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The aim of this document is to provide additional information on the paper "Non-Parametric
Inference of Transition Probabilities Based on Aalen-Johansen Integral Estimators for Acyclic Multi-
State Models: Application to LTC Insurance". This document is organized as follows. Section 1
presents a general estimation framework with right-censoring and theoretical results for competing
risks data which is quite close to those introduced by Suzukawa (2002). To obtain asymptotic results
for transition probabilities, it is needed to extend his framework with the addition of covariates.
Section 2 explains how we applied these results to transition probabilities of interest. Inclusion
of left-truncation is considered in Section 3. Some additional simulation results are reported in
Section 4. Finally, the proofs for results of Section 1 are presented in Section 5.

1 Non-parametric estimation, asymptotic properties and applica-
tions

Our aim here is to explain rigorously how the non-parametric estimation framework introduced in
Section 3 of the paper is built and to prove asymptotic properties for our estimators. In Section 1.1,
we recall some notations, introduce basic assumptions and then define general non-parametric esti-
mators for integrals of the type

ş

ϕdF
pvq
0 , where ϕ is F pvq0 -measurable with the cumulative incidence

function F
pvq
0 associated to competing risks data. Section 1.2 contains the asymptotic results for

such integrals.

1.1 Setup

The problem that we consider entails a unique right-censoring process C with a continuous distri-
bution function G.

Assumption 1. C is independent of the vector pS, T, V q.

Thus, the following variables are available
#

Y “ min pS,Cq and γ “ 1tSďCu,

Z “ min pT,Cq and δ “ 1tTďCu.

For the sake of generality, we incorporate here a vectorΘ “ pΘiqi“1,...,p of p-covariates. Following
Stute (1993), we only assume1 that these covariates do not provide any further information as to
whether censoring will take place or not, i.e. we have

Assumption 2.

i. P pS ď C | S,Θ, V1q “ P pS ď C | S, V1q ,

ii. P pT ď C | S, T,Θ, V q “ P pT ď C | T, V q .

Equality ii. of Assumption 2 is explained by the fact that the pair pS, T q is, by construction,
subject to censoring and S is uncensored whenever T is. Let V be the set of values taken by V “
pV1, V2q. For estimation purposes, we introduce the distribution function of pS,Θq, notedH0 ps,θq “

P pS ď s,Θ ď θq, and F pvq0 ps, t,θq “ P pS ď s, T ď t,Θ ď θ, V “ vq, the sub-distribution function2

of pS, T,Θq, where the cause is V “ v with v P V. Moreover, we have F0 “
ř

v F
pvq
0 .

1No assumption is made about the dependence structure between pC, S, T,Θ, V q.
2Also called cumulative incidence function.
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The theoretical results presented below can be applied both for discrete (e.g. gender, geo-
graphical location, social status) and continuous (e.g. biomedical measures) covariates. However,
continuous covariates should be beforehand transformed into categorical variables for practical ap-
plications. Another solution could be to smooth the multivariate cumulative incidence function F pvq0

for each competing cause. Note in addition that this condition is satisfied if C is independent of
pS, T, V,Θq, which would also be a realistic assumption in our insurance application.

In this context, the observation of the i-th individual of a sample of length n ě 1 is characterized
by

pYi, γi, γiV1,i, Zi, δi, δiV2,i,Θiq 1 ď i ď n ,

which are assumed to be i.i.d. replications of the variable pY, γ, γV1, Z, δ, δV2,Θq. If δ “ 1, then
obviously γ “ 1. Consider the ordered Y -values Y1:n ď Y2:n ď . . . ď Yn:n and

`

γri:ns,Θri:ns

˘

the concomitant of the i-th order statistic (i.e. the value of pγj ,Θjq1ďjďn paired with Yi:n). An
estimator for H0 is simply obtained from the multivariate Kaplan-Meier estimator considered by
Stute (1993)

pH0n ps,θq “
n
ÿ

i“1

Win1tYi:nďs,Θri:nsďθu
. (1.1)

Kaplan-Meier integrals, taking the form S pϕq “
ş

ϕ dH0 with some generic function ϕ, are estimated
with

pSn pϕq “

ż

ϕ ps,θq pH0n pds, dθq “
n
ÿ

i“1

Winϕ
`

Yi:n,Θri:ns

˘

.

Let Z1:n ď Z2:n ď . . . ď Zn:n be the ordered Z-values and
´

Yri:ns, δri:ns, J
pvq
ri:ns,Θri:ns

¯

be the

concomitant of the i-th order statistic with J
pvq
i “ 1tV“v,u and v P V. Since S is assimilated to

an uncensored covariate when T is not censored, the cumulative incidence function F
pvq
0 can be

estimated with the so-called Aalen-Johansen estimator for competing risks data with covariates

pF
pvq
0n py, z,θq “

n
ÿ

i“1

ĂW
pvq
in 1tYri:nsďy,Zi:nďz,Θri:nsďθu

“

n
ÿ

i“1

ĂWinJ
pvq
ri:ns1tYri:nsďy,Zi:nďz,Θri:nsďθu

,

(1.2)

Based on the representation as a sum of (1.2), we want to obtain estimators of general quantities
Spvq pϕq “

ş

ϕ dF
pvq
0 with ϕ a generic function. In absence of censoring variable, non-parametric

estimation is straightforward, resulting to integrals under the empirical multivariate distribution
function of pS, T,Θq. In this context, complete information is available and each observation has
the same weight into the empirical process. Since the joint distribution of pT, V q has the aspect of
a competing risks model, we estimate Spvq pϕq, for each v P V by computing the Aalen-Johansen
integral of the form

pSpvqn pϕq “

ż

ϕ ps, t,θq pF
pvq
0n pds, dt, dθq “

n
ÿ

i“1

ĂW
pvq
in ϕ

`

Yri:ns, Zi:n,Θri:ns

˘

. (1.3)

These estimators are not so hard to handle and are similar to those exhibited by Suzukawa
(2002), but we refine his approach by the introduction of covariates3. In this context, we need to
derive new asymptotic properties.

