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A change of numeraire argument is used to derive a general option parity, or
equivalence, result relating American call and put prices, and to obtain new ex-
pressions for futures and forward prices. The general parity result unifies and
extends a number of existing results. The new futures and forward pricing formu-
las are often simpler to compute in multifactor models than existing alternatives.
We also extend previous work by deriving a general formula relating exchange
options to ordinary call options. A number of applications to diffusion models,
including stochastic volatility, stochastic interest rate, and stochastic dividend rate
models, and jump-diffusion models are examined.

A self-financing portfolio is called a numeraire if security prices, mea-
sured in units of this portfolio, admit an equivalent martingale measure.
The most commonly used numeraire is the reinvested short-rate process;
the corresponding equivalent martingale measure is the risk-neutral mea-
sure. Geman, El Karoui, and Rochet (1995) show that other numeraires can
simplify many asset pricing problems. In this article, we build on their re-
sults and, using the reinvested asset price as the numeraire, unify and extend
the literature on option parity, or equivalence, results relating American call
and put prices for asset and futures options. The same numeraire change is
used to obtain new pricing formulas for futures and forwards that are of-
ten simpler to compute in multifactor models. Finally, we use a humeraire
change to simplify exchange option pricing, extending a similar result in
Geman, El Karoui, and Rochet to dividend-paying assets.

The change of numeraire method is most intuitive in the context of foreign
currency derivative securities. As discussed by Grabbe (1983), an Amer-
ican call option to buy 1 DM, with dollar price proceSs for K dollars
is equivalent to an American put option to sKlldollars, with DM price
procesK /S, for a strike price of 1 DM. The dollar price of the call must
therefore equal the product of the current exchange B&tegnd the DM
price of the put. The call price is computed using the dollar value of a U.S.
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money market account as the numeraire, while the put price is computed
using the dollar value of a German money market account as the numeraire.
Corresponding to the change of numeraire is a change in probability mea-
sure, from the risk-neutral measure for dollar-denominated assets to the
risk-neutral measure for DM-denominated assets.

As suggested in Grabbe (1983), and developed in later articles, an analo-
gous relation applies to any asset option. A call option to buy one unit of an
asset, with dollar price proceSsfor K dollars is the same as a put option to
sell K dollars, worthK /S units of asset, for one unit of asset. Multiplying
the asset denominated put price by the current asset price converts the price
into dollars.

The same numeraire change can be used to obtain the interest parity
theorem which expresses the time zero dollar forward pfBgT), for
time T delivery of one DM as the spot currency rate times the ratio of two
discount bond prices:

Go(T) = SBo(T)/Bo(T),

whereBy(T) is the time zero dollar price of a discount bond paying $1 at
T, andBy(T) is the time zero DM price of a discount bond paying 1 DM
atT. This result can be extended to forward contracts on any asset.

A key issue examined in this article is the change of measure that corre-
sponds to a change of numeraire. Under the risk-neutral measure, the drift
rate of the returns of the asset priges the short rate minus the dividend
rate. In Section 1 we show that the drift rate of the returnSdf(the price
of dollars in units of asset) under the new measure is the dividend rate minus
the short rate. The reversal of the roles of the short rate and dividend rate is
intuitive because under the new numeraire the asset is riskless while dollars
are risky. Example 1 shows that the change of measure can result in more
subtle modifications and can change both the intensity and distribution of
jumps in jump-diffusion models. In Section 2 we show that the measure
change also alters the drift terms of nonprice state variables, such as in
stochastic volatility and stochastic interest rate models.

Example 1. Assume that the short rate and dividend rate are both zero,
and the asset price follows a Poisson jump process with intehsityder

the risk-neutral probability measure, Q. Atjumptimei =1,2,..., the
stock price ratio has the Bernoulli distribution

S(r) = uS(ti—), with Q-probability p
W) = 1dS(f—), with Q-probabilityl — p,

and between jumps,
dS/S=A—-—wArdt, t<t<rty, 1i=01...,

wherep = pu+ (1— p)d is the expected price ratio at jumps, aty= 0.
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A change of numeraire to the underlying asset price is associated with
the new measur€), where dQ/dQ = S;/S. At jumps, the value of a
dollar measured in units of the asset satisfies

S()-t = u1S(5i—)7, with Q-probability pys~?
! d=1S(r;—)~1, with Q-probability (1 — p)du 1,

and between jumps
dst) /sty = —-Dadt, 1 <t<rtp, i=01,....

The intensity of the jump process und@ris uA, which can be obtained
using the martingale property of S under Q:

Q1> t) = Eq(Lr,;-1Sr/S) = Eo(L(roy S/ S) = €M Q(1y > 1).

The distributions of the returns of S under Q and 8nderQ are identical
only in the special case when=d~* and . = 1.

We show that subject to some common technical restrictions (Assump-
tions 1 and 2 below), any American call price formula is the same, after a
change of numeraire, to an American put price formula. This result is useful
for obtaining prices, derivatives of prices with respect to model parameters,
and early exercise boundaries for put option formulas from the properties of
the corresponding call option formula. Previous articles derive the correct
put-call equivalence formulas only for some special cases. The geometric
Brownian motion case (see Example 2 below) is derived in McDonald and
Schroder (1990), Bjerksund and Stensland (1993), and, for futures options,
in Byun and Kim (1996%. Chesney and Gibson (1993) use a change of nu-
meraire to obtain a closed-form European formula for stock-index options
when the short rate is stochastic from Jamshidian and Fein’s (1990) closed-
form European formula for options on assets with a stochastic payout rate.
However, the change of measure is incorrect, in part because it neglects to
make the appropriate modification to the drift term of the state variable.

