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Properties and Estimation of GARCH(1,1) Model

Petra Posedel1

Abstract

We study in depth the properties of the GARCH(1,1) model and the assump-
tions on the parameter space under which the process is stationary. In particular, we
prove ergodicity and strong stationarity for the conditional variance (squared volatil-
ity) of the process. We show under which conditions higher order moments of the
GARCH(1,1) process exist and conclude that GARCH processesare heavy-tailed.
We investigate the sampling behavior of the quasi-maximum likelihood estimator
of the Gaussian GARCH(1,1) model. A bounded conditional fourth moment of the
rescaled variable (the ratio of the disturbance to the conditional standard deviation) is
sufficient for the result. Consistent estimation and asymptotic normality are demon-
strated, as well as consistent estimation of the asymptoticcovariance matrix.

1 Introduction

Financial markets react nervously to political disorders,economic crises, wars or natural
disasters. In suchstress periodsprices of financial assets tend to fluctuate very much.
Statistically speaking, it means that the conditional variance for the given past

Var(Xt|Xt−1, Xt−2, . . .)

is not constant over time and the processXt is conditionally heteroskedastic. Econome-
tricians usually say thatvolatility

σt =
√

Var(Xt|Xt−1, Xt−2, . . .)

changes over time. Understanding the nature of such time dependence is very important
for many macroeconomic and financial applications, e.g. irreversible investments, option
pricing, asset pricing etc. Models of conditional heteroskedasticity for time series have a
very important role in today’s financial risk management andits attempts to make financial
decisions on the basis of the observed price asset dataPt in discrete time. PricesPt are
believed to be nonstationary so they are usually transformed in the so-calledlog returns

Xt = logPt − logPt−1.

Log returns are supposed to be stationary, at least in periods of time that are not too
long. Very often in the past it was suggested that(Xt) represents a sequence of inde-
pendent identically distributed random variable, in otherwords, that log returns evolve
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like a random walk. Samuelson suggested modelling speculative prices in the continuous
time with the geometric Brownian motion. Discretization ofthat model leads to a random
walk with independent identically distributed Gaussian increments of log return prices in
discrete time. This hypothesis was rejected in the early sixties. Empirical studies based
on the log return time series data of some US stocks showed thefollowing observations,
the so-called stylized facts of financial data:

• serial dependence are present in the data

• volatility changes over time

• distribution of the data is heavy-tailed, asymmetric and therefore not Gaussian.

These observations clearly show that a random walk with Gaussian increments is not a
very realistic model for financial data. It took some time before R. Engle found a discrete
model that described very well the previously mentioned stylized facts of financial data,
but it was also relatively simple and stationary so the inference was possible. Engle called
his modelautoregressive conditionally heteroskedastic- ARCH, because the conditional
variance (squared volatility) is not constant over time andshows autoregressive structure.
Some years later, T. Bollerslev generalized the model by introducing generalized au-
toregressive conditionally heteroskedastic- GARCH model. The properties of GARCH
models are not easy to determine.

2 GARCH(1,1) process

Definition 2.1 Let (Zn) be a sequence of i.i.d. random variables such thatZt ∼ N(0, 1).
(Xt) is called thegeneralized autoregressive conditionally heteroskedastic or GARCH(q,p)
process if

Xt = σtZt, t ∈ Z (2.1)

where(σt) is a nonnegative process such that

σ2
t = α0 + α1X

2
t−1 + . . .+ αqX

2
t−q + β1σ

2
t−1 + . . .+ βpσ

2
t−p, t ∈ Z (2.2)

and
α0 > 0, αi ≥ 0 i = 1, . . . , q βi ≥ 0 i = 1, . . . , p. (2.3)

The conditions on parameters ensure strong positivity of the conditional variance (2.2).
If we write the equation (2.2) in terms of thelag-operator Bwe get

σ2
t = α0 + α(B)X2

t + β(B)σ2
t , (2.4)

where
α(B) = α1B + α2B

2 + . . .+ αqB
q

and
β(B) = β1B + β2B

2 + . . .+ βpB
p. (2.5)
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If the roots of the characteristic equation, i.e.

1 − β1x− β2x
2 − . . .− βpx

p = 0

lie outside the unit circle and the process(Xt) is stationary, then we can write (2.2) as

σ2
t =

α0

1 − β(1)
+

α(B)

1 − β(B)
X2

t

= α∗
0 +

∞
∑

i=1

δiX
2
t−i (2.6)

whereα∗
0 =

α0

1 − β(1)
, andδi are coefficients ofBi in the expansion ofα(B)[1−β(B)]−1.

