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This article proposes an approach for building an Economic Scenario Generator (ESG) 
under historical probability, allowing the simulation of interest rates and prices of risky 
investments, adapted to the process of valuing liabilities of savings contracts with profit-
sharing clauses and consistent with the Solvency 2 and IFRS 17 frameworks. It therefore 
includes the construction of the discounting factor (deflator) used to calculate prices. 

It proposes methods for calibrating models and risk premiums based on closed formulas 
and presents simulation approaches with exact discretization adapted to long-term 
simulation needs and less computation time consuming.  

The article also proposes a study of the sensitivities of the value of a with profit savings 
liability to the calibrations of the economic scenario generator under historical probability. 

Finally, it shows that moving from a "risk neutral" calculation to a deflator approach 
requires only relatively marginal work to adapt existing models. 
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1 Introduction  

With a profit savings contracts offer a capitalisation of the investment with a guaranteed 

rate, increased by a bonus for the policyholder's participation in the financial results of the 

general fund managed by the insurer. These contracts offer the possibility of the savings 

redemptions, which can be exercised at any time. 

The options included in savings contracts with a profit-sharing clause can be summarised 

in three categories: 

- Financial options: the insurer commits to a minimum return on savings by 
guaranteeing a minimum revaluation rate or a guaranteed bonus. 

- Behavioural options: the insurer offers redemption options, arbitrage options 
between the guaranteed fund and non-guaranteed assets, free or scheduled 
payments, loyalty bonuses, etc. The activation of these options is at the discretion 
of the policyholder. 

- Biometric options: are options that depend on mortality (or longevity) risk, such as 
the insurer's proposal for deferred annuities. 

The policyholder therefore has three financial options (see Brys and de Varenne [1994]): 

- The technical rate option or guaranteed profit-sharing rate option, similar to a 
European vanilla option. 

- The redemption option, similar to an American put option. 

- The forward rate option on free or scheduled payments, like a swaption. 

Under the Solvency 2 standard, the "economic" valuation of liabilities corresponds to the 
best-estimate (discounted future cash flows) and is, if necessary, supplemented by a risk 
margin to compensate for the immobilisation of the Solvency Capital Requirement for non-
hedgeable risks (resulting in a cost of capital for non-financial risks or imperfect hedge for 
financial risks)4. Although the two standards, Solvency 2 and IFRS 17, present significant 
divergences, the conclusions presented in this paper can naturally be generalised to IFRS 
17. 

Best-estimate valuation models’ implementation for contracts with a profit-sharing clause 
has led to a form of market consensus articulating a generator of risk-neutral economic 
scenarios with a cash-flow projection model.  

Cash flows must take into account, in particular, two stochastic processes depending on 
the economy and the behaviour of agents (reaction functions - cf. sections 7 and 8 of the 
appendix):  

- Insurer reaction: the revaluation rate, which varies according to the state of the 
market and the insurer's investment policy. It is also the consequence of profit 
optimization under economic constraints and the policyholder behaviour. 

 
4 Issues related to risk margin calculations will not be addressed in this paper. We will therefore not 
distinguish between the terms "best-estimate" and "liability value" in the following. 
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- Policyholder reaction: the dynamic lapse rate reflects a financial arbitrage behaviour 
aimed at maximizing profitability. It can be negative, that is, policyholders buy back 
less than "usual". It can be negative when the moneyness of the insurance contract 
is favourable to them. However, it can also be positive when more profitable risk-
contingent investments, compared to insurance contracts, are available. 

Armel and Planchet [2020b] show that the use of a risk-neutral probability measure to value 
savings liabilities with a profit-sharing clause is questionable. The deflator approach, which 
consists in using an economic scenario generator (ESG) under historical probability, seems 
relevant in this context. It allows for a better rationalisation of economic valuations 
(notably the behaviour of agents) and eliminates direct interactions between the 
construction of cash-flows and the calculation of prices. 

The shortcoming of a deflator approach lies in the complexity of its operational 
implementation. A first step has been made with the approach proposed by Cheng and 
Planchet [2019]. However, this approach is not appropriate to the Solvency 2 framework. 

The objective of this paper is to propose an economic scenario generator under historical 

probability, allowing to simulate interest rates and prices of risky investments (in equities 

and real estate)5, adapted to with profit liabilities valuation process. 

To do this, we propose in particular: 

- To assume that the interest rate model follows a CIR++ process. This model takes 
into account negative rates and makes it possible to reproduce the market risk-free 
yield curve, and in particular that proposed by the EIOPA; 

- A calibrating method of the economic scenario generator under historical 
probability adapted to the Solvency 2 framework. 

- A simulation method with exact discretization allowing an optimization of the 
operational implementation and convergence errors.  

We therefore propose an operational model adapted to the Solvency 2 standard, based on 
a CIR++ interest rate model, which makes the deflator approach applicable in practice. 

2 Deflator approach with a CIR++ interest rate model  

In this section, we present our approach to constructing an economic scenario generator 
under historical probability to value savings contracts with a profit-sharing clause. After a 
brief reminder of the technical framework, we present in the following: 

- The interest rate model and zero-coupon bond price. 

- The deflator and the likelihood process. 

 
5 An economic scenario generator for valuing bonds, equities, real estate investments and monetary 
securities covers 98% of the assets of insurance companies in France in 2016 and allows to simulate risk-free 
interest rates (see FFA [2017]). 
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- The price of the risky asset allowing to take into account investments such as 
equities or real estate. 

- Methods for calibrating and simulating models. 

2.1 Technical framework 6 

Let {𝑟(𝑡)}0≤𝑡  be the instantaneous risk-free short rate and let {𝑆(𝑡)}0≤𝑡 be the price of the 

risky asset (corresponding here to the prices of investments in equities and real estate). 

Under historical probability 𝑃, assume that the differential equations of {𝑟(𝑡)}0≤𝑡and 

{𝑆(𝑡)}0≤𝑡 are written as follows: 

 𝑑𝑟(𝑡) = 𝛼(𝑡, 𝑟(𝑡))𝑑𝑡 + 𝛽(𝑡, 𝑟(𝑡))𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) (1) 

 𝑑𝑆(𝑡) = 𝜇𝑟𝑖𝑠𝑘(𝑡). 𝑆(𝑡). 𝑑𝑡 + 𝜎𝑟𝑖𝑠𝑘(𝑡). 𝑆(𝑡). 𝑑𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑡) (2) 

where 𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) and 𝑊𝑟𝑖𝑠𝑘

𝑃 (𝑡) are two standard Brownian motions whose correlation 

coefficient is denoted 𝜌 = 𝐶𝑜𝑟𝑟 (𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡); 𝑑𝑊𝑟𝑖𝑠𝑘

𝑃 (𝑡)). 

