Advanced Probability (M03) 6

2 Martingales — theory

2.1 Definitions

Let (Q,]—" , P) be a probability space, let (E,E ) be a measurable space and let
I be a countable subset of R. A process in E is a family X = (Xt)tel of
random variables in E. A filtration (.7—}) el

is an increasing family of sub-o-
algebras of F: thus, Fy; C F; whenever s < t. We set F_ def NeerFy and
Foo = O’(]:t it e I). Every process has a natural filtration (ff()tel, given by

]:tX déf(f(XS s < t).

We will always assume some filtration (ft) to be given. The o-algebra F; is

tel
interpreted as modelling the state of our knowledge at time ¢. In particular, 77X
contains all the events which depend (measurably) only on X, s < ¢, that is,
everything we know about the process X by time t. We say that X is adapted
(to (.7-}) te I) if X; is Fi-measurable for all ¢. Of course every process is adapted
to its natural filtration. We say that X is integrable if X; is integrable for all ¢.

Unless otherwise indicated, it is to be understood from now on that £ = R.

Definition 2.1.1 A martingale X is an adapted integrable process such that,
for all s, t € I with s <t,

E(X: | Fs)=Xs as.

On replacing the equality in this condition by < or >, we get the notions of
supermartingale and submartingale, respectively. Note that every process which
is a martingale with respect to the given filtration is also a martingale with
respect to its natural filtration.

2.2 Optional stopping
We say that a random variable T : Q — IUoc is a stopping time if {T <t} € F

for all t. For a stopping time T', we set

def
Fr &

{AeF:An{T <t} eF, forallt}.
It is easy to check that, if T' = ¢, then T is a stopping time and Fr = F;. Given
a process X, we set

Xr(w) & X7(w)(w)  whenever T'(w) < oo.

we also define the stopped process X1 by X[ def X1t
We assume in the following two results that 7 = {0,1,2,...}. In this context,
we will write n, m or k for elements of I, rather than ¢ or s.
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Proposition 2.2.2 Let S and T be stopping times and let X = (X")n>o be
an adapted process. Then B

(a) SAT is a stopping time;

(b) if S <T, then Fs C Fr;

(c) X770y is an Fr-measurable random variable;
(d) X7 is adapted;

(e) if X is integrable, then X' is integrable.

Theorem 2.2.3 (Optional stopping theorem) Let X = (Xn)n>0 be an
adapted integrable process. Then the following are equivalent: -

(a) X is supermartingale;
(b) for all bounded stopping times T and all stopping times S,
E (X7 |Fs) < Xsar  as;

(c) for all stopping times T, XT is a supermartingale;
(d) for all bounded stopping times S and T with S < T,
E(Xs) > E(Xr).

Proof. For S >0 and T < n, we have

X1 = Xsar + Z (Xng1 — Xi)
S<k<T
(2.1)

= XgarT + Z(Xk+1 — X)) Tgs<p<t)
k=0

Suppose that X is a supermartingale and that .S and T are stopping times, with
T <n.If A€ Fg, then AN{S <k}, {T >k} € F, so

E((Xk+1 — Xk)]I{sgk<T}]IA) <0.
Hence, on multiplying (2.1)) by T4 and taking expectations, we obtain
E(X714) < E(Xsarla).

We have shown that (a) = (b).

It is obvious that (b) = (c¢), (b) = (d), and (¢) = (a).

Let m <nand A € F,,. Set T = mls + nllac, then T is a stopping time
and T < n. We note that

E(X,14) — E(X,,14) = E(X,,) — E(X7).
It follows that (d) = (a). O
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2.3 Doob’s inequalities
Let X be a process and let a, b € R with a < b. For J C I, set

U([a,b],J) def sup{n X, <a, Xy, >b,.00, X, <a, Xy, >b

for some s1 < t; < - < 8, <t In J}.
Then Ula, b] = U([a, b], I) is the number of upcrossings of [a,b] by X.

Theorem 2.3.4 (Doob’s upcrossing inequality) Let X be a supermartin-
gale. Then

(b—a)E(Ula,b]) < StlelII)E((Xt —a)7).