! The jump probabilities unded can be verified using the general results in the appendix, or from
Q({S(r) = uSm—)} N {r < t)) = PUEQ(L{ry <) S(1—)/S(0)),

for anyt < T, andS(t1)/S(0) = ue~»*71 on{S(1;) = u(1;—)}.

2 Bjerksund and Stensland (1993) apply a result in Olsen and Stensland (1991) which demonstrates that
the current asset price can be factored out in certain control theory problems where the future reward is
multiplicative in the price of an asset. Their result could be used to derive the parity result in a diffusion
setting when the return volatility is any function of the price, subject to the price process being strictly
positive (such as the CEV model below). The Olsen and Stensland (1991) results can be generalized by
allowing the payoff in Proposition 1 below to depend on a vector of controls. See also Kholodnyi and
Price (1998), who derive equivalence results for geometric Brownian motion and the binomial model.
They use no-arbitrage arguments to derive general equivalence results in a setting where each option price is
a deterministic function of the current underlying asset price (for example, Mark8&@gad deterministic
r ands). In the foreign currency context, the equivalence results are in terms of the generators of the
domestic and foreign evolution (or present value) operators.
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Example 5 below shows the correct measure change in that model. Carr and
Chesney (1996) derive a formula relating call and put prices in a one-factor
model in which the volatility of the underlying price obeys a symmetry con-
dition (see Example 3 below). Bates (1991) derives equivalence formulas
for American put and call options on futures for some special cases to test
classes of option pricing models. Example 8 builds on this idea and derives
general conditions under which the equivalence formula takes a particularly
simple form: switching the roles of the current futures price and the strike
price in the American call option formula gives the price of an otherwise
identical American put option.

Section 1 presents the numeraire change method and the general results
using the reinvested asset price as the numeraire. Section 2 presents ex-
amples of these results. The Appendix derives the numeraire change for a
general jump-diffusion model that includes all the Section 2 examples as
special cases.

. The Reinvested Asset Price as the Numeraire

We presentthe general change of numeraire argument before giving the main
results. Fix a finite time horizon [0].° Let Y denote some reinvested asset
price process. That i¥; is the timet balance of an investment strategy of
buying an assetand reinvesting all dividends into new shareR fegiresent

the reinvested short rate with unit initial investmeR}: = exp( fé rsds),
wherer is the short rate processifis the state price density process, then
'Y andr RareP-martingales. It follows that / Ris aQ-martingale, where
dQ/d P = 71 Ry. That is, when measured in units of the numer&y¥ is

a martingale with respect to the risk-neutral probability meaQui@eman,

El Karoui, and Rochet (1995) show that we get the same result when we
replaceR with another self-financing portfoliyy with Vp = 1 (andV/R

a Q-martingale). TherY/V is a Q-martingale, wherelQ/dP = =1 Vr

(or, equivalentlydQ/d Q = V;/Ry). That is, when measured in units of
the numeraire/, Y is a Q-martingale. This simple change of numeraire is
the basis for all the pricing results below. The results are very general in
that we allow for incomplete markets and price and state variable dynamics
which are neither continuous nor Markovian. The main assumption is the
existence of a risk-neutral measure.

Assumption 1. There exists a risk-neutral measure, Q, such that every
reinvested price process relative to the reinvested short-rate process is a
Q-martingale.

We assume throughout the existence of a complete probability $@acg, F, P) and a filtrationF =
{F; t > 0} which satisfies the usual conditions. See Protter (1992) for the required conditions and for
all the results on semimartingale theory needed in this article. All processes are assumed to be adapted.
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The self-financing portfolio that serves as the numeraire for our main re-
sults is the reinvested asset price process with unit initial balanc& et
semimartingale representing the price process of an asset with a proportional
dividend payout raté.* We assume throughout th&tis strictly positive?

The value of the numeraire portfolio at any timés S exp(fé 3sd9)/ .

The probability measur® that corresponds to the new numeraire is

Q(A) = Eq(1(aZ7), VA€ F. (1)

whereZ is defined as the ratio of the new and old numeraires:

7, = oG odsg /S, telo,T]. )

In other words, the Radon-Nikodym derivativedi®/d Q = Zr.

All the results of this section hold wheliis replaced by a futures price
procesd$- (with delivery dateD > T)ifwe sets equalta . Tojustify this, we
construct a numeraire portfolio with valle exp(fé rsds)/Fo at any timet

by maintaining a long position of e)(qzﬁ rsds)/Fo futures contracts atand
adding or subtracting mark-to-market gains and losses from a money market
account, whose time-zero balance is set to $1 [this strategy is described in
Duffie (1992: chap. 7)]. Alternatively, we can use the fact that a Q-
martingale and directly defing; to beF/Fo.

