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Dynamic Asset Allocation under Inflation

Abstract

We develop a simple framework for analyzing a finitehorizon investor’s asset
allocation problem under inflation when only nominal assets are available. The
investor’s optimal investment strategy and indirect utility are given in simple
closed form. Hedge demands depend on the investor’s horizon and risk aversion
and on the maturities of the bonds included in the portfolio. When short posi-
tions are precluded, the optimal strategy consists of investments in cash, equity,
and a single nominal bond with optimally chosen maturity. Both the optimal
stockbond mix and the optimal bond maturity depend on the investor’s horizon
and risk aversion.
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Abstract

We develop a simple framework for analyzing a finite-horizon investor’s asset allocation

problem under inflation when only nominal assets are available. The investor’s optimal in-

vestment strategy and indirect utility are given in simple closed form. Hedge demands depend

on the investor’s horizon and risk aversion and on the maturities of the bonds included in the

portfolio. When short positions are precluded, the optimal strategy consists of investments

in cash, equity, and a single nominal bond with optimally chosen maturity. Both the optimal

stock-bond mix and the optimal bond maturity depend on the investor’s horizon and risk

aversion.



An investor who has a long-term but finite horizon and can invest only in nominal bonds or stocks

faces a basic problem. Is it better to purchase a zero coupon bond corresponding to the horizon and

bear the inflation risk, to follow a policy of rolling over short-term bonds, or to adopt some quite

different strategy? Despite the simplicity of this issue, there is still no well-accepted framework

for analyzing it because nominal long-term bonds have two important characteristics that cannot

be represented adequately within the classical static, single-period, framework introduced by

Markowitz (1959). First, the prices of bonds decline as interest rates rise so that, as Merton

(1973) originally pointed out, long-term bonds can provide a hedge against adverse shifts in the

investor’s future investment opportunity set. Secondly, and somewhat weakening the hedging

role of long-term bonds, is the sensitivity of their prices to changes in expectations about future

inflation. Therefore, a satisfactory counterpart to classical static portfolio theory that would enable

us to address the problem faced by the hypothetical long-term investor must satisfy two criteria.

It must yield simple closed form expressions for optimal portfolios for investors with different

horizons and attitudes towards risk, and it must deal realistically with both the price and return

characteristics of long-term bonds, as well as with inflation. In this paper, we develop a simple

model that satisfies these criteria. The investor’s optimal portfolio is shown to be a sum of two

components: first, the mean-variance tangency portfolio and, second, a portfolio that mimics as

closely as possible a hypothetical indexed bond with maturity equal to the investment horizon.

The analysis of optimal portfolio strategies for long-lived investors starts with Latane and

Tuttle (1967), Mossin (1968), Hakansson (1970), Merton (1969), and Samuelson (1969). These

authors were primarily concerned with analyzing the investor’s optimal allocation between stock

and cash when returns are i.i.d. Merton (1971) was the first to consider the effect of a stochastic
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investment opportunity set, as well as to demonstrate that this creates a set of “hedge” demands

in addition to the standard myopic demand. However, further work on optimal strategies under

stochastic investment opportunities languished until revived by empirical work demonstrating

apparent asset return predictability in the 1990’s. Brennan et. al. (1997) analyzed numerically

the portfolio problem of a long-lived investor who can invest in bonds, stock, or cash, when there

is stochastic variation in the interest rate, and the equity premium is predictable by the interest

rate and the dividend yield. Kim and Omberg (1996) and Wachter (1999) have analyzed the

optimal strategy of an investor when the interest rate is constant but the equity premium follows

an Ornstein-Uhlenbeck process.1 Sorensen (2000), Brennan and Xia (1999), and Omberg (1999)

also compute optimal dynamic strategies when the interest rate follows a Vasicek (1977) process2

and risk premia are constant. Liu (1999), who provides a general treatment of models in which the

investment opportunity set has an affine characterization, studies the optimal cash-bond allocation

in a model with an affine term structure. Barberis (2000), Kandel and Stambaugh (1996) and

Xia (2000) have considered the implications of uncertain predictability of asset returns.

None of the above papers allows for stochastic inflation, takes account of borrowing and short

sales constraints, or provides a rationale for the bond maturity choice. In this paper, we analyze

the portfolio problem of a finite-lived investor3 who can invest in stock or nominal bonds, when

the interest rate and the expected rate of inflation follow correlated Ornstein-Uhlenbeck processes

and the risk premia are constant.4

The composition of the optimal bond portfolio is not determinate within the model when there

are no constraints; only the optimal loadings on innovations in the estimated real interest rate, r,

and expected rate of inflation, π, can be determined. Calibration of the model to data on U.S.
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interest rates, stock returns, and inflation yields mixed results. When the calibration is made to

monthly data on bond yields and inflation, strong mean reversion is found for the shadow real

interest rate. This makes the optimal portfolio holdings relatively insensitive to the investment

horizon beyond five years, and the gains from following a fully dynamic strategy relatively small,

except for high levels of risk aversion. When the calibration is made to annual interest rates and

inflation over a long period, much less mean reversion is found. With the lower mean reversion

parameter, substantial horizon effects appear in the optimal portfolio strategies, and the gains from

following the optimal dynamic strategy become large. In both cases, as risk aversion increases,

the investor holds less stock and the return on his bond portfolio tends to become less sensitive

to innovations in the expected rate of inflation. In the limit, as risk aversion becomes infinite, the

stock allocation goes to zero and the investor’s dynamic strategy in bonds mimics as closely as

possible the returns on an inflation indexed bond with maturity equal to the remaining investment

horizon.

The foregoing results rely on the assumption that the investor is able to take unlimited short

positions. When the investor is constrained to take only long positions, the optimal portfolio

can be achieved with positions in only a single bond of the optimally chosen maturity, cash, and

stock. The optimal bond maturity depends on both the investor’s horizon and risk aversion. As in

the unconstrained case, horizon effects are pronounced only for the annual data calibration. For

both sets of calibrated parameters, the ratio of bonds to stock increases as the horizon increases,

which is at odds with the popular view that long horizon investors should hold more stock. The

bond-stock ratio also increases as risk aversion increases, which is consistent with the portfolio

recommendations of popular financial advisors that have puzzled Canner, Mankiw, and Weil
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(1997). The maturity of the optimal bond decreases as risk aversion increases.

There are at least two possible explanations for the differences between the monthly and the

annual calibrations. The first is that the expected rate of inflation series estimated using monthly

data on bond yields and price index changes is too smooth because non-price signals about the

expected rate of inflation are ignored; this would cause the high frequency changes in the true

market assessment of the expected rate of inflation, which are reflected in bond yields, to be

impounded in our estimates of the real interest rate. The second possibility is that, whereas we

use a one-factor model to describe the dynamics of the real interest rate, these may be better

represented by a two-factor model in which one factor has high frequency5 and the other low

frequency; in this case, the monthly calibration may be picking up the high frequency factor

while the annual calibration may place more emphasis on the low frequency component.

In the paper that is closest to this one, Campbell and Viceira (1999) (CV) develop an ap-

proximately optimal portfolio strategy for an infinitely lived investor with recursive utility, in a

discrete time setting in which the real interest rate and the expected rate of inflation follow sim-

ilar stochastic processes. The major differences between their paper and this one are that: first,

unlike CV, we are interested in the problem faced by a finite horizon investor and are therefore

able to give explicit consideration to the effect of the horizon on both the optimal bond-stock mix

and the maturity of the optimal bond portfolio. Secondly, we develop closed form expressions

for the investor’s optimal policy and indirect utility function, whereas the CV formulation relies

on linear approximation and numerical analysis.6 Our closed form solutions enable us to analyze

the welfare loss of the myopic policy and to characterize the dependence of the portfolio hedge

demand on the characteristics of the investment opportunity set, such as the horizon and intensity
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of mean reversion of the real interest rate. Finally, in considering the problem in which the

investor is subject to short sales constraints, CV take the maturity of the investible bond as given,

whereas we allow for the optimal choice of bond maturity and are therefore able to consider

the effect of risk aversion and horizon on the optimal maturity. In general, the introduction of

constraints on the size of positions makes the choice of the maturity of the bonds to be included

in the portfolio a critical element of the portfolio decision.

We present the basic model of stochastic real interest rates, inflation, and expected stock

returns in Section I. The optimal portfolio problem is derived in Section II. We calibrate the

model to the U.S. postwar nominal interest rate, inflation, and stock return data in Section III.

Some representative calculations and discussions are offered in Section IV. We summarize the

results and conclude the paper in Section V.

I. Investment Opportunities

We assume that the investor can invest in a nominal instantaneous risk free asset, a stock,

and in nominal bonds with different maturities. The real returns on the nominal bonds are risky,

because both the rate of inflation and the (shadow) real interest rate are stochastic.7

The (commodity) price level, Π, follows a diffusion process:

dΠ

Π
= πdt+ σΠdzΠ, (1)

so that the (realized) rate of inflation is locally stochastic. The instantaneous expected rate of
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inflation, or proportional drift of the price level, π, follows an Ornstein-Uhlenbeck process:

dπ = α(π̄ − π)dt+ σπdzπ. (2)

The investment opportunities depend on the (real) pricing kernel of the economy, Mt, which

determines the expected returns on all securities:

dM

M
= −rdt+ φSdzS + φrdzr + φπdzπ + φudzu = −rdt+ φ′dz + φudzu, (3)

where φ = [φS, φr, φπ]
′ and dz = [dzS, dzr, dzπ]

′. The expression, φi (i = S, r, π, u), representing

the constant loadings on the stochastic innovations in the economy, determines the associated

prices of risk, λS , λr, λπ and λu, which are constant because the φ’s are constant. The variable,

dzS , represents the increment to the Brownian motion that drives the stock return in equation (5)

below, and dzu, which is defined in equation (7) below, is proportional to the component of the

inflation rate, dΠ
Π
, that is orthogonal to dz and therefore to the nominal returns on all assets: it

drives the component of inflation that is not spanned by the asset returns and therefore cannot

be hedged. We denote the drift of the pricing kernel by −r because it is well known that, in an

economy with a fully indexed riskless asset, the instantaneous (real) riskless interest rate is equal

to (the negative of) the drift of the pricing kernel.

