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Model risk as part of operational risk is a serious problem for financial
institutions. As the pricing of derivatives as well as the computation of
the market or credit risk of an institution depend on statistical models, the
application of a wrong model can lead to a serious over- or underestimation
of the institution’s risk. Because the underlying data-generating process
is unknown in practice, evaluating the model risk is a challenge. So far,
definitions of model risk have been either application-oriented, including
risk induced by the statistician rather than by the statistical model, or so
research-oriented as to prove too abstract to be used in practice. They
are especially prone not to be data driven. We introduce a data-driven
notion of model risk that includes the features of the research-oriented
approach, extending it by a statistical model-building procedure and thus
compromising between the two definitions at hand. We further suggest the
application of robust estimates to reduce the model risk, and advocate the
application of stress tests with respect to the valuation of the portfolio.

1 INTRODUCTION

Model risk emerged as a new risk category with the advent of elaborate and
complex mathematical and statistical models during the late 1970s, when Black,
Scholes and Merton laid the path for a new field of science – mathematical finance.
It is under the focus of various stakeholders of so-called internal models: regulators,
rating agencies, investors, shareholders, bondholders, chartered accountants and the
firm’s board. Therefore, model risk can hardly be overestimated. A quote from
a sector report of the UniCreditGroup (2008) states that some investors “tend to
apply an across-the-board discount of about 20% to the published numbers”; this
tendency is said to be due to investor skepticism and lack of transparency, giving
the reader a sense of its economic relevance.

The urge for better models stemmed from a riskier environment for financial
institutions after the breakdown of the Bretton Woods system and the steadily
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FIGURE 1 Risk measurement procedure (Cont et al (2007)).
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growing interdependence of the world economy. Financial institutions were grad-
ually exposed to higher risks and faced new risk categories. At the same time, the
huge increase in computer capacity and capabilities led to better possibilities for
calculating these models. An overview of the technical progress and its implications
for financial markets is given in Marshall (2000). Alexander (2003) and Padoa-
Schioppa (2004) show the rationale of regulation, especially of so-called internal
models for banks. In 1998, regulatory authorities acknowledged these models for
regulatory purposes. Since then they have been widespread in practice.

However, a model is only capable of capturing features of reality and is subject to
the modeler’s preferences and abilities. Even highly sophisticated models capturing
stylized facts such as volatility clustering or long memory are confronted with
mapping errors when implemented in practice. The role of mapping errors is
depicted in Figure 1, where X denotes the data set, M is the estimator of the
loss distribution, Dρ is the domain and ρ is the risk measure. The combination
ρ̂ = ρ ◦M : X→ R allows for the direct computation of a risk measure estimate.

The final output of an internal model is a realization xt+h associated with a
forecast distribution:

L(πt+h | It )
and:

L(πt+h | It , Zt )
respectively, where πt+h denotes the variable of interest, typically a portfolio that is
held over a time span h. The forecast is drawn on two different types of information
sets. The first, It , comprises a history of risk factors, eg, a time series of bond
prices. The second, Zt , which is typically used by insurers under Solvency II, is
of managerial type, eg, management rules for splitting losses between shareholders
and policyholders.

But this is only half of the output. The other is related to the valuation of πt+h:

v(πt+h)

Figure 2, taken from Baumgartner et al (2004), shows the interplay between the
model and the various valuations. From this representation one concludes that in
the insurance industry mark-to-model valuation process is a general approach to
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FIGURE 2 Interplay between the model and the various valuations.
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identifying valuation v(πt+h). Compared to those methods applied in the banking
industry, an additional accounting step is applied.

Note that for both outputs, the forecast and the valuation, models and hence
model risk are involved. Bear in mind that forecast and valuation are two different
problems. Whereas for the valuation the underlying probability distribution of the
model is of interest, in the forecast situation a complete forecast distribution is
derived.

Derman (1996) was the first one who referred to model risk in the field of
financial engineering, stating that models give at least a rough approximation
of reality. Given the relevance of that topic, it is surprising that the number of
publications devoted to model risk is rather small.