Note that the expression (2.6) tells us that the GARCH(q,p) process is an ARCH process
of infinite order with a fractional structure of the coefficients.

From (2.1) it is obvious that the GARCH(1,1) process is stationary if the process
(σ2

t ) is stationary. So if we want to study the properties and higher order moments of
GARCH(1,1) process it is enough to do so for the process(σ2

t ).

The following theorem gives us the main result for stochastic difference equations that
we are going to use in order to establish the stationarity of the process(σ2

t ).

Theorem 2.2 Let (Yt) be the stochastic process defined by

Yt = At +BtYt−1, t ∈ N, (2.7)

or explicitly

Yt = Y0

t
∏

j=1

Bj +
t

∑

m=1

Am

t
∏

j=m+1

Bj, t ∈ N. (2.8)

Suppose thatY0 is independent of the i.i.d. sequence
(

(At, Bt)
)

t≥1
. Assume that

E ln+ |A| <∞ and −∞ ≤ E ln |B| < 0. (2.9)

Then

(a) Yt
D→ Y for some random variableY such that it satisfies the identity in law

Y = A+BY, (2.10)

whereY and(A,B) are independent.

(b) Equation (2.10) has a solution, unique in distribution,which is given by

Y
D
=

∞
∑

m=1

Am

m−1
∏

j=1

Bj . (2.11)

The right hand side of (2.11) converges absolutely with probability 1.
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(c) If we chooseY0

D
= Y as in (2.11), then the process(Yt)t≥0 is strictly stationary.

Now assume the moment conditions

E|A|p <∞ and E|B|p < 1 for some p ∈ [1,∞).

(d) ThenE|Y |p <∞, and the series in (2.11) converges inpth mean.

(e) IfE|Y0|p <∞, then(Yt) converges toY in pth mean, and in particular

E|Yt|p → E|Y |p as t→ ∞.

(f) The momentsEY m are uniquely determined by the equations

EY m =
m

∑

k=0

(

m

k

)

E
(

BkAm−k
)

EY k, m = 1, . . . , ⌊p⌋ (2.12)

where⌊p⌋ denotes the floor function.

In the next theorem we present the stationarity of the conditional variance process(σ2
t ).

Theorem 2.3 Let (σ2
t ) be the conditional variance of GARCH(1,1) process defined with

(2.1) and (2.2). Additionally, assume that

E
[

ln
(

α1Z
2
0 + β1

)]

< 0 (2.13)

and thatσ2
0 is independent from(Zt). Then it holds

(a) the process(σ2
t ) is strictly stationary if

σ2
0

D
= α0

∞
∑

m=1

m−1
∏

j=1

(

β1 + α1Z
2
j−1

)

(2.14)

and the series (2.14) converges absolutely with probability 1.

(b) Assume that(σ2
t ) is strictly stationary and letσ = σ2

0, Z = Z1. Let E
(

β1 +

α1Z
2
)p
< 1 for somep ∈ [1,∞). ThenE

(

σ2
)m

< ∞ for some1 ≤ m ≤ ⌊p⌋. For
such integerm it holds

E
[

σ2m
]

=
[

1 − E
(

β1 + α1Z
2
)m]−1

m−1
∑

k=0

(

m

k

)

E
(

α1Z
2 + β1

)k
αm−k

0 ×

×E
[

σ2k] <∞. (2.15)

Proof: From (2.2) we have

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

or
σ2

t = α0 +
(

α1Z
2
t−1 + β1

)

σ2
t−1
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that represents a stochastic difference equation

Yt = At +BtYt−1,

whereYt = σ2
t , At = α0 andBt = α1Z

2
t−1 +β1. From the assumptions of the theorem we

have thatE ln+ |A| <∞ andE ln |B| = E
[

ln
(

β1+α1Z
2
t−1

)]

< 0.So, from Theorem 2.2
we have that

(

σ2
t

)

is strictly stationary with unique marginal distribution given by (2.14)
and this shows the first statement of the theorem. Additionally, suppose thatE

(

β1 +

α1Z
2
)p
< 1. In that case we haveE|B|p = E

(

β1 + α1Z
2
)p
< 1 for somep ∈ [1,∞) so

from part (f) of Theorem 2.2 it follows (2.15).
�

Example 2.4 Let (Xt) be GARCH(1,1) process.Let

µ(α1, β1, p) = E
(

α1Z
2 + β1

)p
, p ∈ [1,∞).

