8 Lévy processes

8.1 Definitions and examples

A Lévy process is a cadlag process starting from 0 with stationary independent increments. A Lévy system is a triple (a, b, K), where $a = \sigma^2 \in [0, \infty)$ is the diffusivity, $b \in \mathbb{R}$ is the drift and K, the Lévy measure, is a Borel measure on \mathbb{R} with $K(\{0\}) = 0$ and

$$\int_{\mathbb{R}} \left(1 \wedge |y|^2\right) K(dy) < \infty.$$

Let B be a Brownian motion and let M be a Poisson random measure with intensity μ on $(0,\infty)\times\mathbb{R}$, where $\mu(dt,dy)=dtK(dy)$, as in the preceding section. Set

$$X_t \stackrel{\mathsf{def}}{=} \sigma B_t + bt + \int_{(0,t] \times \{|y| \le 1\}} y \, \widetilde{M}(ds, dy) + \int_{(0,t] \times \{|y| > 1\}} y \, M(ds, dy).$$

Then $(X_t)_{t>0}$ is a Lévy process and, for all $t \geq 0$,

$$\mathsf{E}(e^{iuX_t}) = e^{t\psi(u)}$$

where

$$\psi(u) = ibu - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(e^{iuy} - 1 - iuy \mathbb{1}_{\{|y| \le 1\}} \right) K(dy).$$

Thus, to every Lévy system there corresponds a Lévy process. Moreover, given $(X_t)_{t>0}$, we can recover M by

$$M((0,t] \times A) = \#\{s \le t : X_s - X_{s-} \in A\}$$

and so we can also recover b and σB . Hence the law of the Lévy process $(X_t)_{t\geq 0}$ determines the Lévy system (a, b, K).

8.2 Lévy-Khinchin theorem

Theorem 8.2.1 (Lévy-Khinchin theorem) Let X be a Lévy process. Then there exists a unique Lévy system (a, b, K) such that, for all $t \ge 0$,

$$\mathsf{E}\big(e^{iuX_t}\big) = e^{t\psi(u)} \tag{8.1}$$

where

$$\psi(u) = ibu - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(e^{iuy} - 1 - iuy \mathbb{1}_{\{|y| \le 1\}}\right) K(dy). \tag{8.2}$$

Recall that a probability measure μ in \mathbb{R}^n is called *infinitely divisible* if, for each k, there is a probability measure μ_k in \mathbb{R}^n s.t. if X_1, X_2, \ldots, X_k are i.i.d. $\sim \mu_k$ and $X \sim \mu$, then

$$X_1 + X_2 + \cdots + X_k \sim X$$
.

If X is a Lévy process, then the law of X_1 is infinitely divisible. By the Lévy-Khinchin theorem, any infinitely divisible law is the law of X_1 for some Lévy process X.

Proof. First we shall show that there is a continuous function $\psi: \mathbb{R} \to \mathbb{C}$ with $\psi(0) = 0$ such that (8.1) holds for all $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Let ν_n denote the law, and ϕ_n the characteristic function, of $X_{1/n}$. Note that ϕ_n is continuous and $\phi_n(0) = 1$. Let I_n denote the largest open interval containing 0 where $|\phi_n| > 0$. There is a unique continuous function $\psi_n: I_n \to \mathbb{C}$ such that $\psi_n(0) = 1$ and

$$\phi_n(u) = e^{\psi_n(u)/n}, \qquad u \in I_n.$$

Since X is a Lévy process, we have $(\phi_n)^n = \phi_1$, so we must have $I_n = I_1$ and $\psi_n = \psi_1$ for all n. Write $I = I_1$ and $\psi = \psi_1$. Then $\phi_n \to 1$ on I as $n \to \infty$ and $\phi_n = 0$ on ∂I for all n. By the argument used in Theorem 5.3.7, $(\nu_n : n \in \mathbb{N})$ is then tight, so for some subsequence $\phi_{n_k} \to \phi$ on \mathbb{R} , for some characteristic function ϕ . This forces $\partial I = \emptyset$, so $I = \mathbb{R}$.

