-
terly Australian data.

The objectives of this paper are the following:

● To explain briefly how to fit the model to the
data, using a traditional likelihood approach
(Section 4)

● To compare the fit of the RSLN model with
other models in common use for both the Stan-
dard and Poor’s (S&P) 500 and the TSE 300
total return indices (the TSE 300 index is the
broad-based index of the Toronto Stock Ex-
change) (Section 5.2)

● To derive the distribution function for the
RSLN model (Section 6)

● To derive the closed-form European option
price formula using the RSLN model (Section 7)

● To show how the RSLN model may be applied
to the calculation of risk measures for equity-
linked insurance, and to compare the results
with the more traditional lognormal model
(Section 8).

2. THE DATA

Figure 1 shows monthly returns on the TSE 300
index, with dividends reinvested, together with
estimated volatility, calculated using a 12-month
moving standard deviation of the log returns. The
data run from 1956 to 1999. The reason for the
1956 start date is that the TSE index was first
introduced in January 1956. The S&P data cover
the same period for ease of comparison. Figure 2
shows the same data for the S&P 500 index.

The best estimates (by maximum likelihood) of
the annual volatility using these data sets are
15.63% for the TSE 300 data and 14.38% for the
S&P 500 data. Mean monthly log returns are 0.8%
for the TSE 300 and 0.9% for the S&P 500. The
correlation coefficient between the two series is
0.773.

One observable feature of the data not captured
by the lognormal model is volatility bunching,
that is, periods of several months of high volatil-
ity, seen in both data sets in the middle 1970s and
in the TSE data in the early 1980s. This feature is
the one explicitly captured by the regime-switch-
ing approach.

3. THE MODEL

Under the regime-switching lognormal model, it
is assumed that the stock return process lies in

Figure 1
Monthly Total Returns and Annual Volatility,

TSE 300

Figure 2
Monthly Total Returns and Annual Volatility,

S&P 500
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one of K regimes or states. Let rt denote the
regime applying in the interval [t, t 1 1) (in
months), rt 5 1, 2, . . . , K, and St be the total
return index value at t; then

log
St11

St
Urt , N~mrt, srt

2 !.

I have investigated two- and three-regime mod-
els (that is, K 5 2, 3) and have found no signifi-
cant improvement in fit for the TSE data set from
adding the third regime, and only a marginal im-
provement for the S&P data set; further details
are given in Section 5.2. In most of this paper a
two-regime model is used, that is, K 5 2, which
substantially simplifies the model and estimation
compared with higher values for K. Hamilton and
Susmel (1994), looking at weekly data (from 1962
to 1987) and assuming ARCH models for returns
within each state, found some evidence for using
three regimes, adding a very low volatility regime
applying for a single period of the early 1960s;
Harris (1997), using quarterly data and assuming
autoregressive (AR) models within each regime,
found no evidence for using more than two re-
gimes.

The transition matrix P denotes the probabili-
ties of moving regimes, that is,

pij 5 Pr@rt11 5 jurt 5 i# i 5 1, 2, j 5 1, 2.

Thus, for the two-regime (conditionally) indepen-
dent lognormal model we have six parameters to
estimate, Q 5 {m1, m2, s1, s2, p1,2, p2,1}.

4. MAXIMUM LIKELIHOOD ESTIMATION

4.1. Calculating the Likelihood Function
Let Yt 5 log(St11/St) be the log return in the
t 1 1th month. The likelihood for observations
y 5 (y1, y2, . . . , yn) is

L~Q! 5 f~ y1uQ! f~ y2uQ, y1! f~ y3uQ, y1, y2!· · ·

f~ ynuQ, y1, . . . , yn21!,

where f is the pdf for y. Hence, the contribution to
the log-likelihood of the t-th observation is

log f~ytuyt21, yt22, . . . , y1, Q!.

We can calculate this recursively (following
Hamilton and Susmel 1994, for example), by cal-
culating for each t:

f~rt, rt21, ytuyt21, . . . , y1, Q!

5 p~rt21uyt21, . . . , y1, Q!

3 p~rturt21, Q! f~ yturt, Q!. (1)

On the right-hand side of this equation,
p(rturt21, Q) is the transition probability between

the regimes
f(yturt, Q) 5 f((yt 2 mrt

)/srt
), where f is the

standard normal probability density function,
and

The probability function p(rt21uyt21, yt22, . . . ,
y1, Q) is found from the previous recursion; it is
equal to

~ f~rt21, rt22 5 1, yt21uyt22, yt23, . . . , y1, Q!

1 f~rt21, rt22 5 2, yt21uyt22, yt23, . . . , y1, Q!

f~ yt21uyt22, yt23, . . . , y1, Q!
.

We can then calculate f(ytuyt21, yt22, . . . , y1, Q)
as the sum over the four possible values of Equa-
tion (1), that is, for rt 5 1, 2 and rt21 5 1, 2.

To start the recursion, we need a value (given
Q) for p(r0), which we can find from the invariant
distribution of the regime-switching Markov
chain. The invariant distribution p 5 (p1, p2) is
the unconditional probability distribution for the
process. Under the invariant distribution p, each
transition returns the same distribution; that is,
pP 5 p, giving p1p1,1 1 p2p2,1 5 p1 and p1p1,2 1
p2p2,2 5 p2. Clearly p1,1 1 p1,2 5 1.0, so that
p1 5 p2,1/(p1,2 1 p2,1), and similarly p2 5 1 2
p1 5 p1,2/(p1,2 1 p2,1).

Hence, we can start the recursion by calculat-
ing for a given parameter set Q:

f~r1 5 1, y1uQ! 5 p1fSy1 2 m1

s1
D ,

f~r1 5 2, y1uQ! 5 p2fSy1 2 m2

s2
D ,

f~ y1uQ! 5 f~r1 5 1, y1uQ! 1 f~r1 5 2, y1uQ!,

and we calculate for use in the next recursion the
two values of

p~r1uy1, Q! 5
f~r1, y1uQ!

f~ y1uQ!
.

Maximizing the likelihood function over the six
parameters may be done with standard search
methods.
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4.2. Maximum Likelihood
Estimation Results

The maximum likelihood parameters for the TSE
300 and the S&P 500 data are given in Table 1,
with approximate standard errors in parentheses.
The parameters are fairly similar, as we would
expect. In both cases the high-volatility regime
has a negative mean and an annual volatility of
approximately 25%. The main difference is in the
probability of moving from the high-volatility re-
gime to the low-volatility regime, which is esti-
mated at 21% for the TSE data and at 37.1% for
the S&P data, but in both cases the estimated
standard errors are high.

