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Abstract-Two summary relative risk estimators, which are analogues of the Mantel-Haenszel 
summary odds ratio, are derived for use in prospective studies with stratified data. One of the 
proposed summary relative risks is shown to be closely related to the maximum likelihood 
estimator of a common risk ratio, assuming a Poisson distribution for the number of cases in 
each stratum. This estimator is compared to a recently proposed index of mortality, the Relative 
Risk Index [l]. 

INTRODUCTION 

THE PROBLEM of obtaining a summary estimate of relative risk from stratified incidence 
or mortality data arises often in epidemiological studies. For data obtained in a retro- 
spective study, Mantel and Haenszel have proposed a summary odds ratio which pro- 
vides an estimate of relative risk if the incidence or mortality rates being compared are 
small [2]. A summary relative risk estimator which is an analogue of the Mantel- 
Haenszel summary odds ratio is derived for use in prospective studies. This estimator is 
compared in several examples to the Relative Risk Index proposed recently by Lilienfeld 
and Pyne [l]. 

DERIVATION OF SUMMARY RELATIVE RISK ESTIMATOR 

Consider a population from which incidence or mortality data have been collected for 
some disease. Suppose that the data for males and females have been reported for m age 
strata indexed by i = 1,2, . . . m. The data from stratum i can be summarized in a 2 x 2 
table such as that shown in Table 1. For stratum i, let the probability of a case in males 
be denoted by pli and the probability of a case in females be denoted by p2i, and let 
qji = 1 - pji for j = 1,2. The odds ratio for stratum i is given by ‘f’i = (pliq2i)/(qlipzi) 
and the relative risk is given by cbi = pli/pzi, Let I;ji = Xji/nji be the observed rate in 
stratum i for sex category j. Then the maximum likelihood estimators for Yi and hi are 
given by @i = ~~i~2i)/(~lip*2i) and $i = ~li/~2i. The problem is to obtain a summary 
estimator of relative risk by combining the age specific risk ratios, &. 

TABLE 1. SUMMARYOF DISEASE DATA FROM ONE AGE STRATUM 

Male Female Total 

Cases 
Non cases 

Total 

Xii x2, x., 
“ii - xi, n2i - ~2~ n I - x.; 

nii n2i n.; 

It will be useful to consider the problem of combining odds ratios before proceeding to 
a discussion of summary relative risk estimates. One method of combining sever:4 ciS> 
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ratios is to form a weighted average, with each odds ratio weighted by the reciprocal of 
its asymptotic variance [3], that is by 

[ 

1 1 1 
-1 

wi = y;2 + 
nliPliqli n2iP2iq2i 

If ‘f’i = 1, SO that pii = p2i = pit these weights reduce to 

nlin2i 
wi = 7 Pi4i* 

1 

The Mantel-Haenszel estimate of summary odds ratio is obtained if Wi is estimated by 
pi = nlinzi~zi~,i/n.i [4]. While it would be possible to estimate Piqi in Wi by p*i~i, where 
ii = x.&.~ and pi = 1 - pi, the Mantel-Haenszel weights have the advantage of guaran- 
teeing that the summary odds ratio will be finite even if some of the individual odds 
ratios 3, are infinite because of one or more zero entries in the 2 x 2 tables. 

The above heuristic derivation of the Mantel-Haenszel estimator utilized the assump- 
tion that all of the individual odds ratios were equal to 1. It can be shown that the 
Mantel-Haenszel estimator is efficient only if Yi = 1 for all strata [4]. The Mantel- 
Haenszel estimator usually performs quite well, however, when the individual odds ratios 
are not equal to 1. One explanation for this fact is that the Mantel-Haenszel estimator 
can be obtained as the first iteration in the calculation of the maximum likelihood 
estimator of a common odds ratio (Clayton cited by Armitage [S]) using the method of 
scoring [6]. The likelihood function and the information matrix required for the calcula- 
tion of the maximum likelihood estimator are given by Gart [3] and the initial estimates 
which lead to the Mantel-Haenszel estimator on the first iteration are Y” = 1 and 
pyi = p8j = ~ - (~ - pl?i4*li) ‘I2 The initial values of pyi and phi will not always be well . 
defined for proportions near t, however they will be well defined for most epidemiologi- 
cal data, for which the probabilities are usually substantially less than i. 