We can wright: 𝑑𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑡) = 𝜌. 𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) + √1 − 𝜌2𝑑𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑠)⊥ where 

𝐶𝑜𝑟𝑟(𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡); 𝑑𝑊𝑟𝑖𝑠𝑘

𝑃 (𝑡)⊥) = 0. 

Let {𝜆(𝑡)}0≤𝑡 an adapted process such as the likelihood process 𝐿 defined by: 𝑑𝐿(𝑡) =

−𝐿(𝑡). 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) is integrable and satisfies Novikov condition (in order to apply the 

Girsanov theorem).  

So, the process 𝐿 is a 𝑃-martingale and we have: 

 
𝐿(𝑡) = exp (− ∫ 𝜆(𝑠)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑠)
𝑡

0

−
1

2
∫ 𝜆(𝑠)2𝑑𝑠

𝑡

0

) (3) 

The probability measure 𝑄, whose likelihood process is 𝐿, is a martingale measure 

equivalent to 𝑃 and the process {𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡)}

0≤𝑡
 is a 𝑄-standard Brownian motion where: 

𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑠) = 𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑠) + 𝜆(𝑠)𝑑𝑠 

In the following, the measure 𝑄 is called the risk-neutral probability measure. 

The deflator is written (see appendix 1): 

 

𝐷(𝑡) =  𝐿(𝑡). exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0

) 

The deflator {𝐷(𝑡)}0≤𝑡≤𝑇  stochastic differential equation is written: 

 
6 Appendix 1 provides a brief reminder of the theoretical framework of probability measure change and 
construction of deflators. 
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𝑑𝐷(𝑡) = −𝐷(𝑡). 𝑟(𝑡)𝑑𝑡 − 𝐷(𝑡)𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) 

In addition, a drift and volatility of the risky asset should be chosen such as: 

- The process {𝑆(𝑡). exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0
)}

0≤𝑡
 is a martingale under 𝑄 ; 

- The process {𝐷(𝑡)𝑆(𝑡)}0≤𝑡 is a martingale under 𝑃. 

As in Cheng and Planchet [2019] we assume that 𝜇𝑟𝑖𝑠𝑘(𝑡) = 𝑟(𝑡) + 𝜆(𝑡)𝜎𝑟𝑖𝑠𝑘(𝑡)𝜌. We can 

prove by Itô's lemma that: 

 
𝐷(𝑡)𝑆(𝑡) = 𝐷(0)𝑆(0) exp (∫ (𝜆(𝑠)𝜎𝑟𝑖𝑠𝑘(𝑠)𝜌 −

1

2
𝜎𝑟𝑖𝑠𝑘(𝑠)2

𝑡

0

−
1

2
𝜆(𝑠)2) 𝑑𝑠) . exp (∫ (𝜎𝑟𝑖𝑠𝑘(𝑠)𝜌 − 𝜆(𝑠))𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑠)
𝑡

0

+ ∫ 𝜎𝑟𝑖𝑠𝑘(𝑠)√1 − 𝜌2𝑑𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑠)⊥

𝑡

0

) 

(4) 

 

If the processes {𝜎𝑟𝑖𝑠𝑘(𝑡)}0≤𝑡 and {𝜆(𝑡)}0≤𝑡 are constant, it is then obvious that the process 

{𝐷(𝑡)𝑆(𝑡)}0≤𝑡 is a martingale under P. 

If both processes {𝜎𝑟𝑖𝑠𝑘(𝑡)}0≤𝑡 and {𝜆(𝑡)}0≤𝑡 are stochastic, a sufficient condition for 

{𝐷(𝑡)𝑆(𝑡)}0≤𝑡 to be a martingale under 𝑃 is to assume that :  

𝜆(𝑠)𝜎𝑟𝑖𝑠𝑘(𝑠)𝜌 −
1

2
𝜎𝑟𝑖𝑠𝑘(𝑠)2 −

1

2
𝜆(𝑠)2 = 0 

This assumption was retained by Cheng and Planchet [2019].  

It follows that: 

 𝜎𝑟𝑖𝑠𝑘(𝑠) = 𝜆(𝑠)𝜌 ± 𝜆(𝑠)√𝜌2 − 1 (5) 

Since 𝜌 ≤ 1 this equation admits a real solution only if |𝜌| = 1. In this case 𝜎𝑟𝑖𝑠𝑘(𝑠) = 𝜆(𝑠)𝜌 

and 𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑡) = 𝜌𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡). 

We deduce that 𝜎𝑟𝑖𝑠𝑘(𝑡). 𝑊𝑟𝑖𝑠𝑘
𝑃 (𝑡) = 𝜆(𝑡). 𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) and 𝜇𝑟𝑖𝑠𝑘(𝑡) = 𝑟(𝑡) + 𝜆(𝑡)2. 

So, we can write: 

𝐷(𝑡)𝑆(𝑡) = 𝐷(0)𝑆(0) 

The dynamics of risky assets under 𝑃 is therefore written:  

 𝑑𝑆(𝑡) = (𝑟(𝑡) + 𝜆(𝑡)2). 𝑆(𝑡). 𝑑𝑡 + 𝜆(𝑡). 𝑆(𝑡). 𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) (6) 

Under 𝑄 the dynamic of the risky asset is a Black-Sholes type model: 

 𝑑𝑆(𝑡) = 𝑟(𝑡). 𝑆(𝑡). 𝑑𝑡 + 𝜆(𝑡). 𝑆(𝑡). 𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡) (7) 

The solution to this differential equation is written, by applying Itô's lemma: 
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𝑆𝑇 = 𝑆𝑡 exp (∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡

− ∫
𝜆(𝑢)2

2
𝑑𝑢

𝑇

𝑡

+ ∫ 𝜆(𝑢)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑢)

𝑇

𝑡

) 

So : 

𝐸𝑄 (𝑆𝑡. ∫ −𝑟(𝑢)𝑑𝑢
𝑡

0

) = 𝑆0𝐸𝑄 (exp (− ∫
𝜆(𝑢)2

2
𝑑𝑢

𝑡

0

+ ∫ 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑢)

𝑡

0

)) 

By construction:  

𝐸𝑄 (exp (− ∫
𝜆(𝑢)2

2
𝑑𝑢

𝑡

0

+ ∫ 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑢)

𝑡

0

))

= 𝐸𝑃 (𝐿(𝑡). exp (∫
𝜆(𝑢)2

2
𝑑𝑢

𝑡

0

+ ∫ 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑢)

𝑡

0

)) = 1 

So, the process {𝑆(𝑡). exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑡

0
)}

0≤𝑡
 is a 𝑄-martingale. 

We have described here the technical framework of a scenario generator under historical 
probability assuming that instantaneous short interest rates follow the model: 

𝑑𝑟(𝑡) = 𝛼(𝑡, 𝑟(𝑡))𝑑𝑡 + 𝛽(𝑡, 𝑟(𝑡))𝑑𝑊𝑟𝑎𝑡𝑒
𝑃 (𝑡) 

In the following sections we present an application of this technical framework if 

instantaneous short interest rates follow a CIR++ model. 