In that case, it follows from Theorem 2.3 that a necessary condition for the existence of
the stationary moment of order2m, 1 ≤ m ≤ p, of a GARCH(1,1) process is given by

µ(α1, β1, p) < 1.

In the special case ofm = 2 it follows that the stationary fourth moment of the GARCH(1,1)
process exists if

µ(α1, β1, 2) =

2
∑

j=0

(

2

j

)

ajα
j
1β

m−j
1 < 1,

that is equivalent to
β2

1 + 2α1β1 + 3α2
1 < 1.

From the recursive formula given in the Theorem 2.2 in the case ofm = 1 andm = 2 we
obtain

E
(

X2
t

)

= E
(

Z2
t

)

·E
(

σ2
t

)

=
α0

1 − α1 − β1

and

E
(

X4
t

)

= E
(

Z4
t

)

· E
(

σ4
t

)

= 3
[

α2
0 + 2E

(

X2
t

)

α0(α1 + β1)
]

·
[

1 − β2
1 − 2α1β1 − 3α2

1

]−1

= 3

[

α2
0 + 2

α2
0

1 − α1 − β1

(α1 + β1)

]

·
[

1 − β2
1 − 2α1β1 − 3α2

1

]−1

= 3α2
0

[

1 + 2
α1 + β1

1 − α1 − β1

]

·
[

1 − β2
1 − 2α1β1 − 3α2

1

]−1

= 3α2
0(1 + α1 + β1)

[

(1 − α1 − β1)(1 − β2
1 − 2α1β1 − 3α2

1)
]−1

.

Since the marginal kurtosis is given by

k =
E(X4

t )
[

E(X2
t )

]2
,
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from the previous calculus it immediately follows that

k =
3(1 + α1 + β1)(1 − α1 − β1)

1 − β2
1 − 2α1β1 − 3α2

1

.

A little calculus shows

3Var(σ2
t ) = E

(

X4
t

)

− 3
[

E
(

X2
t

)]2

=
3α2

0(1 + α1 + β1)

(1 − α1 − β1)(1 − β2
1 − 2α1β1 − 3α2

1)
− 3

[

α0

1 − α1 − β1

]2

=
3α2

0

(1 − α1 − β1)2
· 2α2

1

(1 − β2
1 − 2α1β1 − 3α2

1)
. (2.16)

Since from the assumptions we have thatα0 > 0, 1−α1 − β1 > 0 and1− β2
1 − 2α1β1 −

3α2
1 < 1, it follows that all the factors in (2.16) are positive so we conclude that the

GARCH(1,1) process has the so-calledleptokurtic distribution.

3 Estimation of the GARCH(1,1) model

Although in this section we assume that(Zt) are i.i.d. sequence of random variables,
the results we shall present can also be shown for the(Zt) strictly stationary and ergodic
sequence of random variables. In that case, the assumptionsfor the process(Zt) are little
modified but the main part of the calculus we present here alsoholds for not such strong
assumptions.

3.1 Description of the model and the quasi-likelihood function

Suppose we observe the sequence(Yt) such that

Yt = C0 + ε0t, t = 1, . . . , n,

where we assume that(ε0t) is GARCH(1,1) process, exactly

ε0t = Ztσ0t, Ft = σ
(

{ε0s, s ≤ t}
)

,

where(Zt) is a sequence of i.i.d. random variables and

σ2
0t = ω0(1 − β0) + α0ε

2
0t−1 + β0σ

2
0t−1 a.s. (3.1)

From Theorem 2.2 we have that the strict stationary solutionof (3.1) is given by

σ2
0t = ω0 + α0

∞
∑

k=0

βk
0 ε

2
0t−1−k a.s.

if it holdsE
[

ln
(

β0 +α0Z
2
)]

< 0. The process is described with the vector of parameters

θ0 =
(

C0, ω0, α0, β0

)

.
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The model for the unknown parametersθ =
(

C, ω, α, β)′ is given by

Yt = C + εt, t = 1, . . . , n,

and
σ2

t (θ) = ω(1 − β) + αε2
t−1 + βσ2

t−1(θ), t = 2, . . . , n

and with the initial conditionσ2
1(θ) = ω.With that kind of notation we have the following

expression for the process of conditional variance:

σ2
t = ω + α

t−2
∑

k=0

βkε2
t−1−k.

