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This art icle  shows that  the one-state-variable
interest-rate models of Vasicek (1977) and Cox,
Ingersoll, and Ross (1985b) can be extended so
that they are consistent with both the current term
structure of interest rates and either the current
volatilities of all spot interest rates or the current
vo la t i l i t i e s  o f  a l l  f o rward  in t e res t  ra t e s .  The
extended Vasicek model is shown to be very tracta-
ble analytically. The article compares option prices
obtained using the extended Vasicek model with
those obtained using a number of other models.

In recent years, interest-rate-contingent claims such
as caps, swaptions, bond options, captions, and mort-
gage-backed securities have become increasingly
popular. The valuation of these instruments is now a
major concern of both practitioners and academics.

Practitioners have tended to use different models
for valuing different interest-rate-derivative securi-
ties. For example, when valuing caps, they frequently
assume that the forward interest rate is lognormal and
use Black’s (1976) model for valuing options on com-
modity futures, The volatility of the forward rate is
assumed to be a decreasing function of the time to
maturity of the forward contract. When valuing Euro-
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pean bond options and swaptions, practitioners often also use Black’s
(1976) model. However, in this case, forward bond prices rather than
forward interest rates are assumed to be lognormal.

Using different models in different situations has a number of dis-
advantages. First, there is no easy way of making the volatility para-
meters in one model consistent with those in another model. Second,
it is difficult to aggregate exposures across different interest-rate-
dependent securities. For example, it is difficult to determine the
extent to which the volatility exposure of a swaption can be offset by
a position in caps. Finally, it is difficult to value nonstandard securities.

Several models of the term structure have been proposed in the
academic literature. Examples are Brennan and Schwartz (1979, 1982),
Courtadon (1982), Cox, Ingersoll, and Ross (1985b), Dothan (1978),
Langetieg (1980), Longstaff (1989), Richard (1979), and Vasicek
(1977). All these models have the advantage that they can be used
to value all interest-rate-contingent claims in a consistent way. Their
major disadvantages are that they involve several unobservable par-
ameters and do not provide a perfect fit to the initial term structure
of interest rates.

Ho and Lee (1986) pioneered a new approach by showing how an
interest-rate model can be designed so that it is automatically con-
sistent with any specified initial term structure. Their work has been
extended by a number of researchers, including Black, Derman, and
Toy (1990), Dybvig (1988), and Milne and Turnbull (1989). Heath,
Jarrow, and Morton (1987) present a general multifactor interest-rate
model consistent with the existing term structure of interest rates and
any specified volatility structure. Their model provides important the-
oretical insights, but in its most general form has the disadvantage
that it is computationally quite time consuming.

In this paper, we present two one-state variable models of the short-
term interest rate. Both are consistent with both the current term
structure of interest rates and the current volatilities of all interest
rates. In addition, the volatility of the short-term interest rate can be
a function of time. The user of the models. can specify either the
current volatilities of spot Interest rates (which will be referred to as
the term structure of spot rate volatilities) or the current volatilities
of forward interest rates (which will be referred to as the term struc-
ture of forward rate volatilities). The first model is an extension of
Vasicek (1977). The second model is an extension of Cox, Ingersoll,
and Ross (1985b).

The main contribution of this paper is to show how the process
followed by the short-term interest rate in the two models can be
deduced from the term structure of interest rates and the term struc-
ture of spot or forward interest-rate volatilities. The parameters of the
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process can be determined analytically in the case of the extended
Vasicek model, and numerically in the case of the extended Cox,
Ingersoll, and Ross (CIR) model. Once the short-term interest rate
process has been obtained, either model can be used to value any
interest-rate contingent claim. European bond options can be valued
analytically when the extended Vasicek model is used.

The analytic tractability of the extended Vasicek model makes it
very appealing as a practical tool. It is therefore of interest to test
whether the option prices given by this model are similar to those
given by other models. In this paper we compare the extended Vas-
icek model with the one-factor CIR model and with two different two-
factor models. The results are encouraging. They suggest that, if two
models are fitted to the same initial term structure of interest rates,
the same term structure of interest-rate volatilities, and the same data
on the expected future instantaneous standard deviation of the short
rate, the differences between the option prices produced by the mod-
els are small.

The rest of this paper is organized as follows. In Section 1, the
properties of the Vasicek and CIR models are outlined. In Sections
2 and 3, extensions of the two models are developed. In Section 4,
the way in which market data can be used to estimate the unknown
functions in the models is discussed. In Section 5, the bond option
and cap prices calculated using the extended Vasicek model are com-
pared with their true values when interest rates are assumed to follow
the one-factor CIR model. In Section 6, bond option prices calculated
using the extended Vasicek model are compared with the true prices
when interest rates are assumed to follow two different two-factor
models. Conclusions are in Section 7.

