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SUMMARY 
 

We start from the model of Janssen1 (1992) and the papers of Ars & Janssen2,3(1994, 
1995), in which they developed some applications of the Janssen model of Asset 
Liability Management (ALM) to real life situations. We study an extension of the 
Janssen model in which the asset fund A  takes into account fixed-income securities. 
Therefore, we take into account the rates of return of the asset portfolio, which we 
model by a Vasicek4 process. The liability process B  is defined by a geometric 
Brownian motion with drift which may be correlated with the asset process. 
 In this generalized Janssen model, we study the relations between the asset process 
A  and the liability process B  in order to point out some management principles. More 
exactly, we study the probability that the assets and liabilities of a company have no 
good matching and we propose a degree of the mismatching. Therefore, we look at the 

process a = at , t ≥ 0( ) defined by at = ln
At

Bt

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  and at the first mismatching time 

τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ }. The determination of the probability of mismatching 
leads to the calculation of crossing probabilities P τ < T[ ]. Only in special cases, 
explicit results are obtained and we turn to the approximations proposed by Durbin5,6 

(1985, 1992) and Sacerdote & Tomasetti7 (1992). The degree of mismatching follows 
from option theory. These results are important as they are useful to determine ALM-
strategies for insurance companies.  
 
Keywords: stochastic differential equation, Ornstein-Uhlenbeck process, probability of 
mismatching, ALM, option theory. 
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1. INTRODUCTION 
 
The last few years, the increasing importance of various risks associated with their 
financial activities has led many insurance companies to pay more and more importance 
to modern techniques of asset liability management largely introduced in banks as it is 
well known that the bad management of interest rates risks can lead to heavy financial 
losses and possibly requires a significant increase in the free reserve of the enterprise. 
 Our goal is to measure the riskiness of the insurance company by using a stochastic 
model of both the asset and the liability side of the balance and we consider the 
possibilities of perfect matching and partially matching. We propose an indicator of 
riskiness which we call the mismatching probability or mismatching degree. This 
information is interesting for the management of the company who can check whether 
they stay within the risk limits and can approve their strategies with respect to 
investment, reinsurance, pricing and acceptation of policies. This kind of information 
would also be useful for the determination of a contingency reserve or the solvency of a 
portfolio of insurance policies. 
 We do not propose these measures as an alternative of other ALM approaches but 
rather as a complement. Starting from a good database, we advise to use different 
ALM-tools like duration analysis, gap management, simulation and our mismatching 
probability and/or mismatching degree in order to obtain more useful information and a 
more complete idea of the situation of the company. The proposed measures of risk are 
also useful from the point of view of regulating authorities. In fact the goals of an 
insurance company and regulatory bodies are the same to a certain degree. 
 We start from the model of Janssen1 (1992) which is symmetric in A  and B  and 
assumes geometric Brownian motions both for A(t ) and B(t) . We study an extension 
of the Janssen model in which the asset fund A  takes into account fixed-income 
securities and this introduces asymmetry for A  and B . This is particularly useful for 
insurance companies whose investments are more in bonds than in shares. 
 We suppose that the asset portfolio can be modeled by a fund containing only pure-
discount bonds which reflect the rates of return of the asset portfolio in the past and 
with maturity the time horizon of the period that we are interested in. In this paper, we 
assume that the rates of return follow an Ornstein-Uhlenbeck process. Then the 
stochastic differential equation of the assets follow from the paper of Vasicek4 (1979). 
We further assume that the liability process B is defined by a geometric Brownian 
motion with drift, which is correlated with the asset process in a constant way.  
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 In this generalized Janssen's model, we study the perfect matching and final 
matching of assets and liabilities by determining the probability of mismatching and the 
degree of mismatching. 
 To begin with, we present the generalized Janssen model in section 2. Section 3 is 
devoted to the study of probabilities of mismatching. In section 4, we concentrate on a 
degree of mismatching between the assets and the liabilities. Section 5 concludes the 
paper. 
 