3Θ is covariate and S plays the same role as a covariate in (1.3).
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1.2 Asymptotic properties

Let τY and τZ be the least upper bounds of the distribution functions of Y and Z. Under As-
sumptions 1 and 2, the consistency and weak convergence of estimator (1.1) on r0, τY s can be easily
demonstrated, since Stute (1993) and Stute (1996) conditions are satisfied. Note that this result is
also verified if H and G have no jump in common which is a less restrictive condition than conti-
nuity. For the rest of this subsection, we focus on the consistency and weak convergence properties
of estimator (1.3).

Theorem 1. Under Assumptions 1 and 2 and assuming that ϕ is an F0-integrable function, we
have with probability 1

pSpvqn pϕq ÝÑ S
pvq
8 pϕq “

ż

1ttăτZuϕ ps, t,θq F
pvq
0 pds, dt, dθq , v P V. (1.4)

In addition, if the support of Z is included in that of C, we have obviously pS
pvq
n pϕq Ñ Spvq pϕq w.p.1.

By addition of covariates, this result constitutes an extension of the those demonstrated by
Suzukawa (2002, Theorem 1), which are directly based on the proof of Stute and Wang (1993)
theorem’s. For the sake of completeness, more details about the proof is given in Subsection 5.1.

To obtain weak convergence properties, we adapt the approach followed by Stute (1995) for
Kaplan-Meier integrals and Stute (1996) for the version with covariates. We define similar inte-
grability conditions for any function ϕ F0-integrable to prove a general convergence result. These
conditions are given below.

Assumption 3.
ż

ϕ pS, T,Θq2 δ

p1´G pT qq2
dP “

ż

ϕ pS, T,Θq2

1´G pT q
dP ă 8.

Assumption 4.
ż

|ϕ pS, T,Θq |
a

C0 pT q1tTăτZu dP ă 8.

Of course, under these assumptions, similar conditions replacing F0 by F pvq0 , for all v P V, are
necessarily satisfied. We consider

M pzq “ P pZ ď zq ,M0 pzq “ P pZ ď z, δ “ 0q ,

M pvq py, z,θq “ P pY ď y, Z ď z,Θ ď θ, δ “ 1, V “ vq ,

and

C0 pxq “

ż x´

0

G pdyq

p1´M pyqq p1´G pyqq
.

We also introduce the functions

λ
pvq
1 pxq “

1

1´M pxq

ż

ϕ ps, t,θq1txătăτZu

p1´G ptqq
M pvq pds, dt, dθq,

and

λ
pvq
2 pxq “

ż

λ
pvq
1 ptq1ttăxu

1´M ptq
M0 pdtq.

Assumption 3 corresponds to a variance type assumption on ϕ, guaranteeing the existence of a
finite second moment. The second assumption is nothing but a technical condition to control
the bias of Spvqn . More details are given by Stute (1995). Some additional notations are needed
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to give our results. Introduce the vectors of size Card pVq, pSn pϕq “
´

pS
pvq
n pϕqq

¯J

vPV
, S8 pϕq “

´

S
pvq
8 pϕqq

¯J

vPV
and S pϕq “

`

Spvq pϕq
˘J

vPV . The following theorem gives asymptotic properties for
pSn pϕq.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Under Assumptions 3 and 4,
we have

?
n
!

pSn pϕq ´ S8 pϕq
)

d
ÝÑ N p0,Σ pϕqq , (1.5)

where Σ pϕq is a symmetric matrix associated to the covariance matrix of the vector a pϕq “
pav pϕqqvPV where

av pϕq “
ϕ pY,Z,Θq δJ pvq

1´G pZq
` λ

pvq
1 pZq p1´ δq ´ λ

pvq
2 pZq , v P V.

S8 pϕq can be replaced by S pϕq if the support of Z is included in that of C.

The complete proof of this theorem is postponed in Section 5.2. From the Equation (1.5), we

could obtain asymptotic confidence intervals if functions
1

1´G
, λpvq1 and λ

pvq
2 were known. This

can be done by just replacing the distribution functions H, M , M0 and M pvq in the expression
of Σ pϕq by their empirical counterparts. However, this calculation may be tedious due to the
expression of a pϕq. Thus, implementing a non-parametric bootstrap or jackknife procedures is the
most appropriate way to obtain asymptotic variance-covariance estimators.

2 Application for transition probabilities estimation

In this subsection, we focus on the asymptotic properties of transition probabilities estimators
introduced in Section 3 of the paper. By considering some particular functions ϕ, Theorems 1
and 2 can be applied to derive asymptotic properties for pa0j ps, t, 0,8 | θq, pa0e ps, t, 0,∆v | θq,
qa0ed ps, t, 0,∆v | θq, p̄ee ps, t,∆u | θq and ped ps, t,∆u,8 | θq

4. Note that the consistency and weak
convergence of pp̄a0a0 ps, t, 0 | θq can be proved easily for all t ď τZ applying the results of Stute
(1996) and the delta-method.

Proposition 3. Under Assumptions 1 and 2, ppa0j ps, t, 0,8 | θq, ppa0e ps, t, 0,∆v | θq, pqa0ed ps, t, 0,∆v | θq,
pp̄ee ps, t,∆u | θq and pped ps, t,∆u,8 | θq converge almost surely to the pertaining transition probabil-
ities of interest, if the support of Z is included in that of C. Under these assumptions, they are also
asymptotically normal.

Proof. To prove these results, transition probabilities are expressed by means of integrals of the
form

ş

ϕ dH0 and
ş

ϕ dF
pvq
0 . For brevity’s sake, we only report the details of the proof for

pa0e ps, t, 0,∆v | θq as the results for other probabilities come using the same reasoning. Hence,
its estimator can be rewritten as

ppa0e ps, t, 0,∆v | θq “
pS
pe,Cpeqq
n pφq

pSn pψq
,

4In case where covariates are introduced, a term θ is added in the transition probabilities expression meaning that
we work with the probability measure conditionally on tΘ “ θu.
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where φ px, y, zq “ 1tsăxďtăy, t´xP∆v ,z“θu and ψ px, zq “ 1txąs,z“θu. The subset C peq is the set of
states to which a direct transition from e is possible.

