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2 Martingales – theory

2.1 Definitions

Let
(
Ω,F ,P

)
be a probability space, let

(
E, E

)
be a measurable space and let

I be a countable subset of R. A process in E is a family X =
(
Xt

)
t∈I

of
random variables in E. A filtration

(
Ft

)
t∈I

is an increasing family of sub-σ-

algebras of F : thus, Fs ⊆ Ft whenever s ≤ t. We set F−∞
def= ∩t∈IFt and

F∞ = σ
(
Ft : t ∈ I

)
. Every process has a natural filtration

(
FX

t

)
t∈I

, given by

FX
t

def= σ
(
Xs : s ≤ t

)
.

We will always assume some filtration
(
Ft

)
t∈I

to be given. The σ-algebra Ft is
interpreted as modelling the state of our knowledge at time t. In particular, FX

t

contains all the events which depend (measurably) only on Xs, s ≤ t, that is,
everything we know about the process X by time t. We say that X is adapted
(to

(
Ft

)
t∈I

) if Xt is Ft-measurable for all t. Of course every process is adapted
to its natural filtration. We say that X is integrable if Xt is integrable for all t.

Unless otherwise indicated, it is to be understood from now on that E = R.

Definition 2.1.1 A martingale X is an adapted integrable process such that,
for all s, t ∈ I with s ≤ t,

E (Xt | Fs) = Xs a.s..

On replacing the equality in this condition by ≤ or ≥, we get the notions of
supermartingale and submartingale, respectively. Note that every process which
is a martingale with respect to the given filtration is also a martingale with
respect to its natural filtration.

2.2 Optional stopping

We say that a random variable T : Ω → I∪∞ is a stopping time if {T ≤ t} ∈ Ft

for all t. For a stopping time T , we set

FT
def=

{
A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t

}
.

It is easy to check that, if T ≡ t, then T is a stopping time and FT = Ft. Given
a process X, we set

XT (ω) def= XT (ω)(ω) whenever T (ω) < ∞.

we also define the stopped process XT by XT
t

def= XT∧t.
We assume in the following two results that I = {0, 1, 2, . . . }. In this context,

we will write n, m or k for elements of I, rather than t or s.
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Proposition 2.2.2 Let S and T be stopping times and let X =
(
Xn

)
n≥0

be

an adapted process. Then

(a) S ∧ T is a stopping time;

(b) if S ≤ T , then FS ⊆ FT ;

(c) XT 1I{T<∞} is an FT -measurable random variable;

(d) XT is adapted;

(e) if X is integrable, then XT is integrable.

Theorem 2.2.3 (Optional stopping theorem) Let X =
(
Xn

)
n≥0

be an

adapted integrable process. Then the following are equivalent:

(a) X is supermartingale;

(b) for all bounded stopping times T and all stopping times S,

E (XT | FS) ≤ XS∧T a.s.;

(c) for all stopping times T , XT is a supermartingale;

(d) for all bounded stopping times S and T with S ≤ T ,

E
(
XS

)
≥ E

(
XT

)
.

Proof. For S ≥ 0 and T ≤ n, we have

XT = XS∧T +
∑

S≤k<T

(
Xk+1 −Xk

)
= XS∧T +

n∑
k=0

(
Xk+1 −Xk

)
1I{S≤k<T}.

(2.1)

Suppose that X is a supermartingale and that S and T are stopping times, with
T ≤ n. If A ∈ FS , then A ∩ {S ≤ k}, {T > k} ∈ Fk, so

E
(
(Xk+1 −Xk)1I{S≤k<T}1IA

)
≤ 0.

Hence, on multiplying (2.1) by 1IA and taking expectations, we obtain

E
(
XT 1IA

)
≤ E

(
XS∧T 1IA

)
.

We have shown that (a) =⇒ (b).
It is obvious that (b) =⇒ (c), (b) =⇒ (d), and (c) =⇒ (a).
Let m ≤ n and A ∈ Fm. Set T = m1IA + n1IAc , then T is a stopping time

and T ≤ n. We note that

E
(
Xn1IA

)
− E

(
Xm1IA

)
= E(Xn)− E(XT ).

It follows that (d) =⇒ (a). �
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2.3 Doob’s inequalities

Let X be a process and let a, b ∈ R with a < b. For J ⊆ I, set

U
(
[a, b], J

) def= sup
{
n : Xs1 < a,Xt1 > b, . . . , Xsn

< a, Xtn
> b

for some s1 < t1 < · · · < sn < tn in J
}
.

Then U [a, b] ≡ U([a, b], I) is the number of upcrossings of [a, b] by X.

Theorem 2.3.4 (Doob’s upcrossing inequality) Let X be a supermartin-
gale. Then

(b− a)E
(
U [a, b]

)
≤ sup

t∈I
E
(
(Xt − a)−

)
.

Proof. Since U
(
[a, b], I

)
= lim

J↑I,J finite
U

(
[a, b], J

)
, it suffices, by monotone

convergence, to consider the case where I is finite. Let us assume that
I = {0, 1, . . . , n}.