Rebonato (2001) defined model risk as

. . . the risk of occurrence at a given point in time (today or in the
future) of a significant difference between the mark-to-model value of
a complex and/or illiquid instrument held on or off the balance sheet
of a financial institution and the price at which the same instrument is
revealed to have traded in the market – by brokers’ quotes or reliable
intelligence of third-party market transactions – after the appropriate
provisions have been taken into account.

This definition refers only to a financial instrument but neglects errors made when
forecasting the value of the institution’s portfolio. Note also that value-at-risk (VaR)
models are large-scale models, whereas pricing models are comparatively small.

We assume that model risk stems from the discrepancy between the implemented
data-generating process and the data that is at hand or that may be gathered in the
future. In the following we focus on a definition that comprises estimation errors
and misspecification risks, but we consider implementation risk only insofar as this
type of error might contaminate our data.
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The quantification of the model risk is also still in its infancy. This problem is
most obvious in the context of financial risk management and portfolio valuation,
especially of derivative instruments.

This paper aims at developing a working definition of model risk and giving
an overview of the current practice of model risk quantification. Section 2 focuses
on the main types that the term “model risk” comprises. Sections 3 and 4 review
the actual practice of model risk quantification in the market risk measurement
and derivatives’ valuation context. Section 5 discusses robust methods to avoid
model risk due to biased estimates because of data contaminations, and sketches
the application of stress tests. Section 6 concludes.

2 TYPES OF MODEL RISK

Although the importance of model risk comes more and more into the focus of
practitioners as well as researchers, so far there is no clear notion of how model
risk should be defined. Basically there are two different, extreme notions of model
risk. A more practice-oriented viewpoint is that everything that might be related
in one way or another to the statistical model used is part of the model risk. This
includes data contaminations as well as a wrong implementation or a wrong choice
of starting values. A wrong application of the statistical model is also seen as a
source of model risk. In this construct, even the behavior, preferences and abilities
of the statistician are seen as part of the model risk. For an overview of this notion
of model risk, see Crouhy et al (1998).

Although a wrong implementation of the model is definitely a problem and poses
a risk for the financial institution, this should not in our opinion be part of the risk.
Therefore, in our setup these sources of risk are treated as part of the operational
risk of the financial institution, but not as part of the model risk.

The other line of definition is rather research-oriented and strictly mathematical;
see Kerkhof et al (2002), who define a statistical model as a probability space.
Although this approach allows for a high generality, it does not seem to be handy for
practical purposes. The probability space of a model uniquely defines a model and
thus contains all the necessary information. However, it is a very abstract approach,
not giving insight into the actual statistical modeling procedure. This is mainly
because a new parameter space is needed for every parameter constellation and
model specification to avoid identification problems. Therefore, the set of valid
probability spaces to be evaluated has to be massive, and it is impossible to set it
to sensible limits in most practical situations. Another drawback is that it focuses
on the distributional properties, whereas in the situation of forecasts, the forecast
distribution is not the relevant information, as we will discuss later.

In our approach, model risk can occur at different levels of the statistical
modeling procedure. The first level is the model risk induced by the probability
space, as defined by Kerkhof et al (2002). On a second level, the modeler has to
draw conclusions as to which concrete econometric model specification is adequate.
This is usually done by the application of various specification tests. However, it is
well known that the chosen model can depend on the choice of tests applied to the
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data. Therefore, the choice of tests is a source of model risk as well. On a third
level the modeler has to estimate the model parameters. The wrong choice of an
estimator can also induce model risk.

Our approach is on a middle ground between these two extreme approaches.
It comes from the belief that the usual procedure for measuring risk is to fit a model
to the data at hand, either a portfolio of financial derivatives or a portfolio of credits
or anything else, and then draw conclusions about possible losses based on the
dynamics of the fitted model. By introducing a model, we at least implicitly give all
statistically relevant information, such as probability measures. Model risk here is
the risk that this fitted model is wrong. Thus, it does not draw any conclusions from
the fitted model but measures the difference between the dynamics of the actual data
and the fitted model. This understanding of model risk comes from the econometric
modeling approach discussed, for example, in Clements and Hendry (1996).