This indicates that the persistence of the high-
volatility regime appears less for the S&P data.
The probability that a single run in regime i lasts
t months is pii

t21pij, so that the average length of a
single run in regime i is 1/pij months. This gives
an average run in the high-volatility regimes of
4.8 months for the TSE data and 2.6 months for
the S&P data. In both cases the estimated stan-
dard errors for this parameter are high. Periods of
high volatility are in practice often associated
with falling markets. This is corroborated by the
negative mean log return parameters in the high-
volatility regimes.

Note that asymptotic results for the maximum
likelihood estimation should not be relied on for
inference for this data set. As the data are serially
correlated under the RSLN, we cannot treat them
as 527 independent observations; more accu-
rately it should be viewed as a single, multivariate
observation. This means that the “standard er-
rors” quoted in the table should be regarded with
caution. Reliable information about the uncer-
tainty associated with these estimates is not avail-
able. Where this uncertainty is important it may
be preferable to use a Bayesian approach to pa-

rameter estimation. In Hardy (1999) parameters
are estimated using the Metropolis-Hastings algo-
rithm (a form of the Markov Chain Monte Carlo
methodology). This provides a sample from the
joint posterior distribution for the parameters,
which gives reliable information on the joint param-
eter uncertainty. This work incidentally supports
the fact that the uncertainty about the p2,1 param-
eters are very high, especially for the S&P data.

5. COMPARISON WITH OTHER MODELS

5.1. Introduction
The principle of parsimony indicates that more
complex models require significant improvement
in fit to be worthwhile. More complex here means
using more parameters.

For models with an equal number of parameters
it is appropriate to choose the model with the
higher log-likelihood. For models with different
numbers of parameters, common selection criteria
are the likelihood ratio test (LRT), the Akaike in-
formation criterion (AIC) (Akaike 1974), and the
Schwartz Bayes Criterion (SBC) (Schwartz 1978).

In this section all these tests are applied to the
following models. In the description below, Yt is
the log-return in the t 1 1th month.

1. ILN: the independent lognormal model de-
scribed in Section 1, where

Yt 5 m 1 set, et iid , N~0, 1!.

The independent lognormal model is in com-
mon use for valuing embedded options, for
example, in equity-linked contracts.

2. AR(1): A first-order autoregressive model,
where

Yt 5 m 1 a~Yt21 2 m! 1 set, et iid , N~0, 1!.

Table 1
Maximum Likelihood Parameters, with Estimated Standard Errors

TSE 300

m̂1 5 0.0123 (0.002) ŝ1 5 0.0347 (0.001) p̂1,2 5 0.0371 (0.012)
m̂2 5 20.0157 (0.010) ŝ2 5 0.0778 (0.009) p̂2,1 5 0.2101 (0.086)

S&P 500

m̂1 5 0.0126 (0.002) ŝ1 5 0.0350 (0.001) p̂1,2 5 0.0398 (0.015)
m̂2 5 20.0185 (0.014) ŝ2 5 0.0748 (0.009) p̂2,1 5 0.3798 (0.123)
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The AR(1) model allows for serial correlation
in the data.

3. ARCH(1): The autoregressive conditionally
heteroskedastic model, where the variance is a
function of the evolving process:

Yt 5 m 1 stet,

st
2 5 a0 1 a1~Yt 2 1 2 m!2.

The autocorrelations in the ARCH model are
all zero. We can combine the AR and ARCH
models for the process:

Yt 5 m 1 a~Yt21 2 m! 1 stet, et iid , N~0, 1!,

st
2 5 a0 1 a1~Yt 2 1 2 m!2.

In Table 2 these are referred to as ARCH and
AR-ARCH, respectively.

4. GARCH(1, 1): The generalized autoregressive
conditionally heteroskedastic model:

Yt 5 m 1 stet,

st
2 5 a0 1 a1~Yt 2 1 2 m!2 1 bst 2 1

2 .

The GARCH process, like the ARCH, has zero
autocorrelation. Again, we can combine the
AR(1) model with the GARCH for the process:

Yt 5 m 1 a~Yt21 2 m! 1 stet, et iid , N~0, 1!,

st
2 5 a0 1 a1~Yt 2 1 2 m!2 1 bst 2 1

2 .

In Table 2 these two models are denoted
GARCH and AR-GARCH, respectively.

5. RSAR(1) is a two-regime version of the AR(1)
model, that is,

Yturt 5 mrt 1 art~Yt21 2 mrt!

1 srtet, et iid , N~0, 1!, rt 5 1, 2.

The RSLN model introduces autocorrelation
through the regime process. The RSAR model
should capture remaining autocorrelation.

6. RSLN-3 is a three-regime lognormal model.

Both the ARCH and GARCH models allow
for the volatility of the process to vary and are
designed to model periods of high and low vola-
tility in financial series. ARCH models were intro-
duced in Engle (1982), and Bollerslev (1986) ex-
tended these to the GARCH formulation. A
comprehensive text on these models is Hamilton
(1994).

5.2. Selection Criteria

5.2.1. The Likelihood Ratio Test

The likelihood ratio test (see, for example, Klug-
man, Panjer, and Willmot 1998) compares em-
bedded models, that is, where a model with k1

parameters is a special case of a more complex
model with k2 . k1 parameters. Let l1 be the
log-likelihood of the simpler model, and l2 be the
log-likelihood of the more complex model. The
test statistic is 2(l2 2 l1). The null hypothesis is

H0 : No significant improvement in Model 2.

Under the null hypothesis, the test statistic has x2

distribution, with degrees of freedom equal to the
difference between the number of parameters in
the two models.

Not all of the models we consider are embed-
ded; if we denote embeddedness by ,, we have
ILN , RSLN-2 , RSLN-3 and RSLN-2 ,
RSAR(1). However, even where models are not
embedded, the likelihood ratio test can be used
for model selection, although the x2 distribution
is in this case only an approximation.

In Table 2 the final column gives the p-value for
a likelihood ratio test of the RSLN model against
each of the other models listed. For models with
fewer than six parameters, the null hypothesis is
that the simpler model is a “better” fit than the
RSLN. Low p-values indicate rejection of the null
hypothesis. Comparing the two-regime RSLN-2
model with models with more than six parame-
ters, acceptance of the null hypothesis (high p-
value) implies acceptance of the RSLN-2 model.

5.2.2. The Akaike Information Criterion

The Akaike Information Criterion (AIC) uses the
model that maximizes lj 2 kj, where lj is the
log-likelihood under the jth model and kj is the
number of parameters. Using this criterion, each
extra parameter must improve the log-likelihood
by at least one. This criterion was derived heuris-
tically by Akaike (1974). It is popular for ease of
application but is not rigorously founded. It cap-
tures in the simplest possible way the intuition
that, from principle of parsimony, each extra pa-
rameter added must be worthwhile in terms of
the log-likelihood improvement.

