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The aim of this document is to provide additional information on the paper "Non-Parametric
Inference of Transition Probabilities Based on Aalen-Johansen Integral Estimators for Acyclic Multi-
State Models: Application to LTC Insurance". This document is organized as follows. Section 1
presents a general estimation framework with right-censoring and theoretical results for competing
risks data which is quite close to those introduced by Suzukawa (2002). To obtain asymptotic results
for transition probabilities, it is needed to extend his framework with the addition of covariates.
Section 2 explains how we applied these results to transition probabilities of interest. Inclusion
of left-truncation is considered in Section 3. Some additional simulation results are reported in
Section 4. Finally, the proofs for results of Section 1 are presented in Section 5.

1 Non-parametric estimation, asymptotic properties and applica-
tions

Our aim here is to explain rigorously how the non-parametric estimation framework introduced in
Section 3 of the paper is built and to prove asymptotic properties for our estimators. In Section 1.1,
we recall some notations, introduce basic assumptions and then define general non-parametric esti-

)

mators for integrals of the type SgodFéU , Where ¢ is Fo(v)—measurable with the cumulative incidence
function Fév)

such integrals.

associated to competing risks data. Section 1.2 contains the asymptotic results for

1.1 Setup

The problem that we consider entails a unique right-censoring process C' with a continuous distri-
bution function G.

Assumption 1. C is independent of the vector (S,T,V).

Thus, the following variables are available

Y = min (S,C) and v = Lis<cys
Z =min (T,C) and § = Lip<cy-

For the sake of generality, we incorporate here a vector ® = (©;) of p-covariates. Following

1=1,....,p
Stute (1993), we only assume' that these covariates do not provide any further information as to
whether censoring will take place or not, i.e. we have

Assumption 2.
i. P(S<C|S5,0,)=PS<C|S W),
ii. P(T<C|S5T7T,0,V)=P(T<C|T,V).

Equality ii. of Assumption 2 is explained by the fact that the pair (S,T) is, by construction,
subject to censoring and S is uncensored whenever T is. Let V be the set of values taken by V =
(V1, V). For estimation purposes, we introduce the distribution function of (S, ®), noted Hy (s,0) =
P(S <s,0<80),and Fo(v) (5,,0) =P (S <s5,T <t,0 <0,V =v), the sub-distribution function®
of (S,T,0®), where the cause is V' = v with v € V. Moreover, we have Fy = >, Fo(v).

!No assumption is made about the dependence structure between (C, S, T, ®,V).
2Also called cumulative incidence function.



The theoretical results presented below can be applied both for discrete (e.g. gender, geo-
graphical location, social status) and continuous (e.g. biomedical measures) covariates. However,
continuous covariates should be beforehand transformed into categorical variables for practical ap-
plications. Another solution could be to smooth the multivariate cumulative incidence function Fév)
for each competing cause. Note in addition that this condition is satisfied if C is independent of
(S,T,V,0), which would also be a realistic assumption in our insurance application.

In this context, the observation of the i-th individual of a sample of length n > 1 is characterized
by

(Y, visviVii, Ziy 0i,0V24,0;) 1 <i<n,

which are assumed to be i.i.d. replications of the variable (Y,~,vV1,Z,6,6V5,0®). If § = 1, then
obviously v = 1. Consider the ordered Y-values Y7, < Ya,, < ... < Y., and (W[i;n],@[i;n])
the concomitant of the i-th order statistic (i.c. the value of (v;,0;),;,, paired with Yiy). An
estimator for Hy is simply obtained from the multivariate Kaplan-Meier estimator considered by
Stute (1993)

Hon (s, 0) Zwmn{mgs O <6} (1.1)

Kaplan-Meier integrals, taking the form S () = { ¢ dH, with some generic function ¢, are estimated
with

n
~

S () = f ¢ (5,0) Ho, (ds,dB) = > Wing (Yim, Oin)-

Let Z1., < Zoy < ... < Zp., be the ordered Z-values and (Y[i;n],(S[i;npJ[(;:Ly@[i:n]) be the
(v)

concomitant of the i-th order statistic with J;* = 1gy_, ) and v € V. Since S is assimilated to

an uncensored covariate when T is not censored, the cumulative incidence function Fév) can be
estimated with the so-called Aalen-Johansen estimator for competing risks data with covariates

(v) w1y
Fon (y’ % 0) - Z W”L {3/[1 n]gyvzz n<Z, 8[1 n]se}

.
—_

(1.2)

n
o Z {an <Y,Zi:n <2, e[z n] }’

Based on the representation as a sum of (1.2), we want to obtain estimators of general quantities
S (”) = (o dF ") with @ a generic function. In absence of censoring variable, non-parametric
estlmatlon is stralghtforward, resulting to integrals under the empirical multivariate distribution
function of (S,7,®). In this context, complete information is available and each observation has
the same weight into the empirical process. Since the joint distribution of (7', V') has the aspect of
a competing risks model, we estimate S(*) (), for each v € V by computing the Aalen-Johansen
integral of the form

57(11)) ((/7) f (8 t 0) (U) (ds dt de) Z Wz(v) ( [ n]in:na(")[i:n])' (13)
=1
These estimators are not so hard to handle and are similar to those exhibited by Suzukawa
(2002), but we refine his approach by the introduction of covariates®. In this context, we need to
derive new asymptotic properties.