Let us define the compact space

Θ =
{

θ : Cl ≤ C ≤ Cd, 0 < ωl ≤ ω ≤ ωd, 0 < αl ≤ α ≤ αd,

0 < βl ≤ β ≤ βd < 1
}

⊆
{

θ : E
[

ln
(

β + αZ2
)]

< 0
}

.

Additionally, assume thatθ0 ∈ Θ so it immediately follows thatα0 > 0 andβ0 > 0.
Inference for GARCH(1,1) process usually assumes that(Zt) are i.i.d. random variables
such thatZt ∼ N(0, 1) so the likelihood function is easy to determine. Assuming that
the likelihood function is Gaussian, the log-likelihood function is of the form (ignoring
constants)

LT (θ) =
1

2T

T
∑

t=1

lt(θ), where lt(θ) = −
(

ln σ2
t (θ) +

ε2
t

σ2
t (θ)

)

.

Since the likelihood function does not need to be Gaussian, in other words, the process
(Zt) does not need to be the Gaussian white noise,LT is called thequasi-likelihood
function.

3.2 Consistency of the quasi-maximum likelihood estimator

Although a finite data set is available in practice, this is not enough to determine good
properties of an estimator. We shall see in this section how useful results can be obtained
taking into consideration the strictly stationary model for the conditional variance that we
have previously defined. We shall note it in the following way

σ2
ut(θ) = ω + α

∞
∑

k=0

βkε2
t−1−k, εt = Yt − C,

to avoid confusion with the original conditional variance process(σ2
t ). In that case the

quasi-likelihood function is given by

LuT (θ) =
1

2T

T
∑

t=1

lut(θ), where lut(θ) = −
(

ln σ2
ut(θ) +

ε2
t

σ2
ut(θ)

)

.
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Additionally, we are going to show that the stationary and the non-stationary model
are not ”far away” in some sense. So, all the calculus is done using the stationary model
and then connecting the two models.

Let us define

σ2
εt(θ) = ω + α

∞
∑

k=0

βkε2
0t−1−k.

The process(σ2
ut) is a strictly stationary model of the conditional variance which assumes

an infinite history of the observed data. The process(σ2
εt) is in fact identical to the process

(σ2
ut) except that it is expressed as a function of the true innovations(ε0t) instead of the

residuals(εt).
We suppose that the following conditions on the process(Zt) hold:

(1) (Zt) is a sequence of i.i.d. random variables such thatEZt = 0;

(2) Z2
t is nondegenerate;

(3) for someδ > 0 existsSδ <∞ such thatE
[

Z2+δ
t

]

≤ Sδ <∞;

(4) E
[

ln
(

β0 + α0Z
2
t

)]

< 0;

(5) θ0 is in the interior ofΘ;

(6) if for somet holds

σ2
0t = c0 +

∞
∑

k=1

ckε
2
t−k i σ2

0t = c∗0 +

∞
∑

k=1

c∗kε
2
t−k

thenci = c∗i for every1 ≤ i <∞.

We call the conditions(1) − (6) elementary conditions.
The proof for the following result for the case of the generalGARCH(q, p) process can
be found in [5].

Proposition 3.3 If the elementary conditions hold, there are not two different vectors
(

ω, α, β, C
)

and
(

ω∗, α∗, β∗, C∗
)

such that

σ2
0t = ω∗ + α∗

(

Yt−1 − C∗
)2

+ β∗σ2
0t−1

and
σ2

0t = ω + α
(

Yt−1 − C
)2

+ βσ2
0t−1.

The following lemma would be very helpful for the results we shall provide. The
proof can be found in [10].

Lemma 3.4 Uniformly onθ

B−1σ2
εt(θ) ≤ σ2

ut(θ) ≤ Bσ2
εt(θ) a.s.

where

B = 1 + 2(1 − βd)
− 1

2 (Cd − Cl) × max

(

αd

ωl

, 1

)

+
αd

ωl(1 − βd)

(

Cd − Cl

)2
.
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Although we are not going to discuss the rational moments of the process
(

σ2
0t

)

, we will
still mention that, under the elementary conditions, thereexists0 < p < 1 such that

E
(

σ2
0t

)p
<∞. (3.2)

The proof for such a result can be found in [13], Theorem4.
The following lemma gives us the basic properties of the process

(

σ2
ut

)

and the likelihood
function(lut).

