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A change of numeraire argument is used to derive a general option parity, or
equivalence, result relating American call and put prices, and to obtain new ex-
pressions for futures and forward prices. The general parity result unifies and
extends a number of existing results. The new futures and forward pricing formu-
las are often simpler to compute in multifactor models than existing alternatives.
We also extend previous work by deriving a general formula relating exchange
options to ordinary call options. A number of applications to diffusion models,
including stochastic volatility, stochastic interest rate, and stochastic dividend rate
models, and jump-diffusion models are examined.

A self-financing portfolio is called a numeraire if security prices, mea-
sured in units of this portfolio, admit an equivalent martingale measure.
The most commonly used numeraire is the reinvested short-rate process;
the corresponding equivalent martingale measure is the risk-neutral mea-
sure. Geman, El Karoui, and Rochet (1995) show that other numeraires can
simplify many asset pricing problems. In this article, we build on their re-
sults and, using the reinvested asset price as the numeraire, unify and extend
the literature on option parity, or equivalence, results relating American call
and put prices for asset and futures options. The same numeraire change is
used to obtain new pricing formulas for futures and forwards that are of-
ten simpler to compute in multifactor models. Finally, we use a numeraire
change to simplify exchange option pricing, extending a similar result in
Geman, El Karoui, and Rochet to dividend-paying assets.

The change of numeraire method is most intuitive in the context of foreign
currency derivative securities. As discussed by Grabbe (1983), an Amer-
ican call option to buy 1 DM, with dollar price processS, for K dollars
is equivalent to an American put option to sellK dollars, with DM price
processK/S, for a strike price of 1 DM. The dollar price of the call must
therefore equal the product of the current exchange rate,S0, and the DM
price of the put. The call price is computed using the dollar value of a U.S.
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money market account as the numeraire, while the put price is computed
using the dollar value of a German money market account as the numeraire.
Corresponding to the change of numeraire is a change in probability mea-
sure, from the risk-neutral measure for dollar-denominated assets to the
risk-neutral measure for DM-denominated assets.

As suggested in Grabbe (1983), and developed in later articles, an analo-
gous relation applies to any asset option. A call option to buy one unit of an
asset, with dollar price processS, for K dollars is the same as a put option to
sell K dollars, worthK/Sunits of asset, for one unit of asset. Multiplying
the asset denominated put price by the current asset price converts the price
into dollars.

The same numeraire change can be used to obtain the interest parity
theorem which expresses the time zero dollar forward price,G0(T), for
time T delivery of one DM as the spot currency rate times the ratio of two
discount bond prices:

G0(T) = S0B̃0(T)/B0(T),

whereB0(T) is the time zero dollar price of a discount bond paying $1 at
T , and B̃0(T) is the time zero DM price of a discount bond paying 1 DM
at T . This result can be extended to forward contracts on any asset.

A key issue examined in this article is the change of measure that corre-
sponds to a change of numeraire. Under the risk-neutral measure, the drift
rate of the returns of the asset priceS is the short rate minus the dividend
rate. In Section 1 we show that the drift rate of the returns ofS−1 (the price
of dollars in units of asset) under the new measure is the dividend rate minus
the short rate. The reversal of the roles of the short rate and dividend rate is
intuitive because under the new numeraire the asset is riskless while dollars
are risky. Example 1 shows that the change of measure can result in more
subtle modifications and can change both the intensity and distribution of
jumps in jump-diffusion models. In Section 2 we show that the measure
change also alters the drift terms of nonprice state variables, such as in
stochastic volatility and stochastic interest rate models.

Example 1. Assume that the short rate and dividend rate are both zero,
and the asset price follows a Poisson jump process with intensityλ under
the risk-neutral probability measure, Q. At jump timeτi , i = 1,2, . . . , the
stock price ratio has the Bernoulli distribution

S(τi ) =
{

uS(τi−), with Q-probability p
dS(τi−), with Q-probability1− p,

and between jumps,

dSt/St = (1− µ)λdt, τi < t < τi+1, i = 0,1, . . . ,

whereµ ≡ pu+ (1− p)d is the expected price ratio at jumps, andτ0 ≡ 0.
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A change of numeraire to the underlying asset price is associated with
the new measurẽQ, where dQ̃/d Q = ST/S0. At jumps, the value of a
dollar measured in units of the asset satisfies1

S(τi )
−1 =

{
u−1S(τi−)−1, with Q̃-probability puµ−1

d−1S(τi−)−1, with Q̃-probability(1− p)dµ−1,

and between jumps

dS(t)−1/S(t)−1 = (µ− 1)λdt, τi < t < τi+1, i = 0,1, . . . .

The intensity of the jump process underQ̃ is µλ, which can be obtained
using the martingale property of S under Q:

Q̃(τ1 > t) = EQ(1{τ1>t}ST/S0) = EQ(1{τ1>t}St/S0) = e(1−µ)λt Q(τ1 > t).

The distributions of the returns of S under Q and S−1 underQ̃ are identical
only in the special case when u= d−1 andµ = 1.

We show that subject to some common technical restrictions (Assump-
tions 1 and 2 below), any American call price formula is the same, after a
change of numeraire, to an American put price formula. This result is useful
for obtaining prices, derivatives of prices with respect to model parameters,
and early exercise boundaries for put option formulas from the properties of
the corresponding call option formula. Previous articles derive the correct
put-call equivalence formulas only for some special cases. The geometric
Brownian motion case (see Example 2 below) is derived in McDonald and
Schroder (1990), Bjerksund and Stensland (1993), and, for futures options,
in Byun and Kim (1996).2 Chesney and Gibson (1993) use a change of nu-
meraire to obtain a closed-form European formula for stock-index options
when the short rate is stochastic from Jamshidian and Fein’s (1990) closed-
form European formula for options on assets with a stochastic payout rate.
However, the change of measure is incorrect, in part because it neglects to
make the appropriate modification to the drift term of the state variable.