The following proposition provides a general pricing formula under a
change of numeraire to the reinvested asset price. The colstaititserve
as the strike price in the option pricing applications below. The proSess
represents the price & S dollars measured in units of the asSet

Proposition 1. Define§ = K S/ S andQ by (1). Then the time-zero price
of an asset with th&, -measurable payoff Rt the stopping time € [0, T]

is
Eo (e‘fo fs‘“P,) = Eg <e_fo ssdspré[/K> .
Furthermore

dS = S_(rt —St)dt-i-th
dS = S —rodt+dM,, S =K,

4t is easy to extend the results to discrete dividends. In addition to the proportional dividers] rate
suppose the asset pays discrete cash dividEnds stopping timeg;,i = 1, 2, .... All the results are

then generalized by adding the teET o] log[1+ Ci/S(T)] to fot 8sdsthroughout. The exponential
i €lo,

of this additional term represents the additional shares of asset accumulated by reinvesting the discrete
dividends into new shares purchased at the ex-dividend Brice

5In many applications the results extend to the case wBdnas an absorbing boundary at zero. In a
diffusion model, for example, construct a modified stock price process whose diffusion term is killed the
first time the price hits a small positive constant. The dominated convergence theorem can be used to
evaluate the limit of the expectation (in Corollary 1, for example) as this constant goes to zero.
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where M andM and local martingales under Q ar@, respectivel. The
quadratic variations of M andi satisfy(d M;)?/S? = (dMy)?/ S between
jumps’

Proof. Assumption 1 implies that the price is given by the first expectation.
Applying the numeraire change,

(e om) - fes Fmen)
= Eg (e‘fo"%dsp,é[/@ ,

where the last equality is obtained using iterated expectations and the mar-
tingale property ofZ. The equation for the returns & follows because

the ratio of the reinvested price process to the reinvested short rate process
is a Q-martingale. The equation for the returns ®follows because the

ratio of the short rate price process to the reinvested price proces3-is a
martingale. The equality, between jumps, of the instantaneous volatilities
of returns follows fromté's lemma and from the Girsanov—Meyer theorem

(a generalization of Girsanov’s theorem to a non-Brownian setting), which
implies thatM; — M is absolutely continuous inbetween jumps. =

The proposition shows that the instantaneous return varian@arafS
are identical between jumps. Example 1illustrates that at jumps, the squared
returns will generally be different.

The first application of Proposition 1 relates call prices to put prices
under a change of numeraire.

Corollary 1. Define§ = K S/S and Q by Equation (1). Then the value
of a call option on S is the same, after a change of numeraire, as the value
of a put option orS:

Eq (e‘for "% max(s; - K, 0]) = Eg (e‘ ke %S max[s — & O]) ,

for any stopping time < T.

6 A sufficient condition forM and M to be martingales unde® and Q, respectively, is that ands are
bounded processes.

7 The quadratic variation of any semimartingXés denoted byY, Y], and can be decomposed into its
continuous and jump components:

IY, Y1, = [V, YI¢ + Z(AY&

O<s<t

where [Y, Y]¢ = [Y€, Y¢] and Y€ is the path-by-path continuous part6f For continuousy (or for t
between jumps), it is common to writd Y;)? instead ofd[Y, Y],. The quadratic variation is invariant to
changes in measure. See Protter (1992: chap. 11) for the formal definitions.
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The left-hand side represents the value of a European call option expiring
at T with strike priceK and underlying price process The right-hand

side represents the value of a European put option, also expiringoat

with a strike priceS and underlying price process The roles of the short

rate and asset payout rate are reversed in the call and put price expressions.
Corollary 1 also holds for American options under Assumption 2 below.

Corollary 2. Define§ = KS/S and Q by Equation (1). Then the value
of an asset-or-nothing binary option on S is the same, after a change of
numeraire, as the value of a cash-or-nothing binary optiorson

Eq <ef0 rsdssfl{S[zK }) — S)EQ <ef0 55dsl{ SozS}) ’
for any stopping time < T.

Another interpretation is obtained if = min[T, inf{t: § > K}] and
S has continuous sample paths. Then the left-hand side is the value of a
barrier, or first-touch digital, option paying dollars when the asset price
Srises toK ; and the right-hand side is the value of a barrier option paying
S whenSfalls to & (the eventdS, > K} and{S > S} are identicalf

Whens = 0, Corollary 2 can be obtained from Theorem 2 in Geman, El
Karoui, and Rochet (1995). The result is derived independently under the
assumptions of geometric Brownian motion and constaarids by Carr
(1993), Dufresne, Keirstead, and Ross (1997), and Ingersoll (1997).

Whenr and§ are deterministic (extentions to the stochastic case are
straightforward), Corollary 2 shows that any European option price can
be derived from the probabilitie®(Sr > K) andQ(S > Sr) [see also
Theorem 2 in Geman, El Karoui, and Rochet (1995)].

The next corollary presents a new futures price expressionk§(@t)
denote the time-zero futures price for delivery of as3at time T. With
continuous marking to market, the futures price equals the risk-neutral ex-
pectation of the spot price at delivery [see Duffie (1992: chap. 7)]:

Fo(T) = Eq(SD). ©)

When the interest rate and the payout rate are deterministic, the futures price
is simply Fo(T) = Soexp[[oT(rS — 85)ds]. When either the interest rate or

the payout rate is stochastic, however, a change of meas@egtees an
expression that is often easier to compute and also more clearly emphasizes
the role of the cost of carry in futures pricing.

8 Reiner and Rubinstein (1991) price a variety of binary and one-sided barrier options assuming the asset
price follows geometric Brownian motion.
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Corollary 3. The futures price is the product of the spot price and the ex-
pectation, undeq, of the exponential of the cost of carry:

Fo(T) = SEg (efoT“s—“s)dS) :

In the general diffusion model in the appendix, for example, @hex-
pectation on the right-hand side doesn’t depend on the stock price process
if the instantaneous covariance between asset returns and changes in the
state variable is not a function of the asset price. Example 5 shows that the
computation of the futures price using Corollary 3 is particularly simple
with a constant volatility stock return process and an Ornstein—Uhlenbeck
state variable driving eitheror §.

