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Properties and Estimation of GARCH(1,1) Model

Petra Posedel

Abstract

We study in depth the properties of the GARCH(1,1) model dedassump-
tions on the parameter space under which the process isr&tati In particular, we
prove ergodicity and strong stationarity for the condiéibvariance (squared volatil-
ity) of the process. We show under which conditions higheleomoments of the
GARCH(1,1) process exist and conclude that GARCH procease$ieavy-tailed.
We investigate the sampling behavior of the quasi-maximikelihood estimator
of the Gaussian GARCH(1,1) model. A bounded conditionaftfommoment of the
rescaled variable (the ratio of the disturbance to the ¢mmdil standard deviation) is
sufficient for the result. Consistent estimation and asptiphormality are demon-
strated, as well as consistent estimation of the asymptotiariance matrix.

1 Introduction

Financial markets react nervously to political disorderxnomic crises, wars or natural
disasters. In suchtress periodgrices of financial assets tend to fluctuate very much.
Statistically speaking, it means that the conditionalasace for the given past

Var(Xt|Xt_1, Xt_g, .. )

is not constant over time and the procé§sis conditionally heteroskedastic. Econome-
tricians usually say thatolatility

[ \/Var(Xt|Xt_1, Xt_g, .. )

changes over time. Understanding the nature of such timendigmce is very important
for many macroeconomic and financial applications, e.gvarsible investments, option
pricing, asset pricing etc. Models of conditional hetesmiasticity for time series have a
very important role in today’s financial risk managementigmdttempts to make financial
decisions on the basis of the observed price assetiglatadiscrete time. Price®; are
believed to be nonstationary so they are usually transfdiméhe so-calledog returns

Xt = IOgPt — lOgPt_l.

Log returns are supposed to be stationary, at least in peabtime that are not too
long. Very often in the past it was suggested th#t) represents a sequence of inde-
pendent identically distributed random variable, in otiverds, that log returns evolve
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like a random walk. Samuelson suggested modelling spegeilatices in the continuous
time with the geometric Brownian motion. Discretizatiortloéit model leads to a random
walk with independent identically distributed Gaussiacr@ments of log return prices in
discrete time. This hypothesis was rejected in the earlyesix Empirical studies based
on the log return time series data of some US stocks showddltbeing observations,
the so-called stylized facts of financial data:

¢ serial dependence are present in the data
¢ volatility changes over time
¢ distribution of the data is heavy-tailed, asymmetric areteéfore not Gaussian.

These observations clearly show that a random walk with Sansncrements is not a
very realistic model for financial data. It took some timedvefR. Engle found a discrete
model that described very well the previously mentionetiztg facts of financial data,
but it was also relatively simple and stationary so the erfiee was possible. Engle called
his modelautoregressive conditionally heteroskedasA&RCH, because the conditional
variance (squared volatility) is not constant over time sindws autoregressive structure.
Some years later, T. Bollerslev generalized the model bydicing generalized au-
toregressive conditionally heteroskedasti@ARCH model. The properties of GARCH
models are not easy to determine.

2 GARCH(1,1) process

Definition 2.1 Let(Z,,) be a sequence of i.i.d. random variables such that N (0, 1).
(X;) is called thegeneralized autoregressive conditionally heter oskedastic or GARCH(,p)
process if

X, =07, tel (2.1)

where(o;) is a nonnegative process such that
ol=ap+a X2, +...+ oqutz_q +Biot .+ Bpaf_p, teZ (2.2)

and
ap>0, >0 1=1,...,q >0 i1=1,...,p. (2.3)

The conditions on parameters ensure strong positivity@ttnditional variance (2.2).
If we write the equation (2.2) in terms of tlheg-operator Bwe get

02 = ap+ a(B)X? + B(B)o?, (2.4)

where
a(B) =B+ ayB* + ... + a,B*

and
B(B) = 3B+ 3,B*+ ...+ (3,B". (2.5)
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If the roots of the characteristic equation, i.e.
1—le—ﬁ2x2—...—ﬁpx7’:0

lie outside the unit circle and the procés§,) is stationary, then we can write (2.2) as

2 @o a(B) 2
o, = + X
' 1-p(1)  1-p(B)""
= aj+ ) 6X7, (2.6)
i=1
wherea] = 1_047;(1), andg; are coefficients of3’ in the expansion of( B)[1—3(B)] .

