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Abstract

Background: Ensemble predictors such as the random forest are known to have superior accuracy but their
black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable
especially when forward feature selection is used to construct the model. However, forward feature selection tends to
overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the
advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling
(interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited
evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found
little attention in the literature.

Results: Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark
data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap
aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random
subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative
prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso).
This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to
define a “thinned” ensemble predictor (involving few features) that retains excellent predictive accuracy.

Conclusion: RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive
accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized
linear model (interpretability). These methods are implemented in the freely available R software package randomGLM.

Background
Prediction methods (also known as classifiers, supervised
machine learning methods, regression models, prog-
nosticators, diagnostics) are widely used in biomedical
research. For example, reliable prediction methods are
essential for accurate disease classification, diagnosis and
prognosis. Since prediction methods based on multiple
features (also known as covariates or independent vari-
ables) can greatly outperform predictors based on a single
feature [1], it is important to develop methods that can
optimally combine features to obtain high accuracy. Intro-
ductory text books describe well known prediction meth-
ods such as linear discriminant analysis (LDA), K-nearest
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neighbor (KNN) predictors, support vector machines
(SVM) [2], and tree predictors [3]. Many publications have
evaluated popular prediction methods in the context of
gene expression data [4-9].

Ensemble predictors are particularly attractive since
they are known to lead to highly accurate predictions.
An ensemble predictor generates and integrates multiple
versions of a single predictor (often referred to as base
learner), and arrives at a final prediction by aggregating
the predictions of multiple base learners, e.g. via plurality
voting across the ensemble. One particular approach for
constructing an ensemble predictor is bootstrap aggrega-
tion (bagging) [10]. Here multiple versions of the original
data are generated through bootstrapping, where obser-
vations from the training set are randomly sampled with
replacement. An individual predictor (e.g. a tree predic-
tor) is fitted on each bootstrapped data set. Thus, 100
bootstrapped data sets (100 bags) will lead to an ensemble
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of 100 tree predictors. In case of a class outcome (e.g. dis-
ease status), the individual predictors “vote” for each class
and the final prediction is obtained by majority voting.

Breiman (1996) showed that bagging weak predictors
(e.g. tree predictors or forward selected linear models)
often yields substantial gains in predictive accuracy [10].
But it seems that ensemble predictors are only very rarely
used for predicting clinical outcomes. This fact points to
a major weakness of ensemble predictors: they typically
lead to ”black box” predictions that are hard to interpret in
terms of the underlying features. Clinicians and epidemi-
ologists prefer forward selected regression models since
the resulting predictors are highly interpretable: a linear
combination of relatively few features can be used to pre-
dict the outcome or the probability of an outcome. But
the sparsity afforded by forward feature selection comes at
an unacceptably high cost: forward variable selection (and
other variable selection methods) often greatly overfit
the data which results in unstable and inaccurate pre-
dictors [11,12]. Ideally, one would want to combine the
advantages of ensemble predictors with those of forward
selected regression models. As discussed below, multi-
ple articles describe ensemble predictors based on linear
models including the seminal work by Breiman [10] who
evaluated a bagged forward selected linear regression
model. However, the idea of bagging forward selected lin-
ear models (or other GLMs) appears to have been set aside
as new ensemble predictors, such as the random forest,
became popular. A random forest (RF) predictor not only
bags tree predictors but also introduces an element of ran-
domness by considering only a randomly selected subset
of features at each node split [13]. The number of ran-
domly selected features, mtry, is the only parameter of
the random forest predictor. The random forest predictor
has deservedly received a lot of attention for the following
reasons: First, the bootstrap aggregation step allows one
to use out-of-bag (OOB) samples to estimate the predic-
tive accuracy. The resulting OOB estimate of the accuracy
often obviates the need for cross-validation and other
resampling techniques. Second, the RF predictor pro-
vides several measures of feature (variable) importance.
Several articles explore the use of these importance mea-
sures to select genes [5,13,14]. Third, it can be used to
define a dissimilarity measure that can be used in clus-
tering applications [13,15]. Fourth, and most importantly,
the RF predictor has superior predictive accuracy. It per-
forms as well as alternatives in cancer gene expression
data sets [5] but it really stands out when applied to the
UCI machine learning benchmark data sets where it is as
good as (if not better than) many existing methods [13].
While we confirm the truly outstanding predictive perfor-
mance of the RF, the proposed RGLM method turns out
to be even more accurate than the RF (e.g. across the dis-
ease gene expression data sets). Breiman and others have

pointed out that the black box predictions of the RF pre-
dictor can be difficult to interpret. For this reason, we
wanted to give bagged forward selected generalized linear
regression models another careful look. After exploring
different approaches for injecting elements of random-
ness into the individual GLM predictors, we arrived at
a new ensemble predictor, referred to as random GLM
predictor, with an astonishing predictive performance. An
attractive aspect of the proposed RGLM predictor is that
it combines the advantages of the RF with that of a for-
ward selected GLM. As the name generalized linear model
indicates, it can be used for a general outcome such as a
binary outcome, a multi-class outcome, a count outcome,
and a quantitative outcome. We show that several incre-
mental (but important) changes to the original bagged
GLM predictor by Breiman add to up to a qualitatively
new predictor (referred to as random GLM predictor)
that performs at least as well as the RF predictor on the
UCI benchmark data sets. While the UCI data are the
benchmark data for evaluating predictors, only a dozen
such data sets are available for binary outcome prediction.
To provide a more comprehensive empirical compari-
son of the different prediction methods, we also consider
over 700 comparisons involving gene expression data. In
these genomic studies, the RGLM method turns out to
be slightly more accurate than the considered alterna-
tives. While the improvements in accuracy afforded by the
RGLM are relatively small they are statistically significant.

This article is organized as follows. First, we present
a motivating example that illustrates the high prediction
accuracy of the RGLM. Second, we compare the RGLM
with other state of the art predictors when it comes to
binary outcome prediction. Toward this end, we use the
UCI machine learning benchmark data, over 700 empir-
ical gene expression comparisons, and extensive simula-
tions. Third, we compare the RGLM with other predictors
for quantitative (continuous) outcome prediction. Fourth,
we describe several variable importance measures and
show how they can be used to define a thinned version
of the RGLM that only uses few important features. Even
for data sets comprised of thousands of gene features, the
thinned RGLM often involves fewer than 20 features and
is thus more interpretable than most ensemble predictors.

Methods
Construction of the RGLM predictor
RGLM is an ensemble predictor based on bootstrap aggre-
gation (bagging) of generalized linear models whose fea-
tures (covariates) are selected using forward regression
according to AIC criterion. GLMs comprise a large class
of regression models, e.g. linear regression for a normally
distributed outcome, logistic regression for binary out-
come, multi-nomial regression for multi-class outcome
and Poisson regression for count outcome [16]. Thus,
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RGLM can be used to predict binary-, continuous-, count-
, and other outcomes for which generalized linear mod-
els can be defined. The “randomness” in RGLM stems
results from two sources. First, a non-parametric boot-
strap procedure is used which randomly selects samples
with replacement from the original data set. Second, a
random subset of features (specified by input parame-
ter nFeaturesInBag) is selected for each bootstrap sample.
This amounts to a random sub-space method [17] applied
to each bootstrap sample separately.

The steps of the RGLM construction are presented in
Figure 1. First, starting from the original data set another
equal-sized data set is generated using the non-parametric
bootstrap method, i.e. samples are selected with replace-
ment from the original data set. The parameter nBags
(default value 100) determines how many of such boot-
strap data sets (referred to as bags) are being generated.
Second, a random set of features (determined by the
parameter nFeaturesInBag) is randomly chosen for each
bag. Thus, the GLM predictor for bag 1 will typically
involve a different set of features than that for bag 2. Third,
the nFeaturesInBag of randomly selected features per bag
are rank-ordered according to their individual association
with the outcome variable y in each bag. For a quanti-
tative outcome y, one can simply use the absolute value

of the correlation coefficient between the outcome and
each feature to rank the features. More generally, one
can fit a univariate GLM model to each feature to arrive
at an association measure (e.g. a Wald test statistic or a
likelihood ratio test). Only the top ranking features (i.e.
features with the most significant univariate significance
levels) will become candidate covariates for forward selec-
tion in a multivariate regression model. The top number
of candidate features is determined by the input parame-
ter nCandidateCovariates (default value 50). Fourth, for-
ward variable (feature) selection is applied to the nCan-
didateCovariates of each bag to arrive at a multivariable
generalized linear model per bag. The forward selection
procedure used by RGLM is based on the stepAIC R
function in the MASS R library where method is set to
“forward”. Fifth, the predictions of each forward selected
multivariate model (one per bag) are aggregated across
bags to arrive at a final ensemble prediction. The aggre-
gation method depends on the type of outcome. For a
continuous outcome, predicted values are simply averaged
across bags. For a binary outcome, the adjusted Majority
Vote (aMV) strategy [18] is used which averages predicted
probabilities across bags. Given the estimated class prob-
abilities one can get a binary prediction by choosing an
appropriate threshold (default=0.5).