Following Vasicek (1977), we assume that r follows the Ornstein-Uhlenbeck process:

dr = κ(r̄ − r)dt+ σrdzr. (4)
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If an instantaneously riskless real asset existed, then its instantaneous real rate of return would be

r. However, we assume that, in this economy, no instantaneously riskless real asset exists8 and

that the investor is able to invest only in a single stock index and in nominal bonds with different

maturities. The nominal stock price is assumed to follow a Geometric Brownian motion,

dS

S
= (Rf + σSλS)dt+ σSdzS, (5)

where λS is the constant unit risk premium associated with the innovation, dzS , and Rf is the

nominal interest rate.

Since the Brownian increments in equation (3), dz and dzu, are orthogonal, the pricing kernel

relative can be rewritten as the product of two independent stochastic integrals:

Ms/Mt = exp

{∫ s

t

(
−r(u)− 1

2
φ′ρφ

)
du+

∫ s

t

φ′dz
}
exp

{∫ s

t

(
−1

2
φ2
u

)
du+

∫ s

t

φudzu

}

≡ ζ1(t, s)ζ2(t, s), (6)

where ρ is the correlation matrix of dzS , dzr and dzπ with rows [1, ρSr, ρSπ], [ρSr, 1, ρrπ] and

[ρSπ, ρrπ, 1], and ζ1(t, s) and ζ2(t, s) are orthogonal.

In general, the realized rate of inflation given by equation (1) will not be perfectly correlated

with the change in the expected rate of inflation given by equation (2). However, it can be shown

that if the expected rate of inflation is not observable but must be inferred from observation of

the price level itself (and not from any other information), then the change in (the investor’s

assessment of) the expected rate of inflation will be perfectly correlated with the realized rate of

inflation: for reasons that will be apparent below, we call this the “complete markets case.” In
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the general case, the innovation in the rate of inflation can be written as a linear function of the

innovations dzS , dzr, and dzπ and the projection residual, ξudzu:

dΠ

Π
= πdt+ σΠdzΠ = πdt+ ξSdzS + ξrdzr + ξπdzπ + ξudzu ≡ πdt+ ξ′dz + ξudzu. (7)

If ξS = ξr = ξu = 0, dΠ/Π is perfectly correlated with dπ/π and the market is complete.

Equation (7) implies that the price level relative, Πs/Πt (s > t), can also be written as the

product of two independent stochastic integrals:

Πs/Πt = exp

{∫ s

t

(
π(u)− 1

2
ξ′ρξ

)
du+

∫ s

t

ξ′dz
}
exp

{∫ s

t

(
−1

2
ξ2
u

)
du+

∫ s

t

ξudzu

}

≡ η1(t, s)η2(t, s), (8)

where η1(t, s) and η2(t, s) are orthogonal so that σ2
Π = ξ′ρξ + ξ2

u. η1(t, s) is the component of

the price level change that can be hedged by investing in the available securities, while η2(t, s)

is the unhedgeable component.

The definition of the pricing kernel implies that P (t, T ), the nominal price at time t of a bond

which matures at time T with a nominal payoff of $1, is given by:

P (t, T ) = Et

[
MT /Mt

ΠT/Πt

]
= Et

[
ζ1(t, T )

η1(t, T )

]
Et

[
ζ2(t, T )

η2(t, T )

]
. (9)

It is shown in Appendix A that P (t, T ) is an exponential affine function of rt, the (shadow) real

8



interest rate, and πt, the investor’s assessment of the current expected rate of inflation:

P (t, T ) = exp {A(t, T )− B(t, T )rt − C(t, T )πt} , (10)

where A(t, T ), B(t, T ) and C(t, T ) are time dependent constants, expressions for which are given

in Appendix A.

Using Ito’s Lemma and the expressions for A(t, T ), B(t, T ), and C(t, T ), the stochastic

process for the bond price can be written as:

dP

P
= [r + π −Bσrλr − Cσπλπ − ξSλS − ξrλr − ξπλπ − ξuλu] dt

− Bσrdzr − Cσπdzπ, (11)

where the λ’s are market prices of risk associated with stock return, the innovations of real

interest rate, and the innovations of expected and unexpected inflation. The expressions for λ’s

are given in equations (A13 - A16).

There is a simple linear relation between the market price of risk vector, λ, and the fac-

tor loadings of the real pricing kernel in equation (3). Let Λ be the vector of nominal risk

premiums for the stock and two nominal bonds with maturities T1 and T2, then Λ ≡ [σSλS,

−B(t, T1)λr − C(t, T1)λπ, −B(t, T2)λr − C(t, T2)λπ]
′
. Define the factor loadings matrix of

the three securities as σ where the first row is (σS , 0, 0), and the second and third rows are

(0,−B(t, Tj)σr,−C(t, Tj)σπ) (j = 1, 2). The real risk premium on the three securities is equal

to the covariance between the real return of the (nominal) security and the real pricing kernel,

so the unit market price of the risk vector is related to the risk premium vector by Λ = σλ.
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Equivalently, the factor loadings of the real pricing kernel are related to the risk premium vector

by φ = ξ − ρ−1λ.

The instantaneous nominal riskfree interest rate, Rf , is obtained by taking the limit of the

return on the nominal bond in equation (11) by letting (t− T ) → 0:

Rf = r + π − ξSλS − ξrλr − ξπλπ − ξuλu, (12)

and we call −ξSλS−ξrλr−ξπλπ−ξuλu the risk premium for the nominal instantaneous risk-free

asset. The Fisher equation does not hold in this economy unless all the market prices of risk,

λS, λr, λπ, and λu, are zero, so that the nominal risk free asset has a zero risk premium. Using

the definition of the nominal risk free interest rate in equation (12), the nominal return on the

nominal bond in equation (11) can also be simplified as:

dP

P
= [Rf −Bσrλr − Cσπλπ] dt− Bσrdzr − Cσπdzπ, (13)

which shows that the nominal risk premium on a bond depends only on its exposure to innovations

in the real interest rate and expected rate of inflation.

II. Optimal Portfolio Choice

Turning now to the issue of optimal portfolio strategies for long-lived investors, we shall

consider two classical cases. In the first, the investor is assumed to be concerned with maximizing

the expected utility of wealth on some fixed horizon date, T . This problem has the merits both of
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simplicity, for it admits a closed form solution, and of clarifying the role of the horizon, for with

this simple objective, there is no ambiguity about the duration of the consumption stream that is

being financed. The problem can be thought of as corresponding to that faced by an individual

who has set aside predetermined savings for retirement and wishes to maximize the expected

utility of wealth on his retirement date;9 we are simplifying the full problem by ignoring the

optimal investment and consumption plan during retirement. The second case that we consider

is that of an investor who is concerned with maximizing the expected value of a time-additive

utility function defined over lifetime consumption. This problem, which is only slightly more

complicated, corresponds to the consumption-portfolio choice problem of an individual who is

retired and faces a known date of death with no bequest motives.

There are four potential sources of uncertainty in the model economy that we have described:

real interest rate risk represented by the innovations in r as shown in Equation (4); inflation risk

due to unanticipated changes in the price level as shown in Equation (7); unanticipated changes

in the expected rate of inflation as shown in Equation (2); and finally, the unanticipated stock

return shown in Equation (5).

If ξu = 0, the change in the price level is an exact linear function of dzS , dzr, and dzπ,

and one dimension of risk faced by the investor is eliminated.10 Then the market is complete if

there are at least four securities whose instantaneous variance-covariance matrix has rank three.11

Since the variance-covariance matrix of real returns on cash, stock, and any two finite maturity

bonds with different maturities has rank three, the market is complete whenever ξu = 0. In

the complete market setting, the investor’s optimal portfolio problem may be solved using the

martingale pricing approach of Cox and Huang (1989).
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If the market is incomplete, (ξu �= 0), φu cannot be derived from the observable security prices,

but any specific value of φu determines a unique pricing kernel. If a wealth (consumption) plan

is feasible — i.e., can be financed by a trading strategy in the available (nominal) securities —

then the static budget constraint can be represented by the expectation of the product of payoffs

and the pricing kernel defined by any given value of φu. Therefore, the original dynamic portfolio

choice problem can be mapped into the static variational problem of Cox and Huang (1989) using

an arbitrary value of φu.
12 We first solve the optimal terminal wealth and consumption allocation

under the static budget constraint for a given φu and then verify that the optimal terminal wealth

and consumption are financed by feasible trading strategies.

Although it is no longer possible to construct a portfolio whose return is riskless in real

terms when the market is incomplete, the unhedgeable component of inflation is orthogonal to all

available asset returns. Moreover, the homogeneity of both the utility function and the inflation

process implies that the optimal proportional allocation is independent of real wealth and the price

level. Therefore, the market incompleteness caused by non-hedgeable inflation has no effect on

the optimal proportional portfolio allocation.

Lemma 1: For an investor with isoelastic utility, the optimal proportional portfolio allocation

is independent of real wealth, wt ≡ Wt

Πt
, and the price level, Πt.

The Lemma allows us to characterize the investor’s problem in the incomplete market setting

via the extended Cox-Huang method developed by Paǵes (1987), He and Pearson (1991), and

Karatzas et. al. (1991). In order to represent the market incompleteness caused by non-hedgeable

inflation, fix a probability space (O,F ,P), whereO = O1×O2. The vector of standard Brownian

motions dz ≡ [dzS, dzr, dzπ]
′ is defined on O1, while ξudzu, the component of realized inflation
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that is orthogonal to all security returns and therefore non-hedgeable, is defined on O2. The

standard filtration F1 is generated by {dzs : 0 ≤ s ≤ t} and F2 by dzu, and F ≡ F1 × F2. It

follows from the Lemma that an optimal trading strategy is a process x, which specifies the

proportion of wealth invested in each security and is adapted to F1.