5.2.3. The Schwartz Bayes Criterion

The Schwartz Bayes Criterion uses the model
that maximizes lj 2 1

2 kj log n, where n is the
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sample size. For a sample of 527 (corresponding
to the monthly data 1956–99) each additional
parameter must increase the log-likelihood by at
least 3.1. This criterion was derived by Schwartz
(1978). Like the AIC, new parameters must be
worthwhile in terms of likelihood improvement,
but in this case the improvement depends on the
amount of data available: extra parameters are
penalized more heavily where the sample size is
large.

5.3. Results, TSE and S&P Data
Table 2 shows that the RSLN-2 model provides a
significant improvement over all other models for
the TSE data using each of the three selection
criteria. For the S&P data, selection is not quite
so definite. According to the likelihood ratio test
and the AIC, there is a marginal improvement in
fit from using three regimes. The third regime is
an ultra-low volatility regime with transitions to
and from the low-volatility regime only. The
Schwartz Bayes criterion still favors the two-re-
gime model. Given the added complexity of the
three-regime model, and the marginal nature of
the improvement, I pursue the two-regime ver-
sion of the model in this paper. However, all the

topics discussed subsequently can be adapted for
the three-regime version of the model.

A longer S&P data series (price index) has also
been fitted to the same two- and three-regime
models. The data run from 1926 to 1998. Under
the two-regime model, the maximum likelihood
parameters for the long data set are similar for the
first regime, but the variance and persistence of
the second regime are much higher than the pa-
rameters found using postwar data. The volatility
for the second regime is estimated at 12% per
month, and the probability of moving from the
high-volatility regime to the low-volatility regime
is estimated at 0.1. This effect arises from the
prolonged period of very high volatility in the
1930s. Once again, there is a marginal improve-
ment in fit from using three regimes (p-value for
the likelihood ratio test is 0.02).

5.4. October 1987
A common concern where a model for stock re-
turns is proposed is whether the model captures
the sort of extreme value observed in October
1987, when the TSE 300 log-return was 20.2552.
Using the post-1956 parameters, under a monthly
lognormal model, this is six standard deviations

Table 2
Comparison of Selection Information for Lognormal, Autoregressive, and Regime Switching

Models

Model (j)
Parameters

(kj)
log L
(lj)

SBC
(lj 2

1

2
kj log n)

AIC
(lj 2 kj)

LRT
(p)

TSE 300 (1956–99 Monthly Total Returns)

ILN 2 885.6 879.4 883.6 ,1028

AR(1) 3 887.4 878.0 884.4 ,1028

ARCH 3 888.5 879.1 885.5 ,1028

AR-ARCH 4 890.8 878.3 887.8 ,1028

GARCH 4 896.0 883.5 892.0 ,1028

AR-GARCH 5 897.9 882.2 894.9 ,1028

RSLN-2 6 922.7 903.9 917.7
RSAR-2 8 922.9 897.8 914.9 0.82
RSLN-3 12 925.9 888.3 913.9 0.38

S&P 500 (1956–99 Monthly Total Returns)

ILN 2 929.4 923.1 927.4 ,1028

AR(1) 3 929.6 917.1 926.6 ,1028

ARCH 3 933.3 923.9 930.3 ,1028

AR-ARCH 4 933.4 920.9 929.4 ,1028

GARCH 4 938.9 926.4 934.9 ,1026

AR-GARCH 5 939.1 923.4 934.1 ,1026

RSLN-2 6 952.5 933.6 946.5
RSAR-2 8 952.6 927.5 944.6 0.91
RSLN-3 12 960.8 923.2 948.8 0.01
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away from the mean. The expected number of
observations this small appearing in a sample of
527 observations is approximately 2 3 1026. In
other words, an observation this small would ap-
pear in only one in approximately 700,000 sam-
ples of 527 values.

Under the RSLN model, given that the process
is in the high-volatility regime (regime-2), the
observation is 3.078 standard deviations away
from the mean; the probability of an observation
at least as small as this within regime-2 is 0.104%.
Allowing for the probability of being in regime-2
reduces the probability for the individual obser-
vation to 0.016%. The probability of such an ob-
servation in a sample of 527 is approximately 8%:
that is, under the RSLN model, around 1 in 12
samples of 527 monthly observations would in-
clude a value at least as small as the October 1987
value. Although the October 1987 value is a rare
observation under the RSLN model, with greater
than 5% probability of one such value in a sample,
it is not nearly sufficiently extreme to reject the
model.

Note that monthly data and monthly models
are used; we cannot infer probabilities associated
with weekly or daily stock movements from the
monthly RSLN model.

6. USING THE TWO-REGIME RSLN MODEL

6.1. Probability Function for Total
Sojourn in Regime-1

In applying the regime-switching model it is very
useful to have a probability distribution for the
total number of months spent in regime-1. We
can use this probability function to calculate the
distribution function, density function, or mo-
ments of the stock price process Sn.

Let R be the total number of months spent in
regime-1; R [ {0, 1, . . . , n}. Denote the proba-
bility function Pr[R 5 r] by p(r). Let Rt be the
total sojourn in regime-1 in the interval [t, n), and
consider Pr[Rt 5 rurt21], for r 5 0, 1, . . . , n 2 t
and t 5 1, . . . , n 2 1. Clearly Pr[Rt 5 rurt21] 5 0
for r . n 2 t or r , 0.

For example, Pr[Rn21 5 0urt21 5 1] is the
probability that the last time unit is not spent in
regime-1 given that the process is in regime-1 in
the previous period—that is, for t [ [n 2 2, n 2

1)—so that Pr[Rn21 5 0urt21 5 1] 5 p1,2. Simi-
larly,

Pr@Rn21 5 1urt21 5 1# 5 p1,1,

Pr@Rn21 5 0urt21 5 2# 5 p2,2,

Pr@Rn21 5 1urt21 5 2# 5 p2,1.

We can work backwards from these values to the
required probabilities for R 5 R0 using the rela-
tionship

Pr@Rt 5 rurt21 5 1#

5 prt21,1 Pr@Rt11 5 r 2 1urt 5 1#

1 prt21,2 Pr@Rt11 5 rurt 5 2#. (2)

The justification for this is that, immediately
after the transition at time t, either the process is
in regime-1 (i.e., rt 5 1, with probability prt21,1

),
which leaves r 2 1 time periods to be spent in
regime-1 subsequently, or the process is in re-
gime-2 (i.e., rt 5 2 with probability prt21,2

), in
which case r time periods must be spent in re-
gime-1 in the interval [t 1 1, n).