The next corollary presents a new forward price expressionBL@Et)
denote the timé dollar price of a discount bond paying $1 Tt

Bi(T) = EQ <ef1T rsds

.7-}) , t<T. (4a)

Let B;(T) denote the timé price, measured in units of asset, of a “discount
bond” paying one unit of the assetBt

Bt(T) = SlEQ (eftT rsdsST ' j:t) — EQ (eftT ssds

ﬂ)? tST'

(4b)
Letting Go(T) denote the time-zero forward price for delivery of asSat
time T, Duffie (1992: chap. 7) shows that

Go(T) = Eq (efo 'Sdssr> / Bo(T). (5)

Corollary 4 follows from Equations (4b) and (5).

Corollary 4. The forward price is given by the product of the spot price and
the ratio of asset and dollar denominated discount bond prices:

Go(T) = SBo(T)/Bo(T),
whereBy(T) and By(T) are defined by Equation (4).

The main advantage of Corollary 4 is in a model where both the short
rate and payout rate are stochastic. If the short rate is deterministic, then
forward and futures prices are equal and Corollary 3 can be used. If the
payout rate is deterministic, then Corollary 4 holds trivially. When we set
8 = r and reinterpretS as a futures price with delivery daie (which
implies that the forward on the futures contract is equivalent to a forward
on the asset underlying the futures contract), then Corollary 4 provides a

1150



Changes of Numeraire for Pricing Futures, Forwards, and Options

simple expression for the ratio of forward and futures prices on the same
underlying asset.

The final application of Proposition 1 is to the valuation of exchange
options. LetS* and S? denote two asset prices astlands® denote their
corresponding payout rates. Then

d§ =9 (i —sHdt+dM, iefa b},

whereM' is a Q-local martingale. Corollary 5 expresses the value of an
exchange option as an ordinary call option by changing the numeraire to
the reinvested price of asset

Corollary 5. Define S = /S and dQ/dQ = e (Gs-rodsqa /qa

Then the value of an option to receive one unit of asset b in exchange for
one unit of asset a is the same, after a change of numeraire, as the value of
a call option on&:

Eo (e‘fo 45 max[S — S, O]) =Eq (e‘fo 5 max® — O]> ,
for any stopping time < T. Furthermore

d¥ =3 2 -Pdt+dmP, =9,

whereMP is a local martingale undef).

The right-hand side of the first equation is the value of an ordinary call
option with underlying asset proceS8, short rate process?, and fixed
strike priceS]. Corollary 5 extends a similar result in Geman, EIl Karoui,
and Rochet (1995) to dividend-paying assets and American-style exercise
(under Assumption 2).

To apply Proposition 1 to American options, we need to assume that the
price of an American option is the supremum, over all stopping titme$
the risk-neutral expected discounted payoff from exercising at

Assumption 2.Let p be the time zero price of an American option allowing
the holder to exercise and receive, at any stopping tirad0, T], the payoff
P., where P is an adapted process. Then

p= sup Egq <e‘fo rsdsﬂ) (6)
7€[0,T]

Karatzas (1988) proves Equation (6) in a complete markets diffusion
setting for American options on assets. When markets are incomplete, this
characterization is problematic [see Duffie (1992: chap. 2)]. Because of
possible interaction between the state price density and the choice of ex-
ercise policy, the two-step procedure of first determining the risk-neutral
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measure and then computing Equation (6) may not be valid. Nevertheless,
it is common in the literature to ignore this interaction and first assign a
market price of risk to the relevant state variables (in effect, determining
the risk-neutral measure), then price options as in Equation (6).

. Examples

The examples in this section are all special cases of the general jump-
diffusion model presented in the appendix. Throughout the remainder of
the article, | letW = [W2, ..., W9 andW = [W?, ..., W]’ be vectors

of d independent standard Brownian motions under the meaQuaesi Q,
respectively.

Example 2. Constant elasticity of variance (CEVYhe risk-neutral asset
price process is
§ M- ddtvsdwW s e(-11)

wherev and ¢ are constants, and r anél are deterministi®. Geometric
Brownian motion corresponds #p = 0. Closed-form solutions for Euro-
pean call and put options in this model have been derived by Cox (1975)
[see also Schroder (1989)]. Under the measQreS is also a CEV process:

dS P -

g‘ =G —rodt+§ AW, H=K,

with an absorbing boundary at zero (see Footnote 7), whetev (K Q)¢
and¢ = —&. Using Corollary 1, we obtain the pricing formula for the
American put from the formula for the American call by exchanginarts

K, exchanging r and, and replacing with v and& with &. For the case of
geometric Brownian motion, the equivalence formulais particularly simple
because = v andé = &.

The next example shows that the Carr and Chesney (1996) put-call sym-
metry result can be obtained from Corollary 1.

Example 3. Carr and Chesney (1996) et the risk-neutral asset price pro-
cess satisfy

%S = (r — 8 dt+ o (S)dWE,
where r and$ are deterministic and () = f(]log(-/+/yYK)|) for some

bounded function f and fixed ¢ R,. The functional form of satisfies

° The results in this and all the succeeding examples are unchanged if any of the constant parameters are
permitted to be deterministic functions of time.
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Carr and Chesney’s symmetry condition which ensuresithdt = a(S),
t > 0, where§ = yK/S.22 The dynamics o0& underQ are therefore

dS - .
SS‘ — G —rodt4 0@ AW &= yK/S.