Note that the expression (2.6) tells us that the GARE)(process is an ARCH process
of infinite order with a fractional structure of the coefficis.

From (2.1) it is obvious that the GARCH(1,1) process is ety if the process
() is stationary. So if we want to study the properties and higinder moments of
GARCH(1,1) process it is enough to do so for the pro¢ess

The following theorem gives us the main result for stocleatifference equations that
we are going to use in order to establish the stationaritheproces$o?).

Theorem 2.2 Let (Y;) be the stochastic process defined by

Y, = A + BY,, teN, (2.7)
or explicitly
t t t
=Y [[Bi+> An [] B; teN (2.8)
7j=1 m=1 j=m+1

Suppose thatj is independent of the i.i.d. sequer(cﬁelt, Bt)) Assume that

t>1"
ElnT|Al| <o and —oco< EIn|B|<0. (2.9)
Then
(@) Y, L.y for some random variabl& such that it satisfies the identity in law
Y = A+ BY, (2.10)
whereY and (A, B) are independent.

(b) Equation (2.10) has a solution, unique in distributi@rich is given by

m—1

i A TT B;. (2.11)

m=1 7j=1

[iS]

Y

The right hand side of (2.11) converges absolutely with aiality 1.



246 Petra Posedel

(c) If we choosé 2y asin (2.11), then the process;);> is strictly stationary.
Now assume the moment conditions
E|AP <oco and FE|BP <1 forsomep € [1,00).
(d) ThenE|Y|P < oo, and the series in (2.11) convergespith mean.
(e) If E|Yy|P < oo, then(Y;) converges td” in pth mean, and in particular

E\Y,|P — E|Y|? ast— 0.

() The moment&'Y™ are uniquely determined by the equations

m

EY"=%" (m)E(BkAm—k)EYk, m=1,...,|p] (2.12)

k
k=0
where|p| denotes the floor function.
In the next theorem we present the stationarity of the canrit variance process?;).

Theorem 2.3 Let (07) be the conditional variance of GARCH(1,1) process definei wi
(2.1) and (2.2). Additionally, assume that

E[ln (a1 Zg + 61)] <0 (2.13)
and thato? is independent fromiZ;). Then it holds

(a) the processo?) is strictly stationary if

oo m—1

o2 Z a0 [ (B +z (2.14)

m=1 j=1
and the series (2.14) converges absolutely with probailit

(b) Assume thato;) is strictly stationary and lev = o5, Z = Z;. Let E(3 +
a12°%)" < 1for somep € [1,00). ThenE(0*)™ < oo for somel < m < |p]. For
such integern it holds

m—1

E[o*™] = [1-EG +az?)" 12() (1 22+ B1) " x

k=0
xE[o**] < oo. (2.15)

Proof: From (2.2) we have
O'? = Qg + OélXt{l + Blat{la

or
o =g+ (2 + Bi)o; 4
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that represents a stochastic difference equation
Y, = A+ BY, 1,

whereY, = af, Ay = ap andB; = oy Z2 | + 3,. From the assumptions of the theorem we
have that? In* |A| < coandEIn |B| = E[In (61+a1Z; )] < 0. So, from Theorem 2.2
we have tha{o}) is strictly stationary with unique marginal distributioiven by (2.14)
and this shows the first statement of the theorem. Additighalippose thaE(ﬁl +
a;1Z%)" < 1. In that case we havE|B|’ = E(3 + a;2%)" < 1 for somep € [1,0) S0
from part (f) of Theorem 2.2 it follows (2.15).

[

Example 2.4 Let (X;) be GARCH(1,1) process.Let

plag, Br,p) = E(Oé122 + 51)p, p € [1,00).