Lemma 3.5 If theelementary conditionshold

(i) The process
(

σ2
ut(θ)

)

is strictly stationary and ergodic;

(ii) The process
(

lut(θ)
)

and the processes of its first and second derivatives with re-
spect toθ are strictly stationary and ergodic for everyθ in Θ;

(iii) For some0 < p < 1 and for everyθ ∈ Θ it holds

E
∣

∣σ2
ut(θ)

∣

∣

p ≤ Hp <∞.

Proof: The statement (1) follows from Theorem 2.3.

Sincelut(θ) = −
(

ln σ2
ut(θ) +

ε2
t

σ2
ut(θ)

)

, and

∂lut

∂ω
=

(

ε2
t

σ2
ut

− 1

)

∂σ2
ut(θ)

∂ω

1

σ2
ut(θ)

, (3.3)

∂lut

∂α
=

(

ε2
t

σ2
ut

− 1

)

∂σ2
ut(θ)

∂α

1

σ2
ut(θ)

, (3.4)

∂lut

∂C
=

(

ε2
t

σ2
ut

− 1

)

∂σ2
ut(θ)

∂C

1

σ2
ut(θ)

− 2
εt

σ2
ut(θ)

(3.5)

and
∂lut

∂β
=

(

ε2
t

σ2
ut

− 1

)

∂σ2
ut(θ)

∂β

1

σ2
ut(θ)

, (3.6)

where
∂σ2

ut

∂ω
= 1 + β

∂σ2
ut−1

∂ω
, (3.7)

∂σ2
ut

∂α
= ε2

t−1 + β
∂σ2

ut−1

∂α
, (3.8)

∂σ2
ut

∂C
= −2αεt−1 + β

∂σ2
ut−1

∂C
(3.9)

and
∂σ2

ut

∂β
= σ2

ut−1 + β
∂σ2

ut−1

∂β
, (3.10)

it follows that the processlut(θ) and processes of its first and second derivatives are mea-
surable functions of strictly stationary and ergodic process(εt) and so they are also strictly
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stationary and ergodic. Finally, let0 < p < 1 from (3.2). Then it follows from Lemma
3.4

E
(

σ2
ut(θ)

)p ≤ BpE
(

σ2
εt(θ)

)p

= BpE

(

ω + α

∞
∑

k=0

βkε2
0t−1−k

)p

≤ Bp

[

ωp + αp

∞
∑

k=0

βkpE
(

ε
2p
0t−k−1

)

]

.

Sinceε2
0t−1−k ≤ α−1

0 σ2
0t for everyk, using (3.2) it follows

E
(

σ2
ut

)p ≤ Bp

[

ωp + αp

∞
∑

k=0

βkp 1

α
p
0

E
(

σ
2p
0t

)

]

= Bp

[

ωp +
αp

α
p
0

E
(

σ
2p
0t

) 1

1 − βp

]

≤ Bp

[

ω
p
d +

α
p
d

α
p
0

E
(

σ
2p
0t

) 1

1 − β
p
d

]

≡ Hp <∞.

�

Some nontrivial calculus give us the following result.

Lemma 3.6 Under theelementary conditionsit holds

sup
θ∈Θ

∣

∣LuT (θ) − LT (θ)
∣

∣ −→ 0 a.s. when T → ∞.

Finally, we want to find additional constraints for the expression
σ2

0t

σ2
ut

and its in-

verse uniformly onθ ∈ Θ. We will do so by splitting the parameter space. LetRl =

R(K−1

l αl) < 1 whereR(ψ) =
2 + ψP
2 + ψ

< 1, for ψ > 0, P = 1 −
[

1

2
2+δ

δ S
2

δ

δ

]

∈ (0, 1)

andSδ define in the elementary conditions andKl =
ωd

ω0

+
αd

α0

< ∞. Let ηl andηd be

positive constants such that

ηl < β0

(

1 −R
1

12

l

)

and ηd < β0

(

1 −R
1

12

0

)

,

whereR0 = R(α0) < 1. For1 ≤ r ≤ 122 define constants

βrl = β0R
1

r

l + ηl < β0 and βrd =
β0 − ηd

R
1

r

0

> β0,

subspaces

Θ
r

l
= {θ ∈ Θ : βrd ≤ β ≤ β0} and Θ

r

d
= {θ ∈ Θ : β0 ≤ β ≤ βrd}

2We will needr to be12 in Lemma 4.2. Our aim is to find the minimalr so that all the statements
presented bellow hold for everyθ ∈ Θr.
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andΘr = Θr
l ∪ Θr

d. The valuesηl andηd will depend on constantsRl andR0 which are
functions of the parameter spaceΘ.

