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1 Conditional expectation

1.1 Discrete case

Let {Gi : i ∈ I} denote a countable family of disjoint events, whose union is
the whole probability space. Set G = σ (Gi : i ∈ I). For any integrable random
variable X, we can define

Y
def=

∑
i

E (X | Gi) 1IGi

where we set E (X | Gi)
def= E(X1IGi

)/P(Gi) when P(Gi) > 0 and define
E (X | Gi) in some arbitrary way when P(Gi) = 0. Then Y has the follow-
ing properties:

(a) Y is G-measurable,

(b) Y is integrable and E(X1IA) = E(Y 1IA) for all A ∈ G.

1.2 Gaussian case

Let
(
W,X

)
be a Gaussian random variable in R2. Set G = σ(W ) and Y

def=
aW + b, where a, b ∈ R are chosen to satisfy

aE(W ) + b = E(X), aVar W = Cov (W,X).

Then E(X − Y ) = 0 and

Cov
(
W,X − Y

)
= Cov (W,X)− Cov (W,Y ) = 0

so W and X − Y are independent. Hence Y satisfies:

(a) Y is G-measurable,

(b) Y is integrable and E(X1IA) = E(Y 1IA) for all A ∈ G.

1.3 Conditional density functions

Suppose that U and V are random variables having a joint density function
fU,V (u, v) in R2. Then U has a density function fU , given by

fU (u) =
∫

R
fU,V (u, v) dv.

The conditional density function fV |U (v|u) of V given U is defined by

fV |U (v|u) def= fU,V (u, v)/fU (u)
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where we agree that 0/0 = 0. Let h : R → R be a Borel function and suppose
that X = h(V ) is integrable. Let

g(u) =
∫

R
h(v)fV |U (v|u) dv.

Set G = σ(U) and Y = g(U). Then Y satisfies:

(a) Y is G-measurable,

(b) Y is integrable and E(X1IA) = E(Y 1IA) for all A ∈ G.

To see (b), note that every A ∈ G takes the form A = {U ∈ B}, for some Borel
set B. Then, by Fubini’s theorem,

E(X1IA) =
∫

R2
h(v)1IB(u)fU,V (u, v) dudv

=
∫

R

(∫
R

h(v)fV |U (v|u) dv
)
fU (u)1IB(u) du = E

(
Y 1IA

)
.

1.4 Existence and uniqueness

Theorem 1.4.1 Let X be an integrable random variable and let G ⊆ F be a
σ-algebra. Then there exists a random variable Y such that:

(a) Y is G-measurable,

(b) Y is integrable and E(X1IA) = E(Y 1IA) for all A ∈ G.

Moreover, if Y ′ also satisfies (a) and (b), then Y = Y ′ a.s..

We call Y (a version of ) the conditional expectation of X given G and
write Y = E (X | G) a.s.. In the case G = σ(G) for some random variable G,
we also write Y = E (X | G) a.s.. The preceding three examples show how to
construct explicit versions of the conditional expectation in certain simple cases.
In general, we have to live with the indirect approach provided by the theorem.
Proof. (Uniqueness.) Suppose that Y satisfies (a) and (b) and that Y ′ sat-
isfies (a) and (b) for another integrable random variable X ′ with X ≤ X ′

a.s.. Consider the non-negative random variable Z = (Y − Y ′)1IA, where
A

def= {Y ≥ Y ′} ∈ G. Then

E(Z) = E(Y 1IA)− E(Y ′1IA) = E(X1IA)− E(X ′1IA) ≤ 0

so Z = 0 a.s., which implies Y ≤ Y ′ a.s.. In the case X = X ′, we deduce that
Y = Y ′ a.s..

(Existence.) Assume to begin that X ∈ L2(F). Since V = L2(G) is a closed
subspace of L2(F), we have X = Y + W for some Y ∈ V and W ∈ V ⊥. Then,
for any A ∈ G, we have 1IA ∈ V , so

E(X1IA)− E(Y 1IA) = E(W1IA) = 0.
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Hence Y satisfies (a) and (b).
Assume now that X is any non-negative random variable. Then Xn

def=
X ∧ n ∈ L2(F) and 0 ≤ Xn ↑ X as n → ∞. We have shown, for each n, that
there exists Yn ∈ L2(G) such that, for all A ∈ G,

E(Xn1IA) = E(Yn1IA)

and moreover that 0 ≤ Yn ≤ Yn+1 a.s.. Set Y
def= limn→∞ Yn, then Y is G-

measurable and, by monotone convergence, for all A ∈ G,

E(X1IA) = E(Y 1IA).

In particular, if E(X) is finite then so is E(Y ).
Finally, for a general integrable random variable X, we can apply the pre-

ceding construction to X− and X+ to obtain Y − and Y +. Then Y = Y +−Y −

satisfies (a) and (b). �

1.5 Properties of conditional expectation

Let X be an integrable random variable and let G ⊆ F be a σ-algebra. The
following properties follow directly from Theorem 1.4.1:

(i) E
(
E (X | G)

)
= E(X),

(ii) if X is G-measurable, then E (X | G) = X a.s.,

(iii) if X is independent of G, then E (X | G) = E(X) a.s..