First, the simple function ψ satisfies conditions of Theorem 1.1 in Stute (1996) and therefore
pSn pψq admits consistent and weak convergence properties as a Kaplan-Meier integral. Second,
applying the result of Theorem 1 to the function φ which is clearly F0-integrable, we obtain the
consistency results to the limit Spe,Cpeqq8 pφq. Since φ satisfies Assumptions 3 and 4, the numerator
of ppa0e ps, t, 0,∆v | θq is asymptotically normal. Finally, we have with the delta method

?
n

#

ppa0e ps, t, 0,∆v | θq ´
S
pe,Cpeqq
8 pφq

S8 pψq

+

d
ÝÑ N p0, σa0e ps, t, 0,∆v | θqq ,

where σa0e ps, t, 0,∆v | θq is a limit variance function which is complex to calculate5. The estimator
ppa0e ps, t, 0,∆v | θq converges to pa0e ps, t, 0,∆v | θq, if the support of Z is included is that of C.

Note that ppa0j ps, t, 0,8 | θq is also consistent if t ď τY . The other estimators are systematically
biased if the support of C is strictly included in that of T .

We are now in position to study the alternative estimators’ properties by following a similar
approach to that of de Uña-Álvarez and Meira-Machado (2015).

Proposition 4. Under Assumptions 1 and 2, pp˚a0e ps, t, 0,∆v | θq is consistent w.p.1 if t ď τY ,
and pp˚ed ps, t,∆u,8 | θq is consistent w.p.1 if t ď τZ . In this situation, they are also asymptotically
normal.

Proof. The results are direct applications of Theorems 1, 2 and Stute (1996)’s Theorem for the
denominator of pp˚a0e ps, t, 0,∆v | θq. Let’s prove this Proposition for pp˚a0e ps, t, 0,∆v | θq, as the
second estimator’s properties are demonstrated similarly. For that, we write

pp˚a0e ps, t, 0,∆v | θq “

řn
i“1W

peq
in φ1

`

Yi:n,θri:ns
˘

´ pS
pe,Cpeqq
n pφ2q

pSn pψq
,

where φ1 px, zq “ 1tsăxďt, t´xP∆v ,z“θu and φ2 px, y, zq “ 1tsăx,yďt, t´xP∆v ,z“θu, and then we apply
Theorems 1 and 2 on φ1 and φ2.

Note that this proposition is also verified for pp˚ed ps, t,∆u,8 | θq when s ď τY and t ď τZ . In
practice for insurance applications, we always take s´ u` 1 ď s and t´ v ` 1 ď t.

We now consider the second class of alternative estimators involving subsamples that we suppose
to be not empty with a positive probability. Introduce sτY and sτZ the least upper bound of Y
and Z pertaining to the subsample ti : Yi ą su, and analogously s,uτY and s,uτZ for the subsample
ti : Yi ă s ď Zi, s´ Yi P ∆uu.

Proposition 5. Under Assumptions 1 and 2, qpa0e ps, t, 0,∆v | θq is consistent w.p.1 if t ď sτY , and
qped ps, t,∆u,8 | θq is consistent w.p.1 if t ď s,uτZ . In this situation, they are also asymptotically
normal.

Proof. As C is independent of pS, V, T q, we find immediately that psS, sV, sT q, i.e. the vector of
pS, V, T q conditionally on tY ą su, is also independent of sC, i.e. C conditionally on tY ą su.
This is also valid when conditioning pS, V, T q on tY ă s ď Z, s´ Y P ∆uu. Thus, we can apply
Theorems 1 and 2 on these particular subsamples for qpa0e ps, t, 0,∆v | θq and qped ps, t,∆u,8 | θq
with the same reasoning that in Proposition 4.

5By using the function g px, yq “
x

y
, the delta method gives an explicit formula which depends on complex terms.

Thus, this is not very useful to write its expression.
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3 Estimation with left-truncation and right-censoring

In this section, we additionally allow for left-truncation and discuss the conditions to adapt the
asymptotic results of Section 1.2 for competing risks data. It is worth noting that truncation can
only occur when the individual is in the healthy state a0 in our framework. Once we have such results
(Theorem 6), the approach followed in Section 2 can be repeated directly without any additional
assumption.

For survival data, Sánchez-Sellero et al. (2005) obtain a representation for product-limit inte-
grals for a family of functions tϕu under censoring and truncation and with independent covariates.
This representation implies consistency and weak convergence properties for Kaplan-Meier integrals.
Their proofs are demonstrated followed a similar approach than Stute (1995) and Stute (1996) (see
Section 5) directly on a family of functions, except that they assume stronger conditions on the mo-
ments of ϕ to avoid imposing hypothesis similar to Assumptions 3 and 4. Although their conditions
are more restrictive, they are sufficient in our framework as we work with very simple functions ϕ.
Hence, we simply need to adapt their assumptions to our competing risks data framework.

Assumption 5.

i. the largest lower bound for the support of L is lower than that of T ,

ii. pC,Lq is independent of pS, T, V q and C is independent of L,

iii. pC,Lq is independent of δ (resp. γ) conditionally on pT, V q (resp. pS, V1q),

iv. P pL ď Y q ą 0.

This assumption replaces Assumptions 1 and 2. A less restrictive condition could be considered
for assumption i. assuming that ϕ is nil between the largest lower bound of T and that of L.
To be consistent with what we mention above, we do not necessarily assume that the support
of T is included in that of C, which is the practical assumption used by Sánchez-Sellero et al.
(2005). Similarly to Assumption 2, the independence assumption iii. should only be considered
in the situation with covariates, that we introduce in this supplementary materiel for the sake of
completeness. Note than Sánchez-Sellero et al. (2005) take a stronger independent condition, which
would lead adjusting condition ii. in our case, i.e. pC,Lq is independent of pS, T, V,Θq and C is
independent of L.

Some additional notations and conditions are requested for the rest of this section. We note
Λ pzq “ P pL ď z ď Cq and consider a family of functions tϕu which is a measurable VC-subgraph
class of functions admitting an envelope Φ, such that

ż

Φ pS, T,ΘqΛ pT q´2
p1´ F pT qq´5

ă 8,

ż

Φ pS, T,Θq2 Λ pT q´2
p1´ F pT qq´3 dP ă 8.