3@ is covariate and S plays the same role as a covariate in (1.3).



1.2 Asymptotic properties

Let 7v and 7z be the least upper bounds of the distribution functions of Y and Z. Under As-
sumptions 1 and 2, the consistency and weak convergence of estimator (1.1) on [0, 7y] can be easily
demonstrated, since Stute (1993) and Stute (1996) conditions are satisfied. Note that this result is
also verified if H and G have no jump in common which is a less restrictive condition than conti-
nuity. For the rest of this subsection, we focus on the consistency and weak convergence properties
of estimator (1.3).

Theorem 1. Under Assumptions 1 and 2 and assuming that ¢ is an Fy-integrable function, we
have with probability 1

S () — ¥ () = f Litar,yo (5,1,0) By (ds,dt,df) , ve V. (14)

In addition, if the support of Z is included in that of C, we have obviously S’\T(Zv) () — S () w.p.1.

By addition of covariates, this result constitutes an extension of the those demonstrated by
Suzukawa (2002, Theorem 1), which are directly based on the proof of Stute and Wang (1993)
theorem’s. For the sake of completeness, more details about the proof is given in Subsection 5.1.

To obtain weak convergence properties, we adapt the approach followed by Stute (1995) for
Kaplan-Meier integrals and Stute (1996) for the version with covariates. We define similar inte-
grability conditions for any function ¢ Fy-integrable to prove a general convergence result. These
conditions are given below.

S.T,0)%6 S.T,®)>
@ (S,T,0) :f¢(”>dP<w.

Assumption 3. f (i G(T))2 1-G(T)

Assumption 4. f’gp (S, T,0)[\/Co (T)ip<r,y dP < 0.

)

Of course, under these assumptions, similar conditions replacing Fy by Fév , for all v € V, are

necessarily satisfied. We consider

and

We also introduce the functions

1 2 (Sa t, 0) I[{x<t<7' }
AW (z) = f 2} A1) (ds, dt, d@
e e VA S 1-G@) (ds, dt, dO),

and )
A ! (t) 1 t<wz}
AW =j1 U= Mo (dt).
Assumption 3 corresponds to a variance type assumption on ¢, guaranteeing the existence of a
finite second moment. The second assumption is nothing but a technical condition to control
the bias of Sq(f). More details are given by Stute (1995). Some additional notations are needed



~ ~ T
to give our results. Introduce the vectors of size Card (V), S, (¢) = <S§LU) (go))) , S () =

vey
-
(S’ég) (gp))) Vand S (e) = (S(”) (go))Iev. The following theorem gives asymptotic properties for
ve
Sn ().
Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Under Assumptions 3 and 4,
we have

Vi {8 () = S (9)} S N (0,2 (). (1.5)

where X (@) is a symmetric matriz associated to the covariance matriz of the vector a(p) =
(av (9))yey where

0 (Y, Z,0)5JW
Ay (90) = 1-G (Z)

A 1= = A(2), veV.

S () can be replaced by S () if the support of Z is included in that of C.

The complete proof of this theorem is postponed in Section 5.2. From the Equation (1.5), we

1 v v .
el )\g) and )\g) were known. This

could obtain asymptotic confidence intervals if functions 1

can be done by just replacing the distribution functions H, M, My and M® in the expression
of ¥ () by their empirical counterparts. However, this calculation may be tedious due to the
expression of a (¢). Thus, implementing a non-parametric bootstrap or jackknife procedures is the
most appropriate way to obtain asymptotic variance-covariance estimators.

2 Application for transition probabilities estimation

In this subsection, we focus on the asymptotic properties of transition probabilities estimators
introduced in Section 3 of the paper. By considering some particular functions ¢, Theorems 1
and 2 can be applied to derive asymptotic properties for pg,; (s,t,0,00 | 0), page (5,t,0,A, | ),
Qaged (5,1,0, A4 | 0), Pee (5,, Ay | 0) and peg (s,t, Ay, 0 | )% Note that the consistency and weak
convergence of ﬁaoao (s,t,0| @) can be proved easily for all ¢ < 77 applying the results of Stute
(1996) and the delta-method.

Proposition 3. Under Assumptions 1 and 2, pay; (5,t,0,00 | 0), Page (5,1,0,Ay | 0), Gaged (5,1,0, A,
Dee (8,1, Ay | 0) and Peq (s,t, Ay, 0 | @) converge almost surely to the pertaining transition probabil-
ities of interest, if the support of Z is included in that of C. Under these assumptions, they are also
asymptotically normal.

Proof. To prove these results, transition probabilities are expressed by means of integrals of the
form §¢ dHy and {¢ dFév). For brevity’s sake, we only report the details of the proof for
Dage (5,1,0,A, | ) as the results for other probabilities come using the same reasoning. Hence,
its estimator can be rewritten as

§lece)
ﬁaoe (S)tu 07 A’U | 0) = /\7@7

Sn (1)

4In case where covariates are introduced, a term 6 is added in the transition probabilities expression meaning that
we work with the probability measure conditionally on {® = 6}.

0),



where ¢ (7,y,2) = Liscociay, t—zeAy,z=0) a0d ¥ (2,2) = Lizo, .—p;. The subset C (e) is the set of
states to which a direct transition from e is possible.