1 The jump probabilities under̃Q can be verified using the general results in the appendix, or from

Q̃ ({S(τ1) = uS(τ1−)} ∩ {τ1 ≤ t}) = puEQ(1{ τ1≤t }S(τ1−)/S(0)),

for anyt ≤ T , andS(τ1)/S(0) = ue(1−µ)λτ1 on {S(τ1) = uS(τ1−)}.
2 Bjerksund and Stensland (1993) apply a result in Olsen and Stensland (1991) which demonstrates that

the current asset price can be factored out in certain control theory problems where the future reward is
multiplicative in the price of an asset. Their result could be used to derive the parity result in a diffusion
setting when the return volatility is any function of the price, subject to the price process being strictly
positive (such as the CEV model below). The Olsen and Stensland (1991) results can be generalized by
allowing the payoff in Proposition 1 below to depend on a vector of controls. See also Kholodnyi and
Price (1998), who derive equivalence results for geometric Brownian motion and the binomial model.
They use no-arbitrage arguments to derive general equivalence results in a setting where each option price is
a deterministic function of the current underlying asset price (for example, MarkovianSand deterministic
r andδ). In the foreign currency context, the equivalence results are in terms of the generators of the
domestic and foreign evolution (or present value) operators.
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Example 5 below shows the correct measure change in that model. Carr and
Chesney (1996) derive a formula relating call and put prices in a one-factor
model in which the volatility of the underlying price obeys a symmetry con-
dition (see Example 3 below). Bates (1991) derives equivalence formulas
for American put and call options on futures for some special cases to test
classes of option pricing models. Example 8 builds on this idea and derives
general conditions under which the equivalence formula takes a particularly
simple form: switching the roles of the current futures price and the strike
price in the American call option formula gives the price of an otherwise
identical American put option.

Section 1 presents the numeraire change method and the general results
using the reinvested asset price as the numeraire. Section 2 presents ex-
amples of these results. The Appendix derives the numeraire change for a
general jump-diffusion model that includes all the Section 2 examples as
special cases.

1. The Reinvested Asset Price as the Numeraire

We present the general change of numeraire argument before giving the main
results. Fix a finite time horizon [0, T ].3 LetY denote some reinvested asset
price process. That is,Yt is the timet balance of an investment strategy of
buying an asset and reinvesting all dividends into new shares. LetRrepresent
the reinvested short rate with unit initial investment:Rt = exp(

∫ t
0 rsds),

wherer is the short rate process. Ifπ is the state price density process, then
πY andπRareP-martingales. It follows thatY/R is aQ-martingale, where
d Q/d P ≡ πT RT . That is, when measured in units of the numeraireR, Y is
a martingale with respect to the risk-neutral probability measureQ. Geman,
El Karoui, and Rochet (1995) show that we get the same result when we
replaceR with another self-financing portfolioV with V0 = 1 (andV/R
a Q-martingale). ThenY/V is a Q̃-martingale, wheredQ̃/d P ≡ πT VT

(or, equivalently,dQ̃/d Q ≡ VT/RT ). That is, when measured in units of
the numeraireV , Y is a Q̃-martingale. This simple change of numeraire is
the basis for all the pricing results below. The results are very general in
that we allow for incomplete markets and price and state variable dynamics
which are neither continuous nor Markovian. The main assumption is the
existence of a risk-neutral measure.

Assumption 1.There exists a risk-neutral measure, Q, such that every
reinvested price process relative to the reinvested short-rate process is a
Q-martingale.

3 We assume throughout the existence of a complete probability space(Ä,F,F, P) and a filtrationF =
{Ft ; t ≥ 0} which satisfies the usual conditions. See Protter (1992) for the required conditions and for
all the results on semimartingale theory needed in this article. All processes are assumed to be adapted.
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The self-financing portfolio that serves as the numeraire for our main re-
sults is the reinvested asset price process with unit initial balance. LetSbe a
semimartingale representing the price process of an asset with a proportional
dividend payout rateδ.4 We assume throughout thatS is strictly positive.5

The value of the numeraire portfolio at any timet is St exp(
∫ t

0 δsds)/S0.
The probability measurẽQ that corresponds to the new numeraire is

Q̃(A) = EQ(1{ A }ZT ), ∀A ∈ F . (1)

whereZ is defined as the ratio of the new and old numeraires:

Zt ≡ e
∫ t

0
(δs−rs)dsSt/S0, t ∈ [0, T ]. (2)

In other words, the Radon-Nikodym derivative isdQ̃/d Q= ZT .
All the results of this section hold whenS is replaced by a futures price

processF (with delivery dateD ≥ T) if we setδ equal tor . To justify this, we
construct a numeraire portfolio with valueFt exp(

∫ t
0 rsds)/F0 at any timet

by maintaining a long position of exp(
∫ t

0 rsds)/F0 futures contracts att and
adding or subtracting mark-to-market gains and losses from a money market
account, whose time-zero balance is set to $1 [this strategy is described in
Duffie (1992: chap. 7)]. Alternatively, we can use the fact thatF is a Q-
martingale and directly defineZt to beFt/F0.

The following proposition provides a general pricing formula under a
change of numeraire to the reinvested asset price. The constantK will serve
as the strike price in the option pricing applications below. The processS̃
represents the price ofK S0 dollars measured in units of the assetS.

Proposition 1. DefineS̃t = K S0/St andQ̃ by (1). Then the time-zero price
of an asset with theFτ -measurable payoff Pτ at the stopping timeτ ∈ [0, T ]
is

EQ

(
e−
∫ τ

0
rsdsPτ

)
= EQ̃

(
e−
∫ τ

0
δsdsPτ S̃τ /K

)
.