We also assume that
ş

Λ pT q´2 dP ă 8. For such a function ϕ, we re-write our Aalen-Johansen
integral estimator (1.3) as

pSpvqn pϕq “
n
ÿ

i“1

ĂW
pvq
in ϕ pYi, Zi,Θiq,

with the weights

ĂW
pvq
in “

δiJ
pvq
i

n rCn pZiq

ź

tj:ZjăZiu

˜

1´
1

n rCn pZiq

¸δj

,

where Cn pxq “ n´1
řn
i“1 1tLiďxďYiu.
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Theorem 6. Under Assumption 5, pS
pvq
n pϕq converges almost surely and weakly to pS

pvq
8 pϕq, for

v P V. S8 pϕq can be replaced by S pϕq if the support of Z is included in that of C.

Proof. The proof relies on similar arguments as those of Theorem 1 of Sánchez-Sellero et al. (2005).
Formally, we can write pS

pvq
n pϕq as a sum of a dominant part and a negligible term, i.e.

pSpvqn pϕq “
n
ÿ

i“1

ϕ pYi, Zi,Θiq
δiJ

pvq
i

n rCn pZiq

ź

tj:ZjăZiu

˜

1´
1

n rCn pZjq ` 1

¸

`O
´

n´1 plnnq3
¯

.

Similarly to the proofs of Theorems 1 and 2, Y plays the role of a covariate here and the term J
pvq
i ,

v P V, has no particular effect when expressing the dominant part of Spvqn pϕq. Hence, following the
same steps as Sánchez-Sellero et al. (2005), we can decompose Spvqn pϕq as follows

pSpvqn pϕq´S
pvq
8 pϕq “

1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq J
pvq
i δiγ0 pZiq ´ γ

pvq
1 pZiq δi ` γ

pvq
2 pLi, Ziq ´ γ

pvq
3 pLi, Ziq`R

pvq
n ,

where |Rpvqn | “ O
´

n´1 plnnq3
¯

w.p.1. For this formulation, we consider

γ0 pxq “
1

N pxq
exp

"

´

ż x

´8

1

N ptq
N1 pdtq

*

,

γ
pvq
1 pxq “

1

N pxq

ż

ϕ ps, t, θq1txătăτZuγ0 ptqN
pvq pds, dt, dθq,

γ
pvq
2 px, yq “

ż

γ
pvq
1 ptq

N ptq
1txătăyuN1 pdtq,

γ
pvq
3 px, yq “

ż

ϕ ps, t, θq γ0 ptq

N ptq
1txăτăyuN

pvq pds, dt, dθq,

where

N pzq “ P pL ď z ď Z | L ď Zq , N1 pzq “ P pZ ď z, δ “ 1 | L ď Zq ,

N pvq py, z,θq “ P pY ď y, Z ď z,Θ ď θ, δ “ 1, V “ v | L ď Zq .

Finally, the convergence results are easily obtained with this formulation.

Remark that similar asymptotic results can be obtained for pSn pϕq following the same method-
ology.

As functions ϕ that we use to compute transition probabilities in Section 2 are very simple,
we can easily show that each of these functions is in a VC-subgraph of functions and exhibits an
envelop which satisfies the moment conditions introduced above. Applying Theorem 6 in each case,
it is shown that Propositions 3-5 are also verified when adding independent left-truncation under
Assumption 5.

4 Additional simulation results

This Section presents in Tables 1 and 2 the mean bias, variance and the mean square error related
to each of the estimators for pa0e2 ps, s` 4, 0,∆vq and pe2d ps, s` 4,∆u,8q. The same calculation
methodology as explained in Section 4 of the paper is used.
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Table 1: Performance analysis for estimated transition probabilities from state a0 to state e2.

ppa0e2 ps, t, 0,∆vq pp˚a0e2 ps, t, 0,∆vq qpa0e2 ps, t, 0,∆vq

ps, t,∆vq n Censoring pa0e2 ps, t, 0,∆vq BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

(28.78,32.78,]0,2]) 100 Scenario 1 0.111 0.83 3.01 3.01 0.68 2.02 2.02 0.69 2.02 2.02

100 Scenario 2 0.111 2.88 2.42 2.42 2.92 2.33 2.34 2.92 2.33 2.34

200 Scenario 1 0.111 2.95 1.58 1.59 3.67 1.02 1.04 3.67 1.02 1.04

200 Scenario 2 0.111 3.36 1.22 1.23 3.10 1.18 1.19 3.11 1.18 1.19

400 Scenario 1 0.111 0.79 0.82 0.82 1.12 0.54 0.54 1.12 0.54 0.54

400 Scenario 2 0.111 1.98 0.61 0.62 1.81 0.58 0.58 1.81 0.58 0.58

(28.78,32.78,]2,4]) 100 Scenario 1 0.794 2.42 1.90 1.90 1.54 1.35 1.35 1.56 1.35 1.35

100 Scenario 2 0.794 1.11 1.92 1.92 0.83 1.81 1.81 0.81 1.81 1.81

200 Scenario 1 0.794 1.59 0.90 0.90 1.24 0.70 0.70 1.24 0.69 0.70

200 Scenario 2 0.794 -0.15 0.96 0.96 -0.25 0.92 0.92 -0.24 0.92 0.92

400 Scenario 1 0.794 1.00 0.47 0.47 0.95 0.36 0.36 0.96 0.36 0.36

400 Scenario 2 0.794 0.91 0.45 0.46 0.88 0.44 0.44 0.88 0.44 0.44

(32.35,36.35,]0,2]) 100 Scenario 1 0.139 0.99 13.46 13.45 -3.19 6.48 6.48 -3.21 6.48 6.48

100 Scenario 2 0.139 0.15 5.62 5.62 -0.20 5.45 5.45 -0.21 5.45 5.44

200 Scenario 1 0.139 0.05 6.69 6.68 -0.71 2.98 2.98 -0.68 2.98 2.98

200 Scenario 2 0.139 -5.23 2.59 2.61 -5.32 2.53 2.55 -5.32 2.53 2.55

400 Scenario 1 0.139 -1.28 3.25 3.25 -1.84 1.46 1.46 -1.85 1.46 1.46

400 Scenario 2 0.139 -1.21 1.35 1.35 -1.27 1.27 1.27 -1.27 1.27 1.27

(32.35,36.35,]2,4]) 100 Scenario 1 0.142 4.83 9.24 9.25 1.95 5.49 5.49 1.83 5.49 5.48