First, the simple function v satisfies conditions of Theorem 1.1 in Stute (1996) and therefore
§n () admits consistent and weak convergence properties as a Kaplan-Meier integral. Second,
applying the result of Theorem 1 to the function ¢ which is clearly Fy-integrable, we obtain the
consistency results to the limit Sgg’c(e)) (¢). Since ¢ satisfies Assumptions 3 and 4, the numerator
of Page (8,t,0,A, | 8) is asymptotically normal. Finally, we have with the delta method

564 (o

\/ﬁ{ﬁaoe (S,t,O,Av | 0) - S (¢)

} Gy N (0, age (5,,0,A, | 0)),

where 04, (5,1,0, A, | 0) is a limit variance function which is complex to calculate®. The estimator
Dage (5,1,0, Ay | ) converges to pgge (S,t,0,A, | 8), if the support of Z is included is that of C. O

Note that pg,; (s,t,0,00 | 0) is also consistent if ¢ < 7y. The other estimators are systematically
biased if the support of C' is strictly included in that of T

We are now in position to study the alternative estimators’ properties by following a similar
approach to that of de Ufia-Alvarez and Meira-Machado (2015).

Proposition 4. Under Assumptions 1 and 2, py . (s,t,0,A, | 0) is consistent w.p.1 if t < Ty,
and pk,; (s,t, Ay, 0 | 0) is consistent w.p.1 if t < 7z. In this situation, they are also asymptotically
normal.

Proof. The results are direct applications of Theorems 1, 2 and Stute (1996)’s Theorem for the
denominator of pj . (s,t,0,A,|@). Let’s prove this Proposition for p} . (s,2,0,A,|8), as the
second estimator’s properties are demonstrated similarly. For that, we write

n (e) aleC(e))
= 1 ny 9 i — Sn
Dage (5,6,0,A, 1 6) = 2 Wiy ¢1 (¥ [in]) (¢2)7

Sn (¥)

where ¢4 (wa) = ]1{5<J:<t7 t—z€N,y,z=0} and ¢ (l’,y,Z) = ]1{5<x,y<t, t—z€Ay,2=0}> and then we apply
Theorems 1 and 2 on ¢; and ¢o. O

Note that this proposition is also verified for p*, (s,t, Ay, 0 | 8) when s < 7y and t < 77. In
practice for insurance applications, we always take s —u+1<sandt—v+1<t.

We now consider the second class of alternative estimators involving subsamples that we suppose
to be not empty with a positive probability. Introduce ¢7y and 7z the least upper bound of Y
and Z pertaining to the subsample {i : ¥; > s}, and analogously s, 7y and s,77 for the subsample
{i:Yi<s<Z,s—Yie Ay}

Proposition 5. Under Assumptions 1 and 2, Page (S,t,0,A, | 0) is consistent w.p.1 if t < 57y, and
Ded (5,1, Ay, 00 | 8) is consistent w.p.1 if t < 5,77. In this situation, they are also asymptotically
normal.

Proof. As C'is independent of (S,V,T), we find immediately that (s5,sV,T), i.e. the vector of
(S,V,T) conditionally on {Y > s}, is also independent of ;C, i.e. C conditionally on {Y > s}.
This is also valid when conditioning (S,V,T) on {Y <s< Z,s—Y € A,}. Thus, we can apply
Theorems 1 and 2 on these particular subsamples for poge (s,t,0,A, | @) and pPeg (s,t, Ay, 00 | 0)

with the same reasoning that in Proposition 4.
O

5By using the function g (z,y) = {7 the delta method gives an explicit formula which depends on complex terms.

Thus, this is not very useful to write its expression.



3 Estimation with left-truncation and right-censoring

In this section, we additionally allow for left-truncation and discuss the conditions to adapt the
asymptotic results of Section 1.2 for competing risks data. It is worth noting that truncation can
only occur when the individual is in the healthy state ag in our framework. Once we have such results
(Theorem 6), the approach followed in Section 2 can be repeated directly without any additional
assumption.

For survival data, Sanchez-Sellero et al. (2005) obtain a representation for product-limit inte-
grals for a family of functions {¢} under censoring and truncation and with independent covariates.
This representation implies consistency and weak convergence properties for Kaplan-Meier integrals.
Their proofs are demonstrated followed a similar approach than Stute (1995) and Stute (1996) (see
Section 5) directly on a family of functions, except that they assume stronger conditions on the mo-
ments of ¢ to avoid imposing hypothesis similar to Assumptions 3 and 4. Although their conditions
are more restrictive, they are sufficient in our framework as we work with very simple functions ¢.
Hence, we simply need to adapt their assumptions to our competing risks data framework.

Assumption 5.
i. the largest lower bound for the support of L is lower than that of T,
ii. (C, L) is independent of (S,T,V) and C is independent of L,
iii. (C, L) is independent of ¢ (resp. ) conditionally on (7', V') (resp. (S, V1)),
iv. P(L<Y)>0.