In the proof of Theorem 1.4.1, we showed also

(iv) if X ≥ 0 a.s., then E (X | G) ≥ 0 a.s..

Next, for α, β ∈ R and any integrable random variable Y , we have

(v) E (αX + βY | G) = αE (X | G) + βE (Y | G) a.s..

To see this, one checks that the right hand side has the defining properties (a)
and (b) of the left hand side.

The basic convergence theorems for expectation have counterparts for con-
ditional expectation. Let us consider a sequence of random variables Xn in
the limit n → ∞. If 0 ≤ Xn ↑ X a.s., then E (Xn | G) ↑ Y a.s., for some
G-measurable random variable Y ; so, by monotone convergence, for all A ∈ G,

E(X1IA) = lim
n→∞

E(Xn1IA) = lim
n→∞

E
(
E (Xn | G) 1IA

)
= E(Y 1IA),

which implies Y = E (X | G) a.s.. We have proved the conditional monotone
convergence theorem:

(vi) if 0 ≤ Xn ↑ X a.s., then E (Xn | G) ↑ E (X | G) a.s..
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Next, by essentially the same arguments used for the original results, we can
deduce conditional forms of Fatou’s lemma and the dominated convergence the-
orem:

(vii) if Xn ≥ 0 for all n, then E (lim inf Xn | G) ≤ lim inf E (Xn | G) a.s.,

(viii) if Xn → X and |Xn| ≤ Y for all n, a.s., for some integrable random
variable Y , then E (Xn | G) → E (X | G) a.s..

There is a conditional form of Jensen’s inequality. Let c : R → (−∞,∞] be
a convex function. Then c is the supremum of countably many affine functions:

c(x) = sup
i

(
aix + bi

)
, x ∈ R.

Hence, E (c(X) | G) is well defined and, almost surely, for all i,

E (c(X) | G) ≥ aiE (X | G) + bi.

So we obtain

(ix) if c : R → (−∞,∞] is convex, then E (c(X) | G) ≥ c
(
E (X | G)

)
a.s..

In particular, for 1 ≤ p < ∞,∥∥E (X | G)
∥∥p

p
= E

(
|E (X | G) |p

)
≤ E

(
E (|X|p | G)

)
= E

(
|X|p

)
= ‖X‖p

p.

So we have

(x)
∥∥E (X | G)

∥∥
p
≤ ‖X‖p for all 1 ≤ p < ∞.

For any σ-algebra H ⊆ G, the random variable Y
def= E (E (X | G) | H) is

H-measurable and satisfies, for all A ∈ H

E
(
Y 1IA

)
= E

(
E (X | G) 1IA

)
= E

(
X1IA

)
so we have the tower property:

(xi) if H ⊆ G, then E (E (X | G) | H) = E (X | H) a.s..

We can always take out what is known:

(xii) if Y is bounded and G-measurable, then E (Y X | G) = Y E (X | G) a.s..

To see this, consider first the case when Y = 1IB for some B ∈ G. Then, for
A ∈ G,

E
(
Y E (X | G) 1IA

)
= E

(
E (X | G) 1IA∩B

)
= E

(
X1IA∩B

)
= E

(
Y X1IA

)
,

which implies E (Y X | G) = Y E (X | G) a.s.. The result extends to simple G-
measurable random variables Y by linearity, then to the case X ≥ 0 and any
non-negative G-measurable random variable Y by monotone convergence. The
general case follows by writing X = X+ −X− and Y = Y + − Y −.

Finally,
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(xiii) if σ(X,G) is independent of H, then E (X | σ(G,H)) = E (X | G) a.s..

For, suppose A ∈ G and B ∈ H, then

E
(
E (X | σ(G,H)) 1IA∩B

)
= E

(
X1IA∩B

)
= E

(
X1IA

)
P(B)

= E
(
E (X | G) 1IA

)
P(B) = E

(
E (X | G) 1IA∩B

)
.

It remains to observe that the set of such intersections A ∩ B is a π-system
generating σ(G,H).

Lemma 1.5.2 Let X ∈ L1. Then the set of random variables Y of the form
Y = E (X | G), where G ⊆ F is a σ-algebra, is uniformly integrable.

Proof. Since X ∈ L1, given ε > 0, we can find δ > 0 so that E
(
|X|1IA

)
≤ ε

whenever P(A) ≤ δ. Then choose λ < ∞ so that E(|X|) ≤ λδ. Suppose
Y = E (X | G), then |Y | ≤ E (|X| | G). In particular, E(|Y |) ≤ E(|X|) so

P(|Y | ≥ λ) ≤ λ−1E(|Y |) ≤ δ.

Then

E
(
|Y |1I{|Y |≥λ}

)
≤ E

(
E (|X| | G) 1I{|Y |≥λ}

)
= E

(
|X|1I{|Y |≥λ}

)
≤ ε.

Since λ was chosen independently of G, we are done. �
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