In that case, it follows from Theorem 2.3 that a necessaryition for the existence of
the stationary moment of ordem, 1 < m < p, of a GARCH(1,1) process is given by

M(alaﬁlap) < 1.

In the special case of = 2 it follows that the stationary fourth moment of the GARCH(L,

process exists if
2

p(a, Br,2) Z ( )%04151% T<,

7=0
that is equivalent to
ﬁ% + 20(151 + 30[% < 1.

From the recursive formula given in the Theorem 2.2 in the cds: = 1 andm = 2 we

obtain
Qg

B(X?) = E(Z) - B(o) = 15 —5

and
E(X)) = E(Z)-E(o})

= 3[&0 + QE(X )OéQ(Ozl + ﬁl)] . [1 - ﬁ12 - QOzlﬁl - 30&%}71

2
= 3{% + Q%ﬁl(al +ﬁ1)] [1- B2 —200p — 303
= 3a2 {1 + 2%} =B =206 —303] "
— 1 — M1

= 3a5(1+a1+ ) [(1 —a1 = B)(1 = Bf = 2011 — 30‘%)}_1

Since the marginal kurtosis is given by

E(X})

k=l
[E(X?)]
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from the previous calculus it immediately follows that

314+ +61)(1—ar — 51)

k=
1- 5% — 20131 — 304%

A little calculus shows

3Var(c?) = E(Xf)—?’[E(XtQ”Q

B 303(1+ag + (1) B o ?
- (I—a=B)(1 = = 20151 — 3a7) l—a1—p
3a3 202

- . ) 2.16
(1—ar—p)? (1- 512 — 20181 — 304%) ( )
Since from the assumptions we have that> 0, 1 — a; — 3, > 0 and1 — 32 — 20, 3; —

3a? < 1, it follows that all the factors in (2.16) are positive so wenclude that the
GARCH(1,1) process has the so-callegtokurtic distribution

3 Estimation of the GARCH(1,1) model

Although in this section we assume th@f;) are i.i.d. sequence of random variables,
the results we shall present can also be shown fof Zhestrictly stationary and ergodic
sequence of random variables. In that case, the assumfiticthe proces$Z,) are little
modified but the main part of the calculus we present heretaiats for not such strong
assumptions.

3.1 Description of the model and the quasi-likelihood funabn

Suppose we observe the sequefiGé such that
Y, = Cy + eos, t=1,...,n,
where we assume théty,) is GARCH(1,1) process, exactly
Eor = Zi00t, Fi = 0’({608, s < t}),

where(Z,) is a sequence of i.i.d. random variables and

Ugt = wo(1 — Bo) + aoggt—l + Boagtfl a.s. (3.1)

From Theorem 2.2 we have that the strict stationary solwifdB.1) is given by
o8 = Wo + g Z Bred |, a.s.
k=0

ifit holds £ In (6 + o Z?)] < 0. The process is described with the vector of parameters

0o = (Coawoaﬁlo’ﬁo)-
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The model for the unknown parametérs- (C, w, a, 3)"is given by
Y;:C‘th, t:]_,...,TL,
and
0'152(9):W(l—ﬁ>+a€?71—|—ﬁ0'?71(9), t:27"'7n

and with the initial conditiom? () = w. With that kind of notation we have the following
expression for the process of conditional variance:

t—2
2 k2
o, =W+« E B 1 k-
k=0

Let us define the compact space

0 = {Q:ClSCSC’d,O<w1Swgwd,0<al§a§ad,

0<B<B<Pa<1y
C {0:E[ln(B+aZ?)] <0}

Additionally, assume tha, € © so it immediately follows thaty, > 0 and 3, > 0.
Inference for GARCH(1,1) process usually assumes(thgtare i.i.d. random variables
such thatZ, ~ N(0, 1) so the likelihood function is easy to determine. Assumirgg th
the likelihood function is Gaussian, the log-likelihoodh@ion is of the form (ignoring
constants)

L(0) = % S L(6), where 1,(6) = —(ln o2(6) + Utf(te)).

Since the likelihood function does not need to be Gaussmather words, the process
(Z;) does not need to be the Gaussian white nalsejs called thequasi-likelihood
function.