Observe that we can chooseΘ = Θrmax
⊆ Θr, for all 1 ≤ r ≤ 12. Now we are able

to present the result about the convergence in probability of the unconditional likelihood
process.

Lemma 3.7 Under theelementary conditionsfor everyθ ∈ Θ1 it holds:

(1) E

(

ε2
t

σ2
ut(θ)

)

≤ H1 ≡
(Cd − Cl)

2

ωl

+BHc whereHc =
ω0

ωl

+
α0

αlηl

<∞.

In this case it holds

(2) LuT (θ)
P−→ L(θ) whenT → ∞, whereL(θ) = E

(

lut(θ)

2

)

.

Proof: It is straightforward to show that
∥

∥

σ2
0t

σ2
εt(θ)

∥

∥

r
≤ Hc. Hence, using Lemma 3.4 and

g = C0 − C we have the following

E

(

ε2
t

σ2
ut

)

= E

(

(

ε0t + g
)2

σ2
ut

)

= BE

[

ε2
0t

σ2
εt

]

+ 2gE

[

1

σ2
ut

E
(

ε0t|Ft−1

)

]

+ E

[

g2

σ2
ut

]

≤ BE

[

ε2
0t

σ2
εt

]

+
g2

ωl

= BE

[

σ2
0t

σ2
εt

]

+
g2

ωl

≤ B ‖ σ
2
0t

σ2
εt

‖1 +
g2

ωl

so

E

(

ε2
t

σ2
ut

)

≤ BHc +
g2

ωl

≤ BHc +

(

Cd − Cl

)2

ωl

≡ H1

that proves the first statement. Additionally, we have

E
∣

∣lut(θ)
∣

∣ = E

∣

∣

∣

∣

ln
(

σ2
ut(θ)

)

+
ε2

t

σ2
ut(θ)

∣

∣

∣

∣

≤ E
∣

∣ ln
(

σ2
ut(θ)

)
∣

∣ + E

(

ε2
t

σ2
ut(θ)

)

.
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But, forx ≥ 1 and0 < p < 1 it holds the inequalityln x <
1

p
xp, so we have

E
∣

∣ ln σ2
ut(θ)

∣

∣ ≤
∣

∣ lnωl

∣

∣ + E

∣

∣

∣

∣

ln
σ2

ut(θ)

ωl

∣

∣

∣

∣

≤
∣

∣ lnωl

∣

∣ +
1

p
E

[(

σ2
ut(θ)

ωl

)p]

=
∣

∣ lnωl

∣

∣ +
1

pωl

E
[

σ
2p
ut (θ)

]

since
σ2

ut(θ)

ωl

≥ 1. Finally, using Lemma 3.5 we have

E
∣

∣lut(θ)
∣

∣ <∞.

Since(lut(θ)) is strictly stationary and ergodic, it follows

LuT (θ) =
1

2T

T
∑

t=1

lut(θ)
P−→ 1

2
E

[

lut(θ)
]

= L(θ), ∀ θ ∈ Θ1.

�

The convergence in probability that we have presented in Lemma 3.7 is not a sufficient
condition for the consistency of the quasi-maximum likelihood estimator. It is necessary
that the convergence we have previously obtained holds uniformly. In order to obtain that,
it is sufficient to find an upper bound for the score vector of the log-likelihood function
∇lut(θ) uniformly onθ. The details regarding the explicit forms of the upper boundscan
be found in [10].

Let

|A| =
(

tr(AA′)
)

1

2 and ‖A‖r =
(

E|A|r
)

1

r

be the Euclidean norm of a matrix or a vector and theLr norm of a random matrix or a
vector respectively.

Now we are going to present the local consistency of the quasi-maximum likelihood
estimator. Let us define

θ̂T = arg max
θ∈Θ3

LT (θ).

θ̂T is the parameter value that maximizes the likelihood function on the setΘ3 ⊂ Θ.