A. State Contingent Wealth and Consumption

Consider first the problem of an investor with an iso-elastic utility function who is concerned

with maximizing the expected utility of real wealth at time T . The investor’s optimal portfolio

choice problem can be mapped into the following static variational problem:

max
W (τ):t≤τ≤T

Et

{
(WT/ΠT )

1−γ

1− γ

}
, (14)

s.t. (1) Et

[
MT

Mt
(WT/ΠT )

]
= Wt/Πt ≡ wt, (15)

(2) WT is financed by a feasible trading strategy with initial investment W0,

where equation (15) is the static budget constraint. The following theorem presents the solution

of this static variational problem.

Theorem 1: optimal terminal wealth allocation

For an investor concerned with maximizing the expected value of an isoelastic utility function

defined over wealth at time T in the incomplete markets setting in which ξu �= 0:

(i) The optimal terminal real wealth allocation, w∗
T ≡ W ∗

T (MT ,ΠT )/ΠT , is

w∗
T = wtη

−1
2 (t, T ) (ζ1(t, T ))

− 1
γ F1(t, T )

−1F2(t, T )
−1, (16)
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where

F1(t, T ) = Et

[
ζ1(t, T )

1− 1
γ

]
= exp

1−γ
γ

[B(t,T )rt+a0(t,T )]
(17)

F2(t, T ) = Et [ζ2(t, T )/η2(t, T )] = exp(ξ2u−ξuφu)(T−t) (18)

a0(t, T ) =
φ′ρφ(T − t)

2γ
+

[
r̄ − (1− γ)σrφ

′ρe2

γκ

]
[(T − t)− B(t, T )]

+
(1− γ)σ2

r

4γκ3

[
2κ(T − t)− 3 + 4eκ(t−T ) − e2κ(t−T )

]
. (19)

(ii) The indirect utility function, J(Wt, rt,Πt, t), is separable in real wealth, wt, and can be

written as:

J(W, r,Π, t) ≡ Et

{
(w∗

T )
1−γ

1− γ

}
=

(
(wt)

1−γ

1− γ

)
ψ1(r, t, T ), (20)

where w∗
T is the real wealth at period T under the optimal policy, and

(iii) ψ1(r, t, T ) represents the contribution to the investor’s expected utility of the remaining

investment opportunities up to the horizon:

ψ1(r, t, T ) = exp(1−γ)[B(t,T )rt+a1(t,T )], (21)

where B(t, T ) ≡ κ−1(1− e−κ(T−t)) and

a1(t, T ) = a0(t, T ) +
[
φuξu − γ

2
ξ2
u

]
(T − t). (22)

The complete markets problem (ξu = 0) is a special case of Theorem 1 in which η2(t, T ) =
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F2(t, T ) = 1, so that the optimal real wealth allocation and indirect utility simplify to:

w∗
T (MT ,ΠT ) = wt (ζ1(t, T ))

− 1
γ F1(t, T )

−1, (23)

J(r,W,Π, t) =

(
w1−γ
t

1− γ

)
exp(1−γ)[B(t,T )rt+a0(t,T )] . (24)

The problem for the interim consumption case can be written as:

max
C(s):t≤s≤T

Et

{∫ T

t

(C(s)/Πs)
1−γ

1− γ
ds

}
, (25)

s.t. (1) Et

[∫ T

t

Ms

Mt

C(s)

Πs
ds

]
= Wt/Πt ≡ wt, (26)

(2) C is financed by a feasible trading strategy with initial investment W0,

where C(τ) is the investor’s (nominal) consumption flow at time τ : τ ∈ [t, T ]. The optimal

consumption plan and indirect utility function are characterized in the following theorem:

Theorem 2: optimal allocation of lifetime consumption

For an investor concerned with maximizing the expected value of an isoelastic utility function

defined over lifetime consumption in the incomplete markets setting in which ξu �= 0:

(i)The optimal real consumption program, c∗(s) ≡ C∗(s)/Πs, is:

c∗(s) = η−1
2 (t, s) (ζ1(t, s))

− 1
γ Q−1

1 (t, T )wt, (27)

where wt is real wealth at time t, and Q1(t, T ) is a constant chosen to satisfy the budget
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constraint:

Q1(t, T ) =

∫ T

t

F1(t, s)F2(t, s)ds =

∫ T

t

q(t, s) exp

{
1− γ

γ
[B(t, s)rt + a1(t, s)]

}
ds,(28)

and q(t, s) = exp
{[

(3−γ)ξu2
2

− φuξu
γ

]
(s− t)

}
.

(ii) The indirect utility function J(Wt, rt,Πt, t) is separable in wt and can be written as:

J(r,W,Π, t) ≡ Et

{∫ T

t

c∗(s)1−γ

1− γ
ds

}
=

(
w1−γ
t

1− γ

)
ψ2(r, t, T ), (29)

where

(iii) ψ2(r, t, T ) represents the contribution to expected utility of the remaining investment

opportunities up to the horizon:

ψ2 =

[∫ T

t

q(t, s) exp
1−γ

γ
[B(t,s)rt+a1(t,s)] ds

]γ−1 [∫ T

t

q1−γ(t, s) exp
1−γ

γ
[B(t,s)rt+a1(t,s)] ds

]
, (30)

where B(t, s) = κ−1
(
1− eκ(s−t)

)
and a1(t, s) is given in (22) by replacing T with s.

The complete markets problem (ξu = 0) is again a special case of Theorem 2 in which

η2(t, s) = F2(t, s) = 1, so that the optimal consumption and indirect utility simplify to:

c∗(s) = Q(t, T )−1 (ζ1(t, s))
− 1

γ wt (31)

J(r,W,Π, t) =

(
w1−γ
t

1− γ

)
Q(t, T )γ (32)

Q(t, T ) =

∫ T

t

exp
1−γ

γ
[B(t,s)rt+a0(t,s)] ds, (33)
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where Q(t, T ) is derived from Q1(t, T ) by setting ξu = 0 so that q(t, s) = 1 and a1(t, T ) =

a0(t, T ).

In the complete market setting, the optimal consumption allocation c∗(s) given by equation

(31) is of similar form to the optimal terminal wealth allocation w∗(T ) in equation (23), and

the problem with interim consumption can be interpreted as a summation of terminal wealth

problems with the horizons s varying from t to T and initial wealth allocated to horizon s equal

to
F1(t,s)∫ T

t
F1(t,s)ds

wt.
13

The interim consumption problem in the incomplete market setting can also be interpreted

as a two-stage problem in which the investor first allocates his initial wealth across horizons s

(s ∈ [t, T ]), F1(t,s)F2(t,s)∫ T
t F1(t,s)F2(t,s)ds

wt, and then carries out the terminal-wealth optimization problem for

each s. The expected utility for the interim consumption problem is still the sum of the expected

utilities of the individual terminal-wealth problems, although the result no longer simplifies as in

the complete market case because of η2.

B. Unconstrained Optimal Portfolio Strategies

The optimal portfolio strategy replicates the optimal terminal wealth and consumption alloca-

tions by dynamically trading the available nominal securities. Although market incompleteness

affects investor utility, the optimal strategies are of the same form in the complete and incomplete

markets settings, as seen in the following theorems.

Theorem 3: optimal portfolio strategy for terminal wealth problem

The vector of optimal proportional wealth allocation to the stock and two nominal bonds for
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problem (14)-(15), x∗ ≡ (xs
∗, x1

∗, x2
∗)′, is given by:

x∗ =
1

γ
Ω−1Λ +

(1− γ)B(t, T )

γ

(
Ω−1σρe2σr

)− 1− γ

γ

(
Ω−1σρξ

)
(34)

=
1

γ
Ω−1Λ +

(
1− 1

γ

)
Ω−1σρ (ξS, ξr − B(t, T )σr, ξπ)

′ , (35)

where e2 = [0, 1, 0]′, Λ is the (3× 1) vector of risk premia of the stock and two nominal bonds,

and Ω ≡ σρσ′ is the (3 × 3) variance covariance matrix of the nominal security returns. The

variable σρe2σr denotes the vector of covariances between the security returns and the real

interest rate, and the variable σρξ represents the vector of covariances between the security

returns and realized inflation.

The balance of the portfolio, 1 − x′i, is invested in the nominal riskless asset at the rate Rf .

Theorem 3 establishes that there is a feasible trading strategy that finances the optimal wealth

and consumption allocations derived in Theorems 1 and 2. Therefore, the optimal strategies given

in Theorem 3 are indeed the solution to the original portfolio choice problem.

Equation (34) expresses the optimal portfolio as the sum of three portfolios, in a form that

is familiar from Merton (1973). The first portfolio is proportional to the nominal mean-variance

tangency portfolio,14 and the amount invested in it is inversely related to the investor’s relative

risk aversion. The second portfolio, Ω−1σρe2σr, is the one with the largest correlation with the

state variable r, and the third portfolio, Ω−1σρξ, has the highest correlation with the inflation

realization.

Equation (35) expresses the optimal portfolio as the weighted sum of the nominal mean-

variance tangency portfolio and the “minimum risk” portfolio. This is the portfolio that would
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be held by an infinitely risk averse investor (γ → ∞) with horizon T , and it has the highest

correlation with the return on an indexed bond, with a maturity equal to the remaining horizon:

the return on this indexed bond has a real interest rate sensitivity of B(t, T ) and no sensitivity

to expected or unexpected inflation.

While the optimal portfolio allocation depends on the maturities of the two bonds that are

chosen for the portfolio, the return characteristics of the portfolio are completely described by its

loadings on the stock return and the innovations in r and π, and these are determined completely

by the investor’s horizon and risk aversion. They are characterized in the following Proposition.