Write U = U [a, b] and note that U ≤ n. Set T0 = 0 and define inductively
for k ≥ 0 (with the usual convention inf ∅ = ∞):

Sk+1
def= inf{m ≥ Tk : Xm < a}, Tk+1

def= inf{m ≥ Sk+1 : Xm > b}.

Then U = max{k : Tk < ∞}. For k ≤ U , set Gk
def= XTk

−XSk
and note that

Gk ≥ b− a. Observe that TU ≤ n and TU+1 = ∞. Set

R =

{
Xn −XSU+1 if SU+1 < ∞,
0 if SU+1 = ∞

and note that R ≥ −(Xn − a)−.
Then we have

n∑
k=1

(
XTk∧n −XSk∧n

)
=

U∑
k=1

Gk + R ≥ (b− a)U − (Xn − a)−. (2.2)

Now X is a supermartingale and Sk ∧n and Tk ∧n are bounded stopping times,
with Sk ∧ n ≤ Tk ∧ n. Hence, by optional stopping, E

(
XTk∧n

)
≤ E

(
XSk∧n

)
and

the desired inequality results on taking expectations in (2.2). �

For any process X, for J ⊆ I, we set

X∗(J) def= sup
t∈J

|Xt|, X∗ def= X∗(I).

Theorem 2.3.5 (Doob’s maximal inequality) Let X be a martingale or a
non-negative submartingale. Then, for all λ ≥ 0,

λP(X∗ ≥ λ) ≤ sup
t∈I

E
(
|Xt|

)
.
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Proof. Note that

λP(X∗ ≥ λ) = lim
ν↑λ

νP(X∗ > ν) ≤ lim
ν↑λ

(
lim

J↑I,J finite
νP

(
X∗(J) ≥ ν

))
.

It therefore suffices to consider the case where I is finite. Let us assume then that
I = {0, 1, . . . , n}. If X is a martingale, then |X| is a non-negative submartingale.
It therefore suffices to consider the case where X is non-negative.

Set T = inf{m ≥ 0 : Xm ≥ λ} ∧ n. Then T is a stopping time and T ≤ n
so, by optional stopping,

E(Xn) ≥ E(XT ) = E
(
XT 1I{X∗≥λ}

)
+ E

(
XT 1I{X∗<λ}

)
≥ λP(X∗ ≥ λ) + E(Xn1I{X∗<λ}).

Hence,
λP(X∗ ≥ λ) ≤ E(Xn1I{X∗≥λ}) ≤ E(Xn). (2.3)

�

Theorem 2.3.6 (Doob’s Lp-inequality) Let X be a martingale or non-
negative submartingale. Then, for all p > 1 and q = p/(p− 1),∥∥X∗∥∥

p
≤ q sup

t∈I

∥∥Xt

∥∥
p
.

Proof. Since X∗ = lim
J↑I,J finite

X∗(J), it suffices, by monotone convergence, to

consider the case where I is finite. Let us assume that I = {0, 1, . . . , n}. If
X is a martingale, then |X| is a non-negative submartingale. So it suffices to
consider the case where X is non-negative.

Fix k < ∞. By Fubini’s theorem, eqn. (2.3) and Hölder’s inequality,

E
[
(X∗ ∧ k)p

]
= E

∫ k

0

pλp−11I{X∗≥λ} dλ =
∫ k

0

pλp−1P(X∗ ≥ λ) dλ

≤
∫ k

0

pλp−2E(Xn1I{X∗≥λ}) dλ = qE
(
Xn(X∗ ∧ k)p−1

)
≤ q‖Xn‖p · ‖X∗ ∧ k‖p−1

p .

Hence ‖X∗ ∧ k‖p ≤ q‖Xn‖p and the result follows by monotone convergence on
letting k →∞. �

2.4 Convergence theorems

Recall that, for p ≥ 1, a process X is said to be bounded in Lp if

sup
t∈I

‖Xt‖p < ∞.
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Also X is uniformly integrable if

sup
t∈I

E
(
|Xt|1I{|Xt|>k}

)
→ 0 as k →∞.

Recall that, if X is bounded in Lp for some p > 1, then X is uniformly integrable.
Also if X is uniformly integrable then X is bounded in L1.

Theorem 2.4.7 (Almost sure martingale convergence theorem) Let X
be a supermartingale which is bounded in L1. Then Xt → X∞ a.s. for some
X∞ ∈ L1(F∞).

Note that for I ⊆ [0,∞), a non-negative supermartingale is automatically
bounded in L1.
Proof. By Doob’s upcrossing inequality, for all a < b,

E(U [a, b]) ≤ (b− a)−1 sup
t∈I

E(|Xt|+ |a|) < ∞.

Consider for a < b the sets

Ωa,b
def=

{
lim inf
t→∞

Xt < a < b < lim sup
t→∞

Xt

}
,

Ω0
def=

{
Xt converges in [−∞,∞] as t →∞

}
.

Since U [a, b] = ∞ on Ωa,b, we must have P(Ωa,b) = 0; consequently, the equality

Ω0 ∪
(
∪a,b∈Q,a<bΩa,b

)
= Ω

implies P(Ω0) = 1. Define

X∞ =

{
limt→∞Xt on Ω0,
0 on Ω \ Ω0.