Proof.  Since U([mbLI) = JTI,grgnite U([a,b],J)7 it suffices, by monotone

convergence, to consider the case where I is finite. Let us assume that
I=40,1,...,n}.

Write U = Ula, b] and note that U < n. Set Top = 0 and define inductively
for k > 0 (with the usual convention inf & = c0):

Sk+1 def inf{m > T} : X,, < a}, Trt1 def inf{m > Sky1: X;,, > b}.
def

Then U = max{k : T, < oo}. For k < U, set G, = X1, — X, and note that
G > b—a. Observe that Ty < n and Ty41 = oo. Set

R— X, — XSU+1 if SU—H < 00,
0 if SU+1 =0

and note that R > —(X,, —a)~.
Then we have

n U
> (Xzoan — Xspan) = 3G+ R > (b—a)U — (X, —a)". (2.2)
k=1 k=1

Now X is a supermartingale and Sx An and Ty An are bounded stopping times,
with Sy An < Tj, An. Hence, by optional stopping, E(X7, nn) < E(Xg,an) and
the desired inequality results on taking expectations in (2.2)). O
For any process X, for J C I, we set
X)) Esup|xel, X EX(1).
teJ

Theorem 2.3.5 (Doob’s maximal inequality) Let X be a martingale or a
non-negative submartingale. Then, for all A > 0,

AP(X* > X) < supE(|Xy]).
tel
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Proof. Note that

AP(X* > \) = lulg\l VP(X* >v) < E%r)\l(ﬂj%rgmte vP(X*(J) > 1/))

It therefore suffices to consider the case where I is finite. Let us assume then that
I={0,1,...,n}. If X is a martingale, then | X| is a non-negative submartingale.
It therefore suffices to consider the case where X is non-negative.
Set T'=inf{m > 0: X,, > A} An. Then T is a stopping time and T' < n
so, by optional stopping,
E(Xn) > E(XT) = E(XT][{X*ZA}) + E(XT][{X*<>\})
> AP(X* > A) + E(XIpx-<r))-
Hence,
AP(X™ > )\) < E(X, Iix+>xy) < E(Xy). (2.3)
O

Theorem 2.3.6 (Doob’s LP-inequality) Let X be a martingale or non-
negative submartingale. Then, for allp > 1 and ¢ =p/(p — 1),

170, < asup|[ X[,

Proof. Since X* = lim  X*(J), it suffices, by monotone convergence, to
J11,J finite
consider the case where I is finite. Let us assume that I = {0,1,...,n}. If

X is a martingale, then |X| is a non-negative submartingale. So it suffices to
consider the case where X is non-negative.
Fix k < co. By Fubini’s theorem, eqn. (2.3) and Hélder’s inequality,

k k
E[(X* AK)P] = E/ PN x50y dA :/ PNPTIP(X* > \) dA
0 0

k
0

< ql| Xnllp - [1IX A KR
Hence || X* Ak, < ¢||X»|lp, and the result follows by monotone convergence on

letting k — oo. O

2.4 Convergence theorems

Recall that, for p > 1, a process X is said to be bounded in LP if

sup || X¢||p < oo.
tel
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Also X is uniformly integrable if

SUE_)E<|Xt|]I{\Xt|>k}) —0 as k — oo.
te

Recall that, if X is bounded in L? for some p > 1, then X is uniformly integrable.
Also if X is uniformly integrable then X is bounded in L®.

Theorem 2.4.7 (Almost sure martingale convergence theorem) Let X
be a supermartingale which is bounded in L'. Then X; — X, a.s. for some
Xoo € LYNFo).

Note that for I C [0,00), a non-negative supermartingale is automatically
bounded in L'.

Proof. By Doob’s upcrossing inequality, for all a < b,

E(Ufa b)) < (b — @)~ sup E(LX| + al) < oc.

Consider for a < b the sets

def

Qap ={liminf X; < a < b < limsup X, },
t—oo t—o00
Qo déf{Xt converges in [—oo, 00] as t — oo}.

Since Ula, b] = oo on £, 5, we must have P(Q, ) = 0; consequently, the equality

Q0 U (Uabeq,actQap) = Q
implies P(€g) = 1. Define
Xoo _ llmt_,oo Xt on Qo,
0 on 2\ Qo.
Then X, is Foo-measurable and, by Fatou’s lemma,

E(|Xoo]) < liminf E(]X;]) < oo.