2. THE GENERALIZED JANSSEN MODEL 
 
The most realistic model is to look at a portfolio of asset pools A1, A2 , ... , An  with some 

segments containing only interest rate sensitive securities and some only shares. This 
model will be called the multidimensional model and will be treated in another paper8. 
 First, we concentrate on a less realistic but more treatable model in order to obtain 
an increased understanding of different influences. Instead of dividing the assets up in 
different classes, we suppose that we can model the assets as one group of interest rate 
sensitive securities, reflecting the rates of returns of the asset portfolio in the past. Since 
insurance companies invest particularly in bonds, we model the asset portfolio by 
assuming that it contains N zero-coupon bonds which are modeled by the rates of 
returns which have been obtained by the portfolio over the last years.  
 The maturity ˜ T  of the bonds representing the asset portfolio certainly should be 
larger than or equal to the time horizon T if [0,T] is the period that we are interested in. 
In order to simplify the notations, we choose ˜ T =T. The results about the mismatching 
probabilities can easily be generalized to longer maturities. In case of the proposed risk 
measure of final mismatching for stochastic rates of return, however, it makes a 
difference whether ˜ T  = T or whether ˜ T  > T. 
 The rates of return are assumed to follow an Ornstein-Uhlenbeck process of the 
form  

drt = κ(θ − rt)dt + ηdZt , 
where Zt( )t ≥1  is a Brownian motion and where κ ,θ,η ∈ℜ+ . This model has the realistic 

property of being mean reverting towards the long term value θ  where the speed of 
adjustment is determined by the parameter κ . The rates in the Vasicek model can be 
negative but in our opinion, negative rates of return are possible since assets can be 
invested in many different financial instruments. 
 We assume that financial markets are complete and frictionless and that trading 
takes place continuously. In this setting, Harrison and Kreps9 (1979) have shown that 
there exists a unique risk-neutral probability. 



 

4

 Under these assumprions, the assets At , modeled by the investment in N pure-

discount bonds with maturity T, are modeled by (see e.g. Vasicek's paper): 

dAt = At rt +
ηλ
κ

1− e−κ T −t( )( )⎛ 
⎝ 

⎞ 
⎠ dt − At

η
κ

1 −e− κ T −t( )( )dZt  

with λ  the parameter of market risk and with AT =N. 

 
We model the liability process B  by a lognormal process with positive constants 

µB,σ B  which is correlated with Zt( )t ≥1 . Cummins and Ney10 (1980) argue that the 

lognormal distribution is a reasonable model for insurer liabilities if there is a good 
reinsurance program to hedge catastrophic jumps in the liabilities. 
 We now consider the process a = at , t ≥ 0( ), which has been defined in Janssen1 

(1992), namely at = ln
At

Bt

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  and a0 = ln

A0

B0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ . This process has the same meaning as 

the surplus process in risk theory. The stochastic differential equation of a = at , t ≥ 0( ) 

follows from Ito's lemma: 
 
Theorem 1 
The stochastic process a = at , t ≥ 0( ) is a solution of the stochastic differential equation 

dat = µ rt , t,T( )dt + ˜ σ t,T( )dW t  

where 

   
µ rt , t,T( )= rt +

ηλ
κ

1 −e− κ T −t( )( )− µB −
η2

2κ 2 1− e−κ T− t( )( )2
+

σB
2

2

˜ σ 2 t,T( ) =
η2

κ 2 1 −e−κ T −t( )( )2
+ σB

2 +
2η
κ

1 −e−κ T −t( )( )ϕσB

 

and where W = W t ,t ≥ 0( ) denotes a standard Brownian motion. 
 
In the next section, we use this theorem to derive the probabilities of mismatching. 
 