Proposition 1: optimal factor loadings for nominal portfolio returns

For an investor with risk aversion γ and horizon T , the optimal stock allocation and loadings

on the innovations in the real interest rate and expected inflation are

xS(γ) =
1

γ

ξS − φS
σS

+

(
1− 1

γ

)
xS(∞), (36)

Bp(γ, T ) =
1

γ

ξr − φr
σr

+

(
1− 1

γ

)
Bp(∞, T ), (37)

Cp(γ, T ) =
1

γ

ξπ − φπ
σπ

+

(
1− 1

γ

)
Cp(∞, T ), (38)

where

xS(∞) = ξS/σS, Bp(∞, T ) = (ξr − B(t, T )σr) /σr, Cp(∞, T ) = ξπ/σπ (39)

are the stock allocation and loadings for an investor with very large risk aversion (γ → ∞) and

horizon T .
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To understand the proposition, consider the price process of a hypothetical indexed bond with

maturity equal to the investment horizon T :

dp∗

p∗
=
[
r −B(t, T )σrλ̂r

]
dt−B(t, T )σrdzr, (40)

where λ̂r ≡ Cov
(−dM

M
, dzr

)
= −φ′ρe2 is the real risk premium per unit risk of dzr. Its nominal

return is calculated by applying Ito’s Lemma to its nominal value, P∗ ≡ Πp∗:

dP ∗

P ∗ = [r + π − B(t, T )σrλr] dt+

(
ξS
σS

)
σSdzS

+

(
ξr
σr

− B(t, T )

)
σrdzr +

(
ξπ
σπ

)
σπdzπ + ξudzu. (41)

The loadings in equation (41) are the same as those of the portfolio chosen by the highly risk

averse investor in equations (39), so that a highly risk averse investor chooses loadings on the

innovations that match those of the hypothetical indexed bond with maturity T , leaving himself

exposed only to the unhedgeable component of inflation ξudzu. We call the portfolio that replicates

an index bond up to the unhedgeable inflation risk, a pseudo index bond. The Proposition shows

that the optimal factor loadings for an investor with finite risk aversion can be written as a

weighted average of the loadings of the nominal return of the mean variance tangency portfolio

and the loadings of the nominal return of the pseudo index bond of maturity T .

The component of the loading on r in equation (37) that represents the hedge against changes

in the real opportunity set represented by r,15 (the “hedge loading on r”), is
(

1
γ
− 1
)
B(t, T ),

which depends on three parameters: risk aversion γ, horizon T − t, and the intensity of mean

reversion of the real interest rate, κ. This hedge loading is monotonically decreasing in γ and
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zero for log utility (γ = 1). Its elasticity with respect to the horizon is equal to the elasticity

of B(t, T ) with respect to T , which is positive, so that its absolute value is increasing in the

horizon. Finally, its elasticity with respect to the mean reversion intensity, κ, is:

e−κ(T−t)
[
κ(T − t) + 1− eκ(T−t)

]
/
(
κ2B(t, T )

)
< 0.

Thus, the absolute value of the hedge loading increases with the horizon and decreases with

the speed of mean reversion16 in r. This is reasonable, since the longer the horizon and the

slower the mean reversion, the bigger is the effect of a given innovation in r on future investment

opportunities.

The optimal portfolio strategy for the interim consumption problem (25)-(26) is the one that

yields the optimal consumption program c∗(s), s ∈ [t, T ], given by equation (27). Since the

interim consumption problem can be interpreted as a two-stage terminal wealth optimization

problem, the optimal portfolio strategy has a similar interpretation: it is a weighted average of

the optimal strategies for terminal wealth problems with horizons at s, s ∈ [t, T ].

Theorem 4: optimal portfolio strategy with interim consumption

The vector of optimal portfolio allocations for problem (25,26), x∗ ≡ (xs
∗, x1

∗, x2
∗)′ is given

by expression (34), with B ≡ B(s, T ) replaced by B̂ ≡ B̂(s, T ), where:

B̂(s, T ) ≡
∫ T

s

q(s, u) exp
{

1−γ
γ

[B(s, u)rs + a1(s, u)]
}

∫ T
s
q(s, ν) exp

{
1−γ
γ

[B(s, ν)rs + a1(s, ν)]
}
dν

B(s, u)du (42)

is a weighted average of B(s, u) (u ∈ [s, T ]), and q(s, u) and a1(s, u) are defined in Theorem

2.
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C. Welfare Costs of Unhedgeable Inflation and Myopic Investment Strategy

The effect of market incompleteness on the real terminal wealth allocation, w∗T , in equation

(16) is reflected in the terms η−1
2 (t, T ) and F2(t, T ): the former represents the realization of

the unhedgeable component of inflation which directly reduces real wealth, while the latter

corresponds to the risk premium for unhedgeable inflation risk. The effect of unhedgeable

inflation risk on investor welfare may be assessed by comparing the investor’s certainty equivalent

wealth17 in the incomplete market to that in the complete market, using the expressions for

expected utility given by (24) and (20). The ratio of the certainty equivalents in the complete

and incomplete markets is equal to exp[
γ
2
ξ2u−φuξu](T−t). Thus, the investor will be made better off

by the unhedgeable inflation component dzu if γ < 2φu

ξu
, so that he is not too risk averse given

the risk premium and risk associated with the unhedgeable inflation.

If the market is complete, indexed bonds are redundant assets and their introduction does not

affect investor welfare. However, if the market is incomplete because inflation cannot be hedged

with nominal assets (ξu �= 0), the introduction of index bonds allows investors to vary their

exposure to the previously unhedgeable component of inflation which, given the pricing kernel,

will tend to improve welfare. Calculation of optimal state-contingent wealth and consumption

then follows the proofs of Theorems 1 and 2 by allowing the investor to vary his exposure to the

previously unhedgeable price level innovation ξudzu. Then the expected utility of the terminal

wealth investor when there are indexed bonds and ξu �= 0, J IB(W, r,Π, t), is:

JIB(W, r,Π, t) =
(Wt/Πt)

1−γ

1− γ
ψ1(r, t, T ) exp

1−γ
2γ

(φu−γξu)2(T−t) . (43)
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Comparing expressions (20) and (43), we see that, for a given pricing kernel,18 the in-

troduction of index bonds increases the investor’s certainty equivalent wealth by the factor

e
1
2γ

(φu−γξu)2(T−t) ≥ 1. Therefore, except for investors for whom γ = φu/ξu, the introduction

of index bonds increases welfare by permitting trade in the previously unhedgeable inflation

component ξudzu.

The investor’s expected utility depends, not only on the available investment instruments, but

also on the investment policy that is followed. For example, the efficiency gain from employing

the optimal dynamic strategy rather than a myopic strategy can be measured by the ratio of the

certainty equivalent wealth under the optimal dynamic strategy to that under a myopic strategy.19

This efficiency gain ratio, EGR, is:

EGR = exp

{
(1− γ)2

2γ
var

(∫ T

t

r(s)ds

)}
≥ 1

= exp

{
(1− γ)2

γ

[
σ2
r

4κ3

(
2κ(T − t)− 3− e−2κ(T−t) + 4e−κ(T−t)

)]}
. (44)

The efficiency gain depends only on the risk aversion parameter and variance of the cumulative

real interest rate; for values of γ close to unity the gain is small; the gain is also small if either

σr is small, or the mean reversion parameter κ is large.

D. Constrained Optimal Portfolio Strategies

Since many investors are constrained from taking short positions, it is important to also con-

sider constrained strategies. Any portfolio strategy can be characterized in terms of the loadings

of the (nominal) portfolio return on the innovations in the stock return, the real interest rate,

and inflation rate, xS , Bp ≡ − (x1B(t, T1) + x2B(t, T2)) and Cp ≡ − (x1C(t, T1) + x2C(t, T2)),
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where xi is the proportion of wealth invested in bond i, i = 1, 2. While Theorem 3 showed

that the unconstrained optimal holdings generically involve two bonds, the following proposition

establishes that the investor’s constrained optimal allocation can be achieved by holding only a

single bond in combination with cash and stock.

Proposition 2: an investor who is constrained from borrowing or taking short positions in bonds,

but who has available a continuum of possible bond maturities up to a maximum, τmax, can

achieve his constrained optimal portfolio allocation by investing in a single bond of an optimally

chosen maturity, τ ∗ ≤ τmax, cash, and stock.

It is easy to see the intuition behind the above proposition if we recall that the investor is

only interested in the optimal loadings, x∗S , B
∗
p and C∗

p , on the stock return, real interest rate,

and expected inflation innovations, respectively. To achieve the optimal loadings B∗p and C
∗
p , the

investor can invest in several bonds subject to the no short sales constraints. Alternatively, the

investor can choose a single bond with the optimal maturity τ∗ such that the loadings of this

bond adjusted for the cash position are optimal. Figure 1 shows the convex feasible region of

constrained portfolio loadings and illustrates that all feasible combinations of loadings can be

achieved by a combination of cash and a single bond of the appropriately chosen maturity. It

is clear from the figure that it will in general be suboptimal to prespecify the maturity or factor

loadings of the bond.

************************

Insert Figure 1 about here

************************
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For a CRRA utility function, the indirect utility J(r,W,Π, t) is homogeneous in real wealth

and can be written as
(W/Π)1−γ

1−γ ψ(r, t). The Bellman equation for the constrained portfolio problem

is then:

max


0 ≤ xs, xb ≤ 1

0 ≤ τ ≤ τmax




{
1

2
ψrrσ

2
r + ψr

[
(1− γ)

(
xsσrS − xbB(t, τ)σ2

r − xbC(t, τ)σrπ − σrΠ
)

+ κ(r̄ − r)] + ψ
[−β − (1− γ)2 (xsσSΠ − xbB(t, τ)σrΠ − xbC(t, τ)σπΠ)

+ (1− γ) (r + xsσsλs − xbB(t, τ)σrλr − xbC(t, τ)σπλπ − ξSλS − ξrλr − ξπλπ − ξuλu)

− 1

2
(1− γ)(γ − 2)σ2

Π − 1

2
γ(1− γ)

[
x2
sσ

2
s − 2xsxb(B(t, τ)σrS + C(t, τ)σSΠ)

+ x2
b(B(t, τ)2σ2

r + 2B(t, τ)C(t, τ)σrπ + C(t, τ)2σ2
π)
]]

+ ψt = 0
}
, (45)

where xs and xb are the proportion of wealth invested in stocks and bonds respectively, and

τ = T − t is the maturity of the bond chosen by the investor. Equation (45) is solved numerically

to yield the constrained portfolio strategies that are reported in Section IV below.