Furthermore

dSt = St−(rt − δt )dt + d Mt

dS̃t = S̃t−(δt − rt )dt + dM̃t , S̃0 = K ,

4 It is easy to extend the results to discrete dividends. In addition to the proportional dividend rateδ,
suppose the asset pays discrete cash dividendsCi at stopping timesTi , i = 1,2, . . . . All the results are

then generalized by adding the term
∑

Ti ∈[0,t ]
log[1+Ci /S(Ti )] to

∫ t

0
δsds throughout. The exponential

of this additional term represents the additional shares of asset accumulated by reinvesting the discrete
dividends into new shares purchased at the ex-dividend priceS.

5 In many applications the results extend to the case whereS has an absorbing boundary at zero. In a
diffusion model, for example, construct a modified stock price process whose diffusion term is killed the
first time the price hits a small positive constant. The dominated convergence theorem can be used to
evaluate the limit of the expectation (in Corollary 1, for example) as this constant goes to zero.

1147



The Review of Financial Studies / v 12 n 51999

where M andM̃ and local martingales under Q and̃Q, respectively.6 The
quadratic variations of M andM̃ satisfy(d Mt )

2/S2
t = (dM̃t )

2/S̃2
t between

jumps.7

Proof. Assumption 1 implies that the price is given by the first expectation.
Applying the numeraire change,

EQ

(
e−
∫ τ

0
rsdsPτ

)
= EQ

(
Zτe
−
∫ τ

0
δsdsPτ S̃τ /K

)
= EQ̃

(
e−
∫ τ

0
δsdsPτ S̃τ /K

)
,

where the last equality is obtained using iterated expectations and the mar-
tingale property ofZ. The equation for the returns ofS follows because
the ratio of the reinvested price process to the reinvested short rate process
is a Q-martingale. The equation for the returns ofS̃ follows because the
ratio of the short rate price process to the reinvested price process is aQ̃-
martingale. The equality, between jumps, of the instantaneous volatilities
of returns follows fromItô’s lemma and from the Girsanov–Meyer theorem
(a generalization of Girsanov’s theorem to a non-Brownian setting), which
implies thatMt − M̃t is absolutely continuous int between jumps.

The proposition shows that the instantaneous return variances ofSandS̃
are identical between jumps. Example 1 illustrates that at jumps, the squared
returns will generally be different.

The first application of Proposition 1 relates call prices to put prices
under a change of numeraire.

Corollary 1. DefineS̃t = K S0/St and Q̃ by Equation (1). Then the value
of a call option on S is the same, after a change of numeraire, as the value
of a put option onS̃:

EQ

(
e−
∫ τ

0
rsds max[Sτ − K , 0]

)
= EQ̃

(
e−
∫ τ

0
δsds max[S0− S̃τ ,0]

)
,

for any stopping timeτ ≤ T .

6 A sufficient condition forM and M̃ to be martingales underQ and Q̃, respectively, is thatr andδ are
bounded processes.

7 The quadratic variation of any semimartingaleY is denoted by [Y,Y], and can be decomposed into its
continuous and jump components:

[Y,Y]t = [Y,Y]c
t +
∑
0≤s≤t

(1Ys)
2,

where [Y,Y]c = [Yc,Yc] and Yc is the path-by-path continuous part ofY. For continuousY (or for t
between jumps), it is common to write(dYt )

2 instead ofd[Y,Y]t . The quadratic variation is invariant to
changes in measure. See Protter (1992: chap. II) for the formal definitions.
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The left-hand side represents the value of a European call option expiring
at τ with strike priceK and underlying price processS. The right-hand
side represents the value of a European put option, also expiring atτ , but
with a strike priceS0 and underlying price processS̃. The roles of the short
rate and asset payout rate are reversed in the call and put price expressions.
Corollary 1 also holds for American options under Assumption 2 below.

Corollary 2. DefineS̃t = K S0/St and Q̃ by Equation (1). Then the value
of an asset-or-nothing binary option on S is the same, after a change of
numeraire, as the value of a cash-or-nothing binary option onS̃:

EQ

(
e−
∫ τ

0
rsdsSτ1{ Sτ≥K }

)
= S0EQ̃

(
e−
∫ τ

0
δsds1{ S0≥S̃τ }

)
,

for any stopping timeτ ≤ T .

Another interpretation is obtained ifτ ≡ min[T, inf{t : St ≥ K }] and
S has continuous sample paths. Then the left-hand side is the value of a
barrier, or first-touch digital, option payingK dollars when the asset price
S rises toK ; and the right-hand side is the value of a barrier option paying
S0 whenS̃ falls to S0 (the events{Sτ ≥ K } and{S0 ≥ S̃τ } are identical).8

Whenδ ≡ 0, Corollary 2 can be obtained from Theorem 2 in Geman, El
Karoui, and Rochet (1995). The result is derived independently under the
assumptions of geometric Brownian motion and constantr andδ by Carr
(1993), Dufresne, Keirstead, and Ross (1997), and Ingersoll (1997).

When r and δ are deterministic (extentions to the stochastic case are
straightforward), Corollary 2 shows that any European option price can
be derived from the probabilitiesQ(ST ≥ K ) and Q̃(S0 ≥ S̃T ) [see also
Theorem 2 in Geman, El Karoui, and Rochet (1995)].

The next corollary presents a new futures price expression. LetF0(T)
denote the time-zero futures price for delivery of assetS at timeT . With
continuous marking to market, the futures price equals the risk-neutral ex-
pectation of the spot price at delivery [see Duffie (1992: chap. 7)]:

F0(T) = EQ(ST ). (3)

When the interest rate and the payout rate are deterministic, the futures price
is simply F0(T) = S0 exp[

∫ T
0 (rs − δs)ds]. When either the interest rate or

the payout rate is stochastic, however, a change of measure toQ̃ gives an
expression that is often easier to compute and also more clearly emphasizes
the role of the cost of carry in futures pricing.