2.2 Interest rate model and zero-coupon bond price 

We follow here Brigo and Mercurio [2006] and Cox, Ingersoll and Ross[1985]. 

2.2.1 Under the risk neutral probability measure  

The CIR++ model describes the dynamic of the instantaneous short interest rate 𝑟. It is 
written as a sum of a deterministic function denoted 𝜑 and a CIR process denoted 𝑥 whose 
vector of parameters is denoted 𝛼 = (𝑘, 𝜃, 𝜎) and defined under 𝑄 as follows: 

𝑑𝑥(𝑡) = 𝑘(𝜃 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡)  

where: 𝑥(0) = 𝑥0 and 𝑥0, 𝑘, 𝜃, 𝜎 are positive constants and we have: 

𝑟 (𝑡) = 𝑥(𝑡) + 𝜑(𝑡) 

For the instantaneous short rate to remain strictly positive, the parameters of the model 
must meet the following Feller condition: 

2𝑘𝜃 > 𝜎𝑥
2 

The function 𝜑 enables to reproduce the market yield curve. Let 𝑓𝑀(0, 𝑡) be the market 
instantaneous forward rate at time 0 for maturity 𝑡: 

𝑓𝑀(0, 𝑡)  =  −
𝜕 ln(𝑃𝑀(0, 𝑡))

𝜕𝑡
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The two following equations are necessary and sufficient conditions for CIR++ model to fit 
the initial term structure: 

 𝜑𝐶𝐼𝑅(𝑡; 𝛼) =  f M(0, t) − f CIR(0, t;  α) (8) 

 
𝑒𝑥𝑝 (− ∫ 𝜑(𝑠)𝑑𝑠

𝑇

𝑡

) =
𝑃𝑀(0, 𝑇)𝐴(0, 𝑡)𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}
 (9) 

Where: 

- 𝜑(𝑡) = 𝜑𝐶𝐼𝑅(𝑡; 𝛼); 

- 𝑓𝐶𝐼𝑅(0, 𝑡; 𝛼) =
2𝑘𝜃(𝑒𝑥𝑝{𝑡ℎ}−1)

2ℎ+(𝑘+ℎ)(𝑒𝑥𝑝 {𝑡ℎ}−1)
 + 𝑥0  

4ℎ2𝑒𝑥𝑝{𝑡ℎ}

[2ℎ+(𝑘+ℎ)(𝑒𝑥𝑝{𝑡ℎ}−1)]2; 

- ℎ =  √𝑘2 + 2𝜎𝑥
2; 

- 𝑃𝑀(0, 𝑇) is the market price of the risk-free zero-coupon bond observed at time 0 
for maturity 𝑇; 

- 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are defined by: 
 

𝐴 (𝑡, 𝑇) = [
2ℎ𝑒𝑥𝑝 {

(𝑘 +  ℎ)(𝑇 −  𝑡)
2 }

2ℎ + (𝑘 + ℎ)(𝑒𝑥𝑝 {(𝑇 − 𝑡)ℎ} − 1)
]

2𝑘𝜃

𝜎𝑥
2

  

𝐵 ( 𝑡, 𝑇)  =
2(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)

2ℎ +  (𝑘 +  ℎ)(𝑒𝑥𝑝 {(𝑇 −  𝑡)ℎ} −  1)
  

- ℎ = √𝑘2 + 2𝜎𝑥
2 

As stated in Cox, Ingersoll and Ross[1985], the process 𝑥(𝑡) conditionally to 𝑥(𝑠) follows 

the probability distribution 𝜒2(𝑣, 𝜆𝑡,𝑠)/𝑐𝑡−𝑠 : 

𝑥(𝑡)|𝑥(𝑠) = 𝜒2(𝑣, 𝜆𝑡,𝑠)/𝑐𝑡−𝑠 

where: 

- 𝜒2(𝑣, 𝜆𝑡,𝑠) is a non-central chi-square distribution with 𝑣 degrees of freedom and 

whose decentralisation parameter is 𝜆𝑡,𝑠 ; 

- 𝑐𝑡−𝑠 =
4𝑘

𝜎𝑥
2(1−𝑒𝑥𝑝(−𝑘(𝑡−𝑠)))

 ;  

- 𝑣 =  4𝑘𝜃/𝜎𝑥
2 ; 

- 𝜆𝑡,𝑠 = 𝑐𝑡−𝑠𝑥𝑠𝑒𝑥𝑝(−𝑘(𝑡 − 𝑠)). 

Let 𝐹𝑠 be the sigma-algebra generated by {𝑥𝑖}𝑖≤𝑠. The mean and variance of 𝑥(𝑡) 
conditionally to 𝐹𝑠 are given by: 

𝐸𝑄{𝑥(𝑡)|𝐹𝑠} = 𝑥(𝑠)𝑒−𝑘(𝑡−𝑠) + 𝜃(1 − 𝑒−𝑘(𝑡−𝑠)) 

𝑉𝑎𝑟{𝑥(𝑡)|𝐹𝑠} =
𝑥(𝑠)𝜎𝑥

2

𝑘
(𝑒−𝑘(𝑡−𝑠) − 𝑒−2𝑘(𝑡−𝑠)) + 𝜃

𝜎𝑥
2

2𝑘
 (1 − 𝑒−𝑘(𝑡−𝑠))

2
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The price at time 𝑡 of a zero-coupon bond with a maturity 𝑇 can be written in the form (see 
Brigo and Mercurio [2006]): 

𝑃(𝑡, 𝑇) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) 

where 𝐴′̅(𝑡, 𝑇) =
𝑃𝑀(0,𝑇)𝐴(0,𝑡)𝑒𝑥𝑝{−𝐵(0,𝑡)𝑥0}

𝑃𝑀(0,𝑡)𝐴(0,𝑇)𝑒𝑥𝑝{−𝐵(0,𝑇)𝑥0}
𝐴(𝑡, 𝑇) 

The compound interest rate at time 𝑡 for the maturity 𝑇 is therefore: 

𝑅 (𝑡, 𝑇) =
1

𝑇 − 𝑡
 (ln (

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}

𝐴(𝑡, 𝑇)𝑃𝑀(0, 𝑇)𝐴(0, 𝑡) 𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}
) + 𝐵(𝑡, 𝑇)𝑥(𝑡)) 

The price 𝑃(𝑡, 𝑇) and the rate 𝑅(𝑡, 𝑇) are functions of the parameters of the one-factor CIR 
model 𝑥 and the initial value 𝑥0. We can therefore characterise the dynamics of 
𝑅(𝑡, 𝑇) without having to calculate the function 𝜑(𝑡). 

