7 Poisson random measures

7.1 Construction and basic properties

For $\lambda \in (0, \infty)$ we say that a random variable X in \mathbb{Z}^+ is Poisson of parameter λ and write $X \sim \text{Poi}(\lambda)$ if

$$P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}.$$

We also write $X \sim \text{Poi}(0)$ to mean $X \equiv 0$ and write $X \sim \text{Poi}(\infty)$ to mean $X \equiv \infty$.

Proposition 7.1.1 (Addition property) Let $N_k, k \in \mathbb{N}$, be independent random variables, with $N_k \sim \text{Poi}(\lambda_k)$ for all k. Then

$$\sum_k N_k \sim \text{Poi}\left(\sum_k \lambda_k\right).$$

Proposition 7.1.2 (Splitting property) Let $N, Y_n, n \in \mathbb{N}$, be independent random variables, with $N \sim \text{Poi}(\lambda), \lambda < \infty$ and $P(Y_n = j) = p_j$ for all $j = 1, \ldots, k$ and all n. Set

$$N_j = \sum_{n=1}^N 1_{\{Y_n = j\}}.$$

Then N_1, \ldots, N_k are independent random variables with $N_j \sim \text{Poi}(\lambda p_j)$ for all j.

Let (E, \mathcal{E}, μ) be a σ-finite measure space. A *Poisson random measure with intensity μ* is a map

$$M : \Omega \times \mathcal{E} \rightarrow \mathbb{Z}^+$$

satisfying, for all sequences $(A_k : k \in \mathbb{N})$ of disjoint sets in \mathcal{E},

(i) $M(\bigcup_k A_k) = \sum_k M(A_k)$,

(ii) $M(A_k), k \in \mathbb{N}$, are independent random variables,

(iii) $M(A_k) \sim \text{Poi}(\mu(A_k))$ for all k.

Denote by E^* the set of integer-valued measures on \mathcal{E} and define

$$X : E^* \times \mathcal{E} \rightarrow \mathbb{Z}^+, \quad X_A : E^* \rightarrow \mathbb{Z}^+, \quad A \in \mathcal{E}$$

by

$$X(m, A) = X_A(m) = m(A).$$

Set $E^* = \sigma(X_A : A \in \mathcal{E})$.

Theorem 7.1.3 There exists a unique probability measure μ^* on (E^*, \mathcal{E}^*) such that X is a Poisson random measure with intensity μ.

Proof. (Uniqueness.) For disjoint sets $A_1, \ldots, A_k \in \mathcal{E}$ and $n_1, \ldots, n_k \in \mathbb{Z}_+$, set

$$A^* = \left\{ m \in \mathcal{E}^* : m(A_1) = n_1, \ldots, m(A_k) = n_k \right\}.$$

Then, for any measure μ^* making X a Poisson random measure with intensity μ,

$$\mu^*(A^*) = \prod_{j=1}^k e^{-\mu(A_j)} \mu(A_j)^{n_j}/n_j!.$$

Since the set of such sets A^* is a π-system generating \mathcal{E}^*, this implies that μ^* is uniquely determined on \mathcal{E}^*.

(Existence.) Consider first the case where $\lambda = \mu(E) < \infty$. There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which are defined independent random variables N and Y_n, $n \in \mathbb{N}$, with $N \sim \text{Poi}(\lambda)$ and $Y_n \sim \mu/\lambda$ for all n. Set

$$M(A) \equiv \sum_{n=1}^N \mathbb{I}(Y_n \in A), \quad A \in \mathcal{E}. \quad (7.1)$$

It is easy to check, by the Poisson splitting property, that M is a Poisson random measure with intensity μ.