3. PROBABILITIES OF MISMATCHING 
 
3.1 Perfect matching 
 
Using the generalized Janssen model presented in the previous section, we study the 
relations between the assets process A  and the liabilities process B  in order to point 
out some management principles. We say that the assets and liabilities have no perfect 
match if for some t ≥ 0 the asset value A(t ) becomes lower than the liability value B(t)  
or equivalently if a(t) becomes negative (see Janssen1 (1992) and Ars & Janssen2,3 
(1994,1995)). Therefore, we define the first mismatching time in the period [0,T] as 

τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ }  
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or in case of the Ornstein-Uhlenbeck process 

τ = inf

t : 0 ≤ t ≤ T, a0 + rs ds
0

t

∫ + ˜ σ sdW s
0

t

∫ + ηλ
κ

− η2

2κ 2 − µB + σ B
2

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
t

+e− κT ηλ
κ 2 − η2

κ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+ η2

4κ 3 e−2κT + e−κ T −t( ) η2

κ 3 − ηλ
κ 2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
− η2

4κ 3 e−2κ T −t( ) ≤ 0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

where we restrict ourselves to times smaller than T. We now concentrate on the 
crossing probabilities P τ < T[ ], which cannot be obtained explicitely in the general 
model. To obtain more insight, we first treat deterministic rates of return. 
 
3.1.1 Special case: Non-stochastic rates of return 
First, let us assume that the volatility coefficient η  equals zero so that the rates of 
return are deterministic 

rt = e−κt r0 − θ( )+ θ . 

In this case, we can rewrite the first mismatching time τ  as  

τ = inf t : 0 ≤ t ≤ T, Wt ≥
1

σ B

a0 +
r0 − θ

κ
− µB − θ −

σB
2

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
t +

e− κt

κ
θ − r0( )

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 . 

 
a/ Constant rates of return 
In order to be able to use the nice and well-known results in case of a Brownian motion, 
we concentrate first on the special case of constant rates of return r. Clearly, if r0 = θ , 

then a = at , t ≥ 0( ) is a Brownian motion with drift and denoting µ = θ − µB +
σ B

2

2
 and 

σ = −σB , the results of Ars-Janssen2,3 (1994, 1995) hold. Indeed,  
dat = µdt + σdZt  

and the first mismatching time equals 
τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ } 

         = inf t : 0 ≤ t ≤ T,
a0

σ
≤ Wt −

µ t
σ

⎧ ⎨ ⎩ 
⎫ ⎬ ⎭ 

. 

The probability of no perfect match in the period [0, T] turns out to be (see for an 
overview e.g. Deelstra11 (1994)): 

 P τ < T[ ] = P sup
0≤t ≤T

Wt −
µ
σ

t⎛ 
⎝ 

⎞ 
⎠ ≥

a0

σ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ . 

   =1   if 
a0

σ
≤ 0  

 = 1−
e−u 2 / 2

2π− ∞

a0

σ T
+

µ T
σ

∫ du + e−2 a0 µ / σ 2 e− u2 / 2

2π−∞

−a0

σ T
+

µ T
σ

∫ du  if 
a0

σ
> 0 . 
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Notice that the formula in case of 
a0

σ
> 0  can be expressed in terms of the cumulative 

Normal distribution function Φ( ): 

P τ < T[ ] = 1 − Φ
a0

σ T
+

µ T
σ

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ + e−2a0µ / σ 2

Φ
−a0

σ T
+

µ T
σ

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

An interesting measure of the mismatching risk is to calculate the probability of 
mismatching in the period [0, ∞[. For T tending to infinity, we consequently find that: 

P τ < ∞[ ] = e− 2µa0 σ 2

µ , a0 > 0
= 1 µ ≤ 0 or a0 ≤ 0.