8 Reiner and Rubinstein (1991) price a variety of binary and one-sided barrier options assuming the asset
price follows geometric Brownian motion.
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Corollary 3. The futures price is the product of the spot price and the ex-
pectation, underQ̃, of the exponential of the cost of carry:

F0(T) = S0EQ̃

(
e
∫ T

0
(rs−δs)ds

)
.

In the general diffusion model in the appendix, for example, theQ̃-ex-
pectation on the right-hand side doesn’t depend on the stock price process
if the instantaneous covariance between asset returns and changes in the
state variable is not a function of the asset price. Example 5 shows that the
computation of the futures price using Corollary 3 is particularly simple
with a constant volatility stock return process and an Ornstein–Uhlenbeck
state variable driving eitherr or δ.

The next corollary presents a new forward price expression. LetBt (T)
denote the timet dollar price of a discount bond paying $1 atT :

Bt (T) = EQ

(
e−
∫ T

t
rsds

∣∣∣∣ Ft

)
, t ≤ T. (4a)

Let B̃t (T) denote the timet price, measured in units of asset, of a “discount
bond” paying one unit of the asset atT :

B̃t (T) = S−1
t EQ

(
e−
∫ T

t
rsdsST

∣∣∣∣ Ft

)
= EQ̃

(
e−
∫ T

t
δsds

∣∣∣∣ Ft

)
, t ≤ T.

(4b)
LettingG0(T) denote the time-zero forward price for delivery of assetSat
time T , Duffie (1992: chap. 7) shows that

G0(T) = EQ

(
e−
∫ T

0
rsdsST

) /
B0(T). (5)

Corollary 4 follows from Equations (4b) and (5).

Corollary 4. The forward price is given by the product of the spot price and
the ratio of asset and dollar denominated discount bond prices:

G0(T) = S0B̃0(T)/B0(T),

whereB̃0(T) and B0(T) are defined by Equation (4).

The main advantage of Corollary 4 is in a model where both the short
rate and payout rate are stochastic. If the short rate is deterministic, then
forward and futures prices are equal and Corollary 3 can be used. If the
payout rate is deterministic, then Corollary 4 holds trivially. When we set
δ ≡ r and reinterpretS as a futures price with delivery dateT (which
implies that the forward on the futures contract is equivalent to a forward
on the asset underlying the futures contract), then Corollary 4 provides a
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simple expression for the ratio of forward and futures prices on the same
underlying asset.

The final application of Proposition 1 is to the valuation of exchange
options. LetSa andSb denote two asset prices andδa andδb denote their
corresponding payout rates. Then

dSi
t = Si

t−(rt − δi
t )dt + d Mi

t , i ∈ {a,b} ,
whereMi is a Q-local martingale. Corollary 5 expresses the value of an
exchange option as an ordinary call option by changing the numeraire to
the reinvested price of asseta.

Corollary 5. Define S̃b
t = Sb

t Sa
0/S

a
t and dQ̃/d Q = e

∫ T

0
(δa

s−rs)dsSa
T/S

a
0 .

Then the value of an option to receive one unit of asset b in exchange for
one unit of asset a is the same, after a change of numeraire, as the value of
a call option onS̃b:

EQ

(
e−
∫ τ

0
rsds max[Sb

τ − Sa
τ ,0]

)
= EQ̃

(
e−
∫ τ

0
δa

s ds max[S̃b
τ − Sa

0 ,0]

)
,

for any stopping timeτ ≤ T . Furthermore

dS̃b
t = S̃b

t−(δ
a
t − δb

t )dt + dM̃b
t , S̃b

0 = Sb
0,

whereM̃b is a local martingale under̃Q.

The right-hand side of the first equation is the value of an ordinary call
option with underlying asset processS̃b, short rate processδa, and fixed
strike priceSa

0. Corollary 5 extends a similar result in Geman, El Karoui,
and Rochet (1995) to dividend-paying assets and American-style exercise
(under Assumption 2).

To apply Proposition 1 to American options, we need to assume that the
price of an American option is the supremum, over all stopping timesτ , of
the risk-neutral expected discounted payoff from exercising atτ .

Assumption 2.Let p be the time zero price of an American option allowing
the holder to exercise and receive, at any stopping timeτ ∈ [0, T ], the payoff
Pτ , where P is an adapted process. Then

p = sup
τ∈[0,T ]

EQ

(
e−
∫ τ

0
rsdsPτ

)
(6)

Karatzas (1988) proves Equation (6) in a complete markets diffusion
setting for American options on assets. When markets are incomplete, this
characterization is problematic [see Duffie (1992: chap. 2)]. Because of
possible interaction between the state price density and the choice of ex-
ercise policy, the two-step procedure of first determining the risk-neutral
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measure and then computing Equation (6) may not be valid. Nevertheless,
it is common in the literature to ignore this interaction and first assign a
market price of risk to the relevant state variables (in effect, determining
the risk-neutral measure), then price options as in Equation (6).

2. Examples

The examples in this section are all special cases of the general jump-
diffusion model presented in the appendix. Throughout the remainder of
the article, I letW ≡ [W1, . . . ,Wd]′ andW̃ ≡ [W̃1, . . . , W̃d]′ be vectors
of d independent standard Brownian motions under the measuresQ andQ̃,
respectively.

Example 2. Constant elasticity of variance (CEV). The risk-neutral asset
price process is

dSt

St
= (rt − δt )dt + νSξt dW1

t , ξ ∈ [−1,1],

whereν and ξ are constants, and r andδ are deterministic.9 Geometric
Brownian motion corresponds toξ = 0. Closed-form solutions for Euro-
pean call and put options in this model have been derived by Cox (1975)
[see also Schroder (1989)]. Under the measureQ̃, S̃ is also a CEV process:

dS̃t

S̃t

= (δt − rt )dt + ν̃ S̃ξ̃t dW̃1
t , S̃0 = K ,

with an absorbing boundary at zero (see Footnote 7), whereν̃ ≡ ν(K S0)
ξ

and ξ̃ ≡ −ξ . Using Corollary 1, we obtain the pricing formula for the
American put from the formula for the American call by exchanging S0 and
K , exchanging r andδ, and replacingν with ν̃ andξ with ξ̃ . For the case of
geometric Brownian motion, the equivalence formula is particularly simple
becauseν = ν̃ andξ = ξ̃ .