Moreover, the simulation of compound interest rates amounts to simulate the process 𝑥. 
This can be simulated from the diffusion of a non-central Chi-square distribution. 

2.2.2 Under the historical probability measure  

As presented in the previous section, the instantaneous interest rate is assumed to be 
written in the form 𝑟(𝑡) = 𝑥(𝑡) + 𝜑(𝑡) where 𝜑 is a deterministic function and 𝑥 is a CIR 
process who’s dynamic under 𝑄 is as follows: 

𝑑𝑥(𝑡) = 𝑘(𝜃 − 𝑥(𝑡))𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡) ;  𝑥(0) = 𝑥0 

and: 

𝑟 (𝑡) = 𝑥(𝑡) + 𝜑(𝑡) 

Let us define the risk premium as: 𝜆(𝑡) = 𝜆√𝑥(𝑡)/𝜎𝑥 where 𝜆 is a real number. And let us 

write: 𝑑𝑊𝑟𝑎𝑡𝑒
𝑄 (𝑡) = 𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) + 𝜆(𝑡)𝑑𝑡. 

The choice of the risk premium is such that 𝑥 is a square root process both under 𝑃 and 𝑄. 

This risk premium depends directly on the CIR process. It therefore depends on the 

modelled variables and does not follow a process independent of these variables as 

proposed by Cheng and Planchet [2019].  

The form chosen for the risk premium allows to keep the main analytical properties of the 

model during the probability change. A general framework adapted to affine models and 

allowing to keep their analytical properties under 𝑃 and under 𝑄 is presented and analysed 

in Duffee [2002]. 

The process 𝑊𝑟𝑎𝑡𝑒
𝑃  is a Brownian motion under the historical probability measure and the 

instantaneous short interest rate is written under 𝑃 as 𝑟(𝑡) = 𝑥(𝑡) + 𝜑(𝑡) with: 

𝑑𝑥(𝑡) = (𝑘 − 𝜆) (
𝑘𝜃

𝑘 − 𝜆
− 𝑥(𝑡)) 𝑑𝑡 + 𝜎𝑥√𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) ;  𝑥(0) = 𝑥0 
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The process 𝑟 therefore follows a CIR++ process under historical probability. It allows to 

consider negative rates and to reproduce the market yield curve. We can evaluate the 

prices of zero-coupon bonds by closed formulas and simulate, in exact discretization, the 

process 𝑟 by simulating non-central Chi-square distributions.  

In addition, the Feller constraint is respected under 𝑄 if it is respected under 𝑃: 

2(𝑘 − 𝜆)
𝑘𝜃

𝑘−𝜆
= 2𝑘𝜃 > 𝜎𝑥

2. 

Under the historical probability, the price at time 𝑡 of a zero-coupon bond with a maturity 
𝑇 is written in the form (see demonstration in appendix 2): 

𝑃(𝑡, 𝑇) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) 

The compound interest rate at 𝑡 for the maturity 𝑇 is therefore: 

𝑅 (𝑡, 𝑇) =
1

𝑇 − 𝑡
 (ln (

𝑃𝑀(0, 𝑡)𝐴(0, 𝑇)𝑒𝑥𝑝{−𝐵(0, 𝑇)𝑥0}

𝐴(𝑡, 𝑇)𝑃𝑀(0, 𝑇)𝐴(0, 𝑡) 𝑒𝑥𝑝{−𝐵(0, 𝑡)𝑥0}
) + 𝐵(𝑡, 𝑇)𝑥(𝑡)) 

The rate 𝑅(𝑡, 𝑇) is an affine function of 𝑥(𝑡) whose coefficients are deterministic and is an 
affine function of a non-central Chi-square distribution. 

2.3 Deflator and likelihood process  

The stochastic differential equation of the deflator under the historical probability measure 

is: 

𝑑𝐷(𝑡)

𝐷(𝑡)
= −𝑟(𝑡)𝑑𝑡 − 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

The stochastic deflator is written (see demonstration in appendix 3): 

𝐷(𝑇) = 𝐷(𝑡) exp (
𝜆𝑘𝜃

𝜎𝑥
2

(𝑇 − 𝑡)) exp (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) exp (−
𝜆

𝜎𝑥
2

(𝑥(𝑇) − 𝑥(𝑡))) exp (− (1

−
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

 
𝐷(𝑇) = 𝐷(𝑡) exp (

𝜆𝑘𝜃

𝜎𝑥
2

(𝑇 − 𝑡)) exp (− ∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) exp (−
𝜆

𝜎𝑥
2

(𝑥(𝑇)

− 𝑥(𝑡))) exp (− (1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

(10) 

The likelihood process of 𝑄 is written: 

𝐿(𝑡) =
𝐷(𝑡)

𝐷(0)
exp (∫ 𝑟(𝑠)𝑑𝑠

𝑡

0

) 

i.e. 
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𝐿(𝑡) = exp (

𝜆𝑘𝜃

𝜎𝑥
2

𝑡) exp (−
𝜆

𝜎𝑥
2

(𝑥(𝑡) − 𝑥(0))) exp (− (
𝜆2

2𝜎𝑥
2

+
𝜆(𝑘 − 𝜆)

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑡

0

) 

(11) 

2.4 Risky asset price and risk premium  

2.4.1 Risky asset price  

As presented in section 2.1, the risky asset process is written under the historical probability 

measure 𝑃: 

𝑑𝑆𝑡

𝑆𝑡
= (𝑟(𝑡) + 𝜆(𝑡)2)𝑑𝑡 + 𝜆(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

The price of the risky asset is written (see appendix 4for a demonstration of this result): 

 
𝑆(𝑇) = 𝑆(𝑡) exp (−

𝜆

𝜎𝑥
2

𝑘𝜃(𝑇 − 𝑡)) . exp (∫ 𝜑(𝑠)𝑑𝑠
𝑇

𝑡

) . exp (
𝜆

𝜎𝑥
2

(𝑥(𝑇)

− 𝑥(𝑡))) . exp ((1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

) 

(12) 

2.4.2 Expected return on risky assets  

Note 𝑠𝑡 the logarithmic return of the risky asset at time 𝑡 on a one-year horizon. By 
definition: 

𝑠𝑡+1 = 𝑙𝑛 (
𝑆(𝑡 + 1)

𝑆(𝑡)
) 

The mathematical expectation of the random variable 𝑠𝑡+1 under the historical probability 
𝑃 is written (see appendix 5 for a demonstration of this result):  

 
𝐸𝑝(𝑠𝑡+1) = 𝑅𝑀(𝑡, 𝑡 + 1) − (ln (

𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

(13) 

With: 

- 𝑅𝑀(𝑡, 𝑡 + 1) the observed market interest rate between the date 𝑡 and 𝑡 + 1 ; 

- 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are deterministic functions defined in section 2.2.1; 

- 𝑥0 is the initial value of the process 𝑥𝑡. 
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The expectation of the excess return of the risky asset over the market risk-free interest 
rate, denoted 𝑒𝑡, is therefore written: 

 
𝐸𝑝(𝑒𝑡+1) = − (ln (

𝐴(0, 𝑡)

𝐴(0, 𝑡 + 1)
) + 𝑥0(𝐵(0, 𝑡 + 1) − 𝐵(0, 𝑡)))

+ (1 +
𝜆2

2𝜎𝑥
2

) (𝑒−(𝑘−𝜆)𝑡
(𝑘𝜃 − 𝑥0(𝑘 − 𝜆))

(𝑘 − 𝜆)2
(𝑒−(𝑘−𝜆) − 1) +

𝑘𝜃

𝑘 − 𝜆
) 

(14) 

This formula allows to link the factor 𝜆 of the risk premium to the excess return offered by 

the risky asset over the risk-free rates. 