. The Vasicek and CIR Models

A number of authors have proposed one-state-variable models of the
term structure in which the short-term interest rate, r, follows a mean-
reverting process of the form

(1)

where a, b, σ, and β are positive constants and dz is a Wiener process.
In these models, the interest rate, r, is pulled toward a level b at rate
a. Superimposed upon this “pull” is a random term with variance

per unit time.
The situations where β = 0 and β = 0.5 are of particular interest

because they lead to models that are analytically tractable. The β =
0 case was first considered by Vasicek (1977), who derived an analytic
solution for the price of a discount bond. Jamshidian (1989) showed
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that, for this value of β, it is also possible to derive relatively simple
analytic solutions for the prices of European call and put options on
both discount bonds and coupon-bearing bonds. One drawback of
assuming β = 0 is that the short-term interest rate, r, can become
negative. CIR consider the alternative β = 0.5. In this case, r can, in
some circumstances, become zero but it can never become negative.
CIR derive analytic solutions for the prices of both discount bonds
and European call options on discount bonds.

It is reasonable to conjecture that in some situations the market’s
expectations about future interest rates involve time-dependent pa-
rameters. In other words, the drift rates and volatility of r may be
functions of time as well as being functions of r and other state
variables. The time dependence can arise from the cyclical nature of
the economy, expectations concerning the future impact of monetary
policies, and expected trends in other macroeconomic variables.

In this article we extend the model in (1) to reflect this time
dependence. We add a time-dependent drift, to the process for
r, and allow both the reversion rate, a, and the volatility factor, σ, to
be functions of time. This leads to the following model for r:

(2)

This can be regarded as a model in which a drift rate, is imposed
on a variable that would otherwise tend to revert to a constant level
b. Since (2) can be written as

it can also be regarded as a model in which the reversion level is a
function, of time. We will examine the situations where
β = 0 and β = 0.5. The β = 0 case is an extension of Vasicek’s model;
the β = 0.5 case is an extension of the CIR model. We will show that
when appropriate assumptions are made about the market price of
interest-rate risk, the model can be fitted to the term structure of
interest rates and the term structure of spot or forward rate volatilities.

As shown by Dybvig (1988) and Jamshidian (1988), the continuous
time equivalent of the Ho and Lee (1986) model is

This is the particular case of (2), where β = 0, a(t) = 0, and σ (t) is
constant. If the market price of interest-rate risk is a function of time,

can be chosen so that the model fits the initial-term structure of
interest rates. The model has the disadvantage that it incorporates no
mean reversion; the instantaneous standard deviations of all spot and
forward rates are the same.
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The continuous time equivalent of the Black, Derman, and Toy
(1990) model can be shown to be

In this model log r is mean reverting. The function σ (t) is chosen to
make the model consistent with the term structure of spot rate vol-
atilities and may not give reasonable values for the future short rate
volatility. The model has the disadvantage that neither bond prices
nor European bond option prices can be determined analytically.

2. The Extended Vasicek Model

Our proposed extension of Vasicek’s model is given by (2) with β
= 0:

(3)
We will assume that the market price of interest-rate risk is a function
of time, X(t), that is bounded in any interval (0, τ). 1 From Cox, Inger-
soll, and Ross (1985a), this means that the price, f, of any contingent
claim dependent on r must satisfy

where
(4)

The price of a discount bond that pays off $1 at time T is the solution
to (4) that satisfies the boundary condition f = 1 when t = T. Consider
the function

(5)
This satisfies (4) and the boundary condition when

(6)

and

with

(7)

(8)

1 This corresponds to the assumption made by Vasicek. In fact, the same final model is obtained if

the market price of interest-rate risk is set equal to or even if it is set equal
is the market price of risk, Girsanov’s theorem shows that for no arbitrage the condition

must hold. Duffie (1988, p. 229) provides a discussion of this. The function
presents no problems as far as this condition is concerned if we assume

are always bounded in any interval
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It follows that if (6) and (7) are solved subject to the boundary
conditions in (8), Equation (5) provides the price of a discount bond
maturing at time T. Solving (6) and (7) for the situation where a(t),

are constant leads to the Vasicek bond-pricing formula:

The function, σ (t), in the extended model should be chosen to
reflect the current and future volatilities of the short-term interest
rate, r. As will be shown later, A(0, T) and B(0, T) are defined by
σ (0), the current term structure of interest rates, and the current term
structure of spot or forward interest-rate volatilities. The first step in
the analysis is therefore to determine
in terms of A(0, T), B(0, T), and σ (t).