When S represents a futures price process @aadr), the return distribu-
tions of S andS are identical. Applying Corollary 1 and rearranging, we
obtain

Eq (e_ J5 S maxs, — K, O]) Eq (e‘ J5 595 axly — &, O])

VK Sy

The numerator on the left-hand side is the price of a call option on S
with strike price K. The numerator on the right-hand side is the price of a
put option onS with strike price y, and with the roles of r addwitched.
These call and put options have the same “moneyness” in the sense that

/Y = K/S. For the case of geometric Brownian motion, where f is a
constant function, we let 3 S to reconcile the result with Example 2.

Example 4. Stochastic volatility model of Heston (1991 he risk-neutral
asset price and volatility processes are
d§
S
dve = (1 — c)dt + ¥ /o (pd W + V1 — p2d W),
where r ands are deterministic, ang, «, ¥ andp € [—1, 1] are constants.
Recall that W and W2 are independent standard Brownian motions under

Q, and thereforeoW?! + /1 — p2W? is standard Brownian motion with
instantaneous correlation qf with W2.
Under the numeraire change,

d§
S
du = (1 — [k — pylo)dt — ¥/ (pdWE + /1 — p2dW2).

The numeraire change results in a modification to the mean reversion pa-
rameter of the volatility process, and reverses the sign of the covariance
between instantaneous asset returns and volatility changes.

= (ry— 8y dt+ o dW,

G —rodt+ o dW, S =K,

10 proposition 1 implies that the timeinstantaneous return volatility @B is o(8) = a(yK/S). The
functional form ofo implieso (y K/S) =o(§).
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The next example includes a one-dimensional stochastic state variable
driving either the short rate or the dividend rate.

Example 5. Stochastic dividend and stochastic short rate modeds the
risk-neutral asset price and one-dimensional state variable satisfy

d
ds = (r; — ) dt + o dW-,

S

AX, = (1 — X)L+ v (AW /T 2N,

where the coefficients, u, k, v, andp € [—1, 1] are constants. Under the
numeraire change,

d . .
:Q‘ = —rdt+odW, =K,

S

dXt:(ﬂ~+pov——xX0dt—1dimf—%vl—4ﬂdﬁfl

The state variable still is Ornstein—Uhlenbeck un@erbut with a different
drift parameter.

(a) Stochastic shortrate. Lébe deterministicandr= f (X;) forsome
f: R — R. This model includes Ornstein—UhlenbeckXX = x, ¥x € R)
and lognormal ({x) = €*) short rate processes. From Corollary 3, the
price of a futures contract on S for delivery at T is

T T
Fo(T) = Soexp<—/ (Ssds) Eg [exp(/ rsds>] )
0 0

This is simpler than evaluating the standard Equation (3):

.
Fo(T) = Eq(Sr) = S)eXp(—/o asds)

.
xEq (exp[/ rsds— %O’ZT + oWTl]) :
0

Corollary 1 implies that the price of a call option on S is equal, after the
numeraire change, to the price of a put option 8rwith a deterministic
short rate and a stochastic dividend rate.

(b) Stochastic dividend rate. Letr be deterministic dnek f (X;). We
obtain the futures and forward prices from either Corollary 3 or Corollary 4:

T T
Fo(T) = Go(T) = Soexp(/ rsds> EQ [exp(—/ 85ds)] .
0 0
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Again, this is simpler than evaluating the standard Equation (3):

T T
Fo(T) = Soexp(f rsds) Eq (exp[—/ dsds — 12-021— + UWTlD .
0 0

Corollary 1 implies that a call option on S is equal, after the numeraire
change, to the price of a put option &with a deterministic dividend rate
and a stochastic short rate.

Example 5 shows that option pricing models for stochastic dividend mod-
els can be obtained from stochastic interest rate models and vice versa. The
European call option formula in Jamshidian and Fein’s (1990) Ornstein—
Uhlenbecks and constant model can be obtained, via some parameter
changes, from the European put option formula in Rabinovitch’s (1989)
Ornstein—Uhlenbeck and constand model. The example also illustrates
how Corollary 3 can simplify futures pricing by reducing a two-factor prob-
lem to a one-factor problem when the volatility terms of the asset returns
and the state variable do not depend on the asset price.

Example 6. Exchange optionsThe risk-neutral price processes of assets
a and b satisfy

ag

g
d
g = (r — 8D dt + o® (pdW! + /1 — p2dW?),

= (I — 88)dt +o*dW,

where the volatility coefficients; and ¢®, and the instantaneous corre-
lation between asset returns,c [—1, 1], are constants. The short rate, r,
and the dividend rates? andsP, are functions of the m-dimensional state
variable vector, X, which satisfies

dX; = u(Xpdt + ¢ (Xp)dW,

wherep ismx 1, ¢ is m x d, and again W= [W?, ..., W9 is standard
Brownian motion under Q. y
The price ratioS = gbsg/Sf‘ underQ is the constant volatility process

A/ = (7 — ) dt+ (0% — o) dW! — V1 — p2"dW, § =,

where againW = [W2, ..., WY]' is standard Brownian motion undep.
The drift of X underQ is modified by adding the product of the volatility
of asset a and the first column of the state-variable volatility matrix:

d X = [w(X) + o 2P (Xp)eldt — ¢ (X)W,
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wheree = [1,0, ..., 0]'. From Corollary 5, the valuation of an exchange
option can be reduced to the computation of an ordinary call optiofson
with short rates? and dividend rate®.

The next example is the jump-diffusion model of Merton (1976).