The introduction of indexed bonds will generally increase investor welfare when the investor is

subject to short-selling or borrowing constraints. With index bonds, the investor’s portfolio choice

problem involves the nominal bond maturity, the indexed bond maturity, and the proportions of

wealth invested in stocks and nominal and indexed bonds.20

III. Model Calibration

To provide illustrative calculations of horizon effects on optimal portfolio choice, the model

parameters were estimated using a Kalman filter in which the unobserved state is described by r
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and π. There are n observation equations provided by the relation between the yields on n bonds

of different maturities and the state variables that follow from the bond pricing equation (10);

the final observation equation follows from the discretized relation between the realized inflation

rate and the expected inflation rate.21

The system was estimated using monthly data on eleven constant maturity U.S. treasury

discount bond yields with maturities of 1, 3, 6 and 9 months, and 1, 2, 3, 4, 5, 7, and 10 years,

and CPI inflation for the period January 1970 to December 1995.22 Table I reports the parameter

estimates, along with their standard errors. The mean reversion coefficients imply half-lives for

innovations in the real interest rate and expected inflation of 1.1 and 25.7 years, respectively.23

The market prices of both interest rate risk and inflation risk are negative and significant.24

Since the loadings of bond returns on innovations in these variables are negative and grow with

maturity, estimated bond risk premia are positive and increasing with maturity. The standard

deviation of unexpected inflation, σΠ, is about 133 basis points per year, which compares with

411 basis points for the unconditional standard deviation of inflation and with 136 basis points

for the standard deviation of innovations in expected inflation, σπ. The standard deviation of

innovations in the real interest rate, σr, of 260 basis points seems high, but should be considered

in conjunction with the strong mean reversion, which implies that only about 53 percent of any

innovation remains after one year. The correlation between innovations in the real interest rate

and in inflation (expected and realized) is −0.06, which is consistent with the Mundell-Tobin

model and with the empirical findings of Fama and Gibbons (1982) for the period 1953 to 1977.

************************

Insert Table I about here
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The standard errors for the bond yield estimates include model error as well as sampling error.

The standard errors of these “estimation errors” are quite low, except for maturities up to one

year, which vary from 20 basis points for one year to 99 basis points for one month; for longer

maturities, the standard errors are in the range of zero to 12 basis points.

Figure 2 plots the time series of the estimated real interest rate, r, and the expected rate of

inflation, π. The estimated real interest rate varies between −4 and 7 percent. The series exhibits

high short run variability and strong mean reversion. In contrast, the expected rate of inflation

series exhibits much less mean reversion. It is possible that the high frequency variability in r is

due to the model’s attempts to fit variation in the yields of medium to long-term bonds — this

would account also for the relatively poor fit of the model at the short end of the term structure.

************************

Insert Figure 2 about here

************************

The estimate of the real interest rate mean reversion parameter, κ, is likely to be too high in

light of the high frequency oscillations in the estimated real interest rate series that it implies,

as seen in Figure 2. Figure 3 plots the annual “realized” real interest rates for the period 1890

to 1985.25 It is clear that there is much less mean reversion even in this noisy series than that

in the estimated series in Figure 2. Therefore, we re-estimated the parameters of the stochastic

processes for r and π with a Kalman filter using only annual data on the nominal interest rate

and inflation for the period 1890 to 1985. The results are striking — the new value of κ is only

0.105 in contrast to 0.631, while the estimate of σr is only half of its previous estimate.
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************************

Insert Figure 3 about here

************************

IV. Unconstrained and Constrained Dynamic Strategies

Optimal investment strategies were determined for the parameter values calibrated from the

monthly data set when the whole of the inflation innovation is unhedgeable (ξS = ξr = ξπ =

0).26 Table II summarizes the optimal strategies and the certainty equivalent wealth for different

horizons and risk aversion parameters, γ.27 Since α �= κ, any two bonds with different maturities

are sufficient to span the (nominal or real) returns on all possible bond portfolios, which are

characterized by their loadings on dr and dπ; the amounts invested in the bonds depend on

which bonds are used to achieve the portfolio loadings. Therefore, in the table, we report the

loadings of the nominal portfolio returns, Bp and Cp; expressions for these loadings follow

immediately from equation (B8). Both the optimal stock allocation and inflation loadings are

independent of the horizon. While the absolute magnitude of the interest rate loading is increasing

in the horizon for γ > 1, is decreasing in the horizon for γ < 1, and is independent of the horizon

for γ = 1 (log utility), this loading is relatively insensitive to the horizon for T > 5. Thus, in

contrast to Xia (2000), who finds strong horizon effects even at long horizons in models with

excess return predictability, horizon effects here are limited to about five years. Nevertheless,

the hedge component of the optimal bond portfolio is significant. For example, when γ = 3

the myopic strategy has a loading of −2.29 on dr, while the optimal strategy for a five-year
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investment horizon has a loading of −3.25, so the hedge demand as measured by the loading

on dr is about 42 percent of the myopic demand. When the horizon increases from five to

twenty years, the absolute value of the hedge demand only increases by a further two percent

of the myopic demand. The importance of the hedge demand increases rapidly as risk aversion

increases; for example, when γ = 5 the optimal loading on dr for a five year horizon is 182

percent of the loading for a myopic investor.

************************

Insert Table II about here

************************

Figure 4 plots the optimal portfolio holdings of cash, stock, and one-year and ten-year nominal

bonds as a function of the investment horizon for an investor with γ = 3. The figure confirms

the discussion in terms of factor loadings. The optimal bond allocation changes little beyond

year four, although there is a big difference between the myopic and the optimal allocation for

a long horizon investor: the myopic allocation in the one-year bond is 3.24, while the optimal

allocation is 4.94 for T = 5, so that the hedge demand is as high as 52 percent of the myopic

allocation.

************************

Insert Figure 4 about here

************************

Although not shown here, the optimal portfolio allocations are also quite sensitive to the risk

aversion parameter: the stock allocation and the loadings on both dr and dπ decrease with the
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risk aversion. In the limit, as risk aversion becomes infinite, the stock allocation goes to zero and

the investor’s dynamic strategy in bonds synthesizes the returns on a pseudo inflation indexed

bond with maturity equal to the remaining investment horizon. Investment in a bond with positive

maturity increases the investor’s exposure to inflation risk. If φπ were equal to zero so that there

was no reward for bearing inflation risk, the investor would eliminate all inflation risk by taking

a short position in at least one of the bonds. For the parameter estimates in Table I, all of the

optimal portfolios in Table II involve at least one short bond or cash position.

Perhaps surprisingly, the costs imposed by the unhedgeability of the inflation surprise are

quite small. Assuming that the reward for bearing inflation risk is zero (φu = 0), the certainty

equivalent cost imposed by unhedgeable inflation risk is exp
γξ2u
2

(T−t); this amounts to only about

one percent of wealth for a twenty-year horizon investor with γ = 5 because ξu, the volatility of

unhedgeable inflation, is only 1.3 percent per year.

Table III reports the constrained optimal strategies for the same parameter values as Table II:

the portfolio allocation is now shown as the proportion of wealth allocated to bonds and stock

together with the optimal maturity of the bond. The constraints modestly reduce the investor’s

certainty equivalent wealth. For example, an investor γ = 3 and T = 20 years requires only

about 13 percent additional wealth to compensate for the constraints. The portfolio allocation

is relatively insensitive to the investment horizon: the stock-bond ratio is virtually independent

of the horizon, and the maturity of the optimal bond shows little variation beyond year five.

However, the optimal portfolio is quite sensitive to the risk aversion parameter. As risk aversion

increases, the ratio of bonds to stock increases at all horizons; moreover, the maturity of the

optimal bond decreases as shown in Figure 5.
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************************

Insert Table III about here

************************

************************

Insert Figure 5 about here

************************

The efficiency gain from following a dynamic strategy is calculated from equation (44). Since

the estimate of κ from the first data set is very high, the estimates of efficiency gains reported in

Table II are very small except for long horizons and strong risk aversion — for γ equal to 15 the

efficiency gain over 20 years is around 21 percent. When the investor faces constraints, EGR

is calculated numerically. Estimates of EGR reported in Table III are all close to one, reflecting

the fact that the investor’s optimal portfolio strategy is close to the myopic one when there are

constraints.

Tables IV and V report the unconstrained and constrained portfolio strategies for the value

of κ corresponding to the set of annual data, holding the other parameters unchanged. There

are no horizon effects in Cp and xs, but the unconstrained strategies now exhibit strong horizon

effects in Bp even at long horizons: When γ is less than unity, Bp decreases with the horizon,

while the reverse is true for γ greater than unity. The strong horizon effect is also evident in

Figure 6, which plots the optimal portfolio holdings for an investor with γ = 3 who can invest

in cash, stock, and one-year and ten-year bonds. Most significantly, the efficiency gain over the

myopic strategy is now substantial: when the horizon is 20 years, the gain is 119 percent for γ

equal 5 and 252 percent for γ = 7 in the unconstrained case, and 54 percent and 121 percent,
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respectively, in the constrained case.

************************

Insert Table IV about here

************************

************************

Insert Table V about here

************************

************************

Insert Figure 6 about here

************************

Horizon effects are now also evident for the constrained strategies shown in Table V. First, in

contrast to the popular view that long-horizon investors should hold more stock than short horizon

investors,28 the optimal stock holding decreases with the horizon; for example, for γ = 3, the

optimal holding of stock is 66 percent for a one-month horizon and only 40 percent for a twenty-

year horizon. Similarly, the stock-bond ratio also decreases with the horizon beyond year one.

These results are obviously sensitive to the assumption of the model that the equity risk premium

is constant. In contrast to the previous example, a myopic investor with a large enough risk

aversion parameter may want to hold cash, and, in such circumstances, the constraints are not

binding. However, when the investment horizon is longer than one year, a mix of stocks and

bonds (no cash) dominates portfolios with cash. The second horizon effect, which is shown in

Figure 7, is that the maturity of the optimally chosen bond increases with the horizon — the
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effect is much more pronounced with the reduced degree of mean reversion in r, which generally

leads the long-term investor to hold a much longer maturity bond: the maturity of the optimally

chosen bond for a twenty-year investor with γ = 3 rises from seven years when κ is 0.63 to 13.5

years when κ is 0.11.