Ultimately we can find the probability func-
tions for R0 conditional on regime-1 as the start-
ing point, Pr[R0 5 rur21 5 1], and conditional on
regime-2 as a starting point, Pr[R0 5 rur21 5 2].
Using the stationary distribution for the regimes,
we can then find the probability function of R0 as

Pr@R0 5 r# 5 p~r! 5 p1 Pr@R0 5 rur21 5 1#

1 p2 Pr@R0 5 rur21 5 2#. (3)

6.2. Probability Functions for Sn

Using the probability function for R, the distribu-
tion of the total return index at time n can be
calculated analytically. Let Sn represent the total
return index at n; assume S0 5 1. Then

SnuR , lognormal~m*~R!, s*~R!!,

where m*~R! 5 Rm1 1 ~n 2 R!m2, (4)

s*~R! 5 ÎRs1
2 1 ~n 2 R!s2

2. (5)

Then, if p(r) is the probability function for R,

FSn~ x! 5 Pr@Sn # x# 5 O
r50

n

Pr@Sn # xuR 5 r#p~r!

(6)
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5 O
r50

n

FS log x 2 m*~r!

s*~r! Dp~r!, (7)

where F¼ is the standard normal probability dis-
tribution function. Similarly, the probability den-
sity function for Sn is

fSn~ x! 5 O
r50

n

fS log x 2 m*~r!

s*~r! Dp~r!, (8)

where f¼ is the standard normal density func-
tion.

Equation (8) has been used to calculate the
density functions shown in Figure 3, which shows
the RSLN and lognormal density functions for the
stock price at t 5 10 years, given S0 5 1.0, using
both the TSE and S&P parameters. In both cases,
over this long term, the left tail is substantially
fatter for the RSLN model than for the lognormal
model. This has important implications for longer-
term actuarial applications. For example, in mod-
eling the maturity guarantees in Canadian segre-

gated fund contracts, the lognormal model has
been very popular (see, for example, the report of
the Task Force on Segregated Funds (TFSF)
2000). The stock price model is, typically, being
used with a 20-year horizon for modeling the
risks for these contracts. For these long terms the
fatter tail of the RSLN model will have a substan-
tial effect on the results. This is discussed further
in Section 8.

The probability function for the sojourn times
can also be used to find unconditional moments
of the stock price at any time n:

E@~St11!
k# 5 E@E@~St11!

kuR##

5 EFexp~k~Rm1 1 ~n 2 R!m2!

1
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2
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2 1 ~n 2 R!s2
2!!G

5 EFexpSRSk~m1 2 m2! 1
k2

2
~s1

2 2 s2
2!DDG

3 expSknm2 1
k2

2
ns2

2D
5 expSknm2 1

k2

2
ns2

2D
3 O

r50

n

expSrSk~m1 2 m2!

1
k2

2
~s1

2 2 s2
2!DDp~r!.

7. OPTION PRICING

In the conventional Black-Scholes framework,
where the asset price Sn has a lognormal distri-
bution, the Black-Scholes price for a put option
with strike K, maturing at n, valued at time t 5 0,
is

BSP 5 e2rnEQ@max~K 2 Sn, 0!#

5 Ke2rnN~2d2! 2 S0 N~2d1!,

where r is the risk-free rate (force) of interest, N
denotes the standard normal distribution func-
tion, St is the asset price at t, and

Figure 3
Probability Density Curves for ILN and RSLN

Models, TSE and S&P Data
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d1 5
ln~S0/K! 1 ~r 1 s2/2!n

sÎn
, d2 5 d1 2 sÎn.

The parameter s is the volatility of the asset
return, which corresponds to the lognormal pa-
rameter from the ILN model. The subscript Q
indicates that the expectation is with respect to
the risk-neutral measure Q.

Bollen (1998) uses the regime-switching model
to price American and European options: Ameri-
can by a lattice method, European by simulation.
Since the market is incomplete in a regime-
switching model, the resulting Q measure is not
uniquely determined. Bollen uses a Q-measure
under which the transition probabilities are un-
changed, the move from P-measure to Q-measure
being effected by changing the log mean parame-
ter in regime-1 from m1 to r 2 s1

2/2 and in re-
gime-2 from m2 to r 2 s2

2/2, where r is the risk-
free force of interest.

In fact, it is not necessary to use simulation. We
can calculate the European option price directly,
using the probability distribution for R. Condi-
tional on knowing R, the asset price SnuR has a
lognormal distribution, with parameters depen-
dent on R. Thus, the put option price under this
Q-measure is

ER@e
2rnEQ@max~K 2 Sn, 0!uR## 5 ER@BSP~R!#,

where

BSP~R! 5 Ke2rnN~2d2~R!! 2 S0N~2d1~R!!,

d1~R!

5
ln~S0/K! 1 ~nr 1 ~R~s1

2/2! 1 ~n 2 R!~s2
2/2!!!

Î~Rs1
2 1 ~n 2 R!s2

2!
,

d2~R! 5 d1~R! 2 Î~Rs1
2 1 ~n 2 R!s2

2!.

Table 3 shows some option prices calculated for
various strike prices, using the TSE parameters.
Figures are given for a one-year put option and a
10-year put option. Such longer options are com-
mon in insurance applications, in particular for
guarantees under segregated fund contracts. Fig-
ures for the implied Black-Scholes volatility are
given in the final column. The assumed risk free
rate is 6% pa. All figures are per 100 initial asset
price. In Table 4 the same figures are shown using
the S&P parameters.

The implied volatilities are shown graphically
in Figure 4. The strike prices quoted are for an
initial stock price of 100. It can be seen that the
regime-switching model gives a lopsided volatility
smile (or smirk); that is, the implied volatility for
the at-the-money option is smaller than the im-
plied volatility for out-of-the-money and in-the-

Table 3
Put Option Prices and Black-Scholes Implied

Volatility, TSE Parameters

Strike
Price K

Option
Price

Implied
Volatility

One-Year Put Option Prices

80 0.232 16.25%
100 3.275 14.79
120 14.876 15.01

Ten-Year Put Option Prices

100 1.800 15.27
180 18.198 15.14
260 50.212 15.18

Table 4
Put Option Prices and Black-Scholes Implied

Volatility, S&P Parameters

Strike
Price K

Option
Price

Implied
Volatility

One-Year Put Option Prices

80 0.130 14.67%
100 2.938 13.84
120 14.563 13.95

Ten-Year Put Option Prices

100 1.322 14.05
180 16.803 13.99
260 48.938 14.02

Figure 4
Black-Scholes Implied Volatility Smirk
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money options, both for one-year and for 10-year
options, though the effect is much more marked
for the shorter term. (“At-the-money” for a 10-
year option is equivalent to a strike of K 5
100e10r 5 182 allowing for discounting.) This is a
phenomenon often observed in practice.

Although the difference between the S&P and
TSE figures appear substantial, given the large
approximate standard error for the S&P transi-
tion probability out of the high-volatility regime,
the difference may not be significant.