Example 7. Merton (1976) As in Example 1, the asset price follows a
Poisson jump process with intensityunder the risk-neutral probability
measure, Q. Atjumptime ,i =1, 2, ..., the stock price ratio is lognor-
mally distributed:

log[S(7i)/S(ti —)] ~ O(a, ¥?),

where® (m, v) denotes a hormal distribution with mean m and variance
Between jumps the stock price satisfies

‘;—S‘ = [re — & — A(e*T7*/2 — 1)) dt

+odW 1 <t< iy, 1=01,...,

wheretg = 0.

Using the same calculation as in Example 1 (or the general results in
the appendix), the intensity und€ris equal to the product of the intensity
under Q and the expected price ratio at jumps:= A expla + %yz). The
appendix shows that the distribution functions under Q éndf the stock
price ratio, denoted by (-) and W (-), respectively, satisfy

- 1
U (dy) = w(dy) exp(—a — éyzw.

1 1 Iog(y)—a)2
exp| —= [ —Z—) |dy,
V2ryy p[ 2( 1 } Y

itis straightforward to show that the logarithm of the stock price ratio under
Q is still normally distributed with variance?, but with mearn + 2. The
dynamics of§ = K&/ S are therefore

log[S(zi)/S(ti—)] ~ O(—a — y%,y?), i=12...,

From

v(dy) =

dS ~ 2
a5 _ [& A A 1)] dt
S_
+odW! 1 <t< 41, 1=0/1,....

When the mean stock return at jumps is zero, that is —y?/2, then
A = A and the jump returns of S under Q afdunderQ have the same
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distributions. In this special case, Corollary 1 implies that simply switching
the roles of the strike price and the current asset price, and switching the
roles of the short rate and dividend rate in the American call price formula
gives the American put price. Bates (1991) derives this special case for
futures options from the partial differential equation for the option price.

When applied to the case of futures options, several previous examples
contain special cases in which the distributions of the returfiswfiderQ
andF underQ are identical! In such cases the equivalence relationship
in Corollary 1 takes a particularly simple form: the American put price is
obtained from the American call price formula by simply switching the
roles of the strike price and current futures price. A change of variables can
then be used to relate American call and put prices on the same underlying
futures price process. Example 8 shows general conditions under which
Corollary 1 can be used to relate call and put prices on the same underlying
futures price process, and, using the ideas of Bates (1991), shows how these
conditions can be tested. It is easy to show that the same conditions imply
that the geometric average of the early exercise boundaries of otherwise
identical American calls and puts is equal to the strike price.

Example 8. Empirical implications for futures optiond_et F denote the
futures price for delivery at D, where B T. The futures price is assumed
to follow a jump-diffusion process under Q with intengitX;) and jumps
atti,i =1,2,..., when the future price ratio has the distribution

Q(F(m)/F(mi—) =y)=¥(y), y=0,
and between jumps,

dR .
F_t =uX)A—wdt+oXpdW!, 1 <t<tg, i=01...,
t—
wheretrg = 0andu = fy€R+ ydW (y) is the expected price ratio at jumps.
The m-dimensional state variable vector, X, satisfies

dX; = u(Xpdt + ¢ (X)dW,

where W= [W?, ..., Wd]’ is standard Brownian motion under Q, and the
coefficientsu and¢ have the appropriate dimensions. The short rate may
also be a function of X.

We obtain an equivalence formula for calls and puts with the same time
zero underlying price by defining, = F2/F (= FFo/K). Using the
results in the appendi% is a jump-diffusion process undérwith intensity

11 See Example 1 whem = d~* andu = 1; Example 2 whe§ = 0; Examples 4 and 5 whem = 0; and
Example 7 whem = —o'2/2.
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A () = A (-)p and dynamics

Q(F@/Fa—zy ™) =¥y, y>0 i=12..,

dF, .
L= L(Xp@—pYdt
Fi_

+ o (Xp) dW2, i <t<rtiy, 1=01,..., Ifo:Fo,

dX = [w(X) + 0 (X0p (Xoeldt — ¢ (Xp)dWik,

where¥(dy) = w(dy)yu 1, and, as earliere = [1, 0, ..., 0] andW =
[WL, ..., WY) is standard Brownian motion undép. ) )
Sufficient conditions for the distributions of F under Q a@ndinderQ
to be identical are (a)p(-)e = 0O (the instantaneous changes in the state
variables and futures price are uncorrelated), and b} 0 (no jumps)
or W(y) = j[y,l’oo) u¥(du), Yy > 0. Note that the restriction on the
distribution function in (b) implies that = 1. When the futures price ratio
at jumps has a discrete distribution, as in Example 1, then the restriction on
W is equivalenttaA W (y) = y 1AW (y™1), vy > 0[AW(y) andAW (y~1)
are the Q-probabilities of outcomes y and'yrespectively]. When the jump
distribution function is differentiable, as in Example 7, then the restriction
is equivalent tol’(y) = ¥/(y " Hy 3, vy > 0.
Defining x= K /Fg, then Corollary 1 implies the following relationship
between calls and puts on futures prices with the same initial value:

Eq (efo "4 max[F, — Fox, 0]>
= xEq (e‘fo 98 max[Fo/x — Fu, 0]) , (7)

for any x > 0. Under conditions (a) and (b), Equation (7) relates call and
put prices on the same underlying futures price process. We can test these
conditions by comparing the relative prices of American calls and puts.
For example, if both conditions hold, then otherwise identical at-the-money
calls and puts should be priced the same.