A summary estimator of relative risk can be derived by analogy to the above heuristic 
derivation of the Mantel-Haenszel summary odds ratio. The asymptotic variance of the 
age-specific relative risk Ji is equal to 

( 41i vi = & - + 42i - . 
niiPii nziP2i ) 

Thus if pi = 1, SO that pii = p2i = pi, we can weight each individual relative risk by the 
reciprocal of its asymptotic variance, that is by 

w, = nlin2i Pi -- L 
n.i qi’ 

If we follow the analogy to the derivation of the Mantel-Haenszel summary odds ratio 
and estimate pi/qi in y by $zi/Gii, the resulting summary risk ratio calculated for males 
relative to females would not be equal to the reciprocal of the summary risk ratio 
calculated for females relative to males. If we, however, estimate pi/qi in ll$ by p*zi/‘ii, we 
obtain the combined estimator 

Like the Mantel-HaemLel summary odds ratio, this estimator will be finite even if some 
of the xzi are equal to zero, and the summary risk ratio for males relative to females will 
be the ,,eciprocal of the risk ratio for females relative to males. The asymptotic variance 
of Sl is equal to 

v, = xw;g ( 9li + 4ii 

1 

/ __ __ i tx wi)2 
niiPii n2iP2i 
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Note that the variance estimator obtained by substituting the estimates p^ii and p^zi into 
the expression for V, will be infinite if x2i = 0 for some i. Thus inference based on the 
estimator 6i may prove difficult in studies with very low incidence or mortality rates. 

If the probabilities pli and pzi are small we find that 

This latter form of the summary relative risk estimator, which is an analogue of the 
Mantel-Haenszel estimator for odds ratios, has been proposed by Rothman and Boice 
[7]. They state without documentation that this estimator provides a good approxi- 
mation to the maximum likelihood estimator. In fact, Q2 can be obtained as the first 
iteration in the calculation of the maximum likelihood estimator for the common risk 
ratio assuming a Poisson distribution. The likelihood function can be obtained by 
assuming that X2i is distributed as a Poisson variable with mean n2iPzi and xii is distri- 
buted as a Poisson variable with mean nii4p2i. The initial estimates which lead to 6, as 
the first iteration in the calculation of the maximum likelihood estimator of 4 are 4” = 1 
and pyi = pii = i2i. The asymptotic variance of 6, can be estimated by 

F2 = [CXli(n2i/n.i)2 + d:cX2i(nli/n.i)2]/(~X2inli/n.i)2. 

This variance estimator, like 62, will be well defined provided at least one xii is not equal 
to zero. In addition, the summary risk ratio of males relative to females will be equal to 
the reciprocal of the summary risk ratio of females relative to males when using the 
estimator Q2. 

A noniterative test for heterogeneity of the stratum-specific relative risks can be 
obtained using the summary relative risk estimator 62. Letting pli = x ~~~~~~~~~~ + n2i) 
and pzi = x.i/(nli62 + nzi), define the statistic 

X~ = ~ ~ (Xji - njipji)2/(njipji). 

j=l i=l 

If all of the stratum-specific relative risks are equal, then the statistic Xi will be distri- 
buted asymptotically as a chi-squared random variable with m - 1 degrees of freedom. 

EXAMPLES AND DISCUSSION 

It is informative to examine th_e weighted combination obtained by estimating pi in w 
by pi = x .i/n.i. The weight for pi would then be 

A 

nlin2i Pi 
*i=-- 

n.i Gi’ 

If n,i = n2i = n.i/2 and qi is approximately equal to 1, it follows that 

That is, each relative risk would be weighted by the total number of cases observed in 
the appropriate age stratum. In arguing against a related weighting scheme, Lilienfeld 
and Pyne state that “the number of deaths (expected or observed) has little relevance to 
the epidemiologist, whose principle concern is with death rates and populations.” [l] 
Lilienfeld and Pyne choose to weight each age-specific relative risk by nlin2Jn.i. If 
nli = n2i = n.J2 these weights reduce to n.J4. That is, Lilienfeld and Pyne would weight 
each relative risk by the total population size in the appropriate age stratum. 