8. RISK MEASURES FOR SEGREGATED

FUND CONTRACTS

8.1. Segregated Fund Contracts
The problem of modeling the maturity guarantee
liability under equity-linked or segregated fund
contracts was a major driving force behind this
exploration of the RSLN model. Segregated fund
contracts are a form of equity-linked insurance
that has proved very popular with insurers and
consumers in Canada in the last few years. The
Task Force on Segregated Funds, established by
the Canadian Institute of Actuaries (CIA) to in-
vestigate provisions for the liabilities arising,
found that the lognormal distribution was a pop-
ular assumption for the underlying stock returns
(TFSF 2000). Another was the Wilkie investment
model (Wilkie 1995). It can be demonstrated
(see, for example, Hardy 1999), that the total
stock price returns modeled using the Wilkie
model are very similar to a lognormal model with
parameters fitted from the same data. In this
section, risk measures for a simple segregated
fund liability are calculated, comparing the re-
sults using a lognormal distribution of stock re-
turns with those found using the regime-switch-
ing lognormal distribution.

Under the simplest form of the segregated fund
contract, a premium is invested in a mutual fund
for, say, 10 years. Expenses are deducted
monthly. At maturity the policyholder receives
the proceeds of the mutual fund, with a guarantee
that the payment will not be less than the original
premium. The insurer’s liability at maturity is
then max[G 2 F, 0], where G is the guaranteed
maturity value (typically 75% or 100% of the pre-
mium) and F is the fund at maturity. The benefit
can be viewed as a European put option.

For these contracts any analysis of the poten-
tial costs requires a long-term model for stock
returns that has a realistic fit in the left tail; that
is, we need a reasonable model of the worst pos-
sible outcomes for the stock returns.

8.2. Quantile Risk Measure
One of the measures used to assess the risk is to
look at percentiles of the liability distribution;
this is essentially a “value-at-risk” (VaR) ap-
proach. This section compares quantiles of the
liability under a segregated fund contract using a
lognormal distribution for stock returns with
those found using the regime-switching lognormal
model.

For simplicity, ignore withdrawals in these cal-
culations. Let G 5 100 be the amount of the
guarantee, and assume that expenses of m% per
month continuously compounded are deducted
from the fund. Let Sn denote the underlying asset
value at time n in months. Assume S0 5 100.
Then, for a n-month contract, F 5 Sne2nm and
the liability at maturity is

X 5 max~G 2 Sne
2nm, 0!.

Let j 5 Pr[Sne2nm . G]. Then, for all a # j, the
100a% quantile of the liability distribution is
Va 5 0.

For a . j, Va is found from

FSn~~G 2 Va!enm! 5 a (9)

f Va 5 G 2 e2nmFSn

21~1 2 a!, (10)

where FSn
is the distribution function of the un-

derlying stock value at time n. In the lognormal
case we can use the inverse standard normal dis-
tribution function, za 5 F21(a) to give

Va 5 G 2 S0 exp$2zaÎns 1 nm 2 nm%, (11)

where m, s are the parameters of the lognormal
distribution of monthly returns. For the RSLN
model, use Equation (7) for the distribution func-
tion FSn

¼.

8.3. Conditional Tail Expectation
Risk Measure

The quantile or VaR risk measure has many prob-
lems in application. These are summarized in, for
example, Artzner et al. (1999) and Wirch and
Hardy (1999). The solution of Artzner et al. to the
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problem of finding a coherent risk measure is to
use the conditional tail expectation (CTE), de-
fined as the expected value of the loss given that
the loss falls in the upper (1 2 a) tail of the
distribution. This gives better results than does
the quantile measure when comparing risks, be-
cause the CTE utilizes the whole tail of the dis-
tribution beyond the quantile, rather than the
single quantile point.

For a continuous loss distribution (or, more
strictly, if Va1e . Va for any e . 0), then the CTE
with parameter a, 0 # a , 1 is

CTE~a! 5 E@XuX . Va#, (12)

where Va is defined as in Equation (10).
Note that this definition, though intuitively ap-

pealing, does not give suitable results where Va

falls in a probability mass (this will happen for the
segregated fund example for a , j, in which case
Va 5 0). In this case, the CTE with parameter a is
calculated as follows. Find b9 5 max{b : Va 5 Vb},
then

CTE~a! 5
~1 2 b9!E@XuX . Va# 1 ~b9 2 a!Va

1 2 a
.

(13)

In either case, where the CTE is calculated by
simulation, it is found by taking the mean of the
worst 100(1 2 a)% of the simulations.

The CTE has been proposed by the CIA Task
Force on Segregated Funds as the required risk
measure for determining total balance sheet pro-
vision in respect of segregated fund guarantee
liabilities (TFSF 2000).

To derive the CTE formulas, assume first that
a $ j, then

CTE~a!

5 E@XuX . Va# (14)

5 E@G 2 Sne
2nmuSn , ~G 2 Va!e

nm# (15)

5
1

1 2 a E
0

~G2Va!enm

~G 2 ye2nm! fSn~y! dy (16)

5
1

1 2 a
~GFSn~~G 2 Va!enm!

2 E
0

~G2Va!enm

ye2nmfSn~ y! d y! (17)

5 G 2
e2nm

1 2 a E
0

~G2Va!enm

yfSn~ y! d y. (18)

If Sn ; LN(nm, =ns), then for a $ j,

CTE~a!

5 G 2
exp~nm 2 nm 1 ns2/2!

1 2 a

3 FS log~G 2 Va! 2 nm 2 nm 2 ns2

Îns D (19)

5 G 2
exp~nm 2 nm 1 ns2/2!

1 2 a

3 F~2za 2 Îns!. (20)

If Sn ; RSLN, then SnuR ; lognormal(m*(R),
s*(R)), where m*¼ and s*¼ are defined in Equa-
tions (4) and (5). It is straightforward to show
that the CTE for the RSLN distribution is, for
a $ j,

CTE~a! 5 G 2
e2nm

1 2 a
O

r50

n

p~r!Sem*~r!1s*~r!2/ 2

FS log~G 2 Va! 2 m*~r! 2 nm 2 s*~r!2

s*~r! DD. (21)

In general, for a , j use Equation (13), with b9 5
j and Va 5 Vj 5 0 so that CTE(j) 5 E[XuX . 0]
and

CTE~a! 5
~1 2 j!

~1 2 a!
CTE~j!. (22)

So Equations (20) and (21) can be adapted for
a , j using Equation (22).

Calculation of the CTE using either Equation
(20) or (21) is relatively straightforward. Exam-
ples are given in the following section.

8.4. Numerical Comparison of Risk
Measures for LN and RSLN
Distributions

In Table 5, figures are given for quantile and CTE
risk measures for a segregated fund contract that
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matures in 10 years; the guarantee is equal to the
fund market value at the start of the projection.
Management fees of 0.25% per month, com-
pounded continuously, are deducted. Lapses and
deaths are ignored for simplicity.