We first give a rather broad definition of model risk in line with the definition of
Crouhy et al (1998).

DEFINITION 1 Every risk induced by the application of a statistical model is called
model risk.

It should be mentioned that under the notion “statistical model” we subsume
statistical, stochastic and econometric models.

A more specific approach following a data-driven econometric modeling idea is
as follows.

DEFINITION 2 Every risk induced by the choice, specification and estimation of a
statistical model is called model risk in the strict sense.

We thus see model risk to be possibly introduced in one of three modeling steps.

REMARK This definition excludes every risk from “human failure”. However, it
still includes the risk induced by data contamination, as this might lead to the use
of robust procedures.

We assume a model based on a vector of observations xt including all variables
in period t . Given Xt = (xt−1, . . . , x1) the joint probability of xt can be stated as:

∏
L(xt |Xt−1;�)

This is in line with Kerkhof et al (2002), who specify the model by a probability
space. The concrete specification of the model contains four steps, including the
estimation and specification steps from Definition 2:

1) marginalization of the data generating process;
2) model specification with respect to the choice of variables;
3) model specification with respect to the functional form; and
4) estimation of the parameters.

For further details see Cuthbertson et al (1992). Errors may occur for any of the
following reasons:
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TABLE 1 This table summarizes major components of model risk.

Component of Procedure
model risk Category step #

Model errors and • Errors in the analytical solution 3
misspecification • Misspecification of the underlying stochastic process 1

• Missing risk factors 2
• Missing considerations (eg, transaction costs) 2
• Misclassifying or misidentifying the underlying asset 2, 3
• Changing market conditions 1, 2, 3
• Length of sampling period 1
• Errors in variables 2

Model estimation • Competing statistical estimation techniques 4
• Estimation errors 4
• Outlier problems 2, 4
• Estimation intervals 4
• Calibration and revision of estimated parameters 4

We would like to emphasize that our approach follows classical statistical reasoning. Others,
eg, Crouhy et al (1998), consider the whole process in a more flexible fashion by allowing the
interaction of the statistician and the statistical model. Given the complexity of a VaR model, we
see no good way to carry out a valid modeling. This might be sensible only for pricing models.

• parameter change;
• model misspecification;
• estimation uncertainty;
• variable mismeasurement;
• initial condition uncertainty;
• non-modeled variable uncertainty;
• incorrect categorization of some variables as exogenous;
• lack of invariance to policy changes in exogenous variables; or
• error accumulation.

This approach bridges the gap between the abstract notion of Kerkhof et al
(2002) and the more practical statistical modeling approach.

As outlined in Table 1, our data-driven modeling emphasizes two central tasks:
choosing the functional form, and using the data to estimate the parameters. Model
mismatch errors mirror the model’s inability to represent the data. Estimation
errors end up in incorrect parameter values. The well-known bias-variance trade-
off simultaneously hinders the reduction of errors from both underfitting and
overfitting. Therefore, we assume that the principle of parsimonious modeling is
implicitly fulfilled. Note that overfitting will decrease the in-sample error; however,
the out-of-sample error will in general start to increase. The latter type of error is
of particular importance for forecast distributions. Considering a forecast problem,
the model error is of minor importance, because forecast quality is judged by a
function of the forecast distribution and the realization:

T (L(Xt+h | It ), ν(πt+h))
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Of course, model errors might deteriorate forecast quality. Note that in Kerkhof
et al (2002) the model error is measured by a metric that compares different forecast
distributions. We follow approaches summarized in Corradi and Swanson (2006).

Like others, our approach is not free of problems. To measure the risk induced
by a model, it has to be compared to an alternative model. To correctly specify
the model risk you have to know an accurate model. However, accurate models
are often hard to find. As we cannot always find an accurate model we need a
benchmark model giving a close approximation to our data. The problem is how to
choose this benchmark model. If we knew the model closest to our data, we could
easily use this model for risk measurement, and model risk would no longer be a
problem. Thus, finding a suitable benchmark model is a serious problem. However,
it will hardly be possible to overcome this problem when discussing model risk.