2.4.3 The expectation of excess return in steady state  

In the long term, in steady state (𝑡 >> 0), the excess return depends only on the risk factor 
𝜆 and the parameters of the CIR model (𝑘, 𝜃 and 𝜎𝑥) and is written (see appendix 6): 

 
𝐸𝑝(𝑒∞) =

𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) (15) 

This formula explicitly describes the factor 𝜆 of the risk premium as a function of the excess 
return of the risky asset over the risk-free rate in a long-term perspective.  

The calibration of the interest rate model allows to define parameters: 𝑘, 𝜃 and 𝜎𝑥. The 
estimation of the expected excess return allows therefore the construction of an estimator 
of 𝜆. 

2.5 Calibration  

The calibration of the economic scenario generator under the historical probability requires 

to define the following parameters: 

- The parameters of the interest rate model: 𝑘, 𝜃 and 𝜎𝑥; 

- The risk premium factor 𝜆. 

To do this, we propose the following two-step approach: 

- Calibrating parameters 𝑘, 𝜃 and 𝜎𝑥  using the analytical features offered by the CIR++ 

model under risk-neutral probability. Caps, floors and swaptions can be valued using 

closed formulas (see Brigo and Mercurio [2006]). This point is discussed in section 

2.5.1. 

- Calibrate 𝜆 on historical data. This is discussed in section 2.5.2. 

2.5.1 Interest rate model calibration 

The calibration of a model can be conducted either by using an estimate based on historical 

data or by an implied evaluation of the parameters based on market prices observed to 

date. 
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With the historical approach, the parameters of the model are determined based on a 

statistical time-series analysis of the relevant market data. With the implied approach, the 

parameters are evaluated to replicate the observed market prices of the derivatives 

selected for calibration. 

Although the theoretical model assumes that the historical and implied parameters are 

equal, in practice they are different.  

The classic example is the Black-Scholes model implying that the implied volatility of all 

options on the same underlying must be the same, and equal to the historical volatility of 

the underlying. However, we can observe smile and skew phenomena and a flattening of 

the implied volatility as a function of the strike for large maturities. This is discussed for 

example in Tankov [2015]. 

For interest rate models, parameters calibrated on historical data depend on the choices 

of this data (index, size, frequency, etc.). The implied parameters depend on the price of 

the financial instruments, the strike, the risk-free interest rate and the shift factors used to 

enable some models to take negative rates into account. Also, the implied volatility 

surfaces do not necessarily result from a direct price measurement but from a 

reconstruction by the price provider (e.g. via a SABR model for Bloomberg). 

In the context of derivatives valuation, it can be observed that academics and practitioners 

tend to use an implied calibration approach which seems more appropriate to produce 

prices consistent with market observations. This is discussed in Rebonato [2004]. 

Furthermore, in the Solvency 2 framework, the economic scenarios used for the best-

estimate valuation must be consistent with market prices (Market-Consistent). A mark-to-

market valuation consists of valuing quantities of interest with reference to the values of 

assets and liabilities traded.  

Applying a Mark to Market approach to valuate liabilities at fair value implies that the prices 

of options and guarantees of insurance policies are observable. As this information is not 

available in an organised and liquid market, the calculation is therefore carried out using a 

Marked-to-Model framework. 

The QIS technical specifications [2010] provide a framework for this valuation by requiring 
the use of the risk-free yield curve published by EIOPA and by referring to a calibration of 
the models considering implied volatilities7.  

We therefore propose here a calibration approach (1) implied for the parameters of the 

interest rate model and (2) historical for the risk premium. In a normative valuation 

framework, this approach leads to a clear separation between the determination of the 

cost of options, included in the deflator, and the production of contract cash-flows. It also 

complies with regulatory requirements. 

 
7 See the Q&A of QIS 5, published by EIOPA, question 76 of the document: 
https: //eiopa.europa.eu/Publications/QIS/CEIOPS-Q-and-A-document-20101104.pdf. 

https://eiopa.europa.eu/Publications/QIS/CEIOPS-Q-and-A-document-20101104.pdf
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Brigo and Mercurio [2006] present the analytical properties of the CIR++ model and Armel 

and Planchet [2020a] propose an approach for calibrating this model on caps and 

swaptions that is consistent with the Solvency 2 framework. 

2.5.2 Risk premium calibration 

The approach we propose to estimate the factor 𝜆 is based on the average historical excess 

return generated by the risky asset over the risk-free rate. The idea is to inject into the 

model of the risky asset an expected long-term excess return equal to the historical long 

term excess return. 

Let ⟦1, 𝑑⟧ be an interval of historical data of interest of 𝑑 points and let us denote 
{𝑒𝑖

𝑀}𝑖∈⟦1,𝑑⟧ the historical annual excess returns of the risky asset. 

According to section 2.4.3, the mathematical expectation of long-term excess return is 
written: 

𝐸𝑝(𝑒∞) =
𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) 

We propose to estimate the risk factor 𝜆 by solving the equation: 

 1

𝑑
∑ 𝑒𝑖

𝑀

𝑑

𝑖=1

≈ 𝐸𝑃(𝑒∞) =
𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆
2

2𝜎𝑥
2

) (16) 

This equation is equivalent to a second order polynomial equation and can admit complex 
solutions. If this is the case, we propose the following real solution: 

�̂� = argmin
𝜆

(|
𝑘𝜃

𝜎𝑥
2

(𝑘 −  ℎ) +
𝑘𝜃

𝑘 − 𝜆
(1 +

𝜆2

2𝜎𝑥
2

) −
1

𝑑
∑ 𝑠𝑖

𝑀

𝑑

𝑖=1

|) 

2.6 Simulation under historical probability  

The dynamics of the instantaneous short rate follows the CIR++ model as defined in section 
2.2.2. The diffusion of {𝑥(𝑡)}0≤𝑡 (following a non-central Chi-square distributions) allows the 
simulation of zero-coupon bond prices and compound interest rates. Indeed, recall that: 