 

Therefore, if µ  is negative or a0  is negative, then there will be no perfect match with 

probability 1. Otherwise, the probability of having at least once a mismatch equals 

e− 2µa0 σ 2

. This probability decreases if a0 = ln
A0

B0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  or µ = r − µB +

σ B
2

2
 increases 

and/or σ = σB  decreases. So, the initial assets should be as large as possible in 
comparison with the liabilities. The instantaneous inflation and the volatility of the 
liabilities should be as low as possible. Indeed, if one starts with very low assets and 
high liabilities or with liabilities which are increasing very quickly, one can expect a 
mismatch. As motivated before, this information number, this indicator of mismatching 
can be interesting for the managers of the company, the regulators as well as the clients 
and everyone who has to deal with the insurance company because it is a measure of 
the risk position of the company. 
 Notice that even if µ  is negative, then the probability of mismatching over the 
period [0,T] does not equal 1. But of course, in order to lower the probability of 
mismatching, the company should increase µ  and try to keep µ  positive. 
 
b/ Time-dependent rates of return 
If r0 ≠ θ , the determination of the crossing probability P τ < T[ ] is not so easy since the 
drift term of a = at , t ≥ 0( ) is time-dependent and therefore, we cannot rely on results 

about Brownian motions crossing (piecewise) linear boundaries. The time of first 
mismatching is the crossing time of a standard Brownian motion to a boundary l(t) 
which is wholly convex for r0 < θ , and wholly concave for r0 > θ . Therefore, we can 

apply the results of Durbin5 (with an appendix by Williams) (1992). It was shown in 
Durbin6 (1985) that the first-passage density p( t) of W(u)  to a boundary l(u)  at time 
u = t   is 
  p( t) = b(t). f (t) 0 < t < T   
where f(t) is the density of W(t) on the boundary, i.e. 
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f (t) =
1
2πt

exp −
l(t)2

2t
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
  

and where 

b(t) = lim
s↑t

1
t − s

E I s,W( ) l(s) − W(s)( )W(t) = l(t)[ ] 
with I s,W( )  an indicator function which is equal to 1 if the sample path does not cross the 

boundary prior to s and equal to 0 otherwise. As b(t) usually is not computable in a 
direct way, Durbin (1992) expands the first-passage density p( t) of W(u)  to l(u)   at 
u = t   as a series of multiple integrals, namely 

p( t) = (−1) j −1qj( t)
j=1

k

∑ + (−1)k ˜ r k (t)   k =1,2,.. .  

where 

 q1(t) =
l(t)
t

− l' (t)⎡ 
⎣ 

⎤ 
⎦ 

f (t) , 

 q2 (t) =
l( t)
t

− l' (t)⎡ 
⎣ 

⎤ 
⎦ 

0

t

∫
l(t) − l(t1)

t − t1

− l' (t)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ f (t1,t)dt1 , 

 qj (t) = ...
l(tj −1 )

tj −1

− l' (tj −1)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
0

t j−2

∫
0

t1

∫
0

t

∫  

   ×
l(ti−1 ) − l(ti )

ti−1 − ti

− l' (ti−1 )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
i =1

j −1

∏ f (tj −1,. .. ,t1, t )dtj −1.. .dt1  j>2 

with f (tj −1,. .., t1,t)  is the joint density of W(t j−1), ... ,W(t1),W(t) on the boundary, i.e. at 
values l(tj −1),. .. ,l(t1 ), l(t)  and where 

 ˜ r k (t) = .. . b(tk )
0

tk−1

∫
0

t1

∫
0

t

∫  

   ×
l(ti−1) − l(ti )

ti−1 − ti

− l' (ti −1 )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
i =1

k

∏ f ( tk ,. ..,t1, t)dtk. ..dt1 . 

 
By truncating the series, one obtains the successive approximations: 

pk (t) = (−1) j−1 qj (t)
j =1

k

∑ k =1,2,.. ..  

If l(t) is concave everywhere, thus r0 > θ , the error ˜ r k (t) in the k-the approximation 
pk (t) is less than the last computed term qk (t)  and less than the next term qk+1(t) . 