So Xo € L' as required. O

Let us denote by M! the set of uniformly integrable martingales and, for
p > 1, by MP the set of martingales bounded in LP.

Theorem 2.4.8 (L? martingale convergence theorem) Let p € [1,00).

(a) Suppose X € MP. Then X; — X, as t — 00, a.s. and in LP, for some
Xoo € LP(F). Moreover, X; = E (X | Ft) a.s. for all t.

(b) Suppose Y € LP(Fu) and set X, = E (Y | 7). Then X = (X)
and Xy — Y ast — oo, a.s. and in LP.

MP

tel =
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Thus the map X — X, is a one-to-one correspondence between MP and
L?(Foo)-

Proof for p=1. Let X be a uniformly integrable martingale. Then X; — X
a.s. by the almost sure martingale convergence theorem. Since X is uniformly
integrable, it follows that X, — X, in L'. Next, for s > ¢,

1Xe =B (Xoo [ Fo) [ = 1B (Xs = Xoo | Fo) 1 < [[Xs = Xoo|1-

Let s — oo to deduce Xy = E (X | Ft) a.s..
Suppose now that ¥ € L'(Fs) and set X, & E (V| ). Then X =
(Xt) tel is a martingale by the tower property and is uniformly integrable by

Lemma Hence X, converges a.s. and in L', with limit X, say. For all ¢
and all A € F; we have

E(XooTa) = lim E(X,04) = E(Y1a).

Now Xoo, Y € LY(Fy) and U F; is a m-system generating Fo,. Hence, Xoo =Y
a.s.. O

Proof for p > 1. Let X be a martingale bounded in L? for some p > 1. Then
X; — X a.s. by the almost sure martingale convergence theorem. By Doob’s
LP-inequality,
[ X*[lp < gsup || X¢]|, < oo.
tel

Since | X; — Xo|? < (2X*)P for all ¢, we can use dominated convergence to
deduce that X; — X, in LP. It follows that X; = E (X | ) a.s., as in the
case p = 1.

Suppose now that Y € LP(Fy) and set X; = E (Y | F). Then X = (X;)
is a martingale by the tower property and

tel

[Xellp = IE (Xoo | Fo) llp < Y[l

for all ¢, so X is bounded in L?. Hence X; converges a.s. and in LP | with limit
X, say, and we can show that X, =Y a.s., as in the case p = 1. O

Theorem 2.4.9 (Backward martingale convergence theorem) Let p €
[1,00) and let Y € LP. Set X, = E(Y | F). Then Xy — E (Y | F_x) as
t — —o0, a.s. and in LP.

Proof. The argument is a minor modification of that used in Theorems |2.3.4]
247 and @48 The process X is automatically uniformly integrable, by
Lemma and is bounded in LP because || X¢|l, = |[E (Y | F)llp, < [V,

for all t. We leave the details to the reader. O

In the following result we take I = {0,1,2,...}.
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Theorem 2.4.10 (Optional stopping theorem — 2) Let X be a uniformly
integrable martingale and let S and T be stopping times. Then

E (XT ‘ fs) = XS/\T a.s..

Proof. We have already proved the result when T is bounded. If T is un-
bounded, then T'A n is a bounded stopping time, so

E (XTI | Fs) =E (Xran | Fs) = Xsaran = Xin,  as.. (2.4)

Now
|E (X1 | Fs) —E (Xr | Fo)||, < || X) — XL, (2.5)

We have X,, — X, in L'. So, in the case T = oo, we can pass to the limit in

(2.4) to obtain
E (Xoo | .7:5') = XS a.s..

Then, returning to , for general T, we have
X5 = Xl = [|E (Xn = Xoo [ Fr), < [[Xn = X

[y

and the result follows on passing to the limit in (2.4)). O

Theorem 2.4.11 (Optional stopping theorem — 3) Let T be a stopping
time with ET < oo and let X,, be a supermartingale with uniformly bounded
increments, i.e., there exists a finite constant K > 0 such that

| Xn(w) = Xp1(w)| <K V(n,w).

Then X is integrable and E(Xr1) < E(Xj).
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