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8 Lévy processes

8.1 Definitions and examples

A Lévy process is a cadlag process starting from 0 with stationary independent
increments. A Lévy system is a triple (a,b, K), where a = 02 € [0,00) is the
diffusivity, b € R is the drift and K, the Lévy measure, is a Borel measure on
R with K({0}) =0 and

/(1 Alyl?) K (dy) < oo.
R

Let B be a Brownian motion and let M be a Poisson random measure with
intensity p on (0,00) x R, where u(dt,dy) = dtK(dy), as in the preceding
section. Set

XtdéfaBt—i—bt-i-/

y M(ds, dy) + / y M (ds, dy).
(0.8]x{|y|<1}

(0,t]x{]y[>1}

Then (Xt) is a Lévy process and, for all ¢ > 0,

t>0

E(eiuXt) — et't/)(u)

where )
Y(u) = ibu — Sau® + / (€™ — 1 — iuylyy <1y) K(dy).
R
Thus, to every Lévy system there corresponds a Lévy process. Moreover, given
(Xt)t>0’ we can recover M by

M((0,t] x A) = #{s<t: X, — X, € A}

and so we can also recover b and 0 B. Hence the law of the Lévy process (Xt)t>0

determines the Lévy system (a, b, K).
8.2 Lévy-Khinchin theorem

Theorem 8.2.1 (Lévy-Khinchin theorem) Let X be a Lévy process. Then
there exists a unique Lévy system (a,b, K) such that, for all t > 0,

E(e™X) = et (8.1)
where )
Y(u) = ibu — §au2 + /R(emy =1 —iuylyy<iy) K(dy). (8.2)

Recall that a probability measure p in R™ is called infinitely divisible if, for
each k, there is a probability measure py in R” s.t. if X3, Xo, ..., X} are i.i.d.
~ i and X ~ pu, then

X1+ X4+ Xp ~ X
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If X is a Lévy process, then the law of X; is infinitely divisible. By the Lévy-
Khinchin theorem, any infinitely divisible law is the law of X; for some Lévy
process X.

Proof. First we shall show that there is a continuous function 9 : R — C with
¥(0) = 0 such that (8.1) holds for all u € R and n € N. Let v,, denote the law,
and ¢, the characteristic function, of X;,,. Note that ¢, is continuous and
¢n(0) = 1. Let I,, denote the largest open interval containing 0 where |¢,| > 0.
There is a unique continuous function v, : I,, — C such that ,,(0) = 1 and

b (u) = e¥PmW/m u € I

Since X is a Lévy process, we have (¢,)" = ¢, so we must have I,, = I; and
¥y, = 1 for all n. Write I = I; and ¢ = 4. Then ¢, — 1 on I as n — oo and
¢n = 0 on OI for all n. By the argument used in Theorem 5.3.7, (Vn 'n € N)
is then tight, so for some subsequence ¢,, — ¢ on R, for some characteristic
function ¢. This forces 0I = @, so I = R.

It remains to show that ¢ can be written in the form (8.2). We note that
it suffices to find a similar representation where Iy, <13 is replaced by x(y) for
some continuous function x with

Tyi<iy < x(¥) < Tyjyi<ay-

We have
/R(eiuy — 1) nwy,(dy) = n((bn(u) — 1) — (u)

as n — 0o, uniformly on compacts in u. Hence

/(1 — cosuy) nvy(dy) — =R (u).
R

Now there is a constant C' < oo such that

v Iy <1y < C(1 = cosy)
1/A
Mgy >ay < C’/\/ (1 — cosuy) du, A€ (0,00).
0
Set . (dy) = n(1 A y?) v, (dy). Then, as n — oo,
na(lyl < 1) = /Ry2]1{|y|s1}m/n(dy)

< C/R(l — cosy)nvy, (dy) — —CRY(1)
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and, for all A > 1,

m(ly] = A) = / g1y oy ()

/7
< C/\/ /(1 — cosuy)nvy, (dy)du
0 R

1/A
— —CX Rp(u)du.
0

We note that, since 1(0) = 0, the final limit can be made arbitrarily small
by choosing A sufficiently large. Hence the sequence (), : n € N) is bounded in
total mass and tight. By Prohorov’s theorem, there is a subsequence (ny) and
a finite measure n on R such that n,, (8) — n(¢) for all bounded continuous
functions 6 on R. Now

/R (€™ — 1) nwy (dy) = / (e — 1)nn(dy)

R LAy?

_ / ety _ 1 — iuyx(y) N (dy) + / tuyx() N (dy)
R

1/\y2 R ]./\y2

= / 0(u, y)nn(dy) + iuby,
R
where

(e™¥ =1 —duyx(y))/ (A ANy?), ify#0,
bu,y) = {—u2/2, ify=0

and

b= [ 0, a).

Now, for each u, 6(u,-) is a bounded function. So, on letting k& — oo,

/ 0(ut, )1y (dy) — / 0(us,y)n(dy)
R R

= [ =1 = i) K () —
R

where
K(dy) = (LAy*) yeoyn(dy),  a=n({0}).
Then b, must also converge, say to b, and we obtain the desired formula

) = ibu = G+ [ (€= 1 = iuyx(y) K(dy)