The major argument given by Lilienfeld and Pyne to justify their choice of the weights 
ntinzi/n. i is based on their assertion that these weights were given by Cochran [8] and by 
Mantel and Haenszel [Z] for estimating different summary parameters associated with 
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the combination of 2 x 2 tables. Although Lilienfeld and Pyne state that “Cochran esti- 
mated differences in risk”, the fact is that Cochran derived an overall significance test and 
not a summary estimator. In the appendix of his excellent paper [8], Cochran stated that 
if differences are constant on the logit scale the test statistic obtained using the weights 
nlinzi/n.i “should be close to optimum in power.” Radhakrishna showed that these 
weights are optimal for constant differences on the logit scale [9]. Since constant differ- 
ences on the logit scale are equivalent to the assumption of constant odds ratios, the 
optimality of the weights nlin2Jn.i given by Cochran follows from a consideration of 
odds ratios. Furthermore, the weights used by Mantel and Haenszel for combining odds 
ratios were nlin,i~;i4^,i/n. ir not simply nlinzi/n.i. Thus there is no reason to expect the 
Lilienfeld and Pyne weights to be appropriate for estimating any overall parameter based 
upon the combination of 2 x 2 tables. 

A few examples will illustrate important differences between the estimator obtained 
using the Lilienfeld_ and Pyne weights, which depend only on the population structure, 
and the estimator &, which utilizes weights which depend upon the number of events in 
each stratum as well as the population structure. Consider the contrived example rep- 
resented by the data in Table 2. The data for males and females in Table 2 represent a 
population which has been divided into two age strata. The cases could represent inci- 
dence or mortality associated with some disease. Gart has presented techniques for the 
analysis of ratios of rates using maximum likelihood methods based on the Poisson 
distribution [lo]. Using Gart’s methods, we find the overall maximum likelihood esti- 
mate of the risk ratio for males relative to females to be 1.01. A test of the validity of the 
assumption of constant risk ratios in both strata is not significant (p = 0.32), and a test of 
the null hypothesis that the underlying population relative risk is equal to 1 is not 
significant (p > 0.8). Thus, the observed rates are consistent with the hypothesis of equal 
risk for males and females in both strata. 

TABLE 2. NUMBER OF CASES AND POPULATION SIZES FOR TWO AGE STRATA 

Males Females 

Age group Cases Population size Cases Population size Relative risk 

1 3 2,ooo,ooo 1 2,~,~ 3.0 
2 400 2,~,~ 400 2,~,~ 1.0 

In populations for which the number of males at risk in each stratum is equal to the 
number of females at risk, we have seen that the Lilienfeld and Pyne estimate of sum- 
mary relative risk is obtained by weighting each age-specific relative risk by the corre- 
sponding stratum population size. Thus, the Lilienfeld and Pyne estimate for the data in 
Table 2 gives a value of 2.0, which is almost twice as large as the maximum likelihood 
estimate of the underlying risk ratio. Because the strata are of equal size, the relative risk 
of 3.0 from stratum 1 is given the same weight in the Lilienfeld and Pyne estimate as the 
relative risk of 1.0 from stratum 2, in spite of the fact that the observed rates are consist- 
ent with an un$erlying relative risk of 1.0 in stratum 1 as well as in stratum 2. The use of 
the estimator QZ gives a summary relative risk estimate of 1.00, a value virtually identical 
to the maximum likelihood estimate. 

A slight variation of the above example will demonstrate that if the strata have differ- 
ent population sizes, then the difference between the estimates can be even more striking. 

TABLE 3. NUMBER OF CASES AND POPULATION SIZES FOR TWO AGE STRATA 

Males Females 

Age group Cases Population size Cases Population size Relative risk 

1 3 2,ooo,~ 1 2,C@Wc@ 3 
2 400 100,000 400 100,000 1 
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TABLE 4. NUMBER OF CASES AND POPULATION SIZES FOR TWO AGE STRATA 

Males Females 

Age group Cases Population size Cases Population size Relative risk 

I 3 2,000,~ 1 2,~,~ 3.0 
2 200 2,000.000 400 2,000,000 0.5 

Table 3 is identical to Table 2 with the exception that stratum 2 now has a population 
size of 200,000. The methods of Gart [lo] again show that the data are consistent with 
an equal risk for males and females in both strata. The Lilienfeld and Pyne estimate of 
2.90 for this data is almost three times as large as the maximum likelihood estimate of 
1.01. The estimator & again gives a summary relative risk estimate of 1.00. 