Figure 1 Overview of the RGLM construction. The figure outlines the steps used in the construction of the RGLM. The pink rectangles represent
data matrices at each step. Width of a rectangle reflects the number of remaining features.
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Importantly, RGLM also has a parameter maxInterac-
tionOrder (default value 1) for creating interactions up to
a given order among features in the model construction.
For example, RGLM.inter2 results from setting maxIn-
teractionOrder=2, i.e. considering pairwise (also known
as 2-way) interaction terms. As example, consider the
case when only pairwise interaction terms are used. For
each bag a random set of features is selected (similar to
the random subspace method, RSM) from the original
covariates, i.e. covariates without interaction terms. Next,
all pairwise interactions among the nFeaturesInBag ran-
domly selected features are generated. Next, the usual
RGLM candidate feature selection steps will be applied to
the combined set of pairwise interaction terms and the
nFeaturesInBag randomly selected features per bag result-
ing in nCandidateCovariates top ranking features per
bag, which are subsequently subjected to forward feature
selection.

These methods are implemented in our R software
package randomGLM which allows the user to input a
training set and optionally a test set. It automatically out-
puts out-of-bag estimates of the accuracy and variable
importance measures.

Parameter choices for the RGLM predictor
As discussed below, we find that it is usually sufficient
to consider only nBags = 100 bootstrap data sets. The
default value for nFeaturesInBag depends on the total
number of features. It is easier to explain it in terms of the
proportion of features randomly selected per bag, nFea-
turesInBag/N, where N is the total number of features
of the training set. Apart from N it is also valuable to
consider the effective number of features which equals
the number of features N plus the number of interaction
terms, e.g. N∗ = N + N(N − 1)/2 in case of pair-
wise interactions. Using this notation, the default value

of nFeaturesInBag can be arrived at by solving equations
presented in Table 1. These equations were found by
empirically evaluating various choices of nFeaturesInBag
values (e.g.

√
N , N/5, N/3, N/2, 2N/3, N). In particular,

we found that in case of N∗ <= 10, then using all features
(i.e setting nFeaturesInBag/N = 1) is often a good choice,
whereas if N∗ > 300 then setting nFeaturesInBag/N =
0.2 works well. The default value nFeaturesInBag/N =
1.0276 − 0.00276N∗ in the intermediate case (10 <

N∗ <= 300) results from fitting an interpolation line
through the two points (10,1) and (300, 0.2). We find that
RGLM is quite robust with respect to the parameter nFea-
turesInBag. To limit the number of covariates considered
in forward selection (which is computationally intensive),
the default value of nCandidateCovariates is set to 50.
Overall, the default values perform well in our simula-
tions, empirical gene expression and machine learning
benchmark studies. But we recommend to use the OOB
estimate of predictive accuracy to inform the choice of the
parameter values.

Relationship with related prediction methods
As discussed below, RGLM can be interpreted as a variant
of a bagged predictor [10]. In particular, it is similar to the
bagged forward linear regression model [10] but differs in
the following aspects:

1. RGLM allows for interaction terms between features
which greatly improve the performance on some
data sets (in particular the UCI benchmark data sets).
We refer to RGLM involving two-way or three way
interactions as RGLM.inter2 and RGLM.inter3,
respectively.

2. RGLM has a parameter nFeaturesInBag that allows
one to restrict the number of features used in each
bootstrap sample. This parameter is conceptually

Table 1 Default setting of nFeaturesInBag

N nFeaturesInBag/N N∗ nFeaturesInBag/N

No interaction 1 − 10 1 1 − 10 1

11 − 300 1.0276 − 0.00276N 11 − 300 1.0276 − 0.00276N∗

> 300 0.2 > 300 0.2

2-way interaction 1 − 4 1 1 − 10 1

5 − 24 1.0276 − 0.00276N(N + 1)/2 11 − 300 1.0276 − 0.00276N∗

> 24 0.2 > 300 0.2

3-way interaction 1 − 3 1 1 − 10 1

4 − 12 1.0276 − 0.00276(N3 + 5N)/6 11 − 300 1.0276 − 0.00276N∗

> 12 0.2 > 300 0.2

This table shows the default values of nFeaturesInBag in terms of nFeaturesInBag/N for RGLM, RGLM.inter2 and RGLM.inter3. N is the total number of features of the
training data. N∗ is the effective number of features which equals the number of features N plus the number of interaction terms. Formulas are shown in terms of both
N and the corresponding N∗ . 1.0276 and 0.00276 are obtained by interpolating a straight line between (10,1) and (300, 0.2).
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related to the mtry parameter of the Random Forest
predictor. In essence, this parameter allows one to
use a random subspace method (RSM, [17]) in each
bootstrap sample.

3. RGLM has a parameter nCandidateCovariates that
allows one to restrict the number of features in
forward regression, which not only has
computational advantages but also introduces
additional instability into the individual predictors,
which is a desirable characteristic of an ensemble
predictor.

4. RGLM optimizes the AIC criterion during forward
selection.

5. RGLM has a “thinning threshold” parameter which
allows one to reduce the number of features involved
in prediction while maintaining good prediction
accuracy. Since a thinned RGLM involves far fewer
features, it facilitates the understanding how the
ensemble arrives at its predictions.

RGLM is not only related to bagging but also to the ran-
dom subspace method (RSM) proposed by [17]. In the
RSM, the training set is also repeatedly modified as in
bagging but this modification is performed in the fea-
ture space (rather than the sample space). In the RSM,
a subset of features is randomly selected which amounts
to restricting attention to a subspace of the original fea-
ture space. As one of its construction steps, RGLM uses
a RSM on each bootstrap sample. Future research could
explore whether random partitions as opposed to random
subspaces would be useful for constructing an RGLM.
Random partitions of the feature space are similar to ran-
dom subspaces but they divide the feature space into
mutually exclusive subspaces [19,20]. Random partition
based predictors have been shown to perform well in
high-dimensional data ([19]). Both RSM and random par-
titions have more general applicability than RGLM since
these methods can be used for any base learner. There
is a vast literature on ensemble induction methods but
a property worth highlighting is that RGLM uses for-
ward variable selection of GLMs. Recall that RGLM goes
through the following steps: 1) bootstrap sampling, 2)
RSM (and optionally creating interaction terms), 3) for-
ward variable selection of a GLM, 4) aggregation of votes.
Empirical studies involving different base learners (other
than GLMs) have shown that combining bootstrap sam-
pling with RSM (steps 1 and 2) leads to ensemble predic-
tors with comparable performance to that of the random
forest predictor [21].

Another prediction method, random multinomial logit
model (RMNL), also shares a similar idea with RGLM. It
was recently proposed for multi-class outcome prediction
[18]. RMNL bags multinomial logit models with random
feature selection in each bag. It can be seen as a special

case of RGLM, except that no forward model selection is
carried out.

Software implementation
The RGLM method is implemented in the freely available
R package randomGLM. The R function randomGLM
allows the user to output training set predictions, out-
of-bag predictions, test set predictions, coefficient values,
and variable importance measures. The predict function
can be used arrive at test set predictions. Tutorials can be
found at the following webpage: http://labs.genetics.ucla.
edu/horvath/RGLM.

Short description of alternative prediction methods
Forward selected generalized linear model predictor
(forwardGLM) We denote by forwardGLM the (single)
generalized linear model predictor whose covariates were
selected using forward feature selection (according to the
AIC criterion). Thus, forwardGLM does not involve bag-
ging, random feature selection, and is not an ensemble
predictor.