It remains to show that ψ can be written in the form (8.2). We note that it suffices to find a similar representation where $\mathbb{I}_{\{|y|\leq 1\}}$ is replaced by $\chi(y)$ for some continuous function χ with

$$\mathbb{I}_{\{|y|\leq 1\}} \leq \chi(y) \leq \mathbb{I}_{\{|y|\leq 2\}}.$$

We have

$$\int_{\mathbb{D}} (e^{iuy} - 1) \, n\nu_n(dy) = n(\phi_n(u) - 1) \to \psi(u)$$

as $n \to \infty$, uniformly on compacts in u. Hence

$$\int_{\mathbb{R}} (1 - \cos uy) \, n\nu_n(dy) \to -\Re\psi(u).$$

Now there is a constant $C < \infty$ such that

$$y^{2} \mathbb{I}_{\{|y| \le 1\}} \le C(1 - \cos y)$$

$$\mathbb{I}_{\{|y| \ge \lambda\}} \le C\lambda \int_{0}^{1/\lambda} (1 - \cos uy) \, du, \qquad \lambda \in (0, \infty).$$

Set $\eta_n(dy) = n(1 \wedge y^2) \nu_n(dy)$. Then, as $n \to \infty$,

$$\eta_n(|y| \le 1) = \int_{\mathbb{R}} y^2 \mathbb{I}_{\{|y| \le 1\}} n\nu_n(dy)$$
$$\le C \int_{\mathbb{R}} (1 - \cos y) n\nu_n(dy) \to -C\Re\psi(1)$$

and, for all $\lambda \geq 1$,

$$\eta_n(|y| \ge \lambda) = \int_{\mathbb{R}} \mathbb{I}_{\{|y| \ge \lambda\}} n\nu_n(dy)$$

$$\le C\lambda \int_0^{1/\lambda} \int_{\mathbb{R}} (1 - \cos uy) n\nu_n(dy) du$$

$$\to -C\lambda \int_0^{1/\lambda} \Re \psi(u) du.$$

We note that, since $\psi(0) = 0$, the final limit can be made arbitrarily small by choosing λ sufficiently large. Hence the sequence $(\eta_n : n \in \mathbb{N})$ is bounded in total mass and tight. By Prohorov's theorem, there is a subsequence (n_k) and a finite measure η on \mathbb{R} such that $\eta_{n_k}(\theta) \to \eta(\theta)$ for all bounded continuous functions θ on \mathbb{R} . Now

$$\begin{split} \int_{\mathbb{R}} (e^{iuy} - 1) \, n\nu_n(dy) &= \int_{\mathbb{R}} (e^{iuy} - 1) \frac{\eta_n(dy)}{1 \wedge y^2} \\ &= \int_{\mathbb{R}} \frac{e^{iuy} - 1 - iuy\chi(y)}{1 \wedge y^2} \eta_n(dy) + \int_{\mathbb{R}} \frac{iuy\chi(y)}{1 \wedge y^2} \eta_n(dy) \\ &= \int_{\mathbb{R}} \theta(u, y) \eta_n(dy) + iub_n \end{split}$$

where

$$\theta(u,y) = \begin{cases} (e^{iuy} - 1 - iuy\chi(y))/(1 \wedge y^2), & \text{if } y \neq 0, \\ -u^2/2, & \text{if } y = 0 \end{cases}$$

and

$$b_n = \int_{\mathbb{R}} \frac{y\chi(y)}{1 \wedge y^2} \eta_n(dy).$$

Now, for each $u, \theta(u, \cdot)$ is a bounded function. So, on letting $k \to \infty$,

$$\int_{\mathbb{R}} \theta(u, y) \eta_{n_k}(dy) \to \int_{\mathbb{R}} \theta(u, y) \eta(dy)$$
$$= \int_{\mathbb{R}} (e^{iuy} - 1 - iuy\chi(y)) K(dy) - \frac{1}{2} au^2$$

where

$$K(dy) = (1 \wedge y^2)^{-1} \mathbb{I}_{\{y \neq 0\}} \eta(dy), \qquad a = \eta(\{0\}).$$

Then b_{n_k} must also converge, say to b, and we obtain the desired formula

$$\psi(u) = ibu - \frac{1}{2}au^2 + \int_{\mathbb{R}} (e^{iuy} - 1 - iuy\chi(y)) K(dy).$$