100 Scenario 2 0.142 2.95 5.92 5.92 3.75 5.70 5.70 3.70 5.70 5.70

200 Scenario 1 0.142 0.34 4.43 4.43 -0.41 2.53 2.53 -0.32 2.55 2.54

200 Scenario 2 0.142 1.95 2.82 2.82 2.22 2.69 2.70 2.18 2.69 2.69

400 Scenario 1 0.142 3.38 2.17 2.18 2.34 1.35 1.35 2.42 1.35 1.35

400 Scenario 2 0.142 1.72 1.41 1.41 1.74 1.34 1.34 1.72 1.34 1.34

(35.49,39.49,]0,2]) 100 Scenario 1 0.143 55.69 40.37 43.43 0.28 20.98 20.96 7.85 20.06 20.10

100 Scenario 2 0.143 -1.21 16.22 16.21 -0.24 15.19 15.18 -0.25 15.20 15.18

200 Scenario 1 0.143 49.10 29.26 31.64 -0.87 10.54 10.53 -0.60 10.54 10.53

200 Scenario 2 0.143 1.70 7.86 7.85 2.36 7.46 7.46 2.36 7.46 7.46

400 Scenario 1 0.143 39.83 18.35 19.92 1.91 5.37 5.37 1.96 5.37 5.37

400 Scenario 2 0.143 -2.11 3.62 3.63 -1.89 3.48 3.48 -1.90 3.48 3.48

(35.49,39.49,]2,4]) 100 Scenario 1 0.217 24.68 59.05 59.60 -8.63 28.44 28.48 -1.72 28.67 28.64

100 Scenario 2 0.217 1.53 20.94 20.92 2.56 19.40 19.38 2.58 19.46 19.45

200 Scenario 1 0.217 8.51 35.11 35.14 -1.44 12.89 12.88 -1.39 12.94 12.93

200 Scenario 2 0.217 -2.64 10.29 10.28 -0.23 9.63 9.62 -0.36 9.64 9.64

400 Scenario 1 0.217 5.50 21.13 21.14 0.06 6.47 6.46 0.27 6.46 6.45

400 Scenario 2 0.217 -0.10 5.14 5.13 0.77 4.72 4.71 0.76 4.72 4.72

Note: This table contains the estimates bias (BIAS) ˆ103, variance (VAR) ˆ103 and mean square error (MSE) ˆ103 with our non-
parametric estimators. We compare the results at time s “ τ.20, s “ τ.40 and s “ τ.60 for samples with size n “ 100, n “ 200 and
n “ 400. The sojourn time is comprised in s0, 2s and in s2, 4s. The results are obtained with K “ 1, 000 Monte Carlo simulations.
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Table 2: Performance analysis for estimated transition probabilities from state e2 to state d.

ppe2d ps, t, 0,∆vq pp˚e2d ps, t, 0,∆uq qpe2d ps, t, 0,∆vq

ps, t,∆vq n Censoring pe2d ps, t, 0,∆vq BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

(28.78,32.78,]0,2]) 100 Scenario 1 0.718 -28.83 61.98 62.75 -3.69 60.52 60.47 -11.06 62.72 62.78

100 Scenario 2 0.718 0.31 68.78 68.71 12.61 68.63 68.72 -1.50 69.79 69.72

200 Scenario 1 0.718 -12.71 30.00 30.13 -3.28 28.01 28.00 -7.95 26.90 26.93

200 Scenario 2 0.718 -2.51 36.67 36.64 0.76 36.43 36.39 -1.91 36.51 36.48

400 Scenario 1 0.718 -8.95 13.72 13.78 -10.36 14.27 14.36 -8.13 12.26 12.31

400 Scenario 2 0.718 -10.54 15.18 15.28 -9.62 15.75 15.83 -10.72 15.08 15.18

(28.78,32.78,]2,4]) 100 Scenario 1 0.958 1.72 23.65 23.63 81.20 72.10 78.63 22.84 34.58 35.06

100 Scenario 2 0.958 -2.75 24.48 24.46 95.58 93.15 102.19 -2.47 25.59 25.57

200 Scenario 1 0.958 -5.29 10.13 10.15 28.10 20.94 21.71 9.30 16.04 16.11

200 Scenario 2 0.958 -0.17 13.30 13.28 50.51 31.72 34.24 1.27 13.62 13.61

400 Scenario 1 0.958 -6.71 4.76 4.80 15.09 6.60 6.82 -2.02 5.77 5.77

400 Scenario 2 0.958 -0.04 6.25 6.25 25.16 9.84 10.46 0.91 6.31 6.31

(32.35,36.35,]0,2]) 100 Scenario 1 0.697 -15.10 73.64 73.79 33.61 75.03 76.09 17.44 73.52 73.75

100 Scenario 2 0.697 -4.84 64.69 64.65 7.02 65.49 65.47 -4.37 65.80 65.75

200 Scenario 1 0.697 -8.89 36.13 36.17 5.56 39.09 39.08 1.62 32.22 32.19

200 Scenario 2 0.697 -9.72 27.94 28.00 -7.57 29.19 29.22 -7.35 28.09 28.11

400 Scenario 1 0.697 -2.52 16.25 16.24 1.33 20.55 20.53 2.29 14.88 14.87

400 Scenario 2 0.697 -1.34 12.25 12.24 -0.63 13.53 13.52 -0.74 12.28 12.27

(32.35,36.35,]2,4]) 100 Scenario 1 0.957 -0.05 19.37 19.35 133.00 63.43 81.05 50.14 43.53 46.00