Random forest (RF) RF is an ensemble predictor that
consists of a collection of decision trees which vote for the
class of observations [13]. The RF is known for its out-
standing predictive accuracy. We used the randomForest
R package in our studies. We considered two choices for
the RF parameter mtry: i) the default RF predictor where
mtry equals the square root of the number of features and
ii) RFbigmtry where mtry equals the total number of fea-
tures. We always generated at least 500 trees per forest
but used 1000 trees when calculating variable importance
measures.

Recursive partitioning and regression trees (Rpart)
Classification and regression trees were generated using
the default settings rpart R package. Tree methods are
described in [3].

Linear discriminant analysis (LDA) LDA aims to find
a linear combination of features (referred to as discrimi-
nant variables) to predict a binary outcome (reviewed in
[22,23]). We used the lda R function in the MASS R
package with parameter choice method = moment.

Diagonal linear discriminant analysis (DLDA) DLDA
is similar to LDA but it ignores the correlation pat-
terns between features. While this is often an unrealistic
assumption, DLDA (also known as gene voting) has been
found to work well in in gene expression applications [4].
Here we used the default parameters from the supclust R
package [24].

http://labs.genetics.ucla.edu/horvath/RGLM
http://labs.genetics.ucla.edu/horvath/RGLM
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K nearest neighbor (KNN) We used the knn R function
in the class R package [22,23], which chose the parameter
k of nearest neighbors using 3-fold cross validation (CV).

Support vector machines (SVM) We used the default
parameters from the e1071 R package to fit SVMs [2].
Additional details can be found in [25].

Shrunken centroids (SC) The SC predictor is known to
work well in the context of gene expression data [26]. Here
we used the implementation in the pamr R package [26]
which chose the optimal level of shrinkage using cross
validation.

Penalized regression models Various convex penalties
can be applied to generalized linear models. We consid-
ered ridge regression [27] corresponding to an �2 penalty,
the lasso corresponding to an �1 penalty [28], and elas-
tic net corresponding to a linear combination of �1 and
�2 penalties [29]. We used the glmnet R function from
the glmnet R package [30,31] with alpha parameter values
of 0, 1, and 0.5 respectively. glmnet also involves another
parameter (lambda) which was chosen as the median of
the lambda sequence output resulting from glmnet. For
UCI benchmark data sets, pairwise interaction between
features were considered.

20 disease-related gene expression data sets
We use 20 disease related gene expression data sets
involving cancer and other human diseases (described in
Table 2). The first 10 data sets involving various cancers
were previously used by [5]. These data can be down-
loaded from the author’s webpage at http://ligarto.org/
rdiaz/Papers/rfVS/randomForestVarSel.html. The Brain-
Tumor2 and DLBCL data sets were downloaded from
http://www.gems-system.org/. The remaining 8 data sets
(lung1 – MSdiagnosis2) were downloaded from either the
Gene Expression Omnibus (GEO) database or the Array-
Express data base in raw form and subsequently prepro-
cessed using MAS5 normalization and quantile normal-
ization. Only the top 10000 probes (features) with highest
mean expression were considered for outcome prediction.
We briefly point out that Diaz et al (2006) report predic-
tion error rates estimated using a bootstrap method. In
contrast, we report 3-fold cross validation estimates (aver-
aged over 100 random partitions of the data into 3 folds),
which may explain minor numerical differences between
our study and that of Diaz et al (2006).

Empirical gene expression data sets
For all data sets below, we considered 100 randomly
selected gene traits, i.e. 100 randomly selected probes.
They were directly used as continuous outcomes or

Table 2 Description of the 20 disease expression data sets

Data set Samples Features Reference Data set ID Binary outcome

adenocarcinoma 76 9868 [32] NA most prevalent class vs others

brain 42 5597 [33] NA most prevalent class vs others

breast2 77 4869 [34] NA most prevalent class vs others

breast3 95 4869 [34] NA most prevalent class vs others

colon 62 2000 [35] NA most prevalent class vs others

leukemia 38 3051 [36] NA most prevalent class vs others

lymphoma 62 4026 [37] NA most prevalent class vs others

NCI60 61 5244 [38] NA most prevalent class vs others

prostate 102 6033 [39] NA most prevalent class vs others

srbct 63 2308 [40] NA most prevalent class vs others

BrainTumor2 50 10367 [41] NA Anaplastic oligodendrogliomas vs Glioblastomas

DLBCL 77 5469 [42] NA follicular lymphoma vs diffuse large B-cell lymphoma

lung1 58 10000 [43] GSE10245 Adenocarcinoma vs Squamous cell carcinoma

lung2 46 10000 [44] GSE18842 Adenocarcinoma vs Squamous cell carcinoma

lung3 71 10000 [45] GSE2109 Adenocarcinoma vs Squamous cell carcinoma

psoriasis1 180 10000 [46,47] GSE13355 lesional vs healthy skin

psoriasis2 82 10000 [48] GSE14905 lesional vs healthy skin

MSstage 26 10000 [49] E-MTAB-69 relapsing vs remitting RRMS

MSdiagnosis1 27 10000 [50] GSE21942 RRMS vs healthy control

MSdiagnosis2 44 10000 [49] E-MTAB-69 RRMS vs healthy control

Sample size, number of features, original reference, data set IDs and outcomes for the 20 disease related gene expression data sets.

http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
http://www.gems-system.org/


Song et al. BMC Bioinformatics 2013, 14:5 Page 7 of 22
http://www.biomedcentral.com/1471-2105/14/5

dichotomized according to the median value (top half
= 1, bottom half = 0) to generate binary outcomes.
For all data sets except “Brain cancer”, 2

3 of the observa-
tions (arrays) were randomly chosen as the training set,
while the remaining samples were chosen as test set. We
focused on the 5000 genes (probes) with the highest mean
expression levels in each data set.

Brain cancer data sets These two related data sets con-
tain 55 and 65 microarray samples of glioblastoma (brain
cancer) patients, respectively. Gene expression profiles
were measured using Affymetrix U133 microarrays. A
detailed description can be found in [51]. The first data
set (comprised of 55 samples) was used as a training set
while and the second data set (comprised of 65 samples)
was used as a test set.

SAFHS blood lymphocyte data set This data set [52]
was derived from blood lymphocytes of randomly ascer-
tained participants enrolled in the San Antonio Family
Heart Study. Gene expression profiles were measured
with the Illumina Sentrix Human Whole Genome (WG-
6) Series I BeadChips. After removing potential out-
liers (based on low interarray correlations), 1084 samples
remained in the data set.

WB whole blood gene expression data set This is the
whole blood gene expression data from healthy controls.
Peripheral blood samples from healthy individuals were
analyzed using Illumina Human HT-12 microarrays. After
pre-processing, 380 samples remained in the data set.

Mouse tissue gene expression data sets The 4 tis-
sue specific gene expression data sets were generated
by the lab of Jake Lusis at UCLA. These data sets
measure gene expression levels (Agilent array platform)
from adipose (239 samples), brain (221 samples), liver
(272 samples) and muscle (252 samples) tissue of mice
from the B×H F2 mouse intercross described in [53,54].
In addition to gene traits, we also predicted 21 quan-
titative mouse clinical traits including mouse weight,
length, abdominal fat, other fat, total fat, adiposity
index (total fat∗100/weight), plasma triglycerides, total
plasma cholesterol, high-density lipoprotein fraction of
cholesterol, plasma unesterified cholesterol, plasma free
fatty acids, plasma glucose, plasma low-density lipopro-
tein and very low-density lipoprotein cholesterol, plasma
MCP-1 protein levels, plasma insulin, plasma glucose-
insulin ratio, plasma leptin, plasma adiponectin, aortic
lesion size (measured by histological examination using
a semi-quantitative scoring methods), aneurysms (semi-
quantitative scoring method), and aortic calcification in
the lesion area.

Machine learning benchmark data sets
The 12 machine learning benchmark data sets used in this
article are listed in Table 3. Note that only eight of the
12 data sets have a binary outcomes. The multi-class out-
comes of the 4 remaining data sets were turned into binary
outcomes by considering the most prevalent class versus
all other classes combined. Missing data were imputed
using nearest neighbor averaging. For each data set and
prediction method, we report the average 3-fold CV esti-
mate of prediction accuracy over 100 random partitions
of the data into 3 folds.