The effect of the increased probability in the
left tail of the return distribution in Figure 3
comes through in the markedly higher figures
for the RSLN model in Table 5. The j parameter
gives the probability that the guarantee will
have a non-zero cost. Under the lognormal
model this is 91.45%; under the RSLN assump-
tion it is slightly lower at 88.27%. More signifi-
cant is the difference between the risk mea-
sures. If the actuary decides to hold capital at
the 95% level of the loss distribution, the log-
normal assumption requires 12.7% of the fund,
whereas the RSLN assumption requires more
than double this, at 25.9%. Recall that the RSLN
model fits the data very significantly better than
the lognormal model; it seems reasonable to
infer that the lognormal distribution will under-
state the true risk for losses dependent on the
left tail of the return distribution.

9. CONCLUSION

The regime-switching lognormal model captures
observed stock return behavior, in particular ex-
treme observations such as October 1987, and
volatility bunching. Statistically, the RSLN model
provides a significantly better fit to the TSE and
S&P data than do other popular models, and, at
least for the TSE data, the two-regime version of
the model appears to be sufficient.

The RSLN model is mathematically tractable;
using iterated expectation over the regime-1 so-
journ time distribution, it is possible to calculate
the distribution and density functions accurately.
It is also simple to calculate Black-Scholes option
prices using a “natural” Q-measure. The implied
volatility curves resulting exhibit a volatility
smile as seen in practice.

It is also possible to use the RSLN model to
calculate quantiles and CTE measures for the
losses under a segregated fund contract. This is
an application where the lognormal model is a
popular choice. Comparing the risk measures un-
der the lognormal and RSLN models indicates
that the lognormal model (with model parameters
fitted from the data) produces substantially
smaller values for quantile and CTE measures.
Given the markedly better fit to the data of the
RSLN model, it is possible that the risk measures
calculated using the lognormal model substan-
tially underestimate the true risk measures.
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“A Regime-Switching Model of
Long-Term Stock Returns” by
Mary Hardy, April 2001

GORDON E. KLEIN*
Dr. Hardy is to be congratulated for writing this
very interesting paper. I read it right after teach-
ing two classes covering the material on Exam 4,
and I think that it provides a wonderful example
of using the methods of that exam (fitting of
model parameters using the method of maximum
likelihood, likelihood ratio tests, Schwartz Bayes-
ian Criterion, and Akaike Information Criterion).
I would recommend it as a supplement to any-
body teaching that material.

The objective of the paper is summed up by the
title—to find a model for long-term stock returns.
In particular, Dr. Hardy describes a 10-year Eu-
ropean put option with a strike price of 75 or
100% of stock index value at contract inception.

The paper actually develops a model for short-
term (one month) stock returns—a model that is
preferred to other candidates using criteria of the
likelihood ratio test and similar tests. The main
question that I want to address is this: Can this
model for monthly stock returns lead to a suffi-
ciently good fit in the left tail of the implied
distribution of long-term stock returns to lead to
a good estimate of the price of a 10-year put
option?

SCALABILITY

One of the reasons for the continuing use of the
ill-fitting independent lognormal (ILN) model in
financial theory is that it scales. If monthly re-
turns are ILN, then so are annual returns. Only
the parameters change. That is, if

log
St11

St
, N~m, s2!

for t 5 0, 1 . . . 11, then

log
S12

S0
, N~12m, 12s2!.

This is convenient in that it leads to tractable
results. However, as Dr. Hardy points out, empir-
ical studies do not bear out the ILN model. There
are too many outcomes in the extremes of the
distributions, and the large outcomes and small
outcomes tend to be bunched together.

The Regime-Switching (R-S) model of this pa-
per incorporates both of these empirical phenom-
ena much better than the ILN does. However, it
does not scale to other time periods. This is not
merely a loss of convenience. The model does not
have what I like to think of as a “believable story”
behind it.

The “story” behind the ILN model is that of
Brownian Motion—information is incorporated
into stock prices in a continuous fashion as it
becomes known. With R-S, this story still holds,
except that at the beginning of each month, the
volatility parameter of the Brownian Motion may
change to another possible value. (In this paper,
there are two possible values for the volatility
parameter.)

It is that monthly frequency that does not
scale. For instance, if we change the model to one
with possible changes in volatility parameter at
weekly intervals, one would have two incompati-
ble models. Assuming four weeks per month for
convenience, the weekly-change model would
have five possible variances for monthly data,
corresponding to the possible values of zero, one,
two, three and four weeks where the low weekly
variance parameter is in effect. Likewise, the
monthly-change R-S model implies an annual
model where there are 13 possible variance lev-
els, but an annual-change R-S model would have
only one. Which is preferred?

A model that would scale to any time period is
one with two variance levels and a continuous-
time Markov process for the changes between
variance levels. (By the way, the continuous-time
Markov process is a topic that has been removed
from Exam 4.) The transition times are not re-
stricted to a lattice. In such a model, the smallest
monthly variance would result from being in the

* Gordon E. Klein, F.S.A, Lecturer, Dept. of Statistics and Actuarial
Science, University of Iowa, Iowa City, IA 52242, e-mail:
gklein@stat.uiowa.edu.
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low-variance state for the entire month, and the
largest would be from being in the high-variance
state for the entire month. But the variance for
any particular month could be anywhere in the
interval between these endpoints. This model is
the limiting case of the discrete-change-fre-
quency R-S model as the change frequency goes
to smaller and smaller intervals.

More generally, the variance parameter could
change in continuous time and take on values
from a continuum. This paper considers some
models of this type and rejects them. They either
do not fit the data as well as R-S, or they take too
many parameters to attain their fit. I would be
interested to see how a model such as that of the
prior paragraph fits and whether any additional
complications are justified by the benefits of scal-
ability.

IS R-S MERELY THE BEST OF THE MODELS

CONSIDERED OR IS IT TRULY GOOD

The Loss Models1 textbook discusses goodness-
of-fit tests as the next step once a model had been
selected in the manner of this paper. Parameters
have been fitted to several models, and the Like-
lihood Ratio Test and similar tests indicate the
superiority of the R-S model within the set of
models tested. But, is there some goodness-of-fit
test along the lines of the Chi-Squared and Kol-
mogorov-Smirnov tests to determine whether we
can conclude that it is a good model and not
simply the best of a set with no good models?

UNCERTAINTY OF PARAMETER ESTIMATES

Loss Models discusses the “Delta Method” for
finding an approximate confidence interval of a
function of parameter estimates. In this paper,
the six parameters that were estimated were the
means and variances of the two normal distribu-
tions (low and high volatility) and the transition
probabilities.