𝑃(𝑡, 𝑇) = exp(−(𝑇 − 𝑡)𝑅(𝑡, 𝑇)) = 𝐴′̅ (𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑥(𝑡) 

In addition, we propose to evaluate the quantity ∫ 𝑥(𝑠)𝑑𝑠
𝑇

0
 by relying on Riemann 

integration. We can indeed write for an appropriate integer 𝑁: 

∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡

≈
𝑇 − 𝑡

𝑁
∑ 𝑥

𝑁−1

𝑖=0

(𝑡 +
𝑖

𝑁
(𝑇 − 𝑡)) 

The simulation of {𝑥(𝑡)}0≤𝑡 and the evaluation of ∫ 𝑥(𝑠)𝑑𝑠
𝑇

𝑡
 allow to simulate the price of 

the risky asset and the deflator whose dynamics are written, as a reminder, as follows: 
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𝑆(𝑇) = 𝑆(0) exp (−
𝜆

𝜎𝑥
2

𝑘𝜃𝑇) . exp (∫ 𝜑(𝑠)𝑑𝑠
𝑇

0

) . exp (
𝜆

𝜎𝑥
2

(𝑥(𝑇) − 𝑥0)) . exp ((1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠
𝑇

0

) 

𝐷(𝑇) = 𝐷(0) exp (
𝜆𝑘𝜃

𝜎𝑥
2

𝑇) exp (− ∫ 𝜑(𝑠)𝑑𝑠

𝑇

0

) exp (−
𝜆

𝜎𝑥
2

(𝑥(𝑇) − 𝑥0)) exp (− (1 −
𝜆2

2𝜎𝑥
2

+
𝜆𝑘

𝜎𝑥
2

) ∫ 𝑥(𝑠)𝑑𝑠

𝑇

0

) 

In this section we have presented an approach for building, calibrating and simulating an 

economic scenario generator, under historical probability, adapted to the valuation 

process of savings contracts with a profit-sharing clause and consistent with the Solvency 

2 standard.  

We present in the following section (section 3) an application of this approach including 

studies of the sensitivity of best-estimate to model and data choices. 

3 Application: model calibration and best-estimate sensitivities 

In this section we complete the sensitivity tests carried out in Armel and Planchet ([2018], 
[2019] and [2020a]) by assessing the impact of the choice of an economic scenario 
generator under the historical probability measure, whose interest rate model is the CIR++ 
model, on the best-estimate of savings contracts. Sensitivities to the choice of data and the 
shift factor of the Black model, used in the calibration process, are also presented. 

3.1 Data  

We have used the same market-data for model calibration and the same valuation 
parameters for liabilities presented in our previous work. 

For the calibration of the risk premium, we have used historical equity and property 
investment returns from 2011 to 2018 to take into account an economic situation close to 
that which exists at the projection and calibration date used here (end 2018). We have thus 
excluded the 2007 crisis and considered the monetary easing policy following the Greek 
debt crisis in 2011.  

If equities represent 67% of the risky assets and property represents 33%, the average 
excess return is 2.7%. 

3.2 Model calibration results  

3.2.1 Calibration of the interest rate model on the prices of caps and swaptions  

Here we retain the calibration results of the CIR++ model carried out in Armel and Planchet 

[2020a]. This paper also studied the impact of the initial value of the CIR model on the 

distributional characteristics of the CIR++ model under Q. Given the negligible impact of 

the initial value of the CIR model, we focus from section 3.2.2 on studying the impact of the 
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shift factor of the Black model and we set the initial value of the CIR++ models at 1%. For 

more material on the calibration process and on the analysis of the results, the reader can 

refer to this article.  

Table 1 presents the results of the calibration of the CIR++ model (also noted CIR1F in the 

following) on ATM cap prices and Table 2 presents the results of the calibration on ATM 

swaption prices. 

The meta-parameter 𝑥0 of the CIR++ model representing the initial value of the CIR process 

must be set upstream of the calibration process. This parameter has no impact on the 

reproduction of the initial yield curve but may have an impact on the dynamics of the 

simulated interest rates. Three levels of the meta-parameter 𝑥0 are assessed: 0.4%, 1% and 

2%. 

By the notation 𝐶𝐼𝑅1𝐹(𝑖, 𝑗) we refer to the CIR++ model calibrated on caps or swaptions 

with the 𝑖𝑡ℎ shift factor of Black and the 𝑗𝑡ℎ meta-parameter of the CIR++ model, both 

belonging to (0.4%; 1%; 2%; 0.4%; 1%; 2%). 

Table 1: calibration results of the CIR++ model on Caps. 

 

Table 2: calibration results of the CIR++ model on Swaptions 

 

The total error is calculated as the sum of squared errors (objective function) divided by 

the sum of squared Black prices. 

Calibrated parameters respect Feller's constraint. 

3.2.2 Estimation of the risk premium factor  

The calibration of CIR++ models to market prices allows to derive the risk premium 

parameter from the historical excess return as explained in section 2.5.2. 

In summary, the calibration of the models studied here is presented in the Table 3. 

Parameters CIR1F(1,1) CIR1F(1,2) CIR1F(1,3) CIR1F(2,1) CIR1F(2,2) CIR1F(2,3) CIR1F(3,1) CIR1F(3,2) CIR1F(3,3)

k 1.95% 2.91% 3.89% 2.2% 3.12% 4.09% 2.62% 3.45% 4.37%

Ѳ 99.39% 99.22% 99.16% 98.77% 99.98% 99.24% 99.05% 99.34% 99.24%

σ 2.57% 2.1% 1.81% 3.68% 3.06% 2.68% 5.45% 4.69% 4.14%

Total relative squared error 1.05% 1.19% 1.35% 1.00% 1.15% 1.34% 0.88% 1.03% 1.21%

Parameters CIR1F(1,1) CIR1F(1,2) CIR1F(1,3) CIR1F(2,1) CIR1F(2,2) CIR1F(2,3) CIR1F(3,1) CIR1F(3,2) CIR1F(3,3)

k 2.63% 2.99% 3.45% 3.52% 3.85% 4.31% 4.95% 5.19% 5.5%

Ѳ 99.95% 99.99% 100,00% 99.97% 99.99% 100,00% 99.9% 99.96% 99.98%

σ 5.76% 5.31% 4.87% 7.05% 6.65% 6.2% 9.53% 9.16% 8.7%

Total relative squared error 2.92% 3.19% 3.6% 3.45% 3.73% 4.15% 4.89% 5.16% 5.6%
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Table 3: CIR++ model calibration results for 𝑥0 = 1% and for different Black shift factors (0.4%; 1%; 2%) 

 

Note that since we have, under the historical probability: 

𝑑𝑃(𝑡, 𝑇)

𝑃(𝑡, 𝑇)
= 𝜑(𝑡)𝑑𝑡 + 𝑥(𝑡)(1 − 𝜆𝐵(𝑡, 𝑇))𝑑𝑡 −  𝐵(𝑡, 𝑇)𝜎𝑥 √𝑥(𝑡)𝑑𝑊𝑟𝑎𝑡𝑒

𝑃 (𝑡) 

The excess yield of the zero-coupon bond is (−𝜆 𝑥(𝑡)𝐵(𝑡, 𝑇)). Thus, if 𝜆 is negative, the yield 

under historical probability is greater than the risk-neutral yield which means that the risk 

premium is positive. 