Simulated gene expression data sets
We simulated an outcome variable y and gene expression
data that contained 5 modules (clusters). Only 2 of the
modules were comprised of genes that correlated with the
outcome y. 45% of the genes were background genes, i.e.
these genes were outside of any module. The simulation
scheme is detailed in Additional file 1 and implemented
in the R function simulateDatExpr5Modules from the
WGCNA R package [55]. This R function was used to
simulate pairs of training and test data sets. The sim-
ulation study was used to evaluate prediction methods
for continuous outcomes and for binary outcomes. For
binary outcome prediction, the continuous outcome y was
thresholded according to its median value.

We considered 180 different simulation scenarios
involving varying sizes of the training data (50, 100, 200,
500, 1000 or 2000 samples) and varying numbers of genes
(60, 100, 500, 1000, 5000 or 10000 genes) that served as
features. Test sets contained the same number of genes
as in the corresponding training set and 1000 samples.
For each simulation scenario, we simulate 5 replicates
resulting from different choices of the random seed.

Table 3 Description of the UCI benchmark data

Data set Samples Features

BreastCancer 699 9

HouseVotes84 435 16

Ionosphere 351 34

diabetes 768 8

Sonar 208 60

ringnorm 300 20

threenorm 300 20

twonorm 300 20

Glass 214 9

Satellite 6435 36

Vehicle 846 18

Vowel 990 10

Sample size and number of features for the 12 UCI machine learning benchmark
data sets.
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Results
Motivating example: disease-related gene expression data
sets
We compare the prediction accuracy of RGLM with that
of other widely used methods on 20 gene expression data
sets involving human disease related outcomes. Many of
the 20 data sets (Table 2) are well known cancer data
sets, which have been used in other comparative studies
[4,5,56,57]. A brief description of the data sets can be
found in Methods.

To arrive at an unbiased estimate of prediction accuracy,
we used 3-fold cross validation (averaged over 100 random
partitions of the data into 3 folds). Note that the accuracy
equals 1 minus the median misclassification error rate.
Table 4 reports the prediction accuracy of different meth-
ods including RGLM, random forest (RF, with default
value for its mtry parameter), random forest (RFbigmtry,
with mtry equal to the total number of features), tree pre-
dictor (also known as recursive partitioning, Rpart), linear
discriminant analysis (LDA), diagonal linear discriminant

analysis (DLDA), k nearest neighbor (KNN), support
vector machine (SVM) and shrunken centroid (SC). A
short description of these prediction methods is provided
in Methods.

As seen from Table 4, RGLM achieves the highest
mean accuracy in these disease data sets, followed by
RFbigmtry and SC. Note that the standard random forest
predictor (with default parameter choice) performs worse
than RGLM. The accuracy difference between RGLM and
alternative methods is statistically significant (Wilcoxon
signed rank test < 0.05) for all predictors except for
RFbigmtry, DLDA and SC. Since RFbigmtry is an ensem-
ble predictor that relies on thousands of features it would
be difficult to interpret its predictions in terms of the
underlying genes.

Our evaluations focused on the accuracy (and mis-
classification error). However, a host of other accuracy
measures could be considered. Additional file 2 presents
the results for sensitivity and specificity. The top 3 meth-
ods with highest sensitivity are: RF (median sensitivity=

Table 4 Prediction accuracy in the 20 disease gene expression data sets

Data set RGLM RF RFbigmtry Rpart LDA DLDA KNN SVM SC

adenocarcinoma 0.842 0.842 0.842 0.737 0.842 0.744 0.842 0.842 0.803

brain 0.881 0.810 0.833 0.762 0.810 0.929 0.881 0.786 0.929

breast2 0.623 0.610 0.636 0.584 0.610 0.636 0.584 0.558 0.636

breast3 0.705 0.695 0.716 0.611 0.695 0.705 0.669 0.674 0.700

colon 0.855 0.823 0.823 0.726 0.855 0.839 0.774 0.774 0.871

leukemia 0.921 0.895 0.921 0.816 0.868 0.974 0.974 0.763 0.974

lymphoma 0.968 1.000 1.000 0.903 0.960 0.984 0.984 1.000 0.984

NCI60 0.902 0.869 0.869 0.738 0.885 0.902 0.852 0.869 0.918

prostate 0.931 0.892 0.902 0.853 0.873 0.627 0.804 0.853 0.912

srbct 1.000 0.944 0.984 0.921 0.857 0.905 0.952 0.873 1.000

BrainTumor2 0.760 0.750 0.740 0.620 0.760 0.700 0.700 0.660 0.720

DLBCL 0.909 0.851 0.883 0.831 0.922 0.779 0.870 0.792 0.857

lung1 0.931 0.931 0.931 0.828 0.914 0.931 0.931 0.897 0.914

lung2 0.935 0.935 0.935 0.826 0.957 0.978 0.935 0.848 0.978

lung3 0.901 0.901 0.887 0.803 0.873 0.859 0.831 0.859 0.887

psoriasis1 0.989 0.994 0.989 0.978 0.994 0.989 0.989 0.983 0.989

psoriasis2 0.963 0.988 0.976 0.963 0.976 0.963 0.963 0.963 0.963

MSstage1 0.846 0.846 0.846 0.423 0.769 0.769 0.808 0.769 0.769

MSdiagnosis1 0.963 0.926 0.926 0.556 0.889 0.889 0.963 0.926 0.926

MSdiagnosis2 0.591 0.614 0.614 0.568 0.545 0.568 0.568 0.568 0.523

MeanAccuracy 0.871 0.856 0.863 0.752 0.843 0.833 0.844 0.813 0.863

Rank 1 4 2.5 9 6 7 5 8 2.5

Pvalue NA 0.029 0.079 0.00014 0.0075 0.05 0.014 0.00042 0.37

For each data set, the prediction accuracy was estimated using 3 − fold cross validation across 100 random partitions of the data into 3 folds. Mean accuracies across
the 20 data sets and the resulting ranks are summarized at the bottom. Two sided paired Wilcoxon test p-values can be used to determine whether the accuracy of
RGLM is significantly different from that of other predictors. Note that the RGLM yields the highest mean accuracy.
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0.969), SVM (0.969) and RGLM (0.960). The top 3 meth-
ods with highest specificity are: SC (0.900), RGLM (0.857)
and KNN (0.848).

A strength of this empirical comparison is that it
involves clinically or biologically interesting data sets but
a severe limitation is that it only involves 20 comparisons.
Therefore, we now turn to more comprehensive empirical
comparisons.

Binary outcome prediction
Empirical study involving dichotomized gene traits
Many previous empirical comparisons of gene expres-
sion data considered fewer than 20 data sets. To arrive
at 700 comparisons, we use the following approach: We
started out with 7 human and mouse gene expression
data sets. For each data set, we randomly chose 100 genes
as gene traits (outcomes) resulting in 7 × 100 possible
outcomes. We removed the gene corresponding to the
gene trait from the feature set. Next, each gene trait was
dichotomized by its median value to arrive at a binary out-
come y. The goal of each prediction analysis was to predict
the dichotomized gene trait y based on the other genes. At
first sight, this artificial outcome is clinically uninteresting
but it is worth emphasizing that clinicians often deal with
dichotomized measures of gene products, e.g. high serum
creatinine levels may indicate kidney damage, high PSA
levels may indicate prostate cancer, and high HDL levels
may indicate hypercholesterolemia. To arrive at unbiased
estimates of prediction accuracy, we split each data set
into a training and test set. Figure 2 (A) shows boxplots of
the accuracies across the 700 comparisons. Similar perfor-
mance patterns are observed for the individual data sets
(Figure 2 (B-H)). The figure also reports pairwise com-
parisons of the RGLM method versus alternative meth-
ods. Specifically, it reports the two-sided Wilcoxon signed
rank test p-values for testing whether the accuracy of the
RGLM predictor is higher than that of the considered
alternative method. Strikingly, RGLM is more accurate
than the other methods overall. While the increase in
accuracy is often minor, it is statistically significant as
can be seen by comparing RGLM to RF (median dif-
ference = 0.02, p = 2.1 × 10−51), RFbigmtry (median
difference = 0.01, p = 7.3 × 10−16), LDA (median differ-
ence = 0.06, p = 2.4 × 10−53), SVM (median difference
= 0.03, p = 1.8 × 10−62) and SC (median difference
= 0.04, p = 4.3 × 10−71). Other predictors perform even
worse, and the corresponding p-values are not shown.