The next example shows that the Carr and Chesney (1996) put-call sym-
metry result can be obtained from Corollary 1.

Example 3. Carr and Chesney (1996). Let the risk-neutral asset price pro-
cess satisfy

dSt

St
= (rt − δt )dt + σ(St )dW1

t ,

where r andδ are deterministic andσ(·) ≡ f (| log(·/√yK)|) for some
bounded function f and fixed y∈ R+. The functional form ofσ satisfies

9 The results in this and all the succeeding examples are unchanged if any of the constant parameters are
permitted to be deterministic functions of time.
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Carr and Chesney’s symmetry condition which ensures thatσ(St ) = σ(Ŝt ),
t ≥ 0, whereŜt ≡ yK/St .10 The dynamics of̂S underQ̃ are therefore

dŜt

Ŝt

= (δt − rt )dt + σ(Ŝt )dW̃1
t , Ŝ0 = yK/S0.

When S represents a futures price process (andδ = r ), the return distribu-
tions of S andŜ are identical. Applying Corollary 1 and rearranging, we
obtain

EQ

(
e−
∫ τ

0
rsds max[Sτ − K , 0]

)
√

S0K
=

EQ̃

(
e−
∫ τ

0
δsds max[y− Ŝτ ,0]

)
√

Ŝ0y
.

The numerator on the left-hand side is the price of a call option on S
with strike price K . The numerator on the right-hand side is the price of a
put option onŜ with strike price y, and with the roles of r andδ switched.
These call and put options have the same “moneyness” in the sense that
Ŝ0/y = K/S0. For the case of geometric Brownian motion, where f is a
constant function, we let y≡ S0 to reconcile the result with Example 2.

Example 4. Stochastic volatility model of Heston (1991). The risk-neutral
asset price and volatility processes are

dSt

St
= (rt − δt )dt +√νt dW1

t ,

dνt = (µ− κνt )dt + ψ√νt (ρdW1
t +

√
1− ρ2dW2

t ),

where r andδ are deterministic, andµ, κ,ψ andρ ∈ [−1,1] are constants.
Recall that W1 and W2 are independent standard Brownian motions under
Q, and thereforeρW1 +

√
1− ρ2W2 is standard Brownian motion with

instantaneous correlation ofρ with W1.
Under the numeraire change,

dS̃t

S̃t

= (δt − rt )dt +√νt dW̃1
t , S̃0 = K ,

dνt = (µ− [κ − ρψ ]νt )dt − ψ√νt (ρdW̃1
t +

√
1− ρ2dW̃2

t ).

The numeraire change results in a modification to the mean reversion pa-
rameter of the volatility process, and reverses the sign of the covariance
between instantaneous asset returns and volatility changes.

10 Proposition 1 implies that the timet instantaneous return volatility of̂S is σ(St ) = σ(yK/Ŝt ). The
functional form ofσ impliesσ(yK/Ŝt ) = σ(Ŝt ).
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The next example includes a one-dimensional stochastic state variable
driving either the short rate or the dividend rate.

Example 5. Stochastic dividend and stochastic short rate models. Let the
risk-neutral asset price and one-dimensional state variable satisfy

dSt

St
= (rt − δt )dt + σ dW1

t ,

d Xt = (µ− κXt )dt + ν (ρdW1
t +

√
1− ρ2dW2

t ),

where the coefficientsσ ,µ, κ, ν , andρ ∈ [−1,1] are constants. Under the
numeraire change,

dS̃t

S̃t

= (δt − rt )dt + σ dW̃1
t , S̃0 = K ,

d Xt = (µ+ ρσν − κXt )dt − ν (ρdW̃1
t +

√
1− ρ2dW̃2

t ).

The state variable still is Ornstein–Uhlenbeck underQ̃, but with a different
drift parameter.

(a) Stochastic short rate. Letδ be deterministic and rt = f (Xt ) for some
f : R→ R. This model includes Ornstein–Uhlenbeck ( f(x) = x,∀x ∈ R)
and lognormal ( f(x) = ex) short rate processes. From Corollary 3, the
price of a futures contract on S for delivery at T is

F0(T) = S0 exp

(
−
∫ T

0
δsds

)
EQ̃

[
exp

(∫ T

0
rsds

)]
.

This is simpler than evaluating the standard Equation (3):

F0(T) = EQ(ST ) = S0 exp

(
−
∫ T

0
δsds

)
×EQ

(
exp

[∫ T

0
rsds− 1

2
σ 2T + σW1

T

])
.

Corollary 1 implies that the price of a call option on S is equal, after the
numeraire change, to the price of a put option onS̃ with a deterministic
short rate and a stochastic dividend rate.

(b) Stochastic dividend rate. Let r be deterministic andδt = f (Xt ). We
obtain the futures and forward prices from either Corollary 3 or Corollary 4:

F0(T) = G0(T) = S0 exp

(∫ T

0
rsds

)
EQ̃

[
exp

(
−
∫ T

0
δsds

)]
.
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Again, this is simpler than evaluating the standard Equation (3):

F0(T) = S0 exp

(∫ T

0
rsds

)
EQ

(
exp

[
−
∫ T

0
δsds− 1

2
σ 2T + σW1

T

])
.

Corollary 1 implies that a call option on S is equal, after the numeraire
change, to the price of a put option onS̃ with a deterministic dividend rate
and a stochastic short rate.