This assumption replaces Assumptions 1 and 2. A less restrictive condition could be considered
for assumption i. assuming that ¢ is nil between the largest lower bound of T" and that of L.
To be consistent with what we mention above, we do not necessarily assume that the support
of T is included in that of ', which is the practical assumption used by Sanchez-Sellero et al.
(2005). Similarly to Assumption 2, the independence assumption iii. should only be considered
in the situation with covariates, that we introduce in this supplementary materiel for the sake of
completeness. Note than Sanchez-Sellero et al. (2005) take a stronger independent condition, which
would lead adjusting condition ii. in our case, i.e. (C,L) is independent of (S,T,V,®) and C is
independent of L.

Some additional notations and conditions are requested for the rest of this section. We note
A(z) =P (L < 2 < () and consider a family of functions {¢} which is a measurable VC-subgraph
class of functions admitting an envelope ®, such that

f@ (S,T,©)A(T)?(1—F(T))"° < o, J@ (S,T,0)*A(T)2(1 - F(T))*dP < .

We also assume that {A (T)_2 dP < oco. For such a function ¢, we re-write our Aalen-Johansen
integral estimator (1.3) as

S (p) = YW (Y, 21, ©)),
i=1
with the weights
~ 5;J) 1 ”
I A S W -
nC’n (Zz) {j:Z_j<Zi} nCn (ZZ)

where Cp, (z) = ™' 33 1, <oy



Theorem 6. Under Assumption 5, g,(Lv) (p) converges almost surely and weakly to S ( ), for
vEV. Sy (p) can be replaced by S (@) if the support of Z is included in that of C.

Proof. The proof relies on similar arguments as those of Theorem 1 of Sanchez-Sellero et al. (2005).
Formally, we can write 57(;}) (p) as a sum of a dominant part and a negligible term, i.e.

) Z": 57" 1 1 PR
S0 () = (¥ 2, ©:) =~ R +O(n— (lnn)>.

" ~ nCn (Zi) j.7,= 79 nCy (Z;) + 1
Similarly to the proofs of Theorems 1 and 2, Y plays the role of a covariate here and the term Ji(v),

v € V, has no particular effect when expressing the dominant part of S’T(Lv) (¢). Hence, following the

same steps as Sanchez-Sellero et al. (2005), we can decompose S () as follows

7

a v 1 $ v v v v
5 () =58 () = — 3 (Vi 20, ©0) T V600 (20) = 11" (Z0) 8 + 25" (Li, Z0) = 5" (Li, Zi) + R,
1=1

where ]RS})| = O(n‘1 (In n)3> w.p.1. For this formulation, we consider

060 = 5 0 {— [ <dt>} ,

v 1 v
’YE ) (‘T) = N (:1:) ¥ (S’ t 0) ]]‘{:E<t<7'z}/yo (t) N( ) (dS, dt, d0)7
) 1 ()
Y2 (LE, y) = N (t) :H'{$<t<y}Nl (dt)a
(v) | ¥ (57 t 9) 70 (t) v
73 (as,y) - Jml{m<7<y}N( ) (ds>dt7 da)a
where
N(z)=P(L<z<Z|L<Z),Ni(2)=P(Z<z0=1|L<2),
N (y,2,0) =P(Y <y, Z2<2,0<0,6=1,V=uv|L<Z).
Finally, the convergence results are easily obtained with this formulation. O

Remark that similar asymptotic results can be obtained for gn () following the same method-
ology.

As functions ¢ that we use to compute transition probabilities in Section 2 are very simple,
we can easily show that each of these functions is in a VC-subgraph of functions and exhibits an
envelop which satisfies the moment conditions introduced above. Applying Theorem 6 in each case,
it is shown that Propositions 3-5 are also verified when adding independent left-truncation under
Assumption 5.

4 Additional simulation results

This Section presents in Tables 1 and 2 the mean bias, variance and the mean square error related
to each of the estimators for pgge, (5,5 +4,0,A,) and pe,q (s, s + 4, Ay, 0). The same calculation
methodology as explained in Section 4 of the paper is used.



Table 1: Performance analysis for estimated transition probabilities from state ag to state es.

Pages (5,0, Av) Dages (81,0, A) Pages (5,0, Av)

(s,t,Ay) n  Censoring  Pages (5,0, A,) BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE
(28.78,32.78,10,2]) 100 Scenario 1 0.111 0.83 3.01 3.01 0.68 202 2.02 069 202 202
100 Scenario 2 0.111 288 242 242 292 233 234 292 233 234

200 Scenario 1 0.111 295 158 159 3.67  1.02 1.04 3.67  1.02 1.04

200 Scenario 2 0.111 336 122 123 310 118 1.19 311 118 119

400 Scenario 1 0.111 0.79 0.82 0.82 112 054 054 112 054 054

400 Scenario 2 0.111 1.98 061 0.62 1.81 058 0.58 181 058 0.8

(28.78,32.78,]2,4]) 100 Scenario 1 0.794 242 190 1.90 154 135 1.35 156 135 1.35
100 Scenario 2 0.794 111 1.92  1.92 0.83 1.81 181 081 1.81 181