The fact that RFbigmtry is more accurate in this sit-
uation than the default version of RF probably indicates
that relatively few genes are informative for predicting a
dichotomized gene trait. Also note that RGLM is much
more accurate than the unbagged forward selected GLM
which reflects that forward selection greatly overfits the
training data. In conclusion, these comprehensive gene

expression studies show that RGLM has outstanding pre-
diction accuracy.

Machine learning benchmark data analysis
Here we evaluate the performance of RGLM on the UCI
machine learning benchmark data sets which are often
used for evaluating prediction methods [10,13,58-61].
We consider 12 benchmark data sets from the mlbench
R package: 9 UCI data sets and 3 synthetic data sets
(Table 3). We choose these data sets for two reasons. First,
these 12 data sets were also used in the original evalu-
ation of the random forest predictor [13]. Second, these
data include all of the available data sets with binary out-
comes in the mlbench R package. A detailed description
of these data sets can be found in Methods. In his original
publication on the random forest, Breiman found that the
RF outperformed bagged predictors on the UCI bench-
mark data which may explain why bagged GLMs have not
received much attention. We hypothesize that the rela-
tively poor performance of a bagged logistic regression
model on these data sets could be ameliorated by con-
sidering interaction terms between the features. Table 5
confirms our hypothesis. RGLM.inter2 (corresponding to
pairwise interaction terms) has superior or tied accu-
racy compared to RGLM in 10 out of 12 benchmark data
sets. In particular, pairwise interactions greatly improve
the prediction accuracy in the ringnorm data set. Higher
order interactions (RGLM.inter3) do not perform better
than RGLM.inter2 but dramatically increase computa-
tional burden (data not shown).

Overall, we find that RGLM.inter2 ties with SVM
(diff = −0.001, p = 0.96) and RF (diff = 0.001, p = 0.26)
for the first place in the benchmark data. As can be seen
from Additional file 3, RGLM.inter2 achieves the high-
est sensitivity and specificity, which also support its good
performance in the benchmark data sets.

A potential limitation of these comparisons is that we
considered pairwise interaction terms for the RGLM pre-
dictor but not for the other predictors. To address this
issue, we also considered pairwise interactions among fea-
tures for other predictors. Additional file 4 shows that no
method surpasses RGLM.inter2 when pairwise interac-
tion terms are considered. In particular, interaction terms
between features do not improve the performance of the
random forest predictor. A noteworthy disadvantage of
RGLM.inter in case of many features is the computational
burden that may result from adding interaction terms.
In applications where interaction terms are needed for
RGLM, faster alternatives (e.g. RF) remain an attractive
choice.

Simulation study involving binary outcomes
As described in Methods, we simulated 180 gene expres-
sion data sets with binary outcomes. The number of
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Figure 2 Binary outcome prediction in empirical gene expression data sets. The boxplots show the test set prediction accuracies across 700
comparisons. The horizontal line inside each box represents the median accuracy. The horizontal dashed red line indicates the median accuracy of
the RGLM predictor. P-values result from using the two-sided Wilcoxon signed rank test for evaluating whether the median accuracy of RGLM is the
same as that of the mentioned method. For example, p.RF results from testing whether the median accuracy of RGLM is the same as that of the RF.
(A) summarizes the test set performance for predicting 100 dichotomized gene traits from each of the 7 expression data sets. (B-H) show the
results for individual data sets. 100 randomly chosen, dichotomized gene traits were used. Note the superior accuracy of the RGLM predictor across
the different data sets.
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Table 5 Prediction accuracy in the UCI machine learning benchmark data

Data set RGLM RGLM.inter2 RF RFbigmtry Rpart LDA DLDA KNN SVM SC

BreastCancer 0.964 0.959 0.969 0.961 0.941 0.957 0.959 0.966 0.967 0.956

HouseVotes84 0.961 0.963 0.958 0.954 0.954 0.951 0.914 0.924 0.958 0.938

Ionosphere 0.883 0.946 0.932 0.917 0.875 0.863 0.809 0.849 0.940 0.829

diabetes 0.768 0.759 0.759 0.754 0.741 0.768 0.732 0.740 0.757 0.743

Sonar 0.769 0.837 0.817 0.788 0.707 0.726 0.697 0.812 0.822 0.726

ringnorm 0.577 0.973 0.940 0.910 0.770 0.567 0.570 0.590 0.977 0.535

threenorm 0.803 0.827 0.807 0.777 0.653 0.817 0.825 0.815 0.853 0.817

twonorm 0.937 0.953 0.947 0.920 0.733 0.957 0.960 0.947 0.953 0.960

Glass 0.636 0.743 0.827 0.799 0.729 0.659 0.531 0.808 0.748 0.645

Satellite 0.986 0.987 0.988 0.985 0.961 0.985 0.734 0.990 0.988 0.803

Vehicle 0.965 0.986 0.986 0.973 0.944 0.967 0.729 0.909 0.974 0.752

Vowel 0.936 0.986 0.983 0.976 0.950 0.938 0.853 0.999 0.991 0.909

MeanAccuracy 0.849 0.910 0.909 0.893 0.830 0.846 0.776 0.862 0.911 0.801

Rank 6 2 2 4 8 7 10 5 2 9

Pvalue 0.0093 NA 0.26 0.042 0.00049 0.0093 0.0067 0.11 0.96 0.0015

For each data set, the prediction accuracy was estimated using 3 − fold cross validation across 100 random partitions of the data into 3 folds. RGLM.inter2 incorporates
pairwise interaction between features into the RGLM predictor. Mean accuracies and the resulting ranks are summarized at the bottom. The Wilcoxon signed rank test
was used to test whether accuracy differences between RGLM.inter2 and other predictors are significant. RGLM.inter2, RF, and SVM tie for first place (resulting in a rank
of 2 for each method).

features (genes) ranged from 60 to 10000. The sample
sizes (number of observations) of the training data ranged
from 50 to 2000. To robustly estimate the test set accu-
racy we chose a large size for the corresponding test set
data, n = 1000. Figure 3 shows the boxplots of the test
set accuracies of different predictors. The accuracy of the
forwardGLM is much lower than that of RGLM, demon-
strating the benefit of creating an ensemble predictor. The
Wilcoxon test p-value shows that RGLM is significantly
better than all other methods except for the RF (no signifi-
cant difference). In this simulation study, RGLM takes the
first place when it comes to the median accuracy.

Continuous outcome prediction
In the following, we show that RGLM also performs
exceptionally well when dealing with continuous quan-
titative outcomes. We not only compare RGLM to a
standard forward selected linear model predictor (for-
wardGLM) but also a random forest predictor (for a
continuous outcome). We do not report the findings for
the k-nearest neighbor predictor of a continuous outcome
since it performed much worse than the above mentioned
approaches in our gene expression applications (the accu-
racy of a KNN predictor was decreased by about 30
percent). We again split the data into training and test sets.
We use the correlation between test set predictions and
truly observed test set outcomes as measure of predictive
accuracy. Note that this correlation coefficient can take on
negative values (in case of a poorly performing prediction
method).
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Figure 3 Binary outcome prediction in simulation. This boxplot
shows the test set prediction accuracies across the 180 simulation
scenarios.The red dashed line indicates the median accuracy of the
RGLM. P-values result from using the two-sided Wilcoxon signed rank
test for evaluating whether the median accuracy of RGLM is the same
as that of the mentioned method.
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Figure 4 Continuous outcome prediction in empirical gene expression data sets. The boxplots show the test set prediction correlation in 700
applications. P-values result from using the two-sided Wilcoxon signed rank test for evaluating whether the median accuracy of RGLM is the same as
that of the mentioned method. (A) summarizes the test set performance for predicting 100 continuous gene traits from each of the 7 expression
data set. (B-H) show the results for individual data sets. RGLM is superior to other methods overall.
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Figure 5 Continuous clinical outcome prediction in mouse adipose and liver data sets. The boxplots show the test set prediction correlation
for predicting 21 clinical outcomes in (A) mouse adipose and (B) mouse liver. The red dashed line indicates the median correlation for RGLM.
P-values result from using the two-sided Wilcoxon signed rank test for evaluating whether the median accuracy of RGLM is the same as that of the
mentioned method.