Example 5 shows that option pricing models for stochastic dividend mod-
els can be obtained from stochastic interest rate models and vice versa. The
European call option formula in Jamshidian and Fein’s (1990) Ornstein–
Uhlenbeckδ and constantr model can be obtained, via some parameter
changes, from the European put option formula in Rabinovitch’s (1989)
Ornstein–Uhlenbeckr and constantδ model. The example also illustrates
how Corollary 3 can simplify futures pricing by reducing a two-factor prob-
lem to a one-factor problem when the volatility terms of the asset returns
and the state variable do not depend on the asset price.

Example 6. Exchange options. The risk-neutral price processes of assets
a and b satisfy

dSa
t

Sa
t
= (rt − δa

t )dt + σ a dW1
t ,

dSb
t

Sb
t
= (rt − δb

t )dt + σ b (ρdW1
t +

√
1− ρ2dW2

t ),

where the volatility coefficients,σ a andσ b, and the instantaneous corre-
lation between asset returns,ρ ∈ [−1,1], are constants. The short rate, r ,
and the dividend rates,δa andδb, are functions of the m-dimensional state
variable vector, X, which satisfies

d Xt = µ(Xt )dt + φ(Xt )dWt ,

whereµ is m× 1, φ is m× d, and again W≡ [W1, . . . ,Wd]′ is standard
Brownian motion under Q.

The price ratioS̃b
t ≡ Sb

t Sa
0/S

a
t underQ̃ is the constant volatility process

dS̃b
t /S̃

b
t = (δa

t − δb
t )dt+ (σ a−ρσ b)dW̃1

t −
√

1− ρ2σ bdW̃2
t , S̃b

0 = Sb
0,

where againW̃ ≡ [W̃1, . . . , W̃d]′ is standard Brownian motion under̃Q.
The drift of X underQ̃ is modified by adding the product of the volatility
of asset a and the first column of the state-variable volatility matrix:

d Xt = [µ(Xt )+ σ aφ(Xt )e]dt − φ(Xt )dW̃t ,
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wheree = [1,0, . . . ,0]′. From Corollary 5, the valuation of an exchange
option can be reduced to the computation of an ordinary call option onS̃
with short rateδa and dividend rateδb.

The next example is the jump-diffusion model of Merton (1976).

Example 7. Merton (1976). As in Example 1, the asset price follows a
Poisson jump process with intensityλ under the risk-neutral probability
measure, Q. At jump timeτi , i = 1,2, . . . , the stock price ratio is lognor-
mally distributed:

log[S(τi )/S(τi−)] ∼ 2(α, γ 2),

where2(m, v) denotes a normal distribution with mean m and variancev.
Between jumps the stock price satisfies

dSt

St−
= [rt − δt − λ(eα+γ 2/2− 1)] dt

+ σ dW1
t , τi < t < τi+1, i = 0,1, . . . ,

whereτ0 ≡ 0.
Using the same calculation as in Example 1 (or the general results in

the appendix), the intensity underQ̃ is equal to the product of the intensity
under Q and the expected price ratio at jumps:λ̃ = λexp(α + 1

2γ
2). The

appendix shows that the distribution functions under Q andQ̃ of the stock
price ratio, denoted by9(·) and9̃(·), respectively, satisfy

9̃(dy) = 9(dy)exp(−α − 1

2
γ 2)y.

From

9(dy) = 1√
2πγ y

exp

[
−1

2

(
log(y)− α

γ

)2
]

dy,

it is straightforward to show that the logarithm of the stock price ratio under
Q̃ is still normally distributed with varianceγ 2, but with meanα+ γ 2. The
dynamics of̃St ≡ K S0/St are therefore

log[S̃(τi )/S̃(τi−)] ∼ 2(−α − γ 2, γ 2), i = 1,2, . . . ,

dS̃t

S̃t−
=
[
δt − rt − λ̃(e−α−γ 2/2− 1)

]
dt

+ σ dW̃1
t , τi < t < τi+1, i = 0,1, . . . .

When the mean stock return at jumps is zero, that isα = −γ 2/2, then
λ = λ̃ and the jump returns of S under Q andS̃ underQ̃ have the same
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distributions. In this special case, Corollary 1 implies that simply switching
the roles of the strike price and the current asset price, and switching the
roles of the short rate and dividend rate in the American call price formula
gives the American put price. Bates (1991) derives this special case for
futures options from the partial differential equation for the option price.

When applied to the case of futures options, several previous examples
contain special cases in which the distributions of the returns ofF underQ
and F̃ underQ̃ are identical.11 In such cases the equivalence relationship
in Corollary 1 takes a particularly simple form: the American put price is
obtained from the American call price formula by simply switching the
roles of the strike price and current futures price. A change of variables can
then be used to relate American call and put prices on the same underlying
futures price process. Example 8 shows general conditions under which
Corollary 1 can be used to relate call and put prices on the same underlying
futures price process, and, using the ideas of Bates (1991), shows how these
conditions can be tested. It is easy to show that the same conditions imply
that the geometric average of the early exercise boundaries of otherwise
identical American calls and puts is equal to the strike price.

Example 8. Empirical implications for futures options. Let F denote the
futures price for delivery at D, where D≥ T . The futures price is assumed
to follow a jump-diffusion process under Q with intensityλ(Xt ) and jumps
at τi , i = 1,2, . . . , when the future price ratio has the distribution

Q (F(τi )/F(τi−) ≤ y) = 9(y), y ≥ 0,

and between jumps,

d Ft

Ft−
= λt (Xt )(1− µ)dt + σ(Xt )dW1

t , τi < t < τi+1, i = 0,1, . . . ,

whereτ0 ≡ 0 andµ ≡ ∫y∈R+ yd9(y) is the expected price ratio at jumps.
The m-dimensional state variable vector, X, satisfies

d Xt = µ(Xt )dt + φ(Xt )dWt ,

where W≡ [W1, . . . ,Wd]′ is standard Brownian motion under Q, and the
coefficientsµ andφ have the appropriate dimensions. The short rate may
also be a function of X.