In this respect the problem of quantifying model risk is closely connected to
concepts of robust statistics, where the influence of wrong data on an estimator
or test is considered. These concepts are directly applicable in our setup in the
second and especially in the third step of the modeling procedure. If the data is
contaminated the use of a robust estimator might be preferable, as is discussed in
Section 5.

Statistical models in finance are basically used for two major applications: firstly
they are used for the pricing of derivatives and secondly they are used to measure
the market or credit risk of a financial institution. These two applications lead to
different problems when measuring the model risk. Whereas in the first case the
model has to be evaluated and thus slight departures of the model can lead to huge
errors, in the second case the model is used for forecasting. It should be mentioned
that forecasts can be quite robust against model misspecifications. For a detailed
discussion and an example, see Hamerle and Rösch (2005).

3 MODEL RISK WHEN MEASURING RISK

The development of sophisticated credit risk models is still a challenge to the risk
management industry. Specifically the issue of non-linear dependency of credit
risks poses big problems. When we use different copulas or different correlations,
profit/loss distributions can deviate widely. The inherent model risk can hardly
be quantified. The same problem holds for operational risks. Models for the
quantification of market risk, however, are much more developed. Therefore, we
concentrate on the model risk measurement for market risks. Portfolio risk can then
be decomposed into market risk, estimation risk and misspecification risk.

Currently, the Basel Committee sets a multiplication factor of three in order to
take model risk into account (see Stahl (1997)). This approach is well justified, as
the performance of VaR models through the 2001 crisis has shown (see Jaschke et al
(2007)). According to the coherence theory of Artzner et al (1999), the calculated
model risk measure should be added to the market risk measure to make a risky
position acceptable.

There are two models used in the context of measuring the model risk inherent
in market risk models: the Bayesian approach and the worst-case approach.

Research Paper www.thejournalofriskmodelvalidation.com
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3.1 The Bayesian approach

Suppose that K comprises all candidate models to measure market risk. Then the
following prior beliefs are necessary: the priors on the model parameters θ and
the prior beliefs of the probability P for all models K that this model is the
true model. Then the Bayesian approach calculates the expected risk measure by
taking the average over all candidate models K . In the context of a model risk
measure for market risk, this means calculating VaR with different models, eg,
historical simulation, stochastic simulation and variance–covariance approach, and
then calculating the average of the resulting VaR.

The strengths of this approach lie in its predictive ability and the stability of the
resulting estimates. The main shortcomings of this approach have to do with the
difficulties of measuring the priors and the probability of each model.

3.2 The worst-case approach

Let a model m be given in a class of models M . A financial asset’s risk on the
model m is denoted by πm. K is the tolerance set of all models that describe the
alternative dynamics including the nominal model m. Model risk under the worst-
case approach is defined as the difference between the market risk measure of a
nominal model and the market risk measure under the worst-case model, formally:

ρ(π, m, K)= sup
k∈K

RMk(πk)− RMm(πm)

(see Kerkhof et al (2002)), where supk∈K RMk(πk) is the worst-case risk measure.
Suppose that model risk is the sum of estimation risk and misspecification risk
as defined in Section 2. Estimation risk is the risk of choosing a wrong element
m(θ̂) out of a model class M(θ) even if the actual dynamics belong to it. One
typically proceeds by defining a confidence region around the estimator θ̂ . The
risk of wrong estimation is also defined as model risk restricted to the model class,
whereas misspecification risk is unrestricted toM(θ). The alternative dynamics can
then be distinguished by a restricted tolerance set Kr and an unrestricted tolerance
set Ku.

This term can be non-negative. To overcome this weakness, the restricted
tolerance set has to be nested within the unrestricted tolerance set, for example
by forming convex combinations of models or by using a family of unrestricted
tolerance sets that have been parametrized by a confidence level. Let α and Kr
be given. Then Ku =Ku(β) with β = min(α, sup γ ∈ (0, 1) :Kr ∈Ku(γ )) (see
Kerkhof et al (2002)). This approach fails in accurately quantifying the risk that
stems from using a wrong model, because the actual dynamics are still unknown.
The approach equates the worst-case scenario risk measure with the risk under the
worst case.