3.2 Consistency of the quasi-maximum likelihood estimator

Although a finite data set is available in practice, this i$ @mough to determine good
properties of an estimator. We shall see in this section rewfull results can be obtained
taking into consideration the strictly stationary modeltfee conditional variance that we
have previously defined. We shall note it in the following way

o (9) :W“‘O‘Zﬁk@?ﬁlfb g =Y, —C,
k=0

to avoid confusion with the original conditional varianc@gess(o;). In that case the
quasi-likelihood function is given by
1 2
L.r(0) = 5T Zlut(H), where [,,(0) = —(ln o2(0) + = )

t=1




250 Petra Posedel

Additionally, we are going to show that the stationary anel lon-stationary model
are not "far away” in some sense. So, all the calculus is deimgthe stationary model
and then connecting the two models.

Let us define

o4(0) =w +a Z ﬁkggt—l—k-
k=0

The proces$o?,) is a strictly stationary model of the conditional variandeieh assumes
an infinite history of the observed data. The prodess is in fact identical to the process
(02,) except that it is expressed as a function of the true innonatk;) instead of the
residualge;).

We suppose that the following conditions on the progess hold:

(1) (4;) is a sequence of i.i.d. random variables such hat = 0;
(2) Z? is nondegenerate;

(3) for some’ > 0 existsS; < oo such that& [Zf”] < S5 < 00;
4) E[In (8o + a0Z})] < 0;

(5) 6, is in the interior ofoO:;

(6) if for somet holds

o0 o0

2 2 T « 2

Og = Co T+ E CrkEi_p 1 O = Co+ E CLE—k
=1 =1

thenc; = ¢} for everyl <i < oo.

We call the condition$l) — (6) elementary conditions
The proof for the following result for the case of the gen@&RCH(g, p) process can
be found in [5].

Proposition 3.3 If the elementary conditions hold, there are not two différeectors
(w,a,3,C) and (w*, a*, %, C*) such that
oy = w* +a* (Yo — C*)2 + Bog, 4
and ,
oy =w—+a(Yey —C)" + Bog,_,.

The following lemma would be very helpful for the results wel provide. The
proof can be found in [10].

Lemma 3.4 Uniformly onf
B~02,(0) < 02,(0) < Bo(0) a.s.

where

=

B=1+2(1-3,) <Cd—cl>xmax(%,1)+w(“d
l

m 0= Ba) (Ca—C)".
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Although we are not going to discuss the rational momenth@ptocesiagt), we will
still mention that, under the elementary conditions, tlexists0 < p < 1 such that

E(0g,)" < o0. (3.2)

The proof for such a result can be found in [13], Theorem
The following lemma gives us the basic properties of the me@rit) and the likelihood
function ().

Lemma 3.5 If the elementary conditionisold
(i) The procesgo:,(6)) is strictly stationary and ergodic;

(i) The procesyl,.(¢)) and the processes of its first and second derivatives with re-
spect ta) are strictly stationary and ergodic for eveéyin ©;

(i) For some0 < p < 1 and for every € O it holds
Elo2,(0)" < H, < 0.

Proof: The statementl{ follows from Theorem 2.3.

. g2
Sincel,,(0) = —(ln o2, (0) + 0_5—29)) and

azut g2 ) 1
- ()" &)
8lut ( g2 ) [(0) 1
— , 3.4
72 ) G4
6lut 5% aO’ut( ) 1 Et
L A | -9 )
oc <o— ) oC o7 (@)  Zo2,0) (3:9)
and ol do2,(0) 1
ut gt Uut
== -1 3.6
op (mﬂ op Uit(ﬁ)’ (3:6)
where oo 952
Uut O-utfl
=1 —utml T
&Tzzn 2 8‘712“54
B G T & P (3.8)
80515 3t 1
50 = —20e-1+ B (3.9)
and , 952
90w _ yo 5% (3.10)