Bates (1991) proves Equation (7), using partial differential equation meth-
ods, for the cases of geometric Brownian motion, Merton’s (1976) jump-
diffusion model with zero-mean jump returns & —y2/2 in Example 7
above), and for the case of a diffusion stock price process and an uncorre-
lated one-dimensional state variable representing stochastic volatility.
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Appendix: Price and State-Variable Dynamics

This appendix derives price and state-variable processes under a change of numeraire
and corresponding change of measure for a general class of diffusion and jump-diffusion
processes.

Let W = [W?, ..., WY]" be a vector ofl independent standard Brownian motions
under the risk-neutral measuf@. The asset priceS, and the state variableX =
[X1, ..., X", satisfy

ds

S
dX; = pu(Xpdt+ ¢(X)dW,

(re — ) dt + o (S, Xp) AW,

wherep ism x 1, andg is m x d. To simplify notation (and without loss of generality),
the differential ofS is defined as a function of the differential ¥f* only, and thus
the volatility processr is a scalar. The short rate, and payout ratej, are given by
re = B(Xy) andd; = «(X;), whereg and« are real-valued functions. It is easy to
generalize the model to allow the parameterXopfis well ag andé, to depend ors
also.

The Radon—Nikodym derivative [Equation (2)] has the explicit solution

t t
leexp|:—:—2L/ o (S, Xs)zds+/ o (S, XS)de]
0 0

Define thed-length column vectoe = [1, O, ..., 0]'. By Girsanov’s theorem,
t
W, = e/ o (S, Xs)ds— W,
0

is d-dimensional standard Brownian motion undgrwheredQ/d Q = Z;. Defining

S = KS/S and applyindtd's lemma and Girsanov's theorem, we obtain

[oF
m

G —r)dt+o0(KS/S, X0dW!, §=K,

X o
TR

[ (X0) + ¢ (X)o (KS/§, Xpe dt — ¢ (Xp)dW,.

The modification to the driftg (X;)o (K SO/S, Xi)e, represents the instantaneous co-
variance between asset returns and the increments in the vector of state variables.
We now introduced jump processes, each indexedihy = 1,...d. Each jump

process is characterized by the double seque'ﬁ]belri; n=12,...),whereT" repre-
sents the time and the amount of thath jump 2 Let B(R) denote the Boret-algebra

of subsets of the real line. For each get B(R) andi € {1, ...d}, the counting pro-
cessN| (A) represents the number of jumps with a magnitude in theAdey timet.
The jump processes are assumed to be independéiitarid are assumed to satisfy
[NF((0, 00)), N*((0, 00))] = 0, a.s.j # 1; that is, the jumps of the first process do not

12 See BEmaud (1981), for all the needed results on point processes. This discussion borrows heavily from
chapter VIII.
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coincide with the jumps of the other proces$&$he counting measung (dt x dy) is
defined ag'((0,t] x A) = N/ (A), Ae BR),i =1,....,d.

Let A (dy) denote the intensity kernel gf (dt x dy),i = 1,...,d; for eachA ¢
B(R), M (A) is anF;-predictable process. Write the intensity kernel as

Ady) =Aoldy), i=1...,d,
wherei = A{(R) and®}(dy) = Aj(dy)/A, on{i, > O}. The proces®} is a distribu-
tion function for eacht. Loosely speakingi;dt can be interpreted as the probability,
conditional onF;_, of a jump in the nextt units of time;®;(A) can be interpreted as
the probability of a jump with magnitude in the setonditional on#;_ and given that

a jump occurs at.
Define the compensated point processes[q, ..., q"]’, where

g'(dt x dy) = p'(dt x dy) — A{®}(dy)dt, i=1,...,d.
For any bounded ang;-predictable process(., y), the proces$/’ defined by
M, :/ / f(s,y)g'dsxdy), t>0 i=1,...,d
o JR
is a martingale [see Brhaud (1981) for less restrictive conditions bh At the jump
times,
M(TH =M T =+ (T, 3, n=12...,

and between jumps,
dMm = —/ fit, yaejdydt, T, <t<T!, n=12....
R

The asset price and the state variables satisfy

d

S—S = (rt—at)dt+o<s,xt>dw&+/g(s_,xt_,y)q%dtxdy),
- R

dX = M(Xt)dt+¢(xl)dw+/ G(Xi-, y)q(dt x dy),

R

whereo andg are real-valued functiong, is m x 1, andg andG are eachn x d. We
allow A; and®; to be functions of§_ andX;_.

13 The Brownian motioW introduced above is defined on the probability spae¥, 7%, PW). The jump
processes are defined on the probability sg&e 7P, PP) where the filtration is that generated by the
history of the processes:

F=0c (N;(A); se0,1], Ae BR),i €1, .‘.d}) )

On the product space,
Q. F P =@ xR e F PYe PP,
the counting jump processes avitlare independent.
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The Radon—Nikodym derivative [Equation (2)] is

t t t
Z = exp[—%/ aszds—f—/ adeSl—/ /gl(Ss_,Xs_,y)Agd>1(dy)ds:|
0 0 0 R

x [T+ 9(STmy. X (T, 91 iy -

n>1

The Girsanov—Meyer theorem implies
t
W, = ef o (S, Xs)ds— W,
0

is d-dimensional standard Brownian motion undrThe intensity kernel op* under
Q is characterized by

A= / [1+9(S-, X, Y]Pidy),
R

and
1+9(S-, X, y)
Jpll+9(5-, X, y]otdy)
The following simple heuristic derivation can be used to obtain the intensity kernel

underQ. Suppose there have been exaatly 1 jumps in the asset price before time
Then

dl(dy) = o}(dy)

Adydt = Q(Trelt.t+dt]. It ely.y+dyl | A-)

-1
= Zi“Eq (Zt+dtl( Trelt,t+dt], Jrely,y+dy]} | ]:tf) )

where the martingale property dfand iterated expectations have been used to get the
second equality. Now substitufie,.q; = Zi_[1+9(S—. Xi—. y)]on {T} e [t. t + dt]}
(ignoring smaller-order terms) to get
Jdydt = [1+9(S-. X, ]Q (T e [t.t+dt], It ey y+dy] | A-)
= [149(8-, X, YIAdy)dt.