These considerations refer only to the first step of our modeling procedure.
Kerkhof et al (2002) focus on the comparison of forecast distributions when
measuring model risk. Following the model-building steps two to four in the
previous section can reduce the model risk significantly by correctly specifying
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and estimating the model. Although each of these steps can induce an error itself,
this modeling procedure will result in a model that is as adequate as possible, in the
sense that it gives a reliable forecast. Thus, our model-building approach focuses
on the comparison of forecast realization of the underlying data-generating process,
or an adequate approximation of it and the specified model, and therefore it goes
beyond the Kerkhof approach.

4 MODEL RISK WHEN PRICING DERIVATIVES

An important component of a financial institution’s model risk results from the
valuation of derivative instruments. In the context of option pricing, the importance
of this topic becomes obvious when we allow for the fact that a bank usually steps
in to the (riskier) writer side of the option. The liability of the buyer is limited to the
premium paid for obtaining the right to execute the option, so that private investors
prefer this side of the contract (see Green and Figlewski (1999)).

A huge number of pricing models proposed in the aftermath of the Black–
Scholes–Merton model take into account stochastic volatility and the empirically
established fact that the returns of the underlying asset exhibit excess kurtosis; that
is, extreme events are more likely than under the assumption of lognormal returns.
Nonetheless, the Black–Scholes model is the most widely applied model for valuing
options (see Bakshi et al (1997)). Besides misspecifying the pricing rule, another
crucial model risk source is related to the estimation of the required input param-
eters to value a derivative, especially the volatility that has to be forecasted. The
modeler can choose between estimating the volatility from historical data, adopting
conditional volatility models from the (generalized) autoregressive conditional
heteroskedasticity ((G)ARCH) family or using the model-implied volatility.

A firm could limit its derivative risk by adopting coping strategies such as
diversification, cashflow matching or delta hedging (see Green and Figlewski
(1999)). The last of these is the most common method.

To quantify the model risk induced by derivatives valuation, the just-described
approaches can be applied. The first method involves averaging the option prices
obtained from applying different pricing methods in the Bayesian framework.
Another possibility would be to differentiate between market and model risk under
the worst-case approach.

Let S be the underlying risk of the option, (Hi)i∈I be its payout and (C∗
i )i∈I

be the current price observed in the market, which ranges within a span (C∗
i ) ∈

[Cbid
i − Cask

i ]. Denote model risk by a mappingµ : C �→ [0,∞[ and by Q a pricing
rule whose function is to relate the price of the underlying asset to the price of
the derivative instrument under the assumption of no-arbitrage, ie, the martingale
representation should be fulfilled. λ stands for the fraction of the spread attributable
to model risk. Denote by:

C =
{
H ∈ FT , sup

Q∈Q
EQ[|Hi |]<∞

}

a contingent claim for each model Q. Arbitrage freedom is secured by the mar-
tingale Gt(φ)= ∫ t

0 φu dSt , where (φt )t∈[0,t] is a predictable process. Cont (2004)
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assumes that the price of a liquid plain-vanilla option forms itself within the
interaction of supply and demand and contains no model risk. Hence, model
uncertainty in the derivatives context is a problem only for over-the-counter (OTC)
instruments whose price cannot be determined easily. Instead, a pricing rule needs
to be applied to value an OTC instrument.

The upper price bound of the contingent claim of the firm is defined as:

π̄ = sup
Q∈Q

EQ[X]

and the lower price bound as:

π = inf
Q∈Q E

Q[X]

The result of applying a pricing rule will be a risk measure within the range spanned
by the lower and upper bounds. A model risk measure fulfilling the axioms above
is then defined by:

µQ(X)= π̄ (X)− π(X)

Hence, there will be no risk if the payout is not influenced by model uncertainty:

π̄(X)= π(X)

From these considerations it becomes clear that the model risk in the context
of option pricing is measured by the comparison of distributions. This is in
contrast to the type of model risk used for risk measurement. Bear in mind that
the distributions compared are specified by the model resulting from our model-
specification procedure detailed in Section 2. Therefore, our framework covers this
type of model risk as well.