3.2.3 Martingality tests  

In this section we present graphical illustrations to validate martingality tests performed 
with a number of paths of 2000 and a simulation step for Riemann integration presented 
in section 2.6of 1/500 (N=500). 

We have retained 2000 trajectories for the validation of the tests because this is the 
number of simulations that we use for the evaluation of the best-estimate in section 3.3. In 
addition, the report published by the Institute of Actuaries [2016] specifies that, commonly, 
the number of scenarios used by practitioners, to value with profit savings contracts using 
Monte Carlo methods, is of the order of a thousand. 

The objective here is to verify that the deflated prices of zero-coupon bonds and risky 
assets are martingales. That means that for real numbers 𝑡 and 𝑇 with 𝑡 ≤ 𝑇 and by 
assuming that 𝐷(0) = 1: 

𝐸𝑃(𝐷(𝑡). 𝑃(𝑡, 𝑇)) = 𝑃𝑀(0, 𝑇) 

𝐸𝑃(𝐷(𝑡). 𝑆(𝑡)) = 𝑆(0) 

Zero-coupon prices with maturity 𝑇 published by the EIOPA are noted 𝑃𝑀(0, 𝑇). 

In the following, we present five martingality tests performed: 

- Test 1 consists of choosing 𝑇 = 𝑡 and aims to verify that the deflator converges 

towards observed market prices: 𝐸𝑃(𝐷(𝑡)) = 𝑃𝑀(0, 𝑡); 

- Test 2 consists of choosing 𝑇 = 𝑡 + 5 and aims to verify that the deflated prices of 

5-year maturity zero-coupon bonds are martingales: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 5)) =

𝑃𝑀(0, 𝑡 + 5); 

- Test 3 consists of choosing 𝑇 = 𝑡 + 10 and aims to verify that the deflated prices of 

10-year maturity zero-coupon bonds are martingales: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 10)) =

𝑃𝑀(0, 𝑡 + 10); 

Parameters CIR1F(1,2) CIR1F(2,2) CIR1F(3,2) CIR1F(4,2) CIR1F(5,2) CIR1F(6,2)

k 2.91% 3.12% 3.45% 2.99% 3.85% 5.19%

Ѳ 99.22% 99.98% 99.34% 99.99% 99.99% 99.96%

σ 2.10% 3.06% 4.69% 5.31% 6.65% 9.16%

λ  -0.70% -1.36% -2.58%  -3.30% -4.09% -5.68%

Cap Swaption
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- Test 4 consists of choosing 𝑇 = 𝑡 + 20 and aims to verify that the deflated prices of 

20-year maturity zero-coupon bonds are martingales: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 20)) =

𝑃𝑀(0, 𝑡 + 20). 

- Test 5 consists of verifying the martingality of the risky asset: 𝐸𝑃(𝐷(𝑡). 𝑆(𝑡)) = 𝑆(0) 

We observe in the following figures that the deflated prices converge well towards the 
market prices initially observed.  

Figure 1: test 1 - deflator convergence to market prices : 𝐸𝑃(𝐷(𝑡)) = 𝑃𝑀(0, 𝑡) 

 

Figure 2: test 2 - deflated 5-year ZC convergence towards market prices: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 5)) = 𝑃𝑀(0, 𝑡 + 5)  

 

Figure 3: test 3 – deflated 10-year ZC convergence towards market prices: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 10)) = 𝑃𝑀(0, 𝑡 + 10)  

 

Figure 4: test 4 - deflated 20-year ZC convergence towards observed prices: 𝐸𝑃(𝐷(𝑡) ∗ 𝑃(𝑡, 𝑡 + 20)) = 𝑃𝑀(0, 𝑡 + 20)  

 

Maturity 

ZC
 P

ri
ce

s 

ZC
 P

ri
ce

s 
ZC

 P
ri

ce
s 

ZC
 P

ri
ce

s 

Time 

Time 

Time 



 

18 

Figure 5: test 5 - risky asset martingality test: 𝐸𝑃(𝐷(𝑡). 𝑆(𝑡)) = 𝑆(0)  

 

3.3 Impact study on the best-estimate  

In this section, we assess the impact of the choice of an economic scenario generator under 

the historical probability measure, whose interest rate model is the CIR++ model, on the 

best-estimate of French with profit savings contracts (euro-denominated contracts). 

We have used the SimBEL R package8 fed with modified data from an insurer. The market 

value of the asset is €100 million, the mathematical reserve is €70 million and the projection 

horizon is 20 years. 

We present in Table 4 and Table 5 best-estimates evaluated by an ESG under historical 

probability and a risk-neutral ESG whose interest rate models are CIR++.  

We observe that the differences between best-estimates vary between 4% and 7% and are 

explained by variations in best-estimates net of expenses. Best-estimates of expenses 

(discounted future expenses) are indeed stable. The decrease in the best-estimate net of 

expenses, when a deflator approach is used, is explained by the decrease in the BEG and 

the FDB9. 

The impact on the value of the best-estimate can appear to be limited. However, this 

impact is substantial when compared to shareholders' equity. In France, equity capital 

represents on average 6.1% of with profit savings reserves at the end of 2018 (FFA [2019]). 

Table 4: Estimated Best-Estimate under Risk Neutral Probability - ESG with CIR++ IR Model 

 

 
8 See http://www.ressources-actuarielles.net/simbel 
9 We define BEG and FDB in the following. 

GSE - CIR++ under Q (M€)

Shift of Black model for CIR++ calibration 0.4% 1.0% 2.0% 0.4% 1.0% 2.0%

BE 91 91 91 91 92 92

BE net of fees 83 83 83 84 84 85

BEG net of fees 72 72 72 73 73 73

FDB 11 11 11 11 11 12

Fees 8 8 8 8 8 8

Calibration on ATM Caps Calibration on ATM Swaptions
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Table 5: Estimated Best-Estimate under Historical Probability - ESG with CIR++ IR Model 

 

Recall that liability out-flow at time 𝑡 can be written as an exit probability (𝛼𝑡)10 multiplied 

by the initial investment (𝑃𝑀0) plus the cumulative revaluation (∑ 𝑐𝑖+1
𝑡−1
𝑖=0 )11: 