Differentiating (6) and (7) with respect to T, we obtain

(9)

(10)

Eliminating a(t) from (7) and (10) gives

(11)

Eliminating from (6) and (9) yields

(12)

The boundary conditions for (11) and (12) are the known values of
A(0, T) and B(0, T), A( T, T) = 1, and B(T, T) = 0. The solutions
to (11) and (12) that satisfy these boundary conditions are

where Substituting into (6) and (7), we obtain

( 1 5 )
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We now move on to discuss option valuation under the extended
Vasicek model. Define P(r, t1, t2) as the price at time tl of a discount
bond maturing at time t2. From the above analysis,

Using Ito’s lemma, the volatility of P(r, t1, t2) is σ (t1)B(t1, t2). Since
this is independent of r, the distribution of a bond price at any given
time conditional on its price at an earlier time must be lognormal.

Consider a European call option on a discount bond with exercise
price X. Suppose that the current time is t, the option expires at time
T, and the bond expires at time s (s ≥ T ≥ t). The call option can
be regarded as an option to exchange X units of a discount bond
maturing at time T for one unit of a discount bond maturing at time
s. Define as the volatilities at time of the prices of
discount bonds maturing at times T and s, respectively, and as
the instantaneous correlation between the two bond prices. From the
lognormal property mentioned above and the results in Merton (1973),
it follows that the option price, C, is given by

(17)

where

(18)

and N( · ) is the cumulative normal distribution function. Since we
are using a one-factor model, ρ = 1. Furthermore,

Hence,
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From (13) this becomes

Equations (17) and (19) provide a simple analytic solution for
European call option prices. European put option prices can be
obtained using put-call parity. In the case where a and σ are constant,

and (19) becomes

where

This is the result in Jamshidian (1989). It Is interesting to note that
Jamshidian’s result does not depend on and being constant.

To value European options on coupon-bearing bonds, we note
[similarly to Jamshidian (1989)] that since all bond prices are decreas-
ing functions of r, an option on a portfolio of discount bonds is
equivalent to a portfolio of options on the discount bonds with appro-
priate exercise prices? Consider a European call option with exercise
price X and maturity Ton a coupon-bearing bond that pays off ci at
a time si > T (1 ≤ i ≤ n). The option will be exercised when r(T)
< r*, where r* is the solution to

The payoff of the option is

This is the same as

where
2 This argument can be used to value options on coupon-baring bonds in other one-state variable
models. Later in this paper we will use it in conjunction with the CIR model.
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The option on the coupon-bearing bond is therefore the sum of n
options on discount bonds with the exercise price of the ith option
being Xi.

American bond options and other interest-rate-contingent claims
can be valued by first calculating a(t) and from (15) and (16),
and then using numerical procedures to solve the differential equa-
tion in (4) subject to the appropriate boundary conditions. One
approach that can be used is described in Hull and White (1990).

3. The Extended CIR Model

Our proposed extension of the CIR model is given by (2) with β =
0.5:

We assume that the market price of interest-rate risk is for
some function λ of time bounded in any interval

The ‘differential equation that must be satisfied by the price, f, of
any claim contingent on r is

where

and

Again, we consider the function

This satisfies (20) when

and

(21)

(22)

(23)

If A and B are the solutions to the ordinary differential equations (22)
and (23) subject to the boundary conditions A(T, T) = 1 and B(T,
T) = 0, Equation (21) gives the price at time t of a discount bond
maturing at time T. Solving (22) and (23) for the situation where
3 This corresponds to the assumption made by Cox, Ingersoll, and Ross. It is interesting to note that
a market price of risk equal to appears to give rise to the same final model as
However, It violates the no-arbitrage condition referred to in note 1.
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are constants leads to the CIR bond-pricing for-
mula:

where

(24)

The function σ (t) in the extended model should be chosen to reflect
the current and future volatilities of the short-tern-interest rate. As
in the case of the extended Vasicek model, A(0, T) and B(0, T) can
be determined from σ (0), the current term structure of interest rates
and the current term structure of interest-rate volatilities. These,
together with the conditions A(T,  T) = 1 and B( T, T) = 0, are the
boundary conditions for determining A(t, T) and B(t, T) from (22)
and (23).

Differentiating (23) with respect to T and eliminating w e
obtain

(26)

This equation can be solved using finite difference methods. The
function can then be obtained from (23). The solution to (22) is

(27)

Since A(T, T) = can be obtained iteratively from

It does not appear to be possible to obtain European option prices
analytically except when are constant. All option prices
must therefore be computed using numerical procedures, such as
those in Hull and White (1990).