Cont (2004) assumed that liquid options do not include model risk. This
assumption is quite surprising, as by assessing a derivative price using a valuation
formula, market-makers include model risk when calculating the option price.

5 MODEL RISK INDUCED BY CONTAMINATED DATA

As described in Section 2, there are different levels where model risk may occur.
One important problem is reliable parameter estimation. One common reason for
wrong parameter estimates is contaminated data. This can be due to human failure
or the simple impossibility of obtaining uncontaminated data such as for generating
forward projections. Whatever the reasons may be, it is well known that data
contamination can lead to serious biases in the most commonly used estimators
and therefore influence the model risk. The following example sheds some light on
this phenomenon.

EXAMPLE 1 Estimation of corporate ratings.
In the following we consider a logistic model underpinning an internal rating

system. The input data B0 consists of balance sheet data for some 1,000 corpora-
tions over multiple years, which were coded such that:

xij ∈ [0, 100] ≡ I (1)
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where higher values correspond to higher risk. The associated variables for the
realizations in B0 are denoted by:

D, X1, . . . , X6

The probability π that a firm with characteristics x(t) defaults over time period t to
t + 1 is:

π = P(D(t + 1)= 1 |X(t)= x(t))

which can be estimated via a logistic regression with parameter w (d being the
response variable and x∗ being the regressors):

π = P(x, w)= e(w·x∗T )

1 + e(w·x∗T ) (2)

where:
x∗ = (1, x1, . . . , x6), w = (w0, w1, . . . , w6)

and T denotes the transpose, as usual.
Miskeyed values are one of the problems a modeler faces. According to (1) the

range of values of the characteristics xij is a fixed interval. For the data set at
hand, however, 5% of the observations violate the condition imposed by (1) and
approximately 4.5% of them are defaulted, ie, di = 1. Note that our analyses focus
on those observations that are known a priori to be erroneous. Some additional
uncertainty might be introduced by those erroneous observations initially remaining
undetected.

In the following we consider three modifications of B0 – denoted by B1, B2 and
B3 – that fulfill (1):

B1 = {x | x ∈ B0 : xij ∈ I }
B2 = {x̃ | x ∈ B0 : x̃ij = xij · 1I (xij)+ 100 · 1{xij>100}(xij)+ 0 · 1{xij<0}(xij)}
B3 = {x̃ | x ∈ B0 : x̃ij = xij · 1I (xij)+ xmj · 1Ī (xij)}

where 1 denotes the indicator function and xmj denotes the median of characteristic
xj . Note B1 ⊂ B0, so the deletion approach loses some information. The mapping
of outliers on the interval bounds in B2 is the modification that was actually
chosen by the bank. Approach B3 is motivated by simple imputation techniques.
It substitutes the median for false values.

As shown in Stahl et al (2008), the impact of the different imputation techniques
on the estimated ŵ is statistically not significant. However, their impact on the
parameter of interest, the rating of the corporation, might be of practical relevance,
as Table 2 shows.

The detailed analysis in Stahl et al (2008) raised the question of what impact
an outlier might have on the misclassification of corporates. It is based on a sub-
sample of size 999 from B1 – where all wrong values were deleted – and one
additional outlier was added, taking the values 200, 300, . . . , 1,000. Then the
whole estimation process was repeated for every covariate. Figure 3 shows that the
covariates differ in respect to the sensitivity of the outlier. In any case the impact is
highly relevant.
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FIGURE 3 For the data set B1, the effect of one additional non-defaulted observa-
tion with extreme values in one of the characteristics is shown.
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The six graphics correspond to the six characteristics of the rating model. Each graphic shows the
effect of an extreme outlier in the respective characteristic on obligor migration, taking B1 as a point
of reference. The value of the outlier ranges from 100 to 1,000. The interpolation of these points yields
the graph.