200 Scenario 1 0.794 159 0.90 0.90 124 070  0.70 124 069 0.70

200 Scenario 2 0.794 -0.15 096 0.96 -0.25 092 0.92 024 092 092

400  Scenario 1 0.794 1.00 047 047 0.95 0.36 0.36 0.96 0.36 0.36

400  Scenario 2 0.794 091 045 0.46 0.88 044 0.44 0.88 044 0.44

(32.35,36.35,]0,2]) 100 Scenario 1 0.139 0.09 1346 13.45 -3.19 6.48 6.48 -3.21 648 6.48
100 Scenario 2 0.139 015 562 5.62 020 545 545 021 545 544

200 Scenario 1 0.139 005 6.69 6.68 071 298 298 068 298 298

200  Scenario 2 0.139 523 259 2.61 532 253 255 532 253 255

400  Scenario 1 0.139 128 325 3.5 184 146 1.46 -1.85 146 146

400  Scenario 2 0.139 121 135 1.35 127 127 127 .27 127 127

(32.35,36.35,)2,4]) 100 Scenario 1 0.142 483 924 925 195 549 5.49 1.83 549 5.48
100 Scenario 2 0.142 295 592 592 3.75 570 5.70 3.70  5.70  5.70

200 Scenario 1 0.142 034 443 443 041 253 253 032 255 254

200  Scenario 2 0.142 195 282 282 222 269 270 218 269 2.69

400 Scenario 1 0.142 338 217 218 234 135 135 242  1.35 135

400  Scenario 2 0.142 172 141 141 174 134 134 172 134 134

(35.49,39.49,]0,2]) 100 Scenario 1 0.143 55.69 40.37 43.43 0.28 20.98 20.96 7.85  20.06 20.10
100  Scenario 2 0.143 4121 1622 16.21 024 1519 15.18 0.25 1520 15.18

200 Scenario 1 0.143 4910 29.26 31.64 -0.87 1054 10.53 -0.60 1054 10.53

200  Scenario 2 0.143 170 7.86 7.85 236 746  7.46 236  7.46  7.46

400  Scenario 1 0.143 39.83 18.35 19.92 191 537 537 1.96 537 537

400 Scenario 2 0.143 211 362 3.63 -1.89 348  3.48 -1.90 348  3.48

(35.49,39.49,]2,4]) 100 Scenario 1 0.217 24.68 59.05 59.60 -8.63 2844 28.48 -1.72 2867 28.64
100 Scenario 2 0.217 153 2094 20.92 256 19.40 19.38 258 19.46 19.45

200 Scenario 1 0.217 851 3511 35.14 -1.44 12.89 12.88 -1.39 1294 12.93

200 Scenario 2 0.217 264 1029 10.28 023 963 9.62 036 9.64 9.64

400 Scenario 1 0.217 550 21.13 21.14 0.06 647 6.46 027 646 645

400 Scenario 2 0.217 010 514 513 077 472 471 076 472 472

Note: This table contains the estimates bias (BIAS) x10%, variance (VAR) x10® and mean square error (MSE) x10® with our non-
parametric estimators. We compare the results at time s = T.20, s = T.40 and s = T for samples with size n = 100, n = 200 and
n = 400. The sojourn time is comprised in |0, 2] and in ]2,4]. The results are obtained with K = 1,000 Monte Carlo simulations.



Table 2: Performance analysis for estimated transition probabilities from state es to state d.