************************

Insert Figure 7 about here

************************

V. Conclusion

In this paper, we have derived the optimal dynamic strategies for an investor with power

utility in an economy with stochastic inflation and real interest rates, as well as a constant equity

premium, when there exists no riskless security. Closed form expressions were obtained for the

optimal portfolio when the investor is free to take unconstrained portfolio positions, and it was

shown that the optimal portfolio position can be achieved by investments in stocks, cash, and

two nominal bonds. In this setting, the optimal allocation to stocks and the optimal portfolio

loading on the innovation in inflation are independent of the horizon, while the optimal loading

on the innovation in the shadow real interest rate is increasing in the horizon for investors more

risk averse than the log. The efficiency gain of the optimal dynamic strategy over the myopic

strategy was shown to be a function of both the investor’s risk aversion and the variance of the

cumulative real interest rate over the investor’s horizon: the gain is small for risk aversion close

to the log, as well as when either the variance of innovations in the real interest rate is small
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or the mean reversion in the real interest rate is large. When the investor is constrained from

holding short positions or borrowing, the optimal portfolio was shown to be achievable with an

investment in stocks, cash, and a single bond with an optimally chosen maturity.

The model was calibrated to monthly data on U.S. Treasury bond yields and inflation for

the period 1970 to 1995. The resulting parameter estimates implied an unreasonably high degree

of mean reversion in the real interest rate and yielded very small estimates of the efficiency

gain of the dynamic strategy and only limited horizon effects in optimal portfolios. A striking

characteristic of the optimal constrained portfolios is that, not only does the allocation to bonds

increase with risk aversion, but the maturity of the optimal bond decreases as risk aversion

increases.

When the real interest rate mean reversion parameter is calibrated to a long history of an-

nual data, it falls from 0.63 to 0.11. With this parameterization, both horizon effects and the

efficiency gains of the optimal dynamic strategy become large. Thus, the importance of dynamic

considerations in optimal asset allocation depends critically on the stochastic characteristics of

the investment opportunity set. Further work is required to assess more precisely the dynamics

of the real interest rate in the United States.
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Table I

Estimates of Model Parameters

Maximum Likelihood parameter estimates for the joint process of real interest rate, expected rate of inflation, and stock returns

estimated by implementing Kalman Filter using monthly yields of eleven U.S. constant maturity treasury bonds, CPI data, and

CRSP value-weighted stock returns for the period from January 1970 to December 1995. Parameter estimates using annual

nominal interest rate and CPI data from 1890 to 1985 are reported in parentheses.

Parameter Estimate Standard Error

Stock Return Process: dS
S

= (Rf + λSσS)dt+ σSdzS
σS 0.158

λS 0.343 0.057

Real Interest Rate: dr = κ(r̄ − r)dt+ σrdzr
r̄ 0.012 (0.017) 0.002

κ 0.631 (0.105) 0.003

σr 0.026 (0.013) 0.004

λr -0.209 0.077

Expected Inflation: dπ = α(π̄ − π)dt+ σπdzπ
π̄ 0.054 0.023

α 0.027 0.009

σπ 0.014 0.005

λπ -0.105 0.005

Realized Inflation: dΠ/Π = πdt+ σΠdzΠ

σΠ 0.013 0.005

Parameters of the Pricing Kernel Process: Φ
φS -0.333

φr 0.170

φπ 0.120

ρSr -0.129

ρSπ -0.024

ρrπ -0.061 0.002

Standard Errors of Bond Yield Errors by Bond Maturities

1 month 0.0099 3 month 0.0066

6 month 0.0043 9 month 0.0030

1 year 0.0020 2 year 0.0004

3 year 0.0003 4 year 0.0002

5 year < 0.0001 7 year 0.0005

10 year 0.0012
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Table II

An Unconstrained Optimal Portfolio Strategy for Investors with the Terminal Wealth Objective

(κ = 0.631)
This table reports the unconstrained optimal strategy for an investor with different values of the risk aversion parameter, γ, and the

investment horizon, T . Bp (Cp) is the sensitivity of the optimal portfolio to innovations in r (π); xS is the proportional portfolio

allocation to the stock. CE is the certainty equivalent wealth at the horizon. The calculation is based on the parameter estimates in

Table V for a current interest rate of three percent. The variable EGR is the ratio of the CE under the optimal strategy to the CE
under a myopic strategy: it is calculated from equation (44). The variable κ is the mean reversion coefficient for the shadow real

interest rate process.

Horizon Risk Aversion Parameter, γ
0.8 1.5 3.0 5.0 7.0 10.0 15.0

1 month

CE 1.01 1.01 1.00 1.00 1.00 1.00 1.00

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 2.51 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.37 -4.50 -2.29 -1.41 -1.03 -0.74 -0.52

Cp -9.64 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

1 year

CE 1.13 1.08 1.05 1.04 1.04 1.03 1.03

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 2.51 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.21 -4.72 -2.73 -1.94 -1.59 -1.34 -1.14

Cp -9.64 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

5 years

CE 1.77 1.43 1.27 1.21 1.18 1.16 1.14

EGR 1.00 1.00 1.00 1.01 1.01 1.02 1.03

xS 2.51 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.01 -4.98 -3.25 -2.56 -2.26 -2.04 -1.86

Cp -9.64 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

10 years

CE 3.05 2.00 1.58 1.43 1.37 1.32 1.29

EGR 1.00 1.00 1.01 1.02 1.03 1.05 1.09

xS 2.51 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.00 -5.00 -3.29 -2.61 -2.32 -2.10 -1.92

Cp -9.64 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

20 years

CE 9.02 3.92 2.43 2.01 1.84 1.72 1.63

EGR 1.00 1.00 1.02 1.05 1.08 1.13 1.21

xS 2.51 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.00 -5.00 -3.29 -2.61 -2.32 -2.10 -1.93

Cp -9.64 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51
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Table III

A Constrained Optimal Portfolio Strategy for Investors with the Terminal Wealth Objective

(κ = 0.631)
This table reports the constrained optimal strategy for an investor with different values of the risk aversion parameter, γ, and the

investment horizon, T . The variables xS and xB denote the proportional allocations to the stock and the optimal bond. The variable

τ represents the maturity of the optimally chosen bond. The variable CE is the certainty equivalent wealth at the horizon. The

calculation is based on the parameter estimates in Table V for a current interest rate of three percent. The variable EGR is the ratio

of the CE under the optimal strategy to the CE under a myopic strategy: it is calculated numerically. The variable κ is the mean

reversion coefficient for the shadow real interest rate process.

Horizon Risk Aversion Parameter, γ
0.8 1.5 3.0 5.0 7.0 10.0 15.0

1 month

CE 1.01 1.01 1.00 1.00 1.00 1.00 1.00

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 1.00 1.00 0.64 0.40 0.29 0.20 0.13

xB 0.00 0.00 0.36 0.60 0.71 0.80 0.87

τ n.a. n.a. 7.49 3.08 1.86 1.09 0.62

1 year

CE 1.07 1.06 1.05 1.04 1.04 1.03 1.03

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 1.00 1.00 0.63 0.40 0.29 0.20 0.14

xB 0.00 0.00 0.37 0.60 0.71 0.80 0.86

τ n.a. n.a. 7.24 3.34 2.35 1.71 1.27

5 years

CE 1.36 1.31 1.23 1.18 1.16 1.14 1.12

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.01

xS 1.00 1.00 0.62 0.39 0.29 0.20 0.14

xB 0.00 0.00 0.38 0.61 0.71 0.80 0.86

τ n.a. n.a. 7.00 3.54 2.71 2.18 1.81

10 years

CE 1.81 1.68 1.47 1.37 1.31 1.27 1.22

EGR 1.00 1.01 1.00 1.00 1.00 1.01 1.03

xS 1.00 1.00 0.62 0.39 0.28 0.20 0.14

xB 0.00 0.00 0.38 0.61 0.72 0.80 0.86

τ n.a. n.a. 7.00 3.54 2.73 2.21 1.85

20 years

CE 3.22 2.77 2.16 1.82 1.65 1.49 1.31

EGR 1.00 1.00 1.00 1.00 1.00 1.01 1.02

xS 1.00 1.00 0.63 0.40 0.29 0.21 0.14

xB 0.00 0.00 0.37 0.60 0.71 0.79 0.86

τ n.a. n.a. 7.00 3.55 2.74 2.22 1.85
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Table IV

An Unconstrained Optimal Portfolio Strategy for Investors with the Terminal Wealth Objective

(κ = 0.105)
This table reports the unconstrained optimal strategy for an investor with different values of the risk aversion parameter, γ, and the

investment horizon, T . The variable Bp (Cp) is the sensitivity of the optimal portfolio to innovations in r (π); xS is the proportional

portfolio allocation to the stock. The variable CE is the certainty equivalent wealth at the horizon. The calculation is based on the

parameter estimates in Table for a current interest rate of three percent. The variable EGR is the ratio of the CE under the optimal

strategy to the CE under a myopic strategy: it is calculated from equation (44). The variable κ is the mean reversion coefficient for

the shadow real interest rate process.