If the boundary is wholly convex, then the error is bounded from above: 
˜ r k(t ) ≤ uk(t) k =1,2,.. .  

where 

  uk (t) = ...
l(0)
tk0

tk −1

∫
0

t1

∫
0

t

∫ ×
l(ti−1) − l(ti )

ti−1 − ti

− l' (ti −1 )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
i =1

k

∏ f ( tk ,. ..,t1, t)dtk. ..dt1 . 
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The probability that a sample path of W(t) crosses the boundary at least once in the 

interval [0,T], namely P = p(t)dt
0

T

∫ , can be approximated by  

Pk = pk (t)dt
0

T

∫      k =1,2,.. . . 

As for the first-passage density, in the wholly concave case the error Rk  is bounded by  

Qj = qj(t)dt
0

T

∫  

for both j=k and j=k+1, while for the wholly convex case Rk  is bounded by  

uk(t )dt
0

T

∫ . 

These formulae easily can be programmed. 
 Sacerdote & Tomassetti (1996) propose also approximations for the first passage 
probabilities and indicate error bounds by using a series expansion for the solution of 
the integral equation for the first-passage time probability density function. However, in 
order to apply these results, a hypothesis has to be fulfilled which clearly depends on 
the parameters.  
 
3.1.2 General case: Ornstein-Uhlenbeck process 
Let us now concentrate on the first mismatching time τ  in the case of stochastic rates 
of return, modeled by an Ornstein-Uhlenbeck process with η ≠ 0 . Some simple 
calculations show that τ  can be rewritten as 

τ = inf

t : 0 ≤ t ≤ T, y(t) ≡ E rs[ ]− rs( )ds
0

t

∫ − ˜ σ sdW s
0

t

∫ ≥

a0 +
r0 − ϑ

κ
+ e−κT ηλ

κ 2 −
η2

κ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

η2

4κ 3 e−2κT

+ ηλ
κ

− η2

2κ 2 − µB + ϑ + σ B
2

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
t + e−κt ϑ − r0

κ

+e− κ T −t( ) η2

κ 3 − ηλ
κ 2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
− η2

4κ 3 e−2κ T −t( ) ≡ l(t)

⎧ 

⎨ 

⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 
⎪ 

.

 

with ˜ σ 2 t,T( ) =
η2

κ 2 1− e− κ T −t( )( )2
+ σB

2 +
2η
κ

1− e− κ T −t( )( )ϕσB .  

 Expressed this way, we see that we have to compute the first-passage density from 
below of the continuous Gaussian process y = y(t);0 ≤ t ≤ T( ) with 

y(t ) = − e− κs ηeκldZl
0

s

∫
0

t

∫ ds − ˜ σ s
0

t

∫ dW s  to the boundary l(t). Neither the process 

y = y(t);0 ≤ t ≤ T( ) nor l(t) satisfies the assumptions of Durbin6 (1992) or Sacerdote & 
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Tomassetti7 (1996). Therefore, we turn to the approximations of Durbin5 (1985), 
although in this paper no error-bounds are given. 
 Under mild restrictions on l(t) and on the covariance function cov(y(u),y(v)), 
Durbin (1985) derives approximations for the crossing probabilities and the first-
passage density p( t) of a continuous Gaussian process y(t) at a boundary l(t) at u = t . 
Long calculations show that the covariance function cov(y(u),y(v)), which we denote 
by ρ(u,v), equals: 

 ρ(u,v) = E − e−κs

0

u

∫ ηeκ ldZlds − ˜ σ s dW s
0

u

∫
0

s

∫
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ . − e− κt

0

v

∫ ηeκjdZ jdt − ˜ σ tdW t
0

v

∫
0

t

∫
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   

  

= − η2

κ 3 + 2ησ Bϕ
κ 2 e−κT − η2

2κ 3 e−2κT + min(u,v)σB
2

+ e−κ min(u,v ) η2

κ 3 + e2κ min(u,v ) η2

2κ 3 e−2κT − η2

2κ 3 e−κ (u+ T) + e−κ (v+T )( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

−
η2

2κ 3 e−κ max(u,v ) eκ min(u,v ) + e−κ min(u,v) − 2[ ]−
2ησBϕ

κ 2 eκ min (u,v)−T( )

+ (e−κv + e−κu )
η2

κ 3 eκ min(u,v ) −1 +
e− κT

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

σBηϕ
κ 2 eκ min (u,v) −1( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ .

 

It is easy to verify that the assumptions of Durbin's paper (1985) are fulfilled and 
therefore, we may apply the approximations proposed in his paper. A first 
approximation Pg for the crossing probability is: 

Pg =

∂ρ(u, t)
∂u u= t

ρ(t, t)
−

l' (t)
l(t)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
. −

2ρ(t, t ) / l2 (t)
d2

du2
ρ (u,u)
l2(u)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
u= t

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

1/ 2

.exp
−l2( t,t)
2ρ(t, t)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

where t is such that 
ρ(u,u)
l2 (u)

 is maximized. 

Another approximation P1 of the no-perfect-match probability P[τ < T ] proposed by 

Durbin (1985) is: 

P1(T ) = p1(t )dt
0

T

∫  

where 

p1(t) =
l(t)

ρ(t,t)
∂ρ(u,t)

∂u u=t
− l' (t) u ≤ t . 

A last approximation uses this expression, namely 

P2 (T ) = p2 (t)dt
0

T

∫  

where  
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p2 (t) = p1(t) + l' (t) − β1(r,t)l(r) −β 2(r,t)l(r)[ ]
0

t

∫ f (t|r )p1(r)dr  

with 

β1(r, t)
β2(r,t)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
=

ρ (r,r) ρ(r, t)
ρ(r,t ) ρ(t, t)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

−1
∂ρ(r,u)

∂u u =t

∂ρ(s,t)
∂s s= t

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

 

and where f(t|r) is the conditional density of y(t) at l(t) given that y(r) = l(r). 
 The first approximation Pg is the least accurate and there may arise some problems 
with finding the maximizing value t. The last approximation P2 appears to be the most 

accurate but involves more calculations. Therefore, we suggest to use the 
approximation P1. 

 
3.2 Final mismatching 
 
In practice, perfect matching of insurance liabilities might be too demanding since low-
risk investment strategies associated with the highest degree of matching possible 
usually produce lower expected returns. Therefore, we also observe final matching 
which means that we only check whether the assets cover the liabilities at the end of the 
period [0,T]: A(T)>B(T). Therefore, the probability of no final matching is the 
probability 

P AT < BT[ ]  = P aT < 0[ ] 
where at( )t ≥0  is the process of mismatching defined above and this probability follows 

from the distribution of aT . 
 From theorem 1, it is easy to see that at( )t ≥0  is a Gaussian process since 

   at = a0 + rsds
0

t

∫ +
ηλ
κ

1 −e− κ T −s( )( )ds − µBt
0

t

∫  

    −
η2

2κ 2 1 − e−κ T − s( )( )2
ds +

σ B
2

2
t + ˜ σ s, t( )dW s

0

t

∫
0

t

∫  

with the rates of return following an Ornstein-Uhlenbeck process, thus 

rs ds
0

t

∫    ~  N θt +
r0 − θ

κ
1 − e− κt( ), η2

κ 2 t +
2η2

κ 3 e− κt −
η2

2κ 3 e−2κt −
3η2

2κ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
. 

Therefore, aT  has a Normal distribution with mean 
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m(T ) = a0 +
r0 − ϑ

κ
+ e−κT ηλ

κ 2 −
η2

κ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

η2

4κ 3 e−2κT

+
ηλ
κ

−
η2

2κ 2 − µB + ϑ +
σ B

2

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
T + e− κT ϑ − r0

κ

+
η2

κ 3 −
ηλ
κ 2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
−

η2

4κ 3

 

and with variance 

σ 2 (T ) = −
η2

κ 3 +
2ησ Bϕ

κ 2 e− κT −
η2

2κ 3 e−2κT + σ B
2T

+ e− κT η2

κ 3 + −
η2

2κ 3 −
η2

2κ 3 e−κ T eκ T + e−κT − 2[ ]−
2ησBϕ

κ 2

+ 2e−κT η2

κ 3 eκT −1 +
e−κT

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

σBηϕ
κ 2 eκT −1( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ .

 

Remark that the mean is l(T) of the previous section and that the expression of the 
variance follows from a substitution of u=v=T in the covariance function ρ(u,v) also 
presented in the previous section. 
 We conclude that the probability of no final matching equals 

P AT < BT[ ]  = P aT < 0[ ] = 1 − Φ
m(T )
σ(T )

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 

with m(T) and σ(T ) as above and where Φ(z)  denotes the cumulative standard normal 
distribution function in z. 
 In case of deterministic rates of return, the expressions for the mean and variance 
simplify and the probability of no final matching equals 

P AT < BT[ ]  = P aT < 0[ ] = 1 − Φ
a0 + 1− e− κT

κ
(r0 − θ) + θ − µB + σB

2

2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
T

σB T

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

. 

 Remark that perfect matching implies final matching since final matching puts only 
a restriction on the portfolio at time T and therefore the probability of no final matching 
is always lower than the probability of no perfect match. 
 
 

4. MISMATCHING DEGREE 
 

In the case of no final matching, we propose a risk measure of final matching which 
gives an idea of the difference between liabilities and assets at the time horizon T. We 
use the approach of Cummins12 (1988) in his calculation of risk-based premiums and 
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of Kusakabe13 (1995) in his discrete ALM model; and we propose as a measure of risk 
at time t: 

Mt(BT − AT ) = E BT − AT( )+
e

− iudu
t

T

∫ Ft

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

with it( )t≥ 0  modeling the short-term interest rates, with Ft the sigma-field of information 

until time t and where the conditional expectation is taken with respect to the risk-
neutral probability. In the case that the assets are higher than the liabilities, the risk 
measure thus equals zero. 
 At time T itself, we know that the measure MT equals 

(BT − AT )+ = max(BT − AT ,0). 
The value at time t can be obtained by using techniques from option theory and in 
particular from the formulae of Black & Scholes14 (1973), Merton15 (1973) and/or 
Rabinovitch16 (1989).  
 Indeed, it is well-known that the value of a call option at time t which gives the 
right (but not the obligation) "to buy" at time T the liabilities BT, modeled by the 
geometric Brownian motion  

dBt = µBBtdt + σBBtdWt , 
at the exercise value K= AT  of the assets at time T, equals 

E BT − AT( )+
e

− i udu
t

T

∫ Ft

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

where the conditional expectation is taken with respect to the risk-neutral probability. 
 If we assume that the interest rates are constant and ˜ T  = T, we can use the well-
known Black & Scholes (1973) formula: 

Mt(BT − AT ) = e−i (T −t )E BT − AT( )+
Ft[ ]= BtΦ(z) − e− i(T − t) K Φ(z − σB T − t )  

with 

z =
log Bt

K
⎛ 
⎝ 

⎞ 
⎠ + i + σB

2

2
⎛ 
⎝ 

⎞ 
⎠ (T − t)

σB T − t
 

with K= AT =N and where Φ(z)  denotes the cumulative standard normal distribution 
function in z. If we are interested at time 0 in the risk measure of no-final-match, we 
just have to plug in t=0. 
 Remark that the assumption of constant interest rates is not necessary. The interest 
rates may be stochastic. Then the value of the risk measure follows from 
generalizations of the Black & Scholes formula obtained by e.g. Merton15 (1973) and 
Rabinovitch16 (1989). 
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 Merton15 (1973) extended the Black & Scholes formulae to the case of stochastic 
interest rates which are such that the zero-coupon bonds are determined by a stochastic 
differential equation of the form 

dPt = Ptν(t )dt + Ptδ(t )dZt  
with the bond and stock prices correlated by E dZt dWt[ ]= ρdt . Using this notation and 

with ˜ T  = T, the Merton (1973) formula implies that the risk measure at time t equals 
Mt(BT − AT ) = BtΦ(z) − ATP(T − t)Φ(z −V (T − t))  

with 

z =
log Bt

K
⎛ 
⎝ 

⎞ 
⎠ − log P(T − t)( )