More generally, if (E, \mathcal{E}, μ) is σ-finite, then there exist disjoint sets $E_k \in \mathcal{E}$, $k \in \mathbb{N}$, such that $\cup_k E_k = E$ and $\mu(E_k) < \infty$ for all k. We can construct, on some probability space, independent Poisson random measures M_k, $k \in \mathbb{N}$, with M_k having intensity $\mu|_{E_k}$. Set

$$M(A) \equiv \sum_{k \in \mathbb{N}} M_k(A \cap E_k), \quad A \in \mathcal{E}.$$

It is easy to check, by the Poisson addition property, that M is a Poisson random measure with intensity μ. The law μ^* on \mathcal{E}^* is then a measure with the required properties. \square

7.2 Integrals with respect to a Poisson random measure

Theorem 7.2.4 Let M be a Poisson random measure on E with intensity μ and let g be a measurable function on E. If $\mu(E)$ is finite or g is integrable, then

$$X = \int_E g(y) \, M(dy)$$

is a well-defined random variable with

$$\mathbb{E}(e^{iuX}) = \exp\left\{ \int_E (e^{iug(y)} - 1) \, \mu(dy) \right\}.$$

Moreover, if g is integrable, then so is X and

$$\mathbb{E}(X) = \int_E g(y) \, \mu(dy), \quad \text{Var}(X) = \int_E g(y)^2 \, \mu(dy).$$
Proof. Assume for now that \(\lambda = \mu(E) < \infty \). Then \(M(E) \) is finite a.s. so \(X \) is well defined. If \(g = 1_A \) for some \(A \in \mathcal{E} \), then \(X = M(A) \), so \(X \) is a random variable. This extends by linearity and by taking limits to all measurable functions \(g \).

Since the value of \(E(e^{iuX}) \) depends only on the law \(\mu^* \) of \(M \) on \(E^* \), we can assume that \(M \) is given as in (7.1). Then

\[
E(e^{iuX} | N = n) = E(e^{iu(g(Y_1))})^n = \left(\int_E e^{iu(g(y))} \frac{\mu(dy)}{\lambda} \right)^n
\]

so

\[
E(e^{iuX}) = \sum_{n=0}^{\infty} E(e^{iuX} | N = n) P(N = n)
\]

\[
= \sum_{n=0}^{\infty} \left(\int_E e^{iu(g(y))} \frac{\mu(dy)}{\lambda} \right)^n e^{-\lambda} \lambda^n / n! = \exp \left\{ \int_E (e^{iu(g(y))} - 1) \mu(dy) \right\}.
\]

If \(g \) is integrable, then formulae for \(E(X) \) and \(\text{Var}(X) \) may be obtained by a similar argument.

It remains to deal with the case where \(g \) is integrable and \(\mu(E) = \infty \). Assume for now that \(g \geq 0 \), then \(X \) is obviously well defined. We can find \(0 \leq g_n \uparrow g \) with \(\mu(|g_n| > 0) < \infty \) for all \(n \). The conclusions of the theorem are then valid for the corresponding integrals \(X_n \). Note that \(X_n \uparrow X \) and \(E(X_n) \leq \mu(g) < \infty \) for all \(n \).

It follows that \(X \) is a random variable and, by dominated convergence, \(X_n \to X \) in \(L^1(P) \). Further, using the estimate \(|e^{iuX} - 1| \leq |ux|\), we can obtain the desired formulae for \(X \) by passing to the limit. Finally, for a general integrable function \(g \), we have

\[
E \int_E |g(y)| M(dy) = \int_E |g(y)| \mu(dy)
\]

so \(X \) is well defined. Also \(X = X_+ - X_- \), where

\[
X_{\pm} = \int_{\{g > 0\} \times \{\pm g > 0\}} g(y) M(dy)
\]

and \(X_+ \) and \(X_- \) are independent. Hence the formulae for \(X \) follow from those for \(X_{\pm} \). \(\square \)

We now fix a \(\sigma \)-finite measure space \((E, \mathcal{E}, K)\) and denote by \(\mu \) the product measure on \((0, \infty) \times E\) determined by

\[
\mu\left((0, t] \times A\right) = tK(A), \quad t \geq 0, \quad A \in \mathcal{E}.
\]

Let \(M \) be a Poisson random measure with intensity \(\mu \) and set \(\widetilde{M} = M - \mu \). Then \(\widetilde{M} \) is a compensated Poisson measure with intensity \(\mu \).