Horizon Risk Aversion Parameter, γ
0.8 1.5 3.0 5.0 7.0 10.0 15.0

1 month

CE 1.01 1.01 1.00 1.00 1.00 1.00 1.00

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 2.52 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.37 -4.50 -2.29 -1.41 -1.03 -0.75 -0.52

Cp -9.63 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

1 year

CE 1.14 1.09 1.06 1.05 1.04 1.04 1.04

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 2.52 1.34 0.67 0.40 0.29 0.20 0.13

Bp -8.15 -4.79 -2.87 -2.10 -1.77 -1.53 -1.33

Cp -9.63 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

5 years

CE 1.85 1.51 1.35 1.28 1.26 1.24 1.22

EGR 1.00 1.00 1.01 1.03 1.05 1.08 1.13

xS 2.52 1.34 0.67 0.40 0.29 0.20 0.13

Bp -7.42 -5.77 -4.83 -4.45 -4.29 -4.17 -4.08

Cp -9.63 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

10 years

CE 3.31 2.27 1.83 1.68 1.61 1.57 1.53

EGR 1.00 1.01 1.08 1.19 1.33 1.56 2.05

xS 2.52 1.34 0.67 0.40 0.29 0.20 0.13

Bp -6.84 -6.54 -6.36 -6.29 -6.27 -6.24 -6.23

Cp -9.63 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51

20 years

CE 10.19 5.02 3.35 2.84 2.64 2.49 2.37

EGR 1.01 1.04 1.39 2.19 3.52 7.24 24.41

xS 2.52 1.34 0.67 0.40 0.29 0.20 0.13

Bp -6.30 -7.26 -7.81 -8.03 -8.12 -8.19 -8.25

Cp -9.63 -5.14 -2.57 -1.54 -1.10 -0.77 -0.51
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Table V

A Constrained Optimal Portfolio Strategy for Investors with the Terminal Wealth Objective

(κ = 0.105)
This table reports the constrained optimal strategy for an investor with different values of the risk aversion parameter, γ, and investment

horizon, T . xS and xB are the proportional allocations to the stock and the optimal bond. τ is the maturity of the optimally chosen

bond. CE is the certainty equivalent wealth at the horizon. The calculation is based on the parameter estimates in Table for r0 = 3%.

EGR is the ratio of the CE under the optimal strategy to the CE under a myopic strategy: it is calculated numerically. κ is the

mean reversion coefficient for the shadow real interest rate process.

Horizon Risk Aversion Parameter, γ
0.8 1.5 3.0 5.0 7.0 10.0 15.0

1 month

CE 1.01 1.01 1.01 1.00 1.00 1.00 1.00

EGR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

xS 1.00 1.00 0.66 0.40 0.29 0.20 0.13

xB 0.00 0.00 0.34 0.44 0.31 0.22 0.15

τ n.a. n.a. 9.71 3.72 3.72 3.72 3.72

1 year

CE 1.08 1.07 1.06 1.05 1.04 1.04 1.04

EGR 1.00 1.00 1.01 1.00 1.00 1.00 1.00

xS 1.00 1.00 0.64 0.40 0.29 0.20 0.14

xB 0.00 0.00 0.36 0.60 0.71 0.80 0.86

τ n.a. n.a. 10.81 3.69 2.40 1.72 1.30

5 years

CE 1.48 1.42 1.33 1.27 1.24 1.21 1.18

EGR 1.04 1.04 1.01 1.01 1.04 1.06 1.10

xS 1.00 1.00 0.55 0.38 0.28 0.20 0.13

xB 0.00 0.00 0.45 0.62 0.72 0.80 0.87

τ n.a. n.a. 12.60 7.15 5.61 4.72 4.21

10 years

CE 2.14 1.97 1.73 1.56 1.46 1.27 1.28

EGR 1.06 1.10 1.03 1.11 1.20 1.36 1.72

xS 1.00 0.66 0.47 0.32 0.23 0.16 0.09

xB 0.00 0.34 0.53 0.68 0.77 0.84 0.91

τ n.a. 27.77 13.20 9.07 7.72 6.94 6.58

20 years

CE 4.39 3.61 2.63 2.00 1.66 1.37 n.a.

EGR 1.11 1.24 1.12 1.54 2.21 3.97 n.a.

xS 1.00 0.63 0.40 0.24 0.16 0.09 n.a.

xB 0.00 0.37 0.60 0.76 0.84 0.91 n.a.

τ n.a. 25.98 13.53 10.26 9.15 8.50 n.a.
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Figure 1. Illustration of the feasible region for a portfolio strategy with short sales constraint.

 

  

 
 
 
 

Bp (τ) 

Cp (τ) 
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O=(0,0,0) 
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E=(B(τ*),C(τ*),0)

D=(0,0,1)

 

Area of feasible B,C,xS combinations 
for bond with maturity τ* 

M=(B(τmax),C(τmax),0) 

 

The curve OEM is the locus of (B(t), C(t)) combinations as t is varied from zero to τmax. The pointM corresponds to (B(τmax), C(τmax)).

The area OEM is the feasible region of (B,C) combinations that are attainable with cash and bonds. Given a selected bond maturity τ∗, the

area DOE is the feasible region of (B,C, xS) combinations.
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Figure 2. Estimated state variables, r and π.
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This figures shows the estimated state variables, r, the real interest rate, and π, the expected rate of inflation, derived from the Kalman filter. The sample period is January 1970 to December 1995.

The series are estimated using monthly observations on eleven U.S. treasury constant maturity bond yields and U.S. CPI data.
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Figure 3. Estimated state variables, r, and its realized counterpart.
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This figures shows the estimated state variables, r, the real interest rate derived from the Kalman filter, and the realized real interest rate derived by subtracting actual inflation rate from the nominal

interest rate. The sample period is 1890 to 1985. The series are estimated using observations on annual U.S. nominal interest rate and U.S. CPI data.
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Figure 4. Unconstrained optimal asset allocation for different horizons (γ = 3, κ = 0.631 and r0 = 3%).
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The unconstrained optimal proportion of wealth invested in the stock index, the one-year bond, the ten-year bond, and cash. The optimal allocations are derived using the parameter estimates in

Table V for a current interest rate of three percent.
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Figure 5. Optimal bond maturity and risk aversion for different horizons (r0 = 3%, κ = 0.631).
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This figure plots the optimal bond maturity chosen by an investor who faces borrowing and short sales constraints for different values of the risk

aversion parameter, γ, and investment horizon.
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Figure 6. Unconstrained optimal asset allocation for different horizons (γ = 10, κ = 0.105 and r0 = 3%).
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This figures plots the unconstrained optimal proportion of wealth invested in the stock, the one-year bond, the ten-year bond, and cash. The optimal allocations are derived using the parameter

estimates in Table V.
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Figure 7. Optimal bond maturity and risk aversion for different horizons (r0 = 3%, κ = 0.105).
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This figure plots the optimal bond maturity chosen by an investor who faces borrowing and short sales constraints for different values of the risk

aversion parameter, γ, and investment horizon.
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Appendix A. Nominal Bond Price

The nominal bond price, P (t, T ), is given by:

P (t, T ) = exp

{
Et

[
ln

(
MT

Mt

)
− ln

(
ΠT
Πt

)]
+

1

2
V art

[
ln

(
MT

Mt

)
− ln

(
ΠT
Πt

)]}
. (A1)

Letting φ2
1 ≡ φ′ρφ, ξ2

1 ≡ ξ′ρξ, VM = φ2
1 + φ2

u, VΠ = ξ2
1 + ξ2

u,

ln (MT/Mt) =

∫ T

t

(
−r(s)− 1

2
VM

)
ds+

∫ T

t

φ′dz +
∫ T

t

φudzu (A2)

ln (ΠT/Πt) =

∫ T

t

(
π(s)− 1

2
σ2

Π

)
ds+

∫ T

t

ξ′dz + ξu

∫ T

t

dzu (A3)

Then define

B(t, T ) = κ−1
(
1− eκ(t−T )

)
, (A4)

C(t, T ) = α−1
(
1− eα(t−T )

)
. (A5)

Using equation (A2) and (A3),

Et [ln (MT/Mt)] = −r̄(T − t) + (r̄ − rt)B(t, T )− 1

2
VM(T − t) (A6)

V art [ln (MT/Mt)] = −σr
2

2κ3

[
2κ (B(t, T )− (T − t)) + κ2B2(t, T )

]
+ VM(T − t)

− 2σr
κ

(φSρSr + φr + φπρrπ) [T − t− B(t, T )] ; (A7)
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and

Et [ln (ΠT/Πt)] = π̄(T − t)− (π̄ − πt)C(t, T )− 1

2
(ξ2

1 + ξ2
u)(T − t) (A8)

V art [ln (ΠT/Πt)] = −σπ
2

2α3

[
2α (C(t, T )− (T − t)) + α2C2(t, T )

]
+ (ξ2

1 + ξ2
u)(T − t)

+
2σπ
α

(ξSρSπ + ξrρrπ + ξπ) [T − t− C(t, T )] . (A9)

In addition, we have

CV ≡ cov

[
ln

(
MT

Mt

)
, ln

(
ΠT
Πt

)]

= −σrσπρrπ
ακ

[
(T − t)− B(t, T ),−C(t, T ) +

1− e(α+κ)(t−T )

α+ κ

]

− σr
κ

(ξSρSr + ξr + ξπρrπ) [(T − t)− B(t, T )] + φuξu(T − t)

+
σπ
α

(φSρSπ + φrρrπ + φπ) [(T − t)− C(t, T )] + φ′ρξ(T − t). (A10)

Therefore,

P (t, T ) = exp {A(t, T )−B(t, T )rt − C(t, T )πt} , (A11)
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where

A(t, T ) = [B(t, T )− (T − t)] r̄∗ + [C(t, T )− (T − t)] π̄∗

− σ2
r

4κ3

[
2κ(B(t, T )− (T − t)) + κ2B2(t, T )

]
− σ2

π

4α3

[
2α(C(t, T )− (T − t)) + α2C2(t, T )

]
+

σrσπρrπ
κα

[
(T − t)− C(t, T )− B(t, T ) +

1− e(α+κ)(t−T )

α + κ

]

+ (ξSλS + ξrλr + ξπλπ + ξuλu)(T − t). (A12)

In the above equation, r̄∗ = r̄ − λr
σr

κ
, and π̄∗ = π̄ − λπ

σπ

α
where

λS ≡ (ξS + ξrρSr + ξπρSπ)− (φS + φrρSr + φπρSπ), (A13)

λr ≡ (ξSρSr + ξr + ξπρrπ)− (φSρSr + φr + φπρrπ), (A14)

λπ ≡ (ξSρSπ + ξrρrπ + ξ3)− (φSρSπ + φrρrπ + φπ), (A15)

λu ≡ ξu − φu. (A16)

The variable r̄∗ can be interpreted as the long run mean of the real interest rate under the risk

neutral measure and π̄∗ as the long run mean of the expected inflation rate.