V(T − t)
+

1
2

V(T − t)  

and where 

V(T − t) = σ B
2 (T − t) + δ 2(s)ds

0

T − t

∫ − 2σBρ δ(s)ds
0

T − t

∫ . 

 In case the short-term interest rates are modeled by a mean-reverting Ornstein-
Uhlenbeck process of the form  

dit = q m − it( )dt + ωdZt  
with E dZt dWt[ ]= ρdt  describing the correlation between the short-term interest rates 

and the return on the liabilities, this formula leads to an explicit expression (see 
Rabinovitch (1989)). Indeed, a default-free discount bond P that matures at the time 
horizon T is priced in this model by the formula (see e.g. Vasicek (1977)): 

P(T − t ) = G ⋅ exp −it H[ ] 

where 

 H ≡ H (T − t) =
1 − exp −q(T − t)[ ]

q
 

and 

 G ≡ G(T − t) = exp m +
ωλ
q

−
ω 2

2q2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
(H − T + t) −

ω 2H 2

4q
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

with constant market price of risk λ . Using Itô's lemma, it is known that the 
instantaneous return variance of the bond δ  is a function of time, namely δ( t) = ωH (t). 
 Using this expression for δ , Rabinovitch rewrites Merton's (1973) formula for the 
call value with given exercise price K= AT =N for interest rates i modeled by a Vasicek 
process: 

Mt(BT − AT ) = E BT − AT( )+
e

− iudu
t

T

∫ Ft

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ = BtΦ(z) − AT P(T − t)Φ(z − V(T − t)) 

with 
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z =
log Bt

K
⎛ 
⎝ 

⎞ 
⎠ − log P(T − t)( )

V(T − t)
+

1
2

V(T − t)  

and where 

V(T − t)
2

= σ B
2 (T − t) +

ω2

q2 T − t − 2H +
1 − exp −2q(T − t)( )

2q
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
−

2ρσBω
q

(T − t − H ). 

Substituting t=0, delivers us the risk measure at time t=0 of the expected deficit at time 
T, i.e. the expected value of the difference between the liabilities and the assets when 
there is no final match. 
 
If ˜ T  > T, then the results remain the same in the case with deterministic rate of return 
with  

K= AT = A0 exp θT +
r − θ

κ
1 − e−κT( )⎛ 

⎝ 
⎞ 
⎠ . 

In the general case, however, the risk measure of no final match has to be determined 
numerically since now not only the liabilities BT  but also the assets AT  at time T are 
random. 
 

4. CONCLUSIONS 
 
We have sucessfully extended the Janssen model in such a way that the asset fund A  
takes into account fixed-income securities. This is important for insurance companies 
whose investments are more in bonds than in shares, especially for life-insurance 
companies.  
 We have considered a treatable model in which we assume that the assets can be 
represented by only zero-coupon bonds which reflect the historical rates of return. 
Those rates of return of the portfolio in the past are supposed to be presented by an 
Ornstein-Uhlenbeck process. In this generalized Janssen model, we have studied the 
probability of mismatching of the assets and liabilities of the company in a period [0,T] 
by introducing the first mismatching time τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ } where 

a = at , t ≥ 0( ) is defined by at = ln
At

Bt

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  and where T can be assumed to be infinity. 

Further, we have proposed a risk measure of no final matching which indicates the 
difference between the assets and the liabilities at time T. 
 These results are important as they are useful to determine ALM-objectives to be 
achieved by the company. In a forthcoming paper, we will study a more realistic multi-
dimensional model and develop some tools needed to encounter these objectives.  
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