Degd (8,,0,Ay) P g (s,t,0,A4) Degd (8,1,0,Ay)
(8,8, Ay) n  Censoring pe,d (s,t,0,A,) BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE
(28.78,32.78,]0,2]) 100 Scenario 1 0.718 -28.83 61.98 62.75 -3.69 60.52  60.47 -11.06  62.72  62.78
100 Scenario 2 0.718 0.31 68.78  68.71 12.61 68.63  68.72 -1.50  69.79  69.72
200 Scenario 1 0.718 -12.71  30.00  30.13 -3.28 28.01 28.00 -7.95 2690 26.93
200 Scenario 2 0.718 -2.51 36.67  36.64 0.76 36.43  36.39 -1.91 36.51 36.48
400 Scenario 1 0.718 -8.95 13.72 13.78 -10.36  14.27 14.36 -8.13 12.26 12.31
400 Scenario 2 0.718 -10.54 15.18 15.28 -9.62 15.75 15.83 -10.72  15.08 15.18
(28.78,32.78,]2,4]) 100 Scenario 1 0.958 1.72 23.65  23.63 81.20  72.10 78.63 22.84 34.58  35.06
100 Scenario 2 0.958 -2.75  24.48  24.46 95.58 93.15 102.19 -2.47  25.59 25.57
200 Scenario 1 0.958 -5.29 10.13 10.15 28.10 2094 21.71 9.30 16.04 16.11
200 Scenario 2 0.958 -0.17 13.30 13.28 50.51 3172 34.24 1.27 13.62 13.61
400 Scenario 1 0.958 -6.71 4.76 4.80 15.09  6.60 6.82 -2.02  5.77 5.77
400 Scenario 2 0.958 -0.04  6.25 6.25 25.16  9.84 10.46 0.91 6.31 6.31
(32.35,36.35,]0,2]) 100 Scenario 1 0.697 -15.10 73.64  73.79 33.61 75.03  76.09 17.44 7352  73.75
100 Scenario 2 0.697 -4.84  64.69  64.65 7.02 65.49  65.47 -4.37  65.80  65.75
200 Scenario 1 0.697 -8.89 36.13  36.17 5.56 39.09  39.08 1.62 3222 32.19
200 Scenario 2 0.697 -9.72 2794  28.00 -7.57 29.19  29.22 -7.35  28.09 28.11
400 Scenario 1 0.697 -2.52 16.25 16.24 1.33 20.55  20.53 2.29 14.88 14.87
400 Scenario 2 0.697 -1.34 12.25 12.24 -0.63 13.53 13.52 -0.74 12.28 12.27
(32.35,36.35,]2,4]) 100 Scenario 1 0.957 -0.05 19.37 19.35 133.00 63.43 81.05 50.14  43.53  46.00
100 Scenario 2 0.957 -9.40 11.50 11.58 58.13  47.71 51.04 -6.19 13.01 13.03
200 Scenario 1 0.957 -3.83 8.80 8.80 62.93  20.73  24.67 9.21 10.82 10.90
200 Scenario 2 0.957 1.28 8.09 8.09 31.81 13.21 14.21 3.46 8.62 8.63
400 Scenario 1 0.957 1.13 4.73 4.73 45.33 12.35 14.39 4.99 4.76 4.78
400 Scenario 2 0.957 -1.24 3.60 3.59 13.39 4.45 4.63 -0.78 3.60 3.59
(35.49,39.49,]0,2]) 100 Scenario 1 0.653 -51.08 123.00 125.49 76.80 127.19 132.96 43.41 133.41 135.16
100 Scenario 2 0.653 8.08 83.19  83.17 21.92 82.52  82.92 7.24 84.47  84.44
200 Scenario 1 0.653 -33.34  76.87  77.90 28.55 69.55 70.29 14.12  67.77  67.91
200 Scenario 2 0.653 15.09 38.55  38.74 19.17  38.81 39.14 15.29 38.45  38.64
400 Scenario 1 0.653 -5.85  36.59  36.59 15.67  40.25  40.45 15.92 2941 29.63
400 Scenario 2 0.653 10.86  17.73 17.83 13.14 18.04 18.19 11.83  17.39 17.51
(35.49,39.49,]2,4]) 100 Scenario 1 0.944 -4.50 2792 2791 192.76 106.07 143.12 84.08 7795  84.94
100 Scenario 2 0.944 -3.26  20.58  20.57 54.37  48.09  51.00 -1.18  21.50 21.48
200 Scenario 1 0.944 -3.60 17.79 17.79 99.00 44.12  53.88 29.33  26.37  27.20
200 Scenario 2 0.944 -0.27 10.21 10.20 23.02 13.38 13.90 2.13 11.29 11.28
400 Scenario 1 0.944 -3.56 8.52 8.53 54.66 18.19  21.16 7.59 8.54 8.58
400 Scenario 2 0.944 -1.69 4.18 4.18 11.02 5.28 5.39 -0.93 4.17 4.16

Note: This table contains the estimates bias (BIAS) x10%, variance (VAR) x10% and mean square error (MSE) x10*® with our non-parametric
estimators. We compare the results at time s = 7.29, s = T.40 and s = 7,60 for samples with size n = 100, n = 200 and n = 400. The sojourn
time is comprised in ]0, 2] and in ]2,4]. The results are obtained with K = 1,000 Monte Carlo simulations.
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5 Proofs

5.1 Proof of Theorem 1
Let, fori=1,...,nand veV, Dl@ = <YZ-, 0, Ji(v), @i) and for each n > 0, the o-algebra

.F;gv) :U(Zi:nyDEzL]al<i<n;Zn+17D(v) )7

n+1°

where DEZ}L ) are the value paired with Z;.,.

Clearly for v e V, §§LU) () is adapted to .7-"7(;}) and .7-"7(11)) is decreasing and converges towards ]:g ) =
(Nns1 .7-'7(11)). Our strategy, following Stute and Wang (1993), is to demonstrate that (S’y(lv) (o), 79}), n>= O)
is a reverse-time supermartingale and then apply convergence result given by Neveu (1975, Propo-
sition V-3-11, p. 116) to obtain consistency. For the following lemma, we consider that ¢ is a

nonnegative fonction. Otherwise, the results remain applicable by decomposing ¢ into positive and
negative parts.

Lemma 1. For ¢ = 0 and assuming that the distribution function of Z is continuous, (3,(1”) (p) ,}}(Lv), n = 0)

1S a reverse-time supermartmgale forveV.

Proof. Denote by F, ( = >, W, ]l{ZmQ} and let £ {z} = BV () — BV (z—), we can
remark that

§r(LU) (@) = Z ¥ (Yr[ln]7 Zin, Q[Zn]) ﬁr(zv) {ZZ”}
=1

If Z,,4+1 has rank k with 1 < k <n + 1, then Z;.,, = Z;.,11 for all i < k. Thus, we have

_ k—1
Z 1 n) ZZ N ®[z n| ) F7(1v) {Zln} = 2 ¥ (Yv[i:n-i-l]7 Zin+1, ®[i:n+1]) F7(1v) {Zi:n-i-l} s
) i=1

n n+1 R

Z 7, n| Zl m 6[7, :n] ) F {ZZ TL} - Z ¥ (}/v[i:n-i-l]? Zin+1 G[i:n-‘rl]) FT(LU) {Zi:n+1} ’
i=k i=k+1

.

and ~
¥ (}/[k:n—i-l]) Zkn+1, e[k:n-i-l]) Fr(LU) {Zk::n—i-l} = 0.