Dr. Hardy discusses (p. 44) the high estimates
of the standard deviations of the estimators of the
transition probabilities. For example, for the TSE
time series, the probability of shifting out of the

low volatility state in a particular month has a
point estimate of .0371 with a standard error of
.012. Likewise, the probability of shifting from
the high to the low volatility state has a point
estimate of .2101 with a standard error of .086.

The point estimates imply long-run probabili-
ties of 85% (low volatility state) and 15% (high
volatility state). If the correct values are one stan-
dard error higher (.0491) for the first probability
and one standard error lower (.1241) for the sec-
ond, then the long-run probabilities become 72%
and 28%. The long-run probabilities are sensitive
to a parameter whose value is not well known. Of
course, there are covariances in the estimates,
but these are not provided in the paper, so we
cannot mathematically perform the Delta
method. But, we can see qualitatively that uncer-
tainty in parameter estimates will lead to greater
uncertainty in the long-run probabilities.

The price of the stock or stock index being
modeled is St, where t is time in months. To price
a 10-year put option, one needs the distribution
of S120.It is clearly true that

S120 5 S0 exp FO
t50

119

log SSt11

St
DG .

Under R-S, the long-run distribution of each term
in the sum is a two-point mixture of normal dis-
tributions consisting of N(mi, si

2) with probability
pi, for i 5 1, 2. Again, without covariances of
parameter estimates, it is not possible to say how
sensitive the final function of the parameters, the
put option price, is to errors in the estimates of
the parameters. If it turns out that the confidence
interval for the put price is quite large, we would
not want to put much credence in the point esti-
mates of 1.322% (S&P) and 1.8% (TSE) for the
prices of puts with strike prices at the index value
at time 0 (p. 49).

OTHER MODELS THAT COULD BE

CONSIDERED

The two-point mixture of normals is a model that
reflects the empirical monthly data having more
extreme values than would be expected with a
single normal distribution. In fact, the indepen-
dent two-point mixture of normals might be an-
other model to consider. It has five parameters,
one fewer than R-S. It has almost the same dis-

1 Authored by Stuart Klugman, Harry Panjer, Gordon Wilmot. Pub-
lished by John Wiley & Sons (New York) in 1998.
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tribution for S120 as R-S. Would the method of
maximum likelihood produce similar results with
that model? Would it win out under the Likeli-
hood Ratio Test and its variations?

Another model that might have been consid-
ered is the Independent Log-Stable-Paretian. The
Stable Paretian distribution is a class that in-
cludes the normal. Its other members are more
“fat-tailed” than the normal, so they can be fitted
to data with more extreme values than a single
normal can be fitted to.2

Since the R-S model does not scale, it would be
interesting to see it fit with other time frequencies
for the possible parameter shifts and to see how
sensitive the 10-year put prices are to the change
in that time frequency.

CONCLUSION

In Section 8 of the paper, Dr. Hardy says that
one must have a “realistic fit in the left tail” of
the distribution of the stock price at expiration
of the put option to price it well. This is clearly
the case, but I am not convinced that this
model provides such a realistic fit. We have not
been shown its fit for the past data. And, what
evidence is there that the next 120 outcomes of
the time series St will follow the same process
as the past, even if we could say what process
that was? The last several years of stock market
returns make me think that the mean and vari-
ance may simply shift over time, not to values
from a small set of known possibilities, but to
values that would not have been thought “real-
istic” prior to their occurrence.

The history of the TSE index consists of ap-
proximately 4.5 disjoint 10-year periods. This
seems inadequate to model future 10-year peri-
ods. It would also be hard to argue that the re-
turns for each decade are outcomes of a single
random process such as that of this paper.

One other test that I would find interesting is
this: Delete the data for the most recent 120
months (in this paper, 1990–1999), and then es-
timate the parameters for the remaining data.
Find the distribution of S120, the index value at
the end of 1999. At what percentile of this distri-
bution is the actual outcome (for each index)?

Finally, it would be interesting to know how the
finance literature addresses the modeling of long-
term options, if at all. In Canada and the United
States, options are traded with maturities as long
as three years. If insurance companies have a
need for 10-year options to hedge options that
they have sold, one would thing that it might be
possible to find a seller in the financial markets.

Although I said earlier that I do not put much
credence in the numerical values calculated for
the put prices, I want to emphasize that this is not
to say that the R-S method is bad in the sense that
it can be greatly improved upon. Rather, I believe
that it may do as good a job as can be done. The
problem is that there may be answers quite dif-
ferent from those in this paper that I would also
say do about as good a job as can be done. I think
that we actuaries cannot put a value on a 10-year
put option on a stock index with anything like the
precision and confidence with which we can put a
value on more traditionally actuarial future cash
flows.
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SCALE INVARIANCE

Scale invariance is an attribute of the lognormal
distribution; it requires, for example, that the
accumulation factor for two consecutive months
should have the same distribution as the accumu-
lation factor over individual months, with appro-
priate adjustment to the parameters. The lognor-
mal distribution is not the only scale invariant
distribution; any log-stable distribution (which
includes the lognormal distribution as a special
case) would have the same feature. Scale invari-
ance is certainly a very attractive characteristic
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of any model for investment returns. The advan-
tage of having a single distribution describe the
investment returns over any time unit is consid-
erable. Also, as Mr. Klein states, there are reasons
why scale invariance is appropriate, and there are
substantial advantages in the mathematics. The
problem is that this assumption is not supported
by the data. Monthly, daily, and intra-day data all
show autocorrelations that rule out scalability –
scalability requires independent identically dis-
tributed increments, and therefore zero autocor-
relation.

Now we have a choice. To be consistent with
scale invariance will require us to use models
inconsistent with historical data. Moreover, the
bias can be expensive, in that the log-stable dis-
tributions give tails that are too thin (compared
with the data), leading to under-estimation of the
risk from low returns. The data on stock returns
show significant positive first-order autocorrela-
tion when we measure by month or by week.
Ignoring the autocorrelation gives thinner tails in
the longer term accumulation factors than are
supported by the autocorrelation structure in the
data. Mr. Klein states that the model is inconsis-
tent with the economic “story”. Well, then either
the story or the data are wrong – I choose to be
guided by the historical data.

Mr. Klein sets a lot of store by what he terms a
believable story. I would argue that the regime
switching model has just as much claim to legit-
imacy as the scale invariance story and probably
more so in an economic framework. In his origi-
nal work, Hamilton makes the point that there
are distinct macroeconomic regimes. Because eq-
uity returns are related to the expectations of
future productivity, the regime-switching model
in this paper has a very natural economic inter-
pretation. There can be more than one believable
story and perhaps some are more believable than
others.