Then X∞ is F∞-measurable and, by Fatou’s lemma,

E
(
|X∞|

)
≤ lim inf

t→∞
E
(
|Xt|

)
< ∞.

So X∞ ∈ L1 as required. �

Let us denote by M1 the set of uniformly integrable martingales and, for
p > 1, by Mp the set of martingales bounded in Lp.

Theorem 2.4.8 (Lp martingale convergence theorem) Let p ∈ [1,∞).

(a) Suppose X ∈ Mp. Then Xt → X∞ as t → ∞, a.s. and in Lp, for some
X∞ ∈ Lp(F∞). Moreover, Xt = E (X∞ | Ft) a.s. for all t.

(b) Suppose Y ∈ Lp(F∞) and set Xt = E (Y | Ft). Then X =
(
Xt

)
t∈I

∈Mp

and Xt → Y as t →∞, a.s. and in Lp.
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Thus the map X 7→ X∞ is a one-to-one correspondence between Mp and
Lp(F∞).

Proof for p = 1. Let X be a uniformly integrable martingale. Then Xt → X∞
a.s. by the almost sure martingale convergence theorem. Since X is uniformly
integrable, it follows that Xt → X∞ in L1. Next, for s ≥ t,

‖Xt − E (X∞ | Ft) ‖1 = ‖E (Xs −X∞ | Ft) ‖1 ≤ ‖Xs −X∞‖1.

Let s →∞ to deduce Xt = E (X∞ | Ft) a.s..
Suppose now that Y ∈ L1(F∞) and set Xt

def= E (Y | Ft). Then X =(
Xt

)
t∈I

is a martingale by the tower property and is uniformly integrable by
Lemma 1.5.2. Hence Xt converges a.s. and in L1, with limit X∞, say. For all t
and all A ∈ Ft we have

E
(
X∞1IA

)
= lim

s→∞
E
(
Xs1IA

)
= E(Y 1IA).

Now X∞, Y ∈ L1(F∞) and ∪tFt is a π-system generating F∞. Hence, X∞ = Y
a.s.. �

Proof for p > 1. Let X be a martingale bounded in Lp for some p > 1. Then
Xt → X∞ a.s. by the almost sure martingale convergence theorem. By Doob’s
Lp-inequality,

‖X∗‖p ≤ q sup
t∈I

‖Xt‖p < ∞.

Since |Xt − X∞|p ≤ (2X∗)p for all t, we can use dominated convergence to
deduce that Xt → X∞ in Lp. It follows that Xt = E (X∞ | Ft) a.s., as in the
case p = 1.

Suppose now that Y ∈ Lp(F∞) and set Xt = E (Y | Ft). Then X =
(
Xt

)
t∈I

is a martingale by the tower property and

‖Xt‖p = ‖E (X∞ | Ft) ‖p ≤ ‖Y ‖p

for all t, so X is bounded in Lp. Hence Xt converges a.s. and in Lp , with limit
X∞, say, and we can show that X∞ = Y a.s., as in the case p = 1. �

Theorem 2.4.9 (Backward martingale convergence theorem) Let p ∈
[1,∞) and let Y ∈ Lp. Set Xt = E (Y | Ft). Then Xt → E (Y | F−∞) as
t → −∞, a.s. and in Lp.

Proof. The argument is a minor modification of that used in Theorems 2.3.4,
2.4.7, and 2.4.8. The process X is automatically uniformly integrable, by
Lemma 1.5.2 and is bounded in Lp because ‖Xt‖p = ‖E (Y | Ft) ‖p ≤ ‖Y ‖p

for all t. We leave the details to the reader. �

In the following result we take I = {0, 1, 2, . . . }.
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Theorem 2.4.10 (Optional stopping theorem – 2) Let X be a uniformly
integrable martingale and let S and T be stopping times. Then

E (XT | FS) = XS∧T a.s..

Proof. We have already proved the result when T is bounded. If T is un-
bounded, then T ∧ n is a bounded stopping time, so

E
(
XT

n | FS

)
= E (XT∧n | FS) = XS∧T∧n = XT

S∧n a.s.. (2.4)

Now ∥∥E
(
XT

n | FS

)
− E (XT | FS)

∥∥
1
≤

∥∥XT
n −XT

∞
∥∥

1
. (2.5)

We have Xn → X∞ in L1. So, in the case T ≡ ∞, we can pass to the limit in
(2.4) to obtain

E (X∞ | FS) = XS a.s..

Then, returning to (2.5), for general T , we have∥∥XT
n −XT

∞
∥∥

1
=

∥∥E (Xn −X∞ | FT )
∥∥

1
≤

∥∥Xn −X∞
∥∥

1

and the result follows on passing to the limit in (2.4). �

Theorem 2.4.11 (Optional stopping theorem – 3) Let T be a stopping
time with ET < ∞ and let Xn be a supermartingale with uniformly bounded
increments, i.e., there exists a finite constant K > 0 such that∣∣Xn(ω)−Xn−1(ω)

∣∣ ≤ K ∀(n, ω).

Then XT is integrable and E(XT ) ≤ E(X0).
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