Appendix B. Proof of Theorems

1. Proof of Theorem 1

Since η1, and ζ1 are orthogonal to η2, and ζ2, and ΠT = Πtη1(t, T )η2(t, T ), we can write the
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Lagrangian for feasible wealth processes as:

L = Et

[
(WT/η1(t, T ))

1−γ

1− γ

]
Et

[
1

η2(t, T )1−γ

]
1

Π1−γ
t

− δ

{
Et

[
ζ1(t, T )

WT

η1(t, T )

]
Et

[
ζ2(t, T )

1

η2(t, T )

]
1

Πt
− Wt

Πt

}
(B1)

because the investor can vary nominal wealth across states in O1, but not across states in O2.

The first order conditions are:

(
WT

η1(t, T )Πt

)−γ
Et

[
1

η2(t, T )1−γ

]
= δζ1(t, T )Et

[
ζ2(t, T )

1

η2(t, T )

]
(B2)

Et

[
ζ1(t, T )

WT

η1(t, T )

]
Et

[
ζ2(t, T )

1

η2(t, T )

]
= Wt. (B3)

Equation (B2) can be rewritten as

WT = (δ̂)−
1
γ (ζ1(t, T ))

− 1
γ η1(t, T )Πt. (B4)

Substitute equation (B4) into (B3) and solve for δ̂, then eliminate δ̂ from (B4) by substituting the

value of δ̂, to obtain

w∗
T ≡ W ∗

T/ΠT = η−1
2 (t, T )wtζ1(t, T )

− 1
γF1(t, T )

−1F2(t, T )
−1, (B5)

where F1(t, T ) = Et

[
ζ1(t, T )

1− 1
γ

]
and F2(t, T ) = Et [ζ2(t, T )/η2(t, T )] = exp(ξ2u−ξuφu)(T−t).
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Substituting w∗
T given in equation (B5) into the investor’s J function (20) yields

J =
(wt)

1−γ

1− γ
F1(t, T )

γF2(t, T )
γ−1F3(t, T ), (B6)

where F3(t, T ) = Et [η2(t, T )
γ−1] = exp

(1−γ)(2−γ)
2

ξ2u(T−t). The expression for ψ1(t, T ) is derived

by substituting for F1(t, T ), F2(t, T ) and F3(t, T ).

The proof of Theorem 2, which is similar to that of Theorem 1, is omitted and is available

from the authors on request.

2. Proof of Theorem 3

Define Gs ≡ G[Ms, r, s] ≡ Es

[
W ∗

T

ΠT

MT

Ms

]
as the (real) value at time s of the optimally chosen

terminal payoff W∗
T . Then, using the definition of W∗

T , equation (16),

Gs =
Wt

Πt

F1(s, T )

F1(t, T )

F2(s, T )

F2(t, T )

ζ1(t, s)
− 1

γ

η2(t, s)
, (B7)

where F1(t, T ) and F2(t, T ) are given in equations (17) - (18). Note that F2(t, T ) and F2(s, T )

are functions of horizon only, while F1(t, T ) is a function of the horizon and the realization of

state variable at time t, rt. In constrast, F1(s, T ) is a function of the current state variable rs.

More specifically, lnF1(s, T ) is a summation of a function of T − s and −
(
1− 1

γ

)
B(t, T )rs.

Therefore, the stochastic terms of GS come from ζ1(t, s)
− 1

γ , η2(t, s), and rs, while the other

terms are deterministic functions of the horizon T − s. Using Ito’s Lemma, we know that the

stochastic terms of d lnGs will be from those of −d ln η2, − 1
γ
d ln ζ1 and −

(
1− 1

γ

)
B(t, T )dr.
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Thus, the (log) instantaneous real return on optimally invested wealth is:

d lnGs = g1(r, T − s)dt− φS
γ
dzs −

[
φr
γ

+

(
1− 1

γ

)
B(s, T )σr

]
dzr − φπ

γ
dzπ − ξudzu, (B8)

where the drift term g1(r, s) is a function of current real interest rate rs and the remaining

investment horizon T − s.

Now consider the log real return on portfolio x∗, which is a vector of optimal proportion of

wealth invested in stock, a bond with maturity T1 and a bond with maturity T2. The remaining

wealth, 1− i′x∗, is invested in cash (a nominal instantaneous risk free asset). The nominal wealth

process is given by:

dW

W
= (Rf + x′Λ) dt+ x′σdz. (B9)

The log real wealth process, lnw = lnW − lnΠ, is derived by using the inflation process (7)

and Ito’s Lemma:

d lnw = g2(r, T − s)dt+ (x1σs − ξS) dzs − [(x2B1 + x3B2)σr + ξr] dzr

− [(x2C1 + x3C2)σπ + ξπ] dzπ − ξudzu. (B10)

Since strategy x∗ yields the terminal payoff w∗
T , it follows that the coefficients in equations (B8)

and (B10) are identical. Equating coefficients yields (34).

The proof of Theorem 4, which is similar to that of Theorem 3, is omitted and is available

from the authors on request.
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3. Proof of Proposition 2

Suppose without loss of generality that κ > α. Then, allowing bond maturity, τ , to vary,

a bond’s return loading on the real interest rate, B, is an increasing convex function of its

loading on inflation, C. Then the set of achievable factor loading combinations is defined by

S =
{
(B,C)|Cτmax

Bτmax
B ≥ C ≥ 1−(1−κB)

α
κ

α

}
. Any point in this set, (Bp, Cp), can be achieved by

a convex combination of cash (0, 0) and the loadings of a single bond with maturity τ∗ ≤ τmax,

such that
Cτ∗
Bτ∗

= Cp

Bp
, where the weight on the bond is

Bp

Bτ∗
.
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Footnotes

1Wachter (1999) assumes that the innovation in the equity premium is perfectly correlated

with the stock return.

2Brennan and Xia (1999) allow for a generalized Vasicek process.

3For completeness, we analyze both a utility of lifetime consumption model and a utility of

final wealth model. These are essentially equivalent.

4While the assumption of constant risk premia may seem restrictive, Bossaerts and Hillion

(1999) find no evidence of out-of-sample excess return predictability in fourteen countries using

as potential predictors lagged excess returns, January dummies, bond and bill yields, dividend

yields, etc.

5Perhaps because monetary policy has a short run impact on the real interest rate.

6The linear approximation of CV does not become exact even in a continuous time setting

except for the special case of unit intertemporal substitution, which corresponds to log utility of

consumption, and, in this case, there is no closed form solution for the indirect utility function

(Giovannini and Weil (1989)).

7By the shadow real interest rate, we mean the instantaneous real return that would prevail

for an asset whose instantaneous real return was non-stochastic given the pricing kernel, if such

an asset were to exist. In our model, there is no instantaneous real riskless asset. However, as we

shall show below, when the rate of inflation is spanned by the nominal returns on assets, as will
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be the case if the expected rate of inflation is unobservable and must be inferred from the price

level realization, the model allows for the construction of a portfolio of nominal assets whose

instantaneous real return is riskless.

8Even countries such as Canada, the United States and the United Kingdom, which have

inflation indexed bonds, have them for only a few (long) maturities.

9We are simplifying by ignoring labor income and the consumption-investment decision.

10Formally, the martingale multiplicity of the investor’s information structure is equal to two

(Duffie and Huang (1985)). This condition will be satisfied if, for example, the only information

that is available about expected inflation is derived from the historical inflation series.

11See Cox and Huang (1989) for a formal analysis.

12See Pagés (1987) and Karatzas et. al. (1991) for a rigorous proof. In particular, see Paǵes

(1987) Proposition 2.15.

13Wachter (1999) provides a similar interpretation in a complete market setting where there is

constant interest rate and stochastic equity risk premium and where the investor only invests in

stock and cash.

14Where the tangency is from the nominal riskless rate Rf to the nominal risky efficient set.

15The other component of the loading, ξr/σr, is part of the portfolio hedge against changes in

the price level, Π.
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16Note that eκ(T−t) can be written as
∑∞
n=0

(κ(T−t))n

n!
, which is 1 + κ(T − t) + (κ(T−t))2

2
+ · · · .

Since κ(T − t) is positive, the omitted terms in the series expansion of eκ(T−t) are all positive.

Thus,
[
κ(T − t) + 1− eκ(T−t)

]
< 0.

17The certainty equivalent wealth is that amount of wealth at the horizon that would leave the

investor indifferent between receiving it for sure and having $1 today to invest in the stock and

bonds up to the horizon.

18It is important to remember that the introduction of a new security may change the prices of

existing securities.

19The expected utility under the myopic strategy can be simply calculated by inserting the

myopic portfolio allocation in the process for real wealth and calculating E [w1−γ/γ].

20The constrained optimization problem can only be solved numerically and the availability

of indexed bonds significantly increases the dimension of the problem. Therefore, we do not

consider indexed bonds in our calculations in Section IV. Campbell and Viceira (1999) offer a

welfare analysis of indexed bonds for constrained investors but do not allow for maturity choice.

21See Harvey (1989) for the discussion of the Kalman filter and its estimation. See, for

example, de Jong (1998) for a detailed discussion of estimating term structure parameters using

the Kalman filter technique.

22The data on yields were kindly provided by David Backus. The CPI data are from the Bureau

of Labor Statistics.
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23These estimates are comparable to those of Campbell and Viceira (1999) for the period of

1952 to 1996. The slow mean reversion in the estimated expected rate of inflation is consistent

with Fama and Gibbons (1982, p. 305) who report that “the short term expected inflation rate is

close to a random walk.”

24Note that by ignoring the standard errors of π̄ and r̄, the standard errors of all the parameters

are understated.

25The “realized” real interest rate for a year is the difference between the nominal interest rate

and the realized rate of inflation. All data are from Shiller (1989).

26No significant relation was found in the data between unexpected inflation and innovations

in the state variables or stock return.

27We analyze the optimal strategies only for the terminal wealth problem and not for the lifetime

consumption problem since, as shown in Theorem 4, the optimal stock holding is the same for

the two problems and the bond allocation for the second problem with horizon T is a weighted

average of the allocations for the terminal wealth problem for horizons from 0 to T .

28See, for example, Siegel (1998, p 283), “Stocks should constitute the overwhelming propor-

tion of all long-term financial portfolios.”
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