CONTINUOUS TIME MODELS

I agree with Mr. Klein that it is useful to have
continuous time models for certain applications.
A continuous time model with a regime-switching
structure exists (Naik, 1993). However, if we take
the continuous time regime-switching process
and observe it in discrete time, we will have a
different model from that described in this paper.

I am not sure what the discrete time model de-
rived from the continuous time regime-switching
model would look like; I doubt that it would be
particularly tractable. For applications using sto-
chastic simulation, we would need to use a dis-
crete time version. For fitting to the discrete time
data available, we would need to use a discrete
time version. If stochastic simulation is the main
focus of the work, it seems reasonable to go
straight to the discrete time model. Note that Mr.
Klein’s objection to a model that is not derived
first in continuous time rules out all discrete time
series, for example, the auto-regressive or autore-
gressive conditionally heteroscedastic families for
economic application. In fact, there is an enor-
mous body of literature using these kinds of dis-
crete time distributions for economic time series,
in both the econometrics and the finance fields.
We should not rule out all these immensely useful
models because they cannot be derived from a
unifying continuous time model.

GOODNESS-OF-FIT TESTS

Goodness-of-fit tests, such as the x2 test, are ap-
plicable to larger samples where the number of
observations in various ranges can be compared
with the expected numbers from the model
tested. For smaller samples, as Mr. Klein notes,
the Kolmogorov Smirnov test can be used. In time
series, the whole concept of sample size is a bit
fuzzier. If we were to assume that returns in each
time period were independent, we could treat the
data as a random sample of 529 independent
observations and could then apply one or other
goodness-of-fit test. Once we allow for autocorre-
lation, we lose all the tests that depend on having
independent observations; rather than a set of
529 individual observations, we have one obser-
vation of a 529-variate random variable. The
goodness-of-fit tests don’t exist for single-observa-
tion data. We must determine whether the inter-
nal structure of the single observation of 529
values is consistent with the model. To accom-
plish this, we must use the model selection tests,
such as AIC, SBC, and the likelihood ratio test,
and subjective judgements such as the ability of
the model to explain outliers like the return in
October 1987.
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PARAMETER ESTIMATES

Mr. Klein has pointed out the high standard errors
for the regime-two parameters. Because the pro-
cess is not often in regime two, the estimates are,
essentially, based on fewer observations than the
regime one estimates. I agree that this is unfortu-
nate. I am happy to consider ways to improve this
situation. Using a longer data series might be one
way; although as the data extends back into the
WWII period, there may be inappropriate effects
on the estimates (unless you believe that the
estimates should allow for the possibility of an-
other world war). Mr. Klein suggests using the
delta method for a confidence interval for the put
option prices, which is a very good idea.

The delta method relies on the asymptotic
properties (i.e., large sample properties) of the
maximum likelihood estimator. These properties
apply, with certain conditions, even for time se-
ries data where the data are not independent.
However, further research on the estimation of
the parameters using Bayesian methods indicates
that the parameter estimates are not very normal
for this sample size, so we should not rely too
heavily on the asymptotic properties. See Hardy
(2001) for further details.

An interesting question is whether using a bet-
ter-fitting model with some greater parameter un-
certainty would give worse results than using a
poorly fitting model with less parameter uncer-
tainty. I think that the better fitting model would
at least give a more accurate range of results, and
I thank Mr. Klein for pointing out that the range
may be quite broad.

OTHER MODELS

The two point mixture of Normal distributions
that Mr. Klein suggests could be modelled as a
special case of the regime-switching model, where
the probability of being in regime one (say) on
month t to t 1 1 is the same whether the previous
month was spent in regime one or two. The like-
lihood ratio test p-value for this distribution com-
pared with the two-regime model in the paper is
approximately 1024. This indicates that the sim-
pler model (that is, the two point mixture) should
be rejected in favour of the regime-switching
model. This is not surprising because it is clear
that autocorrelation in the data needs to be mod-
elled, and it is not modelled in this structure.

I have also compared the log-stable distribu-
tions suggested by Mr. Klein with the regime-
switching distributions for the data used in the
paper. For the S&P 500 data, the likelihood ratio
test p-value is approximately 3 3 1024. For the
TSE 300 data, the likelihood ratio test p-value is
less than 1024. In both cases, all three model
selection criteria favour the regime-switching
model.

CONCLUSION

Mr. Klein asks what evidence there is that the
next ten years of stock returns will follow the
same process as previous years. I would reply,
what else would you have us assume?

Insurers in the UK made an alternative assump-
tion in the 1980s when they offered guaranteed
annuity rates on variable annuity type contracts.
The rates offered were out-of-the-money provided
interest rates did not fall below around 6%. Rather
than modelling using past data, the insurance
company actuaries decided that such a fall was
impossible and that there was no need to make
any provision for these options. The actuaries
were wrong, of course, and one company has
wound up and two more are in serious difficulty
because of the costs arising from these guaran-
tees. Had the actuaries used past data to model
the options, they would certainly have come to a
different conclusion. There may be adverse con-
sequences when we ignore the objective data and
rely too heavily on subjective judgement.

If insurers are to offer benefits that depend on
stock returns, actuaries must model them. And,
because we must model them, let us strive to
model them as well as possible. I would be de-
lighted to see a model perform better then the
regime-switching model. I believe that we should
be working to produce better and better models in
all actuarial applications. What must not be al-
lowed to happen is to let modelling itself fall into
disrepute because we “cannot know” whether the
past is an adequate representation of the future.
The management of variable annuity contracts in
the U.S., segregated fund contracts in Canada,
and other equity-linked products around the
world require models of the assets and liabilities.
While we offer these contracts, we need these
models.

Mr. Klein asks for the re-estimation of the pa-
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rameters without the final 10 years to determine
the quantile where the final 10-year accumula-
tion factor falls. This is called an out-of-sample
test.

The parameter estimates using data up to year
end 1989 for the TSE index are given below. The
original parameters using the full data set are
given in parentheses for comparison:

Regime 1:

m1 5 .0131; s1 5 .0339; p12 5 .0479

~full data: m1 5 .0123; s1 5 .0347;

p12 5 .0371!

Regime 2:

m2 5 2.0130; s2 5 .0741; p21 5 .2026

~full data: m2 5 2.0157; s2 5 .0778;

p21 5 .2101!

The actual accumulation factor using month end

data for the TSE 300 index, from January 1, 1989,
to December 31, 1999, was 2.917; this falls at the
55th percentile of the distribution using the pre-
1990 data. So, while Mr. Klein may not be happy
to use this model for the next ten years, it would
have provided a reasonable estimate for the ac-
cumulation factor had we used the model with the
information available at December 31, 1989.

George Box said, “All models are wrong, but
some are useful” (Box 1976). I agree completely
with Mr. Klein that the regime-switching model is
“wrong”. It may nevertheless be useful.
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