100 Scenario 2 0.957 -9.40 11.50 11.58 58.13 47.71 51.04 -6.19 13.01 13.03

200 Scenario 1 0.957 -3.83 8.80 8.80 62.93 20.73 24.67 9.21 10.82 10.90

200 Scenario 2 0.957 1.28 8.09 8.09 31.81 13.21 14.21 3.46 8.62 8.63

400 Scenario 1 0.957 1.13 4.73 4.73 45.33 12.35 14.39 4.99 4.76 4.78

400 Scenario 2 0.957 -1.24 3.60 3.59 13.39 4.45 4.63 -0.78 3.60 3.59

(35.49,39.49,]0,2]) 100 Scenario 1 0.653 -51.08 123.00 125.49 76.80 127.19 132.96 43.41 133.41 135.16

100 Scenario 2 0.653 8.08 83.19 83.17 21.92 82.52 82.92 7.24 84.47 84.44

200 Scenario 1 0.653 -33.34 76.87 77.90 28.55 69.55 70.29 14.12 67.77 67.91

200 Scenario 2 0.653 15.09 38.55 38.74 19.17 38.81 39.14 15.29 38.45 38.64

400 Scenario 1 0.653 -5.85 36.59 36.59 15.67 40.25 40.45 15.92 29.41 29.63

400 Scenario 2 0.653 10.86 17.73 17.83 13.14 18.04 18.19 11.83 17.39 17.51

(35.49,39.49,]2,4]) 100 Scenario 1 0.944 -4.50 27.92 27.91 192.76 106.07 143.12 84.08 77.95 84.94

100 Scenario 2 0.944 -3.26 20.58 20.57 54.37 48.09 51.00 -1.18 21.50 21.48

200 Scenario 1 0.944 -3.60 17.79 17.79 99.00 44.12 53.88 29.33 26.37 27.20

200 Scenario 2 0.944 -0.27 10.21 10.20 23.02 13.38 13.90 2.13 11.29 11.28

400 Scenario 1 0.944 -3.56 8.52 8.53 54.66 18.19 21.16 7.59 8.54 8.58

400 Scenario 2 0.944 -1.69 4.18 4.18 11.02 5.28 5.39 -0.93 4.17 4.16

Note: This table contains the estimates bias (BIAS) ˆ103, variance (VAR) ˆ103 and mean square error (MSE) ˆ103 with our non-parametric
estimators. We compare the results at time s “ τ.20, s “ τ.40 and s “ τ.60 for samples with size n “ 100, n “ 200 and n “ 400. The sojourn
time is comprised in s0, 2s and in s2, 4s. The results are obtained with K “ 1, 000 Monte Carlo simulations.
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5 Proofs

5.1 Proof of Theorem 1

Let, for i “ 1, . . . , n and v P V, Dpvqi “

´

Yi, δi, J
pvq
i ,Θi

¯

and for each n ě 0, the σ-algebra

F pvqn “ σ
´

Zi:n, D
pvq
ri:ns, 1 ď i ď n,Zn`1, D

pvq
n`1, . . .

¯

,

where Dpvq
ri:ns are the value paired with Zi:n.

Clearly for v P V, pSpvqn pϕq is adapted to F pvqn and F pvqn is decreasing and converges towards F pvq8 “
Ş

ně1 F
pvq
n . Our strategy, following Stute andWang (1993), is to demonstrate that

´

pS
pvq
n pϕq ,F pvqn , n ě 0

¯

is a reverse-time supermartingale and then apply convergence result given by Neveu (1975, Propo-
sition V-3-11, p. 116) to obtain consistency. For the following lemma, we consider that ϕ is a
nonnegative fonction. Otherwise, the results remain applicable by decomposing ϕ into positive and
negative parts.

Lemma 1. For ϕ ě 0 and assuming that the distribution function of Z is continuous,
´

pS
pvq
n pϕq ,F pvqn , n ě 0

¯

is a reverse-time supermartingale for v P V.

Proof. Denote by pF
pvq
n pzq “

řn
i“1

ĂW
pvq
in 1tZi:nďzu and let pF

pvq
n tzu “ pF

pvq
n pzq ´ pF

pvq
n pz´q, we can

remark that
pSpvqn pϕq “

n
ÿ

i“1

ϕ
`

Yri:ns, Zi:n,Θri:ns

˘

pF pvqn tZi:nu.

If Zn`1 has rank k with 1 ď k ď n` 1, then Zi:n “ Zi:n`1 for all i ă k. Thus, we have

k´1
ÿ

i“1

ϕ
`

Yri:ns, Zi:n,Θri:ns

˘

pF pvqn tZi:nu “
k´1
ÿ

i“1

ϕ
`

Yri:n`1s, Zi:n`1,Θri:n`1s

˘

pF pvqn tZi:n`1u ,

n
ÿ

i“k

ϕ
`

Yri:ns, Zi:n,Θri:ns

˘

pF pvqn tZi:nu “
n`1
ÿ

i“k`1

ϕ
`

Yri:n`1s, Zi:n`1,Θri:n`1s

˘

pF pvqn tZi:n`1u ,

and
ϕ
`

Yrk:n`1s, Zk:n`1,Θrk:n`1s

˘

pF pvqn tZk:n`1u “ 0.

Hence, we obtain that

pSpvqn pϕq “
n`1
ÿ

i“1

ϕ
`

Yri:n`1s, Zi:n`1,Θri:n`1s

˘

pF pvqn tZi:n`1u . (5.1)

Following the same lines of the proof of Lemma 2.2 in Stute and Wang (1993) (see also Stute
(1993, Lemma 2.2)), we show with Lemma 2.1 of Stute and Wang (1993) applied to Dri:ns that

E
”

pF pvqn tZi:n`1u | F pvqn`1

ı

“ ĂW
pvq
i,n`1 , 1 ď i ď n

and
E
”

pF pvqn tZn`1:n`1u | F pvqn`1

ı

ď ĂW
pvq
n`1,n`1 .

Since ϕ ě 0, the result follows immediately by writing the conditionnal expectation of (5.1).
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From Lemma 1, we have by applying the Proposition V-3-11 of Neveu (1975) that E
”

pS
pvq
n pϕq | F pvq8

ı

admits limit P-almost surely. Due to the Hewitt-Savage zero-one law, F pvq8 is trivial and then

lim
nÑ8

E
”

pSpvqn pϕq | F pvq8
ı

“ lim
nÑ8

E
”

pSpvqn pϕq
ı

“ S
pvq
8 pϕq .