We obtain an equivalence formula for calls and puts with the same time
zero underlying price by defininĝFt = F2

0 /Ft (= F̃t F0/K). Using the
results in the appendix,̂F is a jump-diffusion process underQ̃ with intensity

11 See Example 1 whenu = d−1 andµ = 1; Example 2 whenξ = 0; Examples 4 and 5 whenρ = 0; and
Example 7 whenα = −σ 2/2.
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λ̃t (·) = λt (·)µ and dynamics

Q̃
(

F̂(τi )/F̂(τi−) ≥ y−1
)
= 9̃(y), y > 0, i = 1,2, . . . ,

dF̂t

F̂t−
= λ̃t (Xt )(1− µ−1)dt

+ σ(Xt )dW̃1
t , τi < t < τi+1, i = 0,1, . . . , F̂0 = F0,

d Xt = [µ(Xt )+ σ(Xt )φ(Xt )e]dt − φ(Xt )dW̃t ,

where9̃(dy) = 9(dy)yµ−1, and, as earlier,e≡ [1,0, . . . ,0]′ andW̃ ≡
[W̃1, . . . , W̃d]′ is standard Brownian motion under̃Q.

Sufficient conditions for the distributions of F under Q andF̂ underQ̃
to be identical are (a)φ(·)e = 0 (the instantaneous changes in the state
variables and futures price are uncorrelated), and (b)λ ≡ 0 (no jumps)
or 9(y) = ∫

[y−1,∞) u9(du), ∀y > 0. Note that the restriction on the
distribution function in (b) implies thatµ = 1. When the futures price ratio
at jumps has a discrete distribution, as in Example 1, then the restriction on
9 is equivalent to19(y) = y−119(y−1), ∀y > 0 [19(y) and19(y−1)

are the Q-probabilities of outcomes y and y−1, respectively]. When the jump
distribution function is differentiable, as in Example 7, then the restriction
is equivalent to9 ′(y) = 9 ′(y−1)y−3,∀y > 0.

Defining x= K/F0, then Corollary 1 implies the following relationship
between calls and puts on futures prices with the same initial value:

EQ

(
e−
∫ τ

0
rsds max[Fτ − F0x, 0]

)
= x EQ̃

(
e−
∫ τ

0
rsds max[F0/x − F̂τ ,0]

)
, (7)

for any x> 0. Under conditions (a) and (b), Equation (7) relates call and
put prices on the same underlying futures price process. We can test these
conditions by comparing the relative prices of American calls and puts.
For example, if both conditions hold, then otherwise identical at-the-money
calls and puts should be priced the same.

Bates (1991) proves Equation (7), using partial differential equation meth-
ods, for the cases of geometric Brownian motion, Merton’s (1976) jump-
diffusion model with zero-mean jump returns (α = −γ 2/2 in Example 7
above), and for the case of a diffusion stock price process and an uncorre-
lated one-dimensional state variable representing stochastic volatility.
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Appendix: Price and State-Variable Dynamics

This appendix derives price and state-variable processes under a change of numeraire
and corresponding change of measure for a general class of diffusion and jump-diffusion
processes.

Let W ≡ [W1, . . . ,Wd] ′ be a vector ofd independent standard Brownian motions
under the risk-neutral measureQ. The asset price,S, and the state variables,X ≡
[X1, . . . , Xm] ′, satisfy

dSt

St
= (rt − δt )dt + σ(St , Xt )dW1

t ,

d Xt = µ(Xt )dt + φ(Xt )dWt ,

whereµ is m×1, andφ is m×d. To simplify notation (and without loss of generality),
the differential ofS is defined as a function of the differential ofW1 only, and thus
the volatility processσ is a scalar. The short rate,r , and payout rate,δ, are given by
rt = β(Xt ) and δt = κ(Xt ), whereβ andκ are real-valued functions. It is easy to
generalize the model to allow the parameters ofX, as well asr andδ, to depend onS
also.

The Radon–Nikodym derivative [Equation (2)] has the explicit solution

Zt = exp

[
−1

2

∫ t

0

σ(Ss, Xs)
2ds+

∫ t

0

σ(Ss, Xs)dW1
s

]
.

Define thed-length column vectore= [1,0, . . . ,0]′. By Girsanov’s theorem,

W̃t = e

∫ t

0

σ(Ss, Xs)ds−Wt

is d-dimensional standard Brownian motion underQ̃, wheredQ̃/d Q = ZT . Defining
S̃t = K S0/St and applyingItô’s lemma and Girsanov’s theorem, we obtain

dS̃t

S̃t

= (δt − rt )dt + σ(K S0/S̃t , Xt )dW̃1
t , S̃0 = K ,

d Xt = [µ(Xt )+ φ(Xt )σ (K S0/S̃t , Xt )e] dt − φ(Xt )dW̃t .

The modification to the drift,φ(Xt )σ (K S0/S̃t , Xt )e, represents the instantaneous co-
variance between asset returns and the increments in the vector of state variables.