Hence, we obtain that

n+1
S () = Z ¢ (Yin+1]> Zim+1, Oint1]) E Y Zinia} - (5.1)
i=1

Following the same lines of the proof of Lemma 2.2 in Stute and Wang (1993) (see also Stute
(1993, Lemma 2.2)), we show with Lemma 2.1 of Stute and Wang (1993) applied to Dy;.,,) that

E [ﬁ'rgv) {Z'L':nJrl} | fr(zljr)l] = W1EZ)+1 y 1 < 7 <n

and — )
[ {Zn+1 n+1} | n+1] Wnljrl n+1 -

Since ¢ = 0, the result follows immediately by writing the conditionnal expectation of (5.1). O
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From Lemma 1, we have by applying the Proposition V-3-11 of Neveu (1975) that E [S o) | F

admits limit P-almost surely. Due to the Hewitt-Savage zero-one law, f(go) is trivial and then

lim IE[S (p) | F& ] — lim E [@,@ (gp)] = 5% ().

n— 00 n—w
Now, we aim to determine the value of S ) (¢). To do this, we write
m(z)=P0=1|2Z=2),

ﬁ[ (ZZ n) H{Zi:n<z}
n—i+1 ’

i=1

and for veV
3 (2) =E|p (v, 2,0)8 | Z = 2.

Lemma 2. Under the assumptions of Lemma 1, we have for v eV

E[30) (¢)| = E[#® (2 B[, (2)]]

Proof. Let Rj, denote the rank of Z; among Z1,...,Z,, we can write
E[S;(Lv) (90)] =E ZW zn Z’er@[zn])]
| i=1

& (Yin)s Zims Ofin) Sim) Ty

1
=E EiE j:n]
Zln—z—i—l XH( J+1> | Zimy ooy Znm

From Lemma 2.1 of Stute and Wang (1993) applied to ng) for ¢ =1,...,n, we know that,
conditionally on Zy., < ... < Z,.,, the concomitants among the D’s are independent. Hence,

el ] - [ 20 G e[ (250" ]|

no ) A 1—m(ZI\1L ;<2
e Porast )H<1+ n_};jﬂ»){ }]

I\ Z;<2;
—E|3@(2)]] <1 + M(ZJ)) t }] . (5.2)

n— Rj,

It Z; < Zy then Rj, = Rj,—1. Conditioning on Zi, the result follows easily. O
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A similar proof is established in Stute and Wang (1993)[Lemma 2.4| and reused in Stute (1994).
Now, we are in position to prove Theorem 1 by studying the process ¥, (z).

Proof of Theorem 1. From Stute and Wang (1993)[Lemma 2.5 and Lemma 2.6] and assuming that
G and the distribution function of F' are continuous, for each z < 77, we have

1

(5.3)

Hence, under the Assumption 2 and ¢ > 0, we obtain by applying Lemma 2, Equation (5.3)
and the monotone convergence theorem that

>W) (7
v 2
Sc(zo) () = j]l{Z<TZ}1—C¥((Z)) dP

:jcp (S,T,0) iTjZ}é) P(I<C|SV.T,0) dP
- [esre) HfoTcZ:}(% P(T<C|V.T)

Since C' and (V,T) are independent (see Assumption 1), we remark that P(T < C | V,T) = 1 —
G (T'). Hence, we obtain

S () = J Lo o (5.1.8) E\) (ds, dt, dB). (5.4)

As indicated earlier for a continuous F(), the desired proof follows from Lemma 1, Equation (5.4)
and proposition V-3-11 of Neveu (1975). O

5.2 Proof of Theorem 2

Here, we denote

Z) = Z 1{Z¢<z}a

Mon (2 ZR{ZZSz(? -0}
=1
n

v
M( (y,2,0) = Z {Vi<y,72;<2,©,;<0,6,=1,V;=v}»

the empirical distribution functions of M, My and Mév). Directly based on Stute (1995)’s proof,
our strategy is in 2 steps: prove CLT when ¢ vanishes to the right of some v < 77 and then extend
it on [0, 7z]. Note that Suzukawa (2002) also follows the same strategy.
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Lemma 3. We have forveV

1 - v Zi— -
- Z (Y, Zi,©,) 6.0 exp nJ In{ 1+ — Moy, (dr) (5.5)
ot 0 n (1 - M, (7'))
Proof. From the same rationale used to obtain (5.2), we find
1 " n ) {Z <Z; }
S () = = o (i, Z:,0,) 6" : 5.6
L 11 (1 Luy (5:6)
The result follows immediately by definition of M, (z) and Mon (z), see proof of Lemma 2.1 in
Stute (1995). O
The exponential term in (5.5) is expanded in Stute (1995) as follows
1 1 )
==y L+ Bin + Cin) + 5 Ai} (Bin + Cin)”, :
exp{...} l—G(Zi)( + +C’)+Qexp{ } (Bin + Cin) (5.7)
where
Z.— Z.— 7r
g 1 —~ i Moy,
Bmznj In<1+ — Moy, (dT)—j M,
0 n(l—Mn('r)) 0 1—Mn<7’)
Jzi— Moy, (dr) sz‘— My (dr)
Cin = —_— — P ——
o 1-=M,(r) Jo 1-M(7)
and A is between the two terms
Zi— Zi—
i 1 o~ T M,
nf In<1+ — Moy, (d7) and J M.
0 n(l—Mn(T)) o 1-M(7)
Considering (5.5) and (5.7), we write
_ 1y 1 + Bin + C;
GON = (Ys, Zi, ©;) §;J ) ——Zin T Zin
S n Zl vy J 1-G (Zz)
B (5.8)

Z (Y, Zi,0,:) 67" exp {A;} (Bin + Cin)*.