Empirical study involving continuous gene traits
Here we used the same 700 gene expression compar-
isons as described above (100 randomly chosen gene
traits from each of 7 gene expression data sets) but
did not dichotomize the gene traits. Incidentally, predic-
tion methods for gene traits are often used for imputing
missing gene expression values. Our results presented
in Figure 4 indicate that for the majority of genes high
accuracies can be achieved. But for some gene traits,
the accuracy measure, which is defined as a correla-
tion coefficient, takes on negative values indicating that
there is no signal in the data. Note that the forward
selected linear predictor ties with the random forest irre-
spective of the choice of the mtry parameter and both
methods perform significantly worse than the RGLM
predictor.

Mouse tissue expression data involving continuous clinical
outcomes
Here we used the mouse liver and adipose tissue gene
expression data sets to predict 21 clinical outcomes
(detailed in Methods). Again, RGLM achieved signifi-
cantly higher median prediction accuracy compared to
the other predictors (Figure 5).

Simulation study involving continuous outcomes
180 gene expression data sets are simulated in the same
way as described previously (for evaluating a binary out-
come) but here the outcome y was not dichotomized.
As shown in Figure 6, the forwardGLM accuracy trails
both RGLM and RF, reflecting again the fact that forward
regression overfits the data. In this simulation study,
we find that RGLM yields significantly higher prediction
accuracy than other predictors.

Comparing RGLM with penalized regression models
In our previous comparisons, we found that RGLM greatly
outperforms forward selected GLM methods based on the
AIC criterion. Many powerful alternatives to forward vari-
able selection have been developed in the literature, in
particular penalized regression models. Here, we compare
RGLM to 3 major types of penalized regression models:
ridge regression [27], elastic net [29], and the lasso [28].
The predictive accuracies of these penalized regression
models were compared to those of the RGLM predictor

forwardGLM RGLM RF RFbigmtry

0.
0

0.
2

0.
4

0.
6

Continuous outcome simulation, 180 tests
p.RF=1.2e−07, p.RFbigmtry=3.9e−17

P
re

di
ct

io
n 

co
rr

el
at

io
n

Figure 6 Continuous outcome prediction in simulation studies.
This boxplot shows the test set prediction accuracy across the 180
simulation scenarios. The red dashed line indicates the median
accuracy for the RGLM. Wilcoxon signed rank test p-values are
presented.
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using the same data sets described above for evaluat-
ing binary outcome and quantitative outcome prediction
methods. Wilcoxon’s signed rank test was used to deter-
mine whether differences in predictive accuracy were
significant. Figure 7 (A) shows that RGLM outperforms
penalized regression models when applied to binary out-
comes. For all comparisons, the paired median difference
(median of RGLM accuracy minus penalized regression
accuracy) is positive which indicates that RGLM is at least
as good if not better than any of these 3 penalized regres-
sion models. In particular, RGLM is significantly better
than ridge regression (diff = 0.025, p = 2 × 10−52)
and the lasso (diff = 0.011, p = 7 × 10−10) on the 700
dichotomized gene expression trait data. Also, RGLM is
significantly better than elastic net (diff = 0.022, p =
2 × 10−27) and lasso (diff = 0.03, p = 3 × 10−28) in sim-
ulations with binary outcomes. Figure 7 (B) shows that
RGLM outperforms penalized regression models for con-
tinuous outcome prediction as well. Positive accuracy dif-
ferences again imply that RGLM is at least as good as these
penalized regression models. In particular, it significantly

outperforms ridge regression (diff = 0.035, p = 2×10−86)
in the 700 continuous gene expression traits data and out-
performs elastic net (diff = 0.029, p = 4 × 10−25) and
lasso (diff = 0.034, p = 8 × 10−27) in simulations with
continuous outcomes.

As a caveat, we mention that cross validation meth-
ods were not used to inform the parameter choices of
the penalized regression models since the RGLM predic-
tor was also not allowed to fine tune its parameters. By
only using default parameter choices we ensure a fair com-
parison. In a secondary analysis , however, we allowed
penalized regression models to use cross validation for
informing the choice of the parameters. While this slightly
improved the performance of the penalized regression
models (data not shown), it did not affect our main con-
clusion. RGLM outperforms penalized regression models
in these comparisons.

Feature selection
Here we briefly describe how RGLM naturally gives rise to
variable (feature) importance measures. We compare the
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Figure 7 Penalized regression models versus RGLM. The heatmap reports the median difference in accuracy between RGLM and 3 types of
penalized regression models in (A) binary outcome prediction and (B) continuous outcome prediction. Each cell entry reports the paired median
difference in accuracy (upper number) and the corresponding Wilcoxon signed rank test p-value (lower number). The cell color indicates the
significance of the finding, where red implies that RGLM outperforms penalized regression model and green implies the opposite. The color panel
on the right side shows how colors correspond to −log10(p-values). diff .Ridge = median(RGLM.accuracy − RidgeRegression.accuracy).
diff .ElasticNet = median(RGLM.accuracy − ElasticNet.accuracy). diff .Lasso = median(RGLM.accuracy − Lasso.accuracy).
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variable importance measures of RGLM with alternative
approaches and show how variable importance measures
can be used for defining a thinned RGLM predictor with
few features.

Variable importance measure
There is a vast literature on using ensemble predictors and
bagging for selecting features. For example, Meinshausen
and Bühlmann describe “stability selection” based on vari-
able selection employed in regression models [62]. The
method involves repetitive sub-sampling, and variables
that occur in a large fraction of the resulting selection set
are chosen. Li et al. use a random k-nearest neighbor pre-
dictor (RKNN) to carry out feature selection [57]. The
Entropy-based Recursive Feature Elimination (E-RFE)
method of Furlanello et al. ranks features in high dimen-
sional microarray data [63]. RGLM, like many ensemble
predictors, gives rise to several measures of feature (vari-
able) importance. For example, the number of times a
feature is selected in the forward GLM across bags, times-
SelectedByForwardRegression, is a natural measure of vari-
able importance (similar to that used in stability selection
[62]). Another variable importance measure is the num-
ber of times a feature is selected as candidate covariate
for forward regression, timesSelectedAsCandidates. Note

that both timesSelectedByForwardRegression and timesSe-
lectedAsCandidates have to be ≤ nBags. Finally, one can
use the sum of absolute GLM coefficient values, sumAb-
sCoefByForwardRegression, as a variable importance mea-
sure. We prefer timesSelectedByForwardRegression, since
it is more intuitive and points to the features that directly
contribute to outcome prediction.

To reveal relationships between different types of vari-
able importance measures, we present a hierarchical clus-
ter tree of RGLM measures, RF measures and standard
marginal analysis based on correlations in Figure 8. As
expected, the marginal association measures (standard
Pearson correlation and the Kruskal-Wallis test which can
both be used for a binary outcome) cluster together. The
same holds for the random forest based importance mea-
sures (“mean decreased accuracy” and “mean decreased
node purity”) and the 3 RGLM based importance mea-
sures.