Proposition 7.2.5 Let \(g \) be an integrable function on \(E \). Set

\[
X_t \overset{\text{def}}{=} \int_{(0, t] \times E} g(y) \widetilde{M}(ds, dy).
\]
Then \((X_t)_{t \geq 0}\) is a cadlag martingale with stationary independent increments. Moreover,

\[
\mathbb{E}(e^{iuX_t}) = \exp \left\{ t \int_E \left(e^{iug(y)} - 1 - iug(y) \right) K(dy) \right\},
\]

\[
\mathbb{E}(X_t^2) = t \int_E g(y)^2 K(dy).
\]

Theorem 7.2.6 Let \(g \in L^2(K)\) and let \((g_n : n \in \mathbb{N})\) be a sequence of integrable functions such that \(g_n \to g\) in \(L^2(K)\). Set

\[
X^n_t \overset{\text{def}}{=} \int_{(0,t] \times E} g_n(y) \tilde{M}(ds, dy).
\]

Then there exists a cadlag martingale \((X_t)_{t \geq 0}\) such that

\[
\mathbb{E}\left(\sup_{s \leq t} |X^n_s - X_n|^2 \right) \to 0
\]

for all \(t \geq 0\). Moreover, \((X_t)_{t \geq 0}\) has stationary independent increments and

\[
\mathbb{E}(e^{iuX_t}) = \exp \left\{ t \int_E \left(e^{iug(y)} - 1 - iug(y) \right) K(dy) \right\}.
\]

The notation \(\int_{(0,t] \times E} g(y) \tilde{M}(ds, dy)\) is used for \(X_t\) even when \(g\) is not integrable with respect to \(K\). Of course \((X_t)_{t \geq 0}\) does not depend on the choice of approximating sequence \((g_n)\). This is a simple example of a stochastic integral.

Proof. Fix \(t > 0\). By Doob’s \(L^2\)-inequality and Proposition 7.2.5,

\[
\mathbb{E}\left(\sup_{s \leq t} |X^n_s - X^m_s|^2 \right) \leq 4\mathbb{E}((X^n_t - X^m_t)^2) = 4t \int_E (g_n - g_m)^2 K(dy) \to 0
\]
as \(n, m \to \infty\). Hence \(X^n_s\) converges in \(L^2\) for all \(s \leq t\). For some subsequence we have

\[
\sup_{s \leq t} |X^n_{s_k} - X^n_{s_j}| \to 0 \quad \text{a.s.}
\]
as \(j, k \to \infty\). The uniform limit of cadlag functions is cadlag, so there is a cadlag process \((X_s)_{s \leq t}\) such that

\[
\sup_{s \leq t} |X^n_{s_k} - X_s| \to 0 \quad \text{a.s.}
\]

Since \(X^n_s\) converges in \(L^2\) for all \(s \leq t\), \((X_s)_{s \leq t}\) is a martingale and so by Doob’s \(L^2\)-inequality

\[
\mathbb{E}\left(\sup_{s \leq t} |X^n_s - X_s|^2 \right) \leq 4\mathbb{E}((X^n_t - X_t)^2) \to 0.
\]
Note that $|e^{iu} - 1 - iug| \leq u^2g^2/2$. Hence, for $s < t$ we have

$$E \left(e^{iut}X_t - X_s \mid \mathcal{F}_s \right) = \lim_n E \left(e^{iunt}X_t^n - X_s^n \mid \mathcal{F}_s \right)$$

$$= \lim_n \exp \left\{ (t - s) \int_E e^{iug(y)} - 1 - iug(y) K(dy) \right\}$$

$$= \exp \left\{ (t - s) \int_E e^{iug(y)} - 1 - iug(y) K(dy) \right\}$$

which shows that $(X_t)_{t \geq 0}$ has stationary independent increments with the claimed characteristic function.