85 :Uut—l 85 )

it follows that the procesk,;(6) and processes of its first and second derivatives are mea-
surable functions of strictly stationary and ergodic pes¢e;) and so they are also strictly
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stationary and ergodic. Finally, I6t< p < 1 from (3.2). Then it follows from Lemma
3.4

E(02,(0))" < BPE(0(0)"
— BpE<w+aiﬁkagtlk)p
k=0

< B? {wp + apZﬁka(agf_k_l)} :

k=0

Sincesy, ;. < op'og, for everyk, using (3.2) it follows

E(O’it)p < BP|lwP+ QPZkaaigE(USf)]
L k=0

[ aP 9 1
= B+ —=E(o)f }
i ag (Ot)l_ﬁp
r P
BP wg—i-a—gE(agf)ip
%) 1 -5,

IN

}EHp<OO.

Some nontrivial calculus give us the following result.

Lemma 3.6 Under theelementary conditionis holds
sup |Lur(0) — Lr(0)] — 0 as. when T — oc.
00

2
Finally, we want to find additional constraints for the e)qmiena—gt and its in-
ut
verse uniformly ord € ©. We will do so by splitting the parameter space. &t =

2 1

R(K; 'ay) < 1 whereR(¢y) = + P <1l,fory >0,P=1- [ 2} € (0,1)
2+9 580

andS;s define in the elementary conditions aAg = wd + &d < oo. Letn, andny be

... wWo (&)
positive constants such that

ol

771<50(1—Rz%2) and na < Bo(1 =R

whereR, = R(ap) < 1. For1 < r < 122 define constants

)

1 —
ﬁrl = 607?’[ +m < ﬁO and Brd = ﬁo lnd > 507
R

subspaces
O ={0cO:84<B<B} and O,={0cO:0<8<bu}

2We will needr to be12 in Lemma 4.2. Our aim is to find the minimalso that all the statements
presented bellow hold for evetyc ©...
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and®, = ©; U ©),. The values), andn, will depend on constant®; andR, which are
functions of the parameter spa@e

Observe that we can choose= 0, . C O, ,forall 1 < r < 12. Now we are able

to present the result about the convergence in probabiiitiyeounconditional likelihood
process.

Lemma 3.7 Under theelementary conditionfor everyf € ©, it holds:

2 )2
(1)E< ;t >§H15M+BchhereHc:@+ﬂ<oo.

In this case it holds

(2) Lur(0) - L(6) whenT — oo, whereL(6) = E(@)

2
Proof: It is straightforward to show that g(zté’) | < H..Hence, using Lemma 3.4 and
o; T
g = Cy — C we have the following '

82 (60t+g)2
o(x) - 2 (05
ut ut
E(Q)t
= BE| 3| +2E

et

1E( \Fia)| +E g
[ 6 _ R
0_12” 0t t—1 O'?Lt

2 2 2 2
< BE[E—%’&} + 2 :BE{U—?} + 2

0_2 2
< Blog i+l
et

SO

2
< BHCJr@EHl
I

that proves the first statement. Additionally, we have

Ell.(0)] = E
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. . . 1
But, forz > 1 and0 < p < 1 it holds the inequalityn x < —x”, so we have
p

2
E|no%0)] < |nw] +E’ mUL@’
wy

ol o)

1
’ lnwl} + p—ME[aif(Q)}

2.(0
since—a“t( ) > 1. Finally, using Lemma 3.5 we have
wi

Ell(8)] < oo.

Since(l,+(#)) is strictly stationary and ergodic, it follows

1 < p o1
Lur(0) = o tzlzut(e) — 5E[zw(e)] = L(#), VOecoO,.
[

The convergence in probability that we have presented imhaid.7 is not a sufficient
condition for the consistency of the quasi-maximum likebd estimator. It is necessary
that the convergence we have previously obtained holdsumiy. In order to obtain that,
it is sufficient to find an upper bound for the score vector ef lttg-likelihood function
Vi..(0) uniformly ond. The details regarding the explicit forms of the upper bourais
be found in [10].

Let
l‘

Al = (tr(AA))?  and  [|A], = (EIA")

be the Euclidean norm of a matrix or a vector and fiiemorm of a random matrix or a
vector respectively.