𝐹𝑡 = 𝛼𝑡. 𝑃𝑀0. 𝑒𝑥𝑝 (∑ 𝑐𝑖+1

𝑡−1

𝑖=0

)  

This flow can be split into two flows: 𝐹𝑡 = 𝐹𝑡
𝑔𝑎𝑟

+ 𝐹𝑡
𝑑𝑖𝑠𝑐𝑟 with: 

- 𝐹𝑡
𝑔𝑎𝑟

 takes into account the contractually guaranteed minimum revaluation rate. If 
(𝑡𝑚𝑔𝑖)𝑖∈⟦1,𝑇⟧

 are the guaranteed rates, then: 

𝐹𝑡
𝑔𝑎𝑟

= 𝛼𝑡. 𝑃𝑀0. 𝑒𝑥𝑝 (∑ 𝑡𝑚𝑔𝑖+1

𝑡−1

𝑖=0

)  

- 𝐹𝑡
𝑑𝑖𝑠𝑐𝑟  represents the flow of the additional revaluation corresponding to the 

surplus that the insurer distributes at its discretion as profit sharing: 

𝐹𝑡
𝑑𝑖𝑠𝑐𝑟 = 𝐹𝑡 − 𝐹𝑡

𝑔𝑎𝑟
= 𝛼𝑡. 𝑃𝑀0. (𝑒𝑥𝑝 (∑ 𝑐𝑖+1

𝑡−1

𝑖=0

)  − 𝑒𝑥𝑝 (∑ 𝑡𝑚𝑔𝑖+1

𝑡−1

𝑖=0

) ) 

The guaranteed best-estimate (BEG) is the expectation of the sum of discounted flows 

𝐹𝑡
𝑔𝑎𝑟

. The Future Discretionary Benefits (FDB) is the expectation of the sum of discounted 

flows 𝐹𝑡
𝑑𝑖𝑠𝑐𝑟. The best-estimate is then the sum of the BEG and the FDB. 

All other parameters/inputs being equal (mortality rates, structural lapses, expense rates, 
loading rates, etc.), deflator approach use can have an impact on the exit probability and 
on the revaluation rate of savings. 

Indeed, we can note that the probability of exit 𝛼𝑡 is the only stochastic factor dependent 

on the economy of the guaranteed flow 𝐹𝑡
𝑔𝑎𝑟

 because it integrates dynamic lapses. 

Adopting a deflator approach has an impact on 𝐹𝑡
𝑔𝑎𝑟

 only through the factor 𝛼𝑡.  

The decrease in BEG evaluated in historical probability is explained by the spread of lapses 
over the projection horizon following the decrease in dynamic lapses (see appendix 8). 

When we adopt a deflator approach, we observe that the expected flows 𝐹𝑡
𝑔𝑎𝑟

 are lower 

 
10 𝛼𝑡+1 = (∏ (1 − 𝑞𝑗)(1 − 𝑣𝑗)𝑡−1

𝑗=0 )(𝑞𝑡 + 𝑣𝑡 − 𝑞𝑡 . 𝑣𝑡) where: 

- 𝑞𝑡  the mortality rate between 𝑡 and 𝑡 + 1 and 𝑞−1 = 0. 
- 𝑣𝑡  the lapse rate between 𝑡 and 𝑡 + 1 and 𝑣−1 = 0. 

11 See Armel and Planchet [2019]. 

GSE - CIR++ under P (M€)

Shift of Black model for CIR++ calibration 0.4% 1.0% 2.0% 0.4% 1.0% 2.0%

BE 87 86 85 86 86 86

BE net of fees 79 78 77 78 78 78

BEG net of fees 71 70 69 70 69 70

FDB 8 8 8 9 8 9

Fees 8 8 8 8 8 8

Calibration on ATM Caps Calibration on ATM Swaptions
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over most of the projection time horizon and that their duration is longer, as shown in Table 
6. 

Table 6: Flow durations and lapses 

 

We deduce that dynamic lapses are more important when liabilities’ valuation is carried out 
under the risk-neutral probability.  

In addition, the analysis of the variation in FDB flows involves studying variations in exit 
probabilities and revaluation rates, in particular the discretionary part. 

If the drop in exit probabilities 𝛼𝑡 naturally implies a drop in FDB flows, it is difficult to have 
a more detailed analysis of the movements in discretionary revaluation rates given the 
large number of parameters involved in their evaluation. 

Furthermore, under the historical probability measure, at each projection step, the 
financial income resulting from the insurer's assets accounting management policy 
implemented in the model, is different from that recorded under the risk neutral 
probability. The insurer's buy and sale transactions are in fact different, the resulting asset 
is different and accounting reserves related to the asset are different. 

Also, the decrease in the number of scenarios where policyholders’ reaction is more 
pronounced, under the historical probability, means that the revaluation algorithm (see 
appendix 7) is less constrained to distribute a surplus of available wealth to reduce dynamic 
lapses.  

Finally, the decrease in lapses allows the insurer to improve its margin. Having fewer lapses, 
the reserve’s loadings base is greater, which results in a transfer of a part of the wealth to 
its own funds. 

4 Conclusion  

In this article, we propose an approach of building an economic scenario generator under 

historical probability, allowing the diffusion of interest rates and prices of risky investments 

(in equities and real estate). This ESG is adapted to the process of valuing the liabilities of 

savings contracts with profit-sharing clauses and is consistent with the normative Solvency 

2 standards. 

This paper proposes methods for calibrating models and risk premiums based on closed 
formulas and presents simulation approaches with exact discretization that are optimal 
and adapted to long-term simulation needs. 

It assesses also the impact of the choice of an economic scenario generator under the 
historical probability measure, whose interest rate model is the CIR++ model, on the best-
estimate of with profit French savings contracts. 

Duration of guaranteed cash-flows in years

Shift of Black model for CIR++ calibration 0.4% 1.0% 2.0% 0.4% 1.0% 2.0%

Under Q 8.2 8.2 8.1 8.2 8.2 8.4

Under P 9,0 9.1 9.3 9.2 9.2 9.0

Gap 0.8 1.0 1.1 1.0 0.9 0.5

Calibration on ATM Caps Calibration on ATM Swaptions
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The best-estimate gaps observed between the deflator approach and the risk-neutral 

assessment are explained by the reaction functions implemented in the model that reflect 

the actions of the insurer and the policyholder. The justification of the behaviour of these 

functions is delicate under the risk-neutral probability measure and a deflator approach 

seems more appropriate.  

In a normative valuation framework, the deflator approach presented in this article also 

leads to a clear separation between the determination of the cost of options, included in 

the deflator, and the production of contract cash-flows. It also allows to meet regulatory 

requirements. 

Finally, the work presented in this article shows that the deflator approach is operational 

for insurers and is not limited to an academic style exercise. It also shows that moving from 

a "risk neutral" calculation to a deflator approach requires only relatively marginal work to 

adapt existing models. 
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