The intensity kernels ofp?, .. . p%) are unaltered by the measure change. The
compensated point processes unQeare thereford = [§%, ..., §°]’, where

gh(dt x dy) = p*(dt x dy) — At} (dy)dt

andg =q,i=2,...,d.
The processes under the numeraire change satisfy
d§ < -
NS— = (8( — rt)dt+(7(KSO/S, Xt)dV\/t

_ / g(KS)/S,, x'[*! y) ql(dt X dy)’
R

1+ 9(KS/S-. Xeeu y)
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dX = ﬂt(Ks)/S,xt)dt—¢(xt)dvv+/ G(X;—, y)d(dt x dy),
R
where
w(X) + (X))o (KS/S, Xoe

+ / G(X¢, YEAL DL (dy) — Al D} (dy)].
R

A (KS/S, Xo)

References
Bates, D., 1991, “Option Pricing Under Asymmetric Processes, with Applications to Options on
Deutschemark Futures,” working paper, University of Pennsylvania.

Bjerksund, P., and G. Stensland, 1993, “American Exchange Options and a Put-Call Transformation: A
Note,” Journal of Business Finance and Accounti2g, 761-764.

Brémaud, P., 198 Roint Processes and Quey&pringer-Verlag, New York.

Byun, S., and I. Kim, 1996, “Relationships Between American Puts and Calls on Futures Contracts,”
working paper, Korea Advanced Institute of Science and Technology.

Carr, P., 1993, “Deriving Derivatives of Derivative Securities,” working paper, Cornell University.

Carr, P., and M. Chesney, 1996, “American Put Call Symmetry,” working paper, Morgan Stanley, Groupe
H.E.C.

Chesney, M., and R. Gibson, 1993, “State Space Symmetry and Two Factor Option Pricing Models,”
in J. Janssen and C. H. Skiadas (ed&pplied Stochastic Models and Data Analy&i¢orld Scientific
Publishing, River Edge, N.J.

Cox, J., 1975, “Notes on Option Pricing I: Constant Elasticity of Variance Diffusions,” working paper,
Stanford University.

Duffie, D., 1992 Dynamic Asset Pricing Theorrinceton University Press, Princeton, N.J.

Dufresne, P., W. Keirstead, and M. Ross, 1997, “Martingale Pricing: A Do-It-Yourself Guide to Deriving
Black-Scholes,” irEquity Derivatives: Applications in Risk Management and Investnitiek Books,
London.

Geman, H., N. El Karoui, and J. Rochet, 1995, “Changes of Numeraire, Changes of Probability Measure
and Option Pricing,Journal of Applied Probability32, 443-458.

Grabbe, J., 1983, “The Pricing of Call and Put Options on Foreign Exchalggial of International
Money and Finance2, 239-253.

Heston, S., 1991, “A Closed-Form Solution for Options with Stochastic Volatility, with Application to
Bond and Currency Options,” working paper, Yale University.

Ingersoll, J., 1997, “Digital Contracts: Simple Tools for Pricing Complex Derivatives,” working paper,
Yale University.

Jamshidian, F., and M. Fein, 1990, “Closed Form Solutions for Oil Futures and European Options in the
Gibson Schwartz Model: A Note,” working paper, Merrill Lynch Capital Markets.

Karatzas, I., 1988, “On the Pricing of American Option&pplied Mathematics and Optimizatioh7,
37-60.

1162



Changes of Numeraire for Pricing Futures, Forwards, and Options

Kholodnyi, V., and J. Price, 1998preign Exchange Symmethi¥orld Scientific Publishing, River Edge,
N.J.

McDonald, R., and M. Schroder, 1990, “A Parity Result for American Options,” working paper,
Northwestern University.

Merton, R., 1976, “Option Pricing when Underlying Stock Returns are Discontinudosjnal of
Financial Economics3, 125-144.

Olsen, T., and G. Stensland, 1991, “Invariant Controls in Stochastic Allocation Problems,” in D. Lund
and B. B. @ksendal (eds$tochastic Models and Option Valy&sevier Science, New York.

Protter, P., 19925tochastic Integration and Differential Equatior@pringer-Verlag, New York.

Rabinovitch, R., 1989, “Pricing Stock and Bond Options when the Default-Free Rate is Stochastic,”
Journal of Financial and Quantitative Analysid4, 447-457.

Reiner, E., and M. Rubinstein, 1991, “Unscrambling the Binary CARESK 4, 75-83.

Schroder, M., 1989, “Computing the Constant Elasticity of Variance Option Pricing Forndolarial
of Finance 44, 211-219.

Schroder, M., 1992, “Some Option Pricing Results Obtained Using a Change of Numeraire,” Ph.D.
summer paper, Northwestern University.

1163