Leo Breiman already pointed out that random forests
could be used for feature selection in genomic applica-
tions. Dı́az-Uriarte et al. proposed a related gene selection
method based on the RF which yields small sets of genes
[5]. This RF based gene selection method does not return
sets of genes that are highly correlated because such genes
would be redundant when it comes to predictive purposes.
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Relationship of feature ranking methods

Figure 8 Relationship between variable importance measures based on the Pearson correlation across 70 tests. This figure shows the
hierarchical cluster tree (dendrogram) of 7 variable importance measures. absPearsonCor is the absolute Pearson correlation between each gene
and the dichotomous trait. KruskalWallis stands for the −log10 p-value of the Kruskal-Wallis group comparison test (which evaluates whether the
gene is differentially expressed between the two groups defined by the binary trait). RFdecreasedAccuracy and RFdecreasedPurity are variable
importance measures of the RF. timesSelectedAsCandidates, timesSelectedByForwardRegression and sumAbsCoefByForwardRegression are RGLM
measures. These measures are evaluated in 10 tests from each of the 7 empirical expression data sets. In every test, different measures
independently score genes for their relationship with a specific dichotomized gene trait. A Pearson correlation matrix was calculated by correlating
the scores of different variable importance methods. Matrices across the 70 tests were averaged and the result was transformed to a dissimilarity
measure that was subsequently used as input of hierarchical clustering.
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Since the RGLM based importance measure timesSe-
lectedByForwardRegression is expected to lean towards
selecting genes that are highly associated with the out-
come, it comes as no surprise that only a few genes
selected by the procedure of Dı́az-Uriarte et al. turn out
to have a top ranking in terms of the RGLM measure
timesSelectedByForwardRegression (Additional file 5). It is
beyond our scope to provide a thorough evaluation of
the different variable selection approaches and we refer
the reader to the literature, e.g. [5,64]. While our studies
show that the RGLM based variable importance mea-
sures have some relationships to other measures, they are
sufficiently different from other measures to warrant a
thorough evaluation in future comparison studies.

RGLM predictor thinning based on a variable importance
measure
Both RGLM and random forest have superior prediction
accuracy but they differ with respect to how many features
are being used. Recall that the random forest is composed
of individual trees. Each tree is constructed by repeated
node splits. The number of features considered at each
node split is determined by the RF parameter mtry. The
default value of mtry is the square root of the number of
features. In case of 4999 gene features in our empirical
studies, the default value is mtry = 71. For RFbigmtry,
we choose all possible features, i.e. mtry = 4999. We
find that a random forest predictor typically uses more
than 40% of the features (i.e. more than 2000 genes) in
the empirical studies. In contrast, RGLM typically only
involves a few hundred genes in these studies. There are
several reasons why RGLM uses far fewer features in its
construction. First, and foremost, it uses forward selec-
tion (coupled with the AIC criterion) to select features
in each bag. Second, the number of candidate covariates
considered for forward regression is chosen to be low, i.e.
nCandidateCovariates = 50.

In RGLM, the number of times a feature is selected by
forward regression models among all bags, timesSelect-
edByForwardRegression, follows a highly skewed distribu-
tion. Only few features are repeatedly selected into the
model while most features are selected only once (if at
all). It stands to reason that an even sparser, highly accu-
rate predictor can be defined by refitting the GLM on each
bag without considering these rarely selected features. We
refer to this feature removal process as RGLM predictor
thinning. Thus, features whose value of timesSelected-
ByForwardRegression lies below a pre-specified thinning
threshold will be removed from the model fit a posteriori.

Figure 9 presents the effects of predictor thinning in our
empirical study. Here nFeaturesInBag is chosen to equal
the total number of features. To ensure a fair compari-
son, we constructed and thinned the resulting RGLM in
the training set only. Next, we evaluated the accuracy of

the resulting thinned predictor in a test data set. Results
were averaged across the 700 studies used in Figure 2 (A).
Figure 9 (A) shows that the mean (and median) test set
accuracies across 700 tests gradually decreases as the thin-
ning threshold becomes more stringent. This is expected
since the predictor loses potentially informative features
with increasing values of the thinning threshold. Because
the number of bags, nBags, is chosen to be 100, times-
SelectedByForwardRegression takes on a value ≤ 100.
Note that for a thinning threshold of 70 or larger, the
median accuracy is constant at 0.5 which indicates that
for at least 50% of comparisons the prediction is no longer
informative. This reflects the fact that for large thinning
thresholds, no covariates remain in the GLM models and
the resulting predictor reduces to the “naive predictor”
which assigns a constant outcome to all observations.

Interestingly, the accuracy diminishes very slowly for
initial, low threshold values. But even low threshold values
lead to a markedly sparser ensemble predictor (Figure 9
(B)). In other words, the average fraction of features
(genes) remaining in the thinned RGLM declines drasti-
cally as the thinning threshold increases.

We have found that the following empirical function
accurately describes the relationship between thinning
threshold (timesSelectedByForwardRegression threshold)
and proportion of features left in the thinned RGLM
predictor:

proportionLeft = F(x)

=
{

1 x = 0

exp{−e(ex)0.775nBags0.0468(1−log(x))} 0 < x ≤ 1
(1)

where x = thinning threshold
nBags and e denotes Euler’s constant

e ≈ 2.718. Equation 1 was found by log transforming
the data and using optimization approaches for estimat-
ing the parameters. No mathematical derivation was used.
One can easily show that F(x) (Equation 1) is a mono-
tonically decreasing function which accurately describes
the proportion of remaining features as can be seen from
Figure 9 (B). Since the proportion of remaining variables
depends not only on the thinning threshold but also on
the number of bags nBags, we also study how these results
depend on the choice of nBags. Toward this end, we varied
nBags from 20 to 500 for predicting the 100 dichotomized
gene traits in the mouse adipose data set. Additional file 6
shows that the predicted values (red curve) based on
Equation 1 overlaps almost perfectly with the observed
values ( black curve) for all considered choices of nBags,
which indicates that Equation 1 accurately estimates the
proportion of remaining features for range of different
values of nBags.
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Figure 9 RGLM predictor thinning. This figure averages the thinning results of 700 applications (predicting 100 gene traits from each of 7
empirical data set). (A) Accuracies decrease as the thinning threshold increases. The black and blue lines represent the median and mean
accuracies, respectively. (B) The average fraction of genes left in final models (y-axis) drops quickly as the thinning threshold increases as shown in
the black line. The function in Equation 1 approximates the relationship between the two variables as shown in the red line. (C) Number of genes
used in prediction for no thinning versus thinning threshold equal to 20. On average, less than 20% of genes remain.

Our results demonstrate that the number of required
features decreases rapidly even for low values of the
thinning threshold without compromising the prediction
accuracy of the thinned predictor. Figure 9 (C) shows that
a thinning threshold of 20, leads to a thinned predictor
whose accuracy is negligibly lower (difference in median
accuracy=0.009) than that of the original RGLM predic-
tor but it involves less than 20% of the original number of
variables. Recall that even the original number of variables
is markedly lower than that of the RF predictor. These
results demonstrate that the thinned RGLM combines
the advantages of an ensemble predictor (high accuracy)
with that of a forward selected GLM model (few features,
interpretability).

RGLM thinning versus RF thinning
The idea behind RGLM thinning is to remove features
with low values of the variable importance measure. Of
course, a similar idea can be applied to other predictors.

Here we briefly evaluate the performance of a thinned ran-
dom forest predictor which removed variables based on
a low value of its importance measure (“mean decreased
accuracy”). To arrive at an unbiased comparison, both
RGLM and RF are thinned based on results obtained in
the training data. Next, accuracies of the thinned predic-
tors are evaluated in the test set data. Figure 10 compares
thinned RGLM versus thinned RF in our disease related
data sets and also the empirical studies. Numbers that
connect dashed lines are RGLM thinning thresholds. For
a pre-specified threshold, the number of features used
in the thinned random forest is matched to that used in
the thinned RGLM (except for the threshold 0). With-
out thinning, RF uses a lot more features than RGLM as
mentioned previously. As expected, the median number
of genes left for prediction and the corresponding median
prediction accuracy generally decrease as the thinning
threshold becomes more stringent. Overall, a thinned
RGLM yields a significantly higher median accuracy than
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Figure 10 RGLM thinning versus RF thinning. This figure compares the thinned RGLM with the thinned RF in (A) the 20 disease related data sets
and (B) the 700 gene expression traits. Numbers that connect dashed lines are RGLM thinning thresholds. For a pre-specified threshold, the number
of features used for a thinned random forest is matched with that for the thinned RGLM (except for a threshold of 0). The x − axis (log-scaled) and
the y − axis report the median number of genes left for prediction and the median accuracy across data sets, respectively. The Wilcoxon signed rank
test was used to test whether the median accuracy of the thinned RGLM equals that of the thinned RF. Note that the thinned RGLM consistently
yields higher accuracies than the thinned RF (according to the 2-sided test p-values).

a thinned RF across different thinning thresholds (see the
paired Wilcoxon signed rank test p-values). In clinical
practice, a thinned predictor with very few features and
good accuracy can be very useful and interpretable. For
example, choosing a threshold of 5 in panel Figure 10 (A)
and a threshold of 35 in panel (B) would result in very
sparse predictors. In both cases, especially in panel (A),
the thinned RGLM has higher median accuracy than that
of the thinned RF.