Theorem 3.8 Undertheelementary conditions

θ̂T
P−→ θ0 when T → ∞.
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4 Asymptotic normality of the quasi-maximum likelihood
estimator

In this section we present the asymptotic distribution of the quasi-maximum likelihood
estimator (QMLE). In order to do so, we need stronger conditions on the process(Zt)
than theelementary conditionswe have given in the previous section. In fact, we pretend
that the fourth moment of the random variableZt is finite. We are going to call the
following conditionadditional condition.

E
(

Z4
0

)

≤ K <∞.

We do not present the proof for the following results as this would require long and non-
trivial calculus.

Lemma 4.1 Under theelementary conditionsand underadditional conditionit holds

(i) E|∇lut(θ)∇lut(θ)
′| <∞, for everyθ ∈ Θ12;

(ii)
1√
T

T
∑

t=1

∇lt(θ0) D−→ N(0, A0), whereA0 = E
(

∇lut(θ0)∇lut(θ0)
′
)

.

Let

BT (θ) = − 1

T

T
∑

t=1

∇2lt(θ) and B(θ) = −E∇2lut(θ).

Lemma 4.2 Suppose theelementary conditionsand theadditional conditionto hold.
Then

(i) E sup
θ∈Θ12

∣

∣∇2lut(θ)
∣

∣ <∞;

(ii) For i = 1, 2, 3, 4, E sup
θ∈Θ12

∣

∣

∣

∣

∂

∂θi

∇2lut(θ)

∣

∣

∣

∣

<∞, whereθi is the i-th element ofθ;

(iii) sup
θ∈Θ12

|BT (θ) − B(θ)| P−→ 0 andB(θ) is a continuous function onΘ12.

The following result presents one of the classical results in asymptotic analysis and it
will be the basic tool for our further considerations. The details regarding the proof can
be found in [9, p. 185].

Theorem 4.3 Let (XT ) be a sequence of random(m × n) matrices and let(YT ) be a

sequence of random(n×1) vectors such thatXT
P−→ C andYT

D−→ Y ∼ N(µ,Ω) when
T → ∞. Then the limiting distribution of(XTYT ) is the same as that ofCY ; that is

XTYT
D−→ N(Cµ,CΩC ′) when T → ∞.

The following result assures thatB0 is a regular matrix.
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Lemma 4.4 Suppose that the joint distribution of(εt, ε
2
t , σ

2
ut) is nondegenerate. Then for

everyθ ∈ Θ the matrix

E

[

∂σ2
ut

∂θ

∂σ2
ut

∂θ′
σ−4

ut

]

is positive definite.

Finally, we have all the necessary results for studying the asymptotic behavior of the
parameter estimator. In fact, using the results presented above, the following theorem can
be proved.

Theorem 4.5 Suppose theelementary conditionsand theadditional conditionto hold.
Then √

T
(

θ̂T − θ0
) D−→ N(0, V0),

whereV0 = B−1
0 A0B

−1
0 , B0 = B(θ0) = −E

(

∇2lut(θ0)
)

andA0 is defined in Lemma 4.1.

Notice thatA0 = −1

2

(

EZ4
0 −1

)

B0. So, in the case in which(Zt) is a sequence of random

variables such thatZt ∼ N(0, 1) we would haveEZ4
0 − 1 = 2 andA0 = −B0.

Let B̂T = BT (θ̂T ). In the case of maximum likelihood estimator,B̂T would be the stan-
dard estimator of the covariance matrix. But in a more general case of quasi-maximum
likelihood estimator, the asymptotic covariance matrix isB−1

0 A0B
−1
0 according to Theo-

rem 4.5. Since this is not equal toB−1
0 , B̂T would not be a consistent estimator of that

value.
Let us define

AT (θ) =
1

T

T
∑

t=1

∇lt(θ)∇lt(θ)′

and

ÂT = AT (θ̂T ) and A(θ) = E∇lut(θ)∇lut(θ)
′.

The following result presents the consistency of the covariance matrix estimator.

Lemma 4.6 Suppose theelementary conditionsand theadditional conditionto hold.
Then

(i) sup
θ∈Θ12

∣

∣AT (θ) −A(θ)
∣

∣

P−→ 0 andA(θ) is continuous onΘ12;

(ii) V̂T = B̂−1

T ÂT B̂
−1

T

P−→ B−1
0 A0B

−1
0 .

Lemma 4.6 completes our characterization of classical properties of the QMLE for
GARCH(1, 1) model. We show that the covariance matrix estimator is consistent for the
asymptotic variance of the parameter estimator.
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