Now we are going to present the local consistency of the guasimum likelihood
estimator. Let us define

Op = arg max Lr(0).

éT is the parameter value that maximizes the likelihood fuomctin the se®; C ©.

Theorem 3.8 Undertheelementary conditions

éT i 0, when T — 0.
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4 Asymptotic normality of the quasi-maximum likelihood
estimator

In this section we present the asymptotic distribution &f gfuasi-maximum likelihood
estimator (QMLE). In order to do so, we need stronger coowition the processz;)
than theelementary conditionwe have given in the previous section. In fact, we pretend
that the fourth moment of the random varialdfg is finite. We are going to call the
following conditionadditional condition.

E(Z5) <K < .

We do not present the proof for the following results as thasila require long and non-
trivial calculus.

Lemma 4.1 Under theelementary conditionand underadditional conditiorit holds

(i) E|V9.(0)Viu(0)] < oo, for everyd € Oq;

T
(ii) > " Vi(00) = N(0, Ag), where Ay = E(Viu(60) Vi (6o)').-

1
VT &
Let

1 T
_ 2 _ 2
Br(0) = —= tzlv () and  B(#) = —EV21,(0).
Lemma 4.2 Suppose thelementary conditionand theadditional conditionto hold.
Then

() £ sup ’VZZM(H)} < 00;

0c€O12

(i) Fori=1,2,3,4, E sup
0€0 12

%Vzlut(ﬁ)’ < 00, Whereg; is the i-th element of;

(iii)y sup |Br(6) — B(9)| L0 and B(6) is a continuous function 06.
0€O12

The following result presents one of the classical resalesymptotic analysis and it
will be the basic tool for our further considerations. Theadle regarding the proof can
be found in [9, p. 185].

Theorem 4.3 Let (X 1) be a sequence of randofm x n) matrices and le{Yr) be a

sequence of randofm x 1) vectors such thak'r L candyy 2 v ~ N{(p, Q) when
T — oo. Then the limiting distribution of X Y7 ) is the same as that @fY’; that is

XrYy 25 N(Cp, CQC') when T — oo.

The following result assures th&y, is a regular matrix.
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Lemma 4.4 Suppose that the joint distribution 6f;, £7, o2,) is nondegenerate. Then for
everyf € O the matrix

&th 8051& —4
E[ 20 00/ “ut}

is positive definite.

Finally, we have all the necessary results for studying gyergtotic behavior of the
parameter estimator. In fact, using the results presetegeathe following theorem can
be proved.

Theorem 4.5 Suppose thelementary conditionand theadditional conditiorto hold.
Then

VT (b7 — ) 5 N(0, Vp),

whereVy = By'AgBy ', By = B(6y) = —E(V?1.(6y)) and A, is defined in Lemma 4.1.

: 1 , : : :
Notice that4, = —3 (EZ;—1)By. So, inthe case in whict?,) is a sequence of random

variables such that, ~ N(0,1) we would haveEZ; — 1 = 2 and 4, = —B,.

Let By = Br(67). In the case of maximum likelihood estimatdt; would be the stan-
dard estimator of the covariance matrix. But in a more gdrease of quasi-maximum
likelihood estimator, the asymptotic covariance matri®js' 4,5, * according to Theo-
rem 4.5. Since this is not equal @;1, By would not be a consistent estimator of that
value.

Let us define

Ar(0) = 7= 3 VL(0) VI (0)

and
Ar=Ar(67)  and  A(0) = EVI1,(0)V1(0)'.

The following result presents the consistency of the cawveré matrix estimator.

Lemma 4.6 Suppose thelementary conditionand theadditional conditionto hold.
Then

(i) sup [Ar(0) — A(9))| L0 and A(0) is continuous 01O ;

0€012
(i) Vy = By'ArBy' -2 Bt AgBy .

Lemma 4.6 completes our characterization of classical gtms of the QMLE for
GARCH(1, 1) model. We show that the covariance matrix edtimia consistent for the
asymptotic variance of the parameter estimator.
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