Now, we decompose the last equation and study approximations for each component. To do
this, we make for ¢ the following assumption

Assumption 6. ¢ is an Fy-integrable function such that {p?dFy < o0 and ¢ (s,t,6) =0 for v < t
where v < 74.

This assumption aims to bound the denominators of the terms obtained in the following lemmas.

Lemma 4. Under Assumption 6, we have

1L (v) Cin
Zso Yi 2,00 6"y
80 Lirctre) —
Hj (5, tr=tr=d NI, (dw) Mo (d) M) (ds, dt, d6) (5.9)
1— (1—-M (1))

5 t 0 ]1{7'<t} o~ (v) (v)
ﬂ 1- (1= 2 (7)) Mon (d7) M7 (ds, dt, dB) + R,y

where \Rgﬁ)] =O0(n™! lnn) w.p.1.
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Proof. Using the following decomposition for z < Z,., in Cj,,

1 1M, (2) 2 (Mn () =M (Z)>2

1— M, (2) (1—M(z))2+1—M(2) (1_M(Z))2<1_z\7n(z))

)
|
4

we can write

1 ¢ @  Cin
Z (Yl’Zl’Q)(SJi 1—G(Z¢)

J J J (5:0.0) Mrtrs) 57 (4u) Rl () T (ds, dt, dO)
1—G () (1— M (7)) (5.10)

(P(S,t, 0) I[{7'<t} o - 7 (v) s
+2H 1_G(t))(1_M(T))MOn(d ) MY (ds, dt, d@)

90 1,0) Loy ) T2 (ds (v)
U T gy Mo ar) ST (as.dr.a0) + R,

where

Jf e 1{T<t} (‘7\//‘7” " M(t))Q Moy, (dr) M) (ds, dt, d8).
o (-M@)? (1-Ma)

Under Assumption 6 and with same argument as Stute (1995, Lemma 2.5), i.e. using iterated
logarithm for empirical measures and strong law of large numbers (SLLN), we obtain \RSJQ)| =
O(rf1 In n) w.p.1. For the rest of the proof, we shall decompose the other terms in the previous
equation (5.10) as a U-statistic plus a negligible remainder. Formally, we have

Hf (5:,6) Yrctorcd g7 (1) Tl (d) 5T (ds, dt, d6)
1— (1—-M (7))

HJ = Ti?}?iif an

(dw)Mo (dr) MW (ds, dt, d0) + M (dw) Moy, (dr) M) (ds, dt, d8)
— 2M (dw) My (dr) M@ (ds, dt,d6) + M (dw) Mo (dr) M) (ds, dt, d6)

+RY,

(5,6,0) L —~
jf 1-— : 11_{TM}(7_>) n (dT) M, M )(ds dt,de)

H 1- 1 t 011—{7;}(7))

x [MOn (dr) MW (ds, dt,d®) — My (dr) M) (ds, dt,d) + My (dr) M) (ds, dt, de)]

+RY),
(5.12)

where |R | = O(n"'lnn) and |R | = O(n 'lnn) w.p.1. We refer to similar arguments as for
Lemmas 2. 3 and 2.4 of Stute (1995) to obtain the two representations based on the Hajek projection
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1

follows by substituting (5.11) and (5.12) into (5.10). O

of a V-statistic of the multivariate data (Yi, Zi, 0y, 6;, J-(v)> 1 < i < n. Finally, the proof of (5.9)

Now, we study the other terms in (5.8) in the following Lemma.
Lemma 5. Under Assumption 6, we have with w.p.1

Bin

| - o), (5.13)

1|¢ v
n i=1

and

1 _
o =O0(n 'lnn). (5.14)

Z@(Yi,Zu@ )5J exp{A }(an+czn)
=1

Proof. The proof follows immediately from the proofs of Lemmas 2.6 and 2.7 of Stute (1995). [

Proof of Theorem 2. With Lemmas 4 and 5, Equation (5.8) yields

Ly YZ’Z“@ )5'](U 1 S v) (v) (v)
T g Zi) T ; [ —0i) = A (Zz)] + Ry5 (5.15)
where |R£L”5)| = O(n_1 In n) w.p.1. As a consequence, we have CLT results for §T(Lv) (), v eV, and

Theorem 2 follows under Assumption 6.
Finally, the results of Theorem 2 can be extended on |v,7z] by an argument similar to that of
the proof of Theorem 1.1 in Stute (1995) under Assumptions 3 and 4. Thus, we have

alv (v 1 . KyZu@ 5J(U) 1 = v v
5052 ()= 2,7 S LY N @) ) - A (2] + R
=1 =1
O
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