Now, we aim to determine the value of Spvq8 pϕq. To do this, we write

m pzq “ P pδ “ 1 | Z “ zq ,

Ψn pzq “
n
ź

i“1

ˆ

1`
1´m pZi:nq

n´ i` 1

˙

1tZi:năzu

,

and for v P V
rϕpvq pzq “ E

”

ϕ pY,Z,Θq δJ pvq | Z “ z
ı

.

Lemma 2. Under the assumptions of Lemma 1, we have for v P V

E
”

pSpvqn pϕq
ı

“ E
”

rϕpvq pZqE rΨn´1 pZqs
ı

.

Proof. Let Rjn denote the rank of Zj among Z1, . . . , Zn, we can write

E
”

pSpvqn pϕq
ı

“ E

«

n
ÿ

i“1

ĂW
pvq
in ϕ

`

Yri:ns, Zi:n,Θri:ns

˘

ff

“ E

»

—

—

–

n
ÿ

i“1

1

n´ i` 1
E

»

—

—

–

ϕ
`

Yri:ns, Zi:n,Θri:ns

˘

δri:nsJ
pvq
ri:ns

ˆ

i´1
ź

j“1

ˆ

n´ j

n´ j ` 1

˙δrj:ns

| Z1:n, . . . , Zn:n

fi

ffi

ffi

fl

fi

ffi

ffi

fl

.

From Lemma 2.1 of Stute and Wang (1993) applied to D
pvq
i for i “ 1, . . . , n, we know that,

conditionally on Z1:n ă . . . ă Zn:n, the concomitants among the D’s are independent. Hence,

E
”

pSpvqn pϕq
ı

“ E

«

n
ÿ

i“1

rϕpvq pZi:nq

n´ i` 1

i´1
ź

j“1

E

«

ˆ

n´ j

n´ j ` 1

˙δrj:ns

| Zj:n

ffff

“ E

«

n
ÿ

i“1

rϕpvq pZi:nq

n´ i` 1

i´1
ź

j“1

ˆ

1´
m pZj:nq

n´ j ` 1

˙

ff

“ E

«

n
ÿ

i“1

rϕpvq pZi:nq

n

i´1
ź

j“1

ˆ

1`
1´m pZj:nq

n´ j

˙

ff

“ E

«

n
ÿ

i“1

rϕpvq pZiq

n

n
ź

j“1

ˆ

1`
1´m pZjq

n´Rjn

˙

1
tZjăZiu

ff

“ E

«

rϕpvq pZ1q

n
ź

j“1

ˆ

1`
1´m pZjq

n´Rjn

˙

1
tZjăZ1u

ff

. (5.2)

If Zj ă Z1 then Rjn “ Rj,n´1. Conditioning on Z1, the result follows easily.
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A similar proof is established in Stute and Wang (1993)[Lemma 2.4] and reused in Stute (1994).
Now, we are in position to prove Theorem 1 by studying the process Ψn pzq.

Proof of Theorem 1. From Stute and Wang (1993)[Lemma 2.5 and Lemma 2.6] and assuming that
G and the distribution function of F are continuous, for each z ă τZ , we have

E rΨn pzqs Ò
1

1´G pzq
. (5.3)

Hence, under the Assumption 2 and ϕ ě 0, we obtain by applying Lemma 2, Equation (5.3)
and the monotone convergence theorem that

S
pvq
8 pϕq “

ż

1tZăτZu
rϕpvq pZq

1´G pZq
dP

“

ż

1tZăτZuE
”

ϕ pY,Z,Θq δJ pvq | Z
ı 1

1´G pZq
dP

“

ż

ϕ pS, T,Θq
1tTăτZuδJ

pvq

1´G pT q
dP

“

ż

ϕ pS, T,Θq
1tTăτZuJ

pvq

1´G pT q
P pT ď C | S, V, T,Θq dP

“

ż

ϕ pS, T,Θq
1tTăτZuJ

pvq

1´G pT q
P pT ď C | V, T q dP.

Since C and pV, T q are independent (see Assumption 1), we remark that P pT ď C | V, T q “ 1 ´
G pT q. Hence, we obtain

S
pvq
8 pϕq “

ż

1ttăτZuϕ ps, t,θq F
pvq
0 pds, dt, dθq. (5.4)

As indicated earlier for a continuous F pvq, the desired proof follows from Lemma 1, Equation (5.4)
and proposition V-3-11 of Neveu (1975).

5.2 Proof of Theorem 2

Here, we denote

xMn pzq “
n
ÿ

i“1

1tZiďzu,

xM0n pzq “
n
ÿ

i“1

1tZiďz,δi“0u,

xM pvq
n py, z,θq “

n
ÿ

i“1

1tYiďy,Ziďz,Θiďθ,δi“1,Vi“vu,

the empirical distribution functions of M , M0 and M pvq
0 . Directly based on Stute (1995)’s proof,

our strategy is in 2 steps: prove CLT when ϕ vanishes to the right of some ν ă τZ and then extend
it on r0, τZs. Note that Suzukawa (2002) also follows the same strategy.
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Lemma 3. We have for v P V

pSpvqn pϕq “
1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i exp

$

&

%

n

ż Zi´

0
ln

$

&

%

1`
1

n
´

1´ xMn pτq
¯

,

.

-

xM0n pdτq

,

.

-

(5.5)

Proof. From the same rationale used to obtain (5.2), we find

pSpvqn pϕq “
1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

n
ź

j“1

ˆ

1`
1´ δj
n´Rjn

˙

1
tZjăZiu

. (5.6)

The result follows immediately by definition of xMn pzq and xM0n pzq, see proof of Lemma 2.1 in
Stute (1995).

The exponential term in (5.5) is expanded in Stute (1995) as follows

exp t. . .u “
1

1´G pZiq
p1`Bin ` Cinq `

1

2
exp t∆iu pBin ` Cinq

2 , (5.7)

where

Bin “ n

ż Zi´

0
ln

$

&

%

1`
1

n
´

1´ xMn pτq
¯

,

.