Discussion
Why was the RGLM not discovered earlier?
After Breiman proposed the idea of bagged linear regres-
sion models in 1996 [10], many authors have explored the
utility of bagging logistic regression models [65-71]. Most
previous studies report that bagging does not improve
the accuracy of logistic regression. Bühlman and Yu
showed theoretically that bagging helps for “hard thresh-
old” methods but not for “soft threshold” methods (such
as logistic regression) [72]. These studies indicate that
bagged logistic regression models are not beneficial since
the individual predictors (logistic regression models) are
too stable. Overall, we agree with these results. But our
comprehensive evaluations show that by injecting ele-
ments of randomness and instability into a bagged logistic
regression model one arrives at a state of the art predic-
tion method that often outperforms existing methods.
Figure 11 describes why the construction of the RGLM
runs counter to conventional wisdom. As indicated by the
upper right hand panel of Figure 11, the RGLM is based
on two seemingly bad modifications to a GLM. As indi-
cated by the top left panel of Figure 11, forward selection

of a GLM is typically a bad idea since it overfits the data
and thus degrades the prediction accuracy of a single
GLM predictor. As indicated by the bottom right panel
of Figure 11, bagging a full logistic regression (i.e. without
variable selection) is also a bad idea since it leads to a

Figure 11 How do modifications of a GLM affect the prediction
accuracy. The figure illustrates how two bad modifications to a GLM
add up to a superior predictor (RGLM). In general, bagging or forward
model selection alone lower the prediction accuracy of generalized
linear models (such as logistic regression models). However,
combining these two bad modifications leads to the superior
prediction accuracy of the RGLM predictor. The figure may also
explain why the benefits of RGLM type predictors were not previously
recognized.
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complicated (ensemble) predictor without clear evidence
for increased accuracy (see related articles by [65-70]).
But these two seemingly bad modifications add up to
a superior prediction method (i.e. minus times minus
equals plus). Breiman already noted that the instability
afforded by variable selection is important for construct-
ing a bagged linear model based predictor [10]. In order
to define an accurate GLM based ensemble predictor,
we also find that it is important to introduce additional
elements of randomness and instability, which is also
reflected in the name random GLM. Our results show that
the proposed changes (allowing for interaction terms, for-
ward variable selection using AIC, restricting the number
of features per bag and the number of candidate features)
results in a more accurate predictor that involves surpris-
ingly few features (especially when thinning is used).

Additional reasons why the merits of RGLM have not
been recognized earlier may be the following. First, it
may be a historical accident. Bagging was quickly over-
shadowed by other seemingly more accurate ways of
constructing ensemble predictors, such as boosting [73]
and the RF [13], both of which have markedly better
performance on the UCI benchmark data. We find that
RGLM.inter2 ties with SVM and RF for the top spot in
UCI benchmark data set (Table 5). Incidentally, RGLM
performs significantly better than SVM and RF on the dis-
ease data sets (Table 4) and in the 700 gene expression
comparisons (Figure 2).

Second, previous comparisons of bagged predictors in
the context of genomic data were based on limited empir-
ical evaluations. Many comparisons involved fewer than
20 microarray data sets when comparing predictors [4,5].
While the comparisons involved clinically important data
sets from cancer applications, these studies were simply
not comprehensive enough.

Third, previous studies probably did not consider
enough bootstrap samples (bags). While previous studies
used 10 to 50 bags, we always used 100 bags when con-
structing the RGLM. To illustrate how prediction accu-
racy depends on the number of bags, we evaluate the
brain cancer data with 1 to 500 bags using 5 gene traits
randomly selected from those used in our binary and con-
tinuous outcome prediction, respectively. The results are
shown in Additional file 7. Most improvement is gained
in the first several dozens of bags. 100 bags is generally
enough although fluctuations remain. More bags may lead
to slightly better predictions but at the expense of longer
computation time.

Strengths and limitations
RGLM shares many advantages of bagged predictors
including a nearly unbiased estimate of the prediction
accuracy (the out-of-bag estimate) and several variable
importance measures. While our empirical studies focus

on binary and continuous outcomes, it is straightfor-
ward to define RGLM for count outcomes (resulting in
a random Poisson regression model) and for multi-class
outcomes (resulting in a random multinomial regression
model).

A noteworthy limitation of RGLM is computational
complexity since the forward selection process (e.g. by
the function stepAIC [22] from the MASS R package) is
particularly time-consuming. The total time depends on
the number of candidate features, the order of interaction
terms, and the number of bags. Our R implementation
allows the user to use parallel processing for speeding up
the calculations.

Our empirical studies demonstrate that RGLM com-
pares favorably with the random forest, support vector
machines, penalized regression models, and many other
widely used prediction methods. As a caveat, we mention
that we chose default parameter choices for each of these
methods in order to ensure a fair comparison. Future stud-
ies could evaluate how these prediction methods compare
when resampling schemes (e.g. cross validation) are used
to inform parameter choices. Our randomGLM R package
will allow the reader to carefully evaluate the method.

Conclusions
Since individual forward selected GLMs are highly inter-
pretable, the resulting ensemble predictor is more inter-
pretable than an RF predictor. Our empirical studies (20
disease related gene expression data sets, 700 gene expres-
sion trait data, the UCI benchmark data) clearly high-
light the outstanding prediction accuracy afforded by the
RGLM. High accuracies are achieved not only in genomic
data sets (many features, small sample size) but also in the
UCI benchmark data (few features, large sample size).

Additional files

Additional file 1: Simulation study design. This file describes the
simulation studies and presents R code used for simulating the data set.

Additional file 2: Sensitivity and specificity of predictors in the 20
disease gene expression data sets. For each data set and prediction
method, the table reports the sensitivity and specificity estimated using
3-fold cross validation. More precisely, the table reports the average 3-fold
CV estimate over 100 random partitions of the data into 3 folds. Median
sensitivity and specificity across data sets are summarized at the bottom.

Additional file 3: Sensitivity and specificity of predictors in the UCI
machine learning benchmark data. For each data set and prediction
method, the table reports the sensitivity and specificity estimated using
3-fold cross validation. More precisely, the table reports the average 3-fold
CV estimate over 100 random partitions of the data into 3 folds. Median
sensitivity and specificity across data sets are summarized at the bottom.

Additional file 4: Prediction accuracy when including pairwise
interactions between features in the UCI machine learning
benchmark data. This table is an extension to Table 5. It shows the
prediction accuracy of predictors other than RGLM when considering
pairwise interactions between features in the same UCI mlbench data sets.

http://www.biomedcentral.com/content/supplementary/1471-2105-14-5-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-5-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-5-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-5-S4.pdf
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Although several predictors show improvement, none of them beats
RGLM.inter2.

Additional file 5: Comparison of RGLM based feature selection
method with the RF based method of Dı́az-Uriarte et al. For each data
set in the 20 disease gene expression data, the RF based variable selection
method by Dı́az-Uriarte et al selects a small set of genes. For each of the
selected genes, the file reports the ranking in terms of the RGLM variable
importance measure timesSelectedByForwardRegression. As expected, only
a few of the selected genes have a high rank in terms of
timesSelectedByForwardRegression illustrating that these variable selection
methods are different.

Additional file 6: Effect of the number of bags on RGLM predictor
thinning. s This figure reports how prediction accuracy changes as
variable thinning is applied to the RGLM. Results are averaged over the 100
dichotomized gene traits in the mouse adipose data set. The five rows
correspond to nBags values of 20, 50, 100, 200, 500 respectively. Within
each row, the two panels have the same meaning as in Figure 9.

Additional file 7: Prediction accuracy versus number of bags used for
RGLM. This figure presents the results for predicting 5 gene traits in the
brain cancer data set when different numbers of bags (bootstrap samples)
are used for constructing the RGLM. Each color represents one gene trait.
(A) Binary outcome prediction. The 5 gene traits were randomly selected
from all 100 gene traits used in the binary outcome prediction section. (B)
Continuous outcome prediction. The 5 gene traits were randomly selected
from all 100 gene traits used in the continuous outcome prediction.
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