Lilienfeld and Pyne apply their method to data on mortality due to diabetes, for which 
some of the age-specific relative risks are significantly less than one and others are‘ 
significantly greater than one. No single relative risk adequately summarizes such hetero- 
geneous data; however, a third example will illustrate how the different weighting systems 
can affect the estimates of relative risk for nonhomogeneous data. Table 4 is identical to 
Table 2 with the exception that only 200 cases are observed for males in age group 2. The 
Lilienfeld and Pyne estimate of summary risk ratio for males relative to females for the 
data in Table 4 is 1.75. This summary relative risk is greater than 1, in spite of the fact 
that the male population had approximately l/2 the number of cases observed in the 
female population of the same size. The estimator & gives a summary relative risk 
estimate of 0.51. For data such as those in Table 4 and in the diabetes example discussed 
by Lilienfeld and Pyne, it is recommended that no attempt be made to summarize the 
stratum-specific risk ratios with a single summary relative risk estimate. 

Consider now a comparison of non-melanoma skin cancer incidence rates for women 
in Dallas-Fort Worth and in Minneapolis-St. Paul. The numbers of cases and the sizes 

of the populations at risk are presented in Table 5, stratified by age [l 11. 

TABLE 5. NUMBER OF CASES OF NON-MELANOMA SKIN CANCER AND POPULATION 
SIZE FOR WOMEN IN DALLAS-FORT WORTH AND MINNEAFQLIS~T. PAUL 

Dallas-Fort Worth Minneapolis-St. Paul 

Age Cases Population size Cases Population size Relative risk 

15-24 4 181,343 1 172,675 3.81 
25-34 38 146,207 I6 123,065 2.00 
35-44 119 121,374 30 96,216 3.14 
45-54 221 111,353 71 92,05 1 2.57 
55-64 259 83,004 102 72,159 2.21 
65-74 310 55,932 130 54,722 2.33 
75-84 226 29,007 133 32,195 1.89 
85+ 65 7,538 40 8,328 1.80 

These data have been analyzed by Gart using maximum likelihood methods based on 
the Poisson model [12]. A test of the hypothesis of no differences in incidence rates 
between the two cities using the methods of Armitage [13] indicates a highly significant 
elevated risk for women in Dallas-Fort Worth (p < 10e4). Using the methods of Gart 
[lo], the maximum likelihood estimate of summary relative risk is found to be 2.24. The 
associated test of the assumption of constant risk ratios across age strata gives a chi- 
squared statistic of 8.05 with 7 degrees of freedom, indicating no significant heterogeneity 
of age-specific risk ratios. 

Using the methods described above for small pi, we find that &Z = 2.24 with an 
estimated standard error of 0.12. Testing for heterogeneity of stratum risks, we find 
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Xi = 8.22, indicating an adequate fit of’ the homogeneous risk model. Thus the results of 
the noniterative methods based on Qz agree closely with the results of the iterative 
maximum likelihood methods. By way of comparison, the Lilienfeld and Pyne summary 
estimate of relative risk is 2.77. One reason for the higher value oJ the Lilienfeld and 
Pyne estimator is that it gives much greater relative weight than Q2 or the maximum 
likelihood estimator do to the ris_k ratio-of 3.81 in the first age stratum. 

In conclusion, the estimators aZ, and Qz derived in this paper provide simple summary 
estimators of relative risk for data collected in a prospective study. If all stratum-specific 
rates are small, the estimator @, will closely approximate the maximum likelihood 
estimator of a common risk ratio. The variance estimator for ~6~ will provide well defined 
estimates except in the degenerate situation in which no cases are observed in one of the 
two populations being compared. In addition, we have seen that the recently proposed 
Relative Risk Index can give an estimate which is substantially different from the maxi- 
mum likelihood estimate, even in cases for which the data are consistent with a constant 
risk ratio across strata. 
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