-

xM0n pdτq ´

ż Zi´

0

xM0n pdτq

1´ xMn pτq
,

Cin “

ż Zi´

0

xM0n pdτq

1´ xMn pτq
´

ż Zi´

0

M0 pdτq

1´M pτq
,

and ∆ is between the two terms

n

ż Zi´

0
ln

$

&

%

1`
1

n
´

1´ xMn pτq
¯

,

.

-

xM0n pdτq and
ż Zi´

0

M0 pdτq

1´M pτq
.

Considering (5.5) and (5.7), we write

pSpvqn pϕq “
1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

1`Bin ` Cin
1´G pZiq

`
1

2n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i exp t∆iu pBin ` Cinq

2.

(5.8)

Now, we decompose the last equation and study approximations for each component. To do
this, we make for ϕ the following assumption

Assumption 6. ϕ is an F0-integrable function such that
ş

ϕ2dF0 ă 8 and ϕ ps, t,θq “ 0 for ν ă t
where ν ă τZ .

This assumption aims to bound the denominators of the terms obtained in the following lemmas.

Lemma 4. Under Assumption 6, we have

1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

Cin
1´G pZiq

“ ´

¡

ϕ ps, t,θq1tτăt,τăωu

p1´G ptqq p1´M pτqq2
xMn pdωqM0 pdτqM

pvq pds, dt, dθq

`

ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq p1´M pτqq
xM0n pdτqM

pvq pds, dt, dθq `R
pvq
n1 ,

(5.9)

where |Rpvqn1 | “ O
`

n´1 lnn
˘

w.p.1.
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Proof. Using the following decomposition for z ă Zn:n in Cin,

1

1´ xMn pzq
“ ´

1´ xMn pzq

p1´M pzqq2
`

2

1´M pzq
`

´

xMn pzq ´M pzq
¯2

p1´M pzqq2
´

1´ xMn pzq
¯ ,

we can write

1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

Cin
1´G pZiq

“ ´

¡

ϕ ps, t,θq1tτăt,τăωu

p1´G ptqq p1´M pτqq2
xMn pdωqxM0n pdτqxM

pvq
n pds, dt, dθq

` 2

ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq p1´M pτqq
xM0n pdτqxM

pvq
n pds, dt, dθq

´

ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq p1´M pτqq
M0 pdτqxM

pvq
n pds, dt, dθq `R

pvq
n2 ,

(5.10)

where

R
pvq
n2 “

ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq

´

xMn ptq ´M ptq
¯2

p1´M ptqq2
´

1´ xMn ptq
¯

xM0n pdτqxM
pvq
n pds, dt, dθq.

Under Assumption 6 and with same argument as Stute (1995, Lemma 2.5), i.e. using iterated
logarithm for empirical measures and strong law of large numbers (SLLN), we obtain |Rpvqn2 | “

O
`

n´1 lnn
˘

w.p.1. For the rest of the proof, we shall decompose the other terms in the previous
equation (5.10) as a U-statistic plus a negligible remainder. Formally, we have

¡

ϕ ps, t,θq1tτăt,τăωu

p1´G ptqq p1´M pτqq2
xMn pdωqxM0n pdτqxM

pvq
n pds, dt, dθq

“

¡

ϕ ps, t,θq1tτăt,τăωu

p1´G ptqq p1´M pτqq2

ˆ

«

xMn pdωqM0 pdτqM
pvq pds, dt, dθq `M pdωqxM0n pdτqM

pvq pds, dt, dθq

´ 2M pdωqM0 pdτqM
pvq pds, dt, dθq `M pdωqM0 pdτqxM

pvq
n pds, dt, dθq

ff

`R
pvq
n3 ,

(5.11)

and
ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq p1´M pτqq
xM0n pdτqxM

pvq
n pds, dt, dθq

“

ĳ

ϕ ps, t,θq1tτătu

p1´G ptqq p1´M pτqq

ˆ

”

xM0n pdτqM
pvq pds, dt, dθq ´M0 pdτqM

pvq pds, dt, dθq `M0 pdτqxM
pvq
n pds, dt, dθq

ı

`R
pvq
n4 ,

(5.12)
where |Rpvqn3 | “ O

`

n´1 lnn
˘

and |Rpvqn4 | “ O
`

n´1 lnn
˘

w.p.1. We refer to similar arguments as for
Lemmas 2.3 and 2.4 of Stute (1995) to obtain the two representations based on the Hajek projection
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of a V-statistic of the multivariate data
´

Yi, Zi,Θi, δi, J
pvq
i

¯

, 1 ď i ď n. Finally, the proof of (5.9)
follows by substituting (5.11) and (5.12) into (5.10).

Now, we study the other terms in (5.8) in the following Lemma.

Lemma 5. Under Assumption 6, we have with w.p.1

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

Bin
1´G pZiq

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
`

n´1
˘

, (5.13)

and
1

2n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i exp t∆iu pBin ` Cinq

2

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
`

n´1 lnn
˘

. (5.14)

Proof. The proof follows immediately from the proofs of Lemmas 2.6 and 2.7 of Stute (1995).

Proof of Theorem 2. With Lemmas 4 and 5, Equation (5.8) yields

pSpvqn pϕq “
1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

1´G pZiq
`

1

n

n
ÿ

i“1

”

λ
pvq
1 pZiq p1´ δiq ´ λ

pvq
2 pZiq

ı

`R
pvq
n5 (5.15)

where |Rpvqn5 | “ O
`

n´1 lnn
˘

w.p.1. As a consequence, we have CLT results for pS
pvq
n pϕq, v P V, and

Theorem 2 follows under Assumption 6.
Finally, the results of Theorem 2 can be extended on sν, τZs by an argument similar to that of

the proof of Theorem 1.1 in Stute (1995) under Assumptions 3 and 4. Thus, we have

pSpvqn pϕq ´ S
pvq
8 pϕq “

1

n

n
ÿ

i“1

ϕ pYi, Zi,Θiq δiJ
pvq
i

1´G pZiq
`

1

n

n
ÿ

i“1

”

λ
pvq
1 pZiq p1´ δiq ´ λ

pvq
2 pZiq

ı

`R
pvq
n5 .
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