We now introduced jump processes, each indexed byi , i = 1, . . .d. Each jump
process is characterized by the double sequence(Ti

n , Ji
n;n = 1,2, . . .), whereTn repre-

sents the time andJi
n the amount of thenth jump.12 LetB(R) denote the Borelσ -algebra

of subsets of the real line. For each setA ∈ B(R) andi ∈ {1, . . .d}, the counting pro-
cessNi

t (A) represents the number of jumps with a magnitude in the setA by time t .
The jump processes are assumed to be independent ofW and are assumed to satisfy
[Ni ((0,∞)), N1((0,∞))] = 0, a.s.,i 6= 1; that is, the jumps of the first process do not

12 See Brémaud (1981), for all the needed results on point processes. This discussion borrows heavily from
chapter VIII.
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coincide with the jumps of the other processes.13 The counting measurepi (dt × dy) is
defined aspi ((0, t ] × A) = Ni

t (A), A ∈ B(R), i = 1, . . . ,d.
Let λi

t (dy) denote the intensity kernel ofpi (dt × dy), i = 1, . . . ,d; for eachA ∈
B(R), λi

t (A) is anFt -predictable process. Write the intensity kernel as

λi
t (dy) = λi

t8
i
t (dy), i = 1, . . . ,d,

whereλi
t ≡ λi

t (R) and8i
t (dy) = λi

t (dy)/λi
t on {λi

t > 0}. The process8i
t is a distribu-

tion function for eacht . Loosely speaking,λi
t dt can be interpreted as the probability,

conditional onFt−, of a jump in the nextdt units of time;8i
t (A) can be interpreted as

the probability of a jump with magnitude in the setA conditional onFt− and given that
a jump occurs att .

Define the compensated point processesq ≡ [q1, . . . ,qd] ′, where

qi (dt × dy) = pi (dt × dy)− λi
t8

i
t (dy)dt, i = 1, . . . ,d.

For any bounded andFt -predictable processf (·, y), the processMi defined by

Mi
t =

∫ t

0

∫
R

f (s, y)qi (ds× dy), t > 0, i = 1, . . . ,d

is a martingale [see Br´emaud (1981) for less restrictive conditions onf ]. At the jump
times,

Mi (Ti
n ) = Mi (Ti

n−)+ f i (Ti
n , Ji

n), n = 1,2, . . . ,

and between jumps,

d Mi
t = −

∫
R

f i (t, y)λi
t8

i
t (dy)dt, Ti

n−1 < t < Ti
n , n = 1,2, . . . .

The asset price and the state variables satisfy

dSt

St−
= (rt − δt )dt + σ(St , Xt )dW1

t +
∫
R

g(St−, Xt−, y)q1(dt × dy),

d Xt = µ(Xt )dt + φ(Xt )dWt +
∫
R

G(Xt−, y)q(dt × dy),

whereσ andg are real-valued functions,µ is m× 1, andφ andG are eachm× d. We
allow λi

t and8i
t to be functions ofSt− andXt−.

13 The Brownian motionW introduced above is defined on the probability space(ÄW,FW, PW). The jump
processes are defined on the probability space(Äp,F p, Pp) where the filtration is that generated by the
history of the processes:

F p
t = σ

(
Ni

s(A); s ∈ [0, t ], A ∈ B(R), i ∈ {1, . . .d}
)
.

On the product space,

(Ä,F, P) ≡ (ÄW ×Äp,FW
t ⊗F p

t , PW ⊗ Pp),

the counting jump processes andW are independent.
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The Radon–Nikodym derivative [Equation (2)] is

Zt = exp

[
−1

2

∫ t

0

σ 2
s ds+

∫ t

0

σsdW1
s −

∫ t

0

∫
R

g1(Ss−, Xs−, y)λ1
s8

1(dy)ds

]
×
∏
n≥1

[1+ g(S(T1
n−), X(T1

n−), J1
n )]1{ T1

n ≤t }.

The Girsanov–Meyer theorem implies

W̃t = e

∫ t

0

σ(Ss, Xs)ds−Wt

is d-dimensional standard Brownian motion underQ̃. The intensity kernel ofp1 under
Q̃ is characterized by

λ̃1
t = λ1

t

∫
R

[1+ g(St−, Xt−, y)]81
t (dy),

and

8̃1
t (dy) = 81

t (dy)
1+ g(St−, Xt−, y)∫

R[1+ g(St−, Xt−, y)]81
t (dy)

.

The following simple heuristic derivation can be used to obtain the intensity kernel
underQ̃. Suppose there have been exactlyn− 1 jumps in the asset price before timet .
Then

λ̃1
t (dy)dt = Q̃

(
T1

n ∈ [t, t + dt], J1
n ∈ [y, y+ dy]

∣∣ Ft−
)

= Z−1
t− EQ

(
Zt+dt1{ T1

n ∈[t,t+dt], J1
n∈[y,y+dy] }

∣∣ Ft−
)
,

where the martingale property ofZ and iterated expectations have been used to get the
second equality. Now substituteZt+dt = Zt−[1+g(St−, Xt−, y)] on

{
T1

n ∈ [t, t + dt]
}

(ignoring smaller-order terms) to get

λ̃1
t (dy)dt = [1+ g(St−, Xt−, y)]Q

(
T1

n ∈ [t, t + dt], J1
n ∈ [y, y+ dy]

∣∣ Ft−
)

= [1+ g(St−, Xt−, y)]λ1
t (dy)dt.

The intensity kernels of(p2, . . . , pd) are unaltered by the measure change. The
compensated point processes underQ̃ are thereforẽq ≡ [q̃1, . . . , q̃d] ′, where

q̃1(dt × dy) = p1(dt × dy)− λ̃1
t 8̃

1
t (dy)dt

andq̃i = qi , i = 2, . . . ,d.
The processes under the numeraire change satisfy

dS̃t

S̃t−
= (δt − rt )dt + σ(K S0/S̃t , Xt )dW̃1

t

−
∫
R

g(K S0/S̃t−, Xt−, y)

1+ g(K S0/S̃t−, Xt−, y)
q̃1(dt × dy),
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d Xt = µ̃t (K S0/S̃t , Xt )dt − φ(Xt )dW̃t +
∫
R

G(Xt−, y)q̃(dt × dy),

where

µ̃t (K S0/S̃t , Xt ) ≡ µ(Xt )+ φ(Xt )σ (K S0/S̃t , Xt )e

+
∫
R

G(Xt , y)e[λ̃1
t 8̃

1
t (dy)− λ1

t8
1
t (dy)].
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