TABLE 2 This table contains summary statistics of rating movements induced by
choices of B(·).

B0 B1 B3 Stress

µ̂(k) 0.35 0.39 0.42 0.9985
σ̂ (k) 0.51 0.51 0.64 0.04

Percentage of movers 33 38 38 99.85
Maximum move length 6 4 5 1

The mean of the first row indicates an average move size of 0.39 rating
grades, with the third row showing that an average of 36% movers are to
be expected. The second row yields a standard deviation of slightly more
than half a rating notch. Comparing the first row with the third shows that
a move of more than one notch is rare. The extremes are given in the last
row. The last column shows the summaries for a stress test that grades all
obligors down by one notch except those already belonging to the worst
non-default rating grade and the defaulted obligors.
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One way of overcoming this problem is the use of robust methods. In this section
we give a brief review of the most common robustness concepts and estimators
suitable for overcoming model risk induced by data contaminations.

There are two different measures of robustness: local and global. Local robust-
ness measures the effect of an infinitesimal deviation from the underlying distri-
bution at any point to the applied estimator. Global robustness, on the other hand,
deals with how many data points in the sample can be contaminated without the
estimator’s breaking down.

Local robustness is measured in terms of the influence function of an estimator.
In order to define the influence function, let F denote a parametric family of
distributions depending on the parameter θ to be estimated. Let T (x1, . . . , xn)

denote an estimator depending on a sample x1, . . . , xn. Furthermore, denote by�x
the one-point mass at x. The influence function of T at the point x is defined by:

IF(x; T , F )= lim
t↓0

T ((1 − t)F + t�x)− T (F)

t

Thus, the influence function measures the sensitivity of the estimator to infinites-
imal deviations from the true distribution. A related robustness concept using the
influence function is B-robustness, where the B stands for bias. A measure for B-
robustness is the gross-error sensitivity defined by:

γ ∗ = sup
x

|IF(x; T , F )|

By calculating the gross-error sensitivity, we have a measure of the worst
possible effect that a small contamination of a fixed size can have on the estimator.
That it is an upper bound of the asymptotic bias of the estimator illustrates where
the name of the associated robustness concept comes from. For a more detailed
overview of the influence function and related robustness concepts, see Hampel
et al (1986).

When considering local robustness it is also of interest to consider global
robustness. Global robustness is measured by the breakdown point: the fraction of
observations that can be contaminated without affecting the estimator. Obviously,
an optimal value to be achieved by a robust estimator is a breakdown point of 1/2.
For the formal definition of the breakdown point, again let T be an estimator for
the sample (x1, . . . , xn). It is defined by:

ε∗(T , x1, . . . , xn)= 1

n
max

{
m; max

i1,...,im
sup

y1,...,ym

|T (z1, . . . , zn)|<∞
}

where the sample (z1, . . . , zn) is obtained by replacing the m data points
xi1 , . . . , xim by the arbitrary values y1, . . . , ym. The above version of the break-
down point is also often called a finite-sample breakdown point to distinguish it
from an asymptotic version, which is not considered here.

Bear in mind that this definition of the breakdown point covers only “explosion”
of the estimator, which might not be the only problem for an estimator. When
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estimating the variance, “implosion” to zero can also be a problem. This can easily
be covered by including the minimum and infimum in the definition as well. We
will omit this here for the sake of notational simplicity. The version given here is
especially designed for location estimators.

As model risk can be induced by local as well as by global robustness, it is
desirable to have an estimator that covers both problems. One possibility is the use
of M-estimators. These by definition satisfy the equality:

n∑
i=1

ψ(Xi, T )= 0

where ψ is any suitably chosen function. In order to guarantee robustness in any
sense, the function should be chosen to be redescending. A possible choice of ψ
guaranteeing B-robustness and a breakdown point of 1/2 is Tukey’s biweight:

ψ(x)= x(r2 − x2)21[−r,r](x)

for some value of r .
M-estimators have the undesirable property of not being scale-invariant. There-

fore, Rousseeuw and Yohai (1984) introduced S-estimators based on minimization
of a scale statistic rather than a location statistic. To define S-estimators, define the
scale statistic s(r1, . . . , rn) by:

1

n

n∑
i=1

ρ

(
ri

s

)
=K

with some constant K and the function ρ to be chosen, for instance so that its
derivative is Tukey’s biweight. Then, the S-estimator of location θ̂ is defined by
minimizing s(x1 − θ̂ , . . . , xn − θ̂ ) over all θ̂ . This simultaneously gives the scale
estimate:

σ̂ = s(x1 − θ̂ , . . . , xn − θ̂ )

The influence function of an S-estimator is equal to that of the location M-
estimator; its breakdown point is 1/2 as well. S-estimators were especially con-
structed for regression models and multivariate situations where they have good
robustness properties. They are also well-understood in many other situations of
practical interest. For instance, Sibbertsen (2001) derived the properties of S-
estimators under long-range dependencies and trends, showing their applicability
in various situations. As these are situations figuring in many econometric models
for measuring risk, these estimators seem to be a suitable choice to help avoid model
risk due to data contaminations.

Our exposition showed that a robust model merits consideration. Robust methods
are useful when some outliers contaminate the data but the overall model assump-
tions can still be assumed to be valid. In times of crisis this is not always the
case, as events are too extreme for any model to hold and the assumed model
breaks down completely. Therefore, modern risk management processes do not
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and cannot stop with the implementation of models devoted to measuring risks.
In order to capture these aspects of model risk, so-called stress tests are run
in practice. These are an integral part of risk management processes, especially
for those adverse developments where economic capital – the most important
parameter derived from a VaR model – is of no help. The current liquidity crisis
is a good example. Typically, stress tests reflect scenario-based calculations, where
the scenarios represent extreme situations. Our robust framework is to a large extent
immune against these extremes. Therefore, we propose to apply stress tests not for
the determination of the forecast distribution, L(Xt+h | It ), but for the evaluation
of the portfolio at hand.

One approach that would fit smoothly with our robust framework is the appli-
cation of the configural sampling approach introduced by Morgenthaler and Tukey
(1991). These authors suggest, for example, mixtures of Cauchy distributions and
other extremes in the set of distribution functions in order to challenge estimators.
This approach generalizes scenario-based stress tests to distribution-based ones.
However, this approach misses one of the major challenges in deriving stress tests:
the requirement that they refer to extreme, although still plausible, situations. To
that end recent contributions from Balkema and Embrechts (2007) seem promising.
They define high-risk scenarios as follows.

DEFINITION 3 Given a random vector Z in Rd , for any closed halfspace H in
Rd with P(Z ∈H) > 0, the high-risk scenario ZH is defined as the vector Z
conditioned to lie in the halfspace H. If Z has distribution µ then ZH has the
high-risk distribution µH , where:

dµH(Z) = 1H(z) dµ(z)/µ(H)

It is shown that the multivariate generalized Pareto distribution is the limit
distribution for high-risk distributions. In Bonti et al (2007) a conditional approach
that is in line with the spirit of this definition was implemented; however, further
practical experiences have to be gathered in order to implement the new approach
outlined in Definition 3.

6 CONCLUSION

Because of the steadily more frequent use of sophisticated statistical models for
measuring risk or pricing derivatives in financial institutions, the problem of
measuring the risk induced by the usage of a wrong model becomes more important.
Even though practitioners as well as researchers are aware of this worsening
problem, there is hardly any literature on the subject, let alone a unified approach
and notion of what model risk actually is. In this paper, therefore, we provide a
review of the existing, rather extreme, approaches and develop a compromising
notion of model risk, driven by a data-oriented model-building procedure. Our
approach covers model risk when measuring the risk of a financial institution as
well as model risk when pricing derivatives. In this respect our approach even
extends the previous notions, as they do not distinguish between these two types
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of model risk and lack practical applicability when it comes to forecasting. In order
to minimize the risk induced by our model-building strategy, we further propose
the use of robust estimates when the data might be contaminated.
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