Fitting the Models to Market Data

In order to apply the models it is necessary to estimate the functions
A(0, T) and B(0, T). The Appendix derives results showing how the
B(0, T) function is related to the term structure of spot and forward
rate volatilities. Historical data can be used in conjunction with these
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results to estimate this function. A(0, T) can be calculated from B(0,
T) and the current term structure of interest rates using the bond-
pricing equation

where r(0) is the short-term interest rate at time zero.
An alternative approach to using historical data is to infer A(0, T)

and B(0, T) from the term structure of interest rates and the prices
of options. Caps are actively traded options that are particularly con-
venient for this purpose. In the case of the extended Vasicek model
they allow B(0, T) to be implied directly in a relatively straightforward
way.4

An interesting question is whether the functions A(t, T) and B(t,
T) estimated at some time are the same as those estimated at another
time In other words, does the same model describe
the term structure of interest rates and the term structure of interest-
rate volatilities at two different times? This will be the subject of future
empirical research. If it is found that the functions A(t, T) and B(t,
T) change significantly over time, it would be tempting to dismiss
the model as being a “throw-away” of no practical value. However,
this would be a mistake. It is important to distinguish between the
goal of developing a model that adequately describes term-structure
movements and the goal of developing a model that adequately values
most of the interest-rate-contingent claims that are encountered in
practice. it is quite possible that a two- or three-state variable model
is necessary to achieve the first goal.5 Later in this paper we will
present evidence supporting the argument that the extended Vasicek
one-state-variable model achieves the second goal.

In this context it is useful to draw an analogy between the models
used to describe stock-price behavior and our proposed model for
interest rates. The usual model of stock-price behavior is the one-
factor geometric Brownian motion model. This leads to the Black
and Scholes (1973) stock-option-pricing model, which has stood the
test of time and appears to be adequate for most purposes. Since
stock-price volatilities are in practice stochastic, we cannot claim that
a one-factor model perfectly represents stock-price behavior. Indeed,
practitioners, when they use the Black-Scholes model, frequently
adjust the value of the volatility parameter to reflect current market
conditions. The justification for the Black-Scholes model is that, when
fitted as well as possible to current market data, it gives similar option
4 As will be explained later, a cap is a portfolio of European put options on discount bonds. A matrix
of cap prices can be used in conjunction with Equations (17) and (19) and put-call parity to obtain
best-fit Values for points on the B(0, T) function.

5 In fact, empirical research in Dybvig (1988) shows that a one-factor Vasicek-type model provides
a surprisingly good fit to observed term structure movements.
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prices to more complicated two-state variable models.6 Our justifi-
cation of the one-factor models we have presented here will be sim-
ilar.7

Another interesting issue is whether the choice of the σ (t) function
affects the shape of the current term structure of interest-rate volatil-
ities. Suppose that R(r, t, T) is the yield at time ton a discount bond
maturing at time T. Ito’s lemma shows that the volatility of R in the
general model of Equation (2) is In the extended Vas-
icek model ( β = 0), is independent of σ (t). The function σ (t)
therefore affects all discount-bond yield volatilities equally and has
no effect on the shape of the term structure of volatilities. When β ≠
0, the shape of the, term structure of volatilities is affected by σ (t) to
the extent that is affected by the path followed by σ between
t and T.8

. Comparisons of One-Factor Models

Of the two models proposed in this article, the extended Vasicek
model is particularly attractive because of its analytic tractability. A
key question is whether it gives similar prices to other models when
A(0, T) and B(0, T) are fitted to the initial-term structure of interest
rates and the initial-term structure of interest-rate volatilities, and σ (t)
is chosen to match the expected future instantaneous standard devi-
ation of the short rate. In this section, we compare the bond-option
prices and cap prices produced by the extended Vasicek model with
those produced by the original one-factor CIR model. We also cal-
culate volatilities implied by these prices when Black’s model is used.

Assume that are the parameters of the CIR model and
that this model describes the true evolution of the term structure.
This means that the A(0, T) and B(0, T) functions that would be
estimated for the extended Vasicek model from historical data are

(29)
6 See Hull and White (1987) for a comparison of Black-Scholes with a two-factor stock-option-pricing
model that incorporates stochastic volatility.

7 When using Black-Scholes, practitioners monitor their exposure to changes in the volatility param-
eter even though the model assumes that the parameter is constant. Similarly, when using the
models suggested here, practitioners should monitor their exposure to (a) all possible shifts in
the term structure of interest rates (not just those that are consistent with the model) and (b) all
possible shifts in the term structure of volatilities.

8 In most circumstances we can expect to be relatively insensitive to the path followed by
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where The complete A and B functions for the extended
Vasicek model can be calculated from A(0, T) and B(0, T) using
(13) and (14). Equations (17) and (19) can be used to value European
options on discount bonds. The analytic results in Cox, Ingersoll,
and Ross (1985b) can be used to obtain the true European option
prices.

The parameter values chosen were σ = 0.06,
The initial short-term interest rate was assumed to be 10% per annum.
For the extended Vasicek model, σ (t) was set equal to the constant

This ensured that the initial short-term interest-rate vola-
tility equaled that in the CIR model.

5.1 Bond options
Table 1 shows the prices given by the two models for European call
options on a five-year bond that has a face value of $100 and pays a
coupon of 10% per annum semiannually.9 It can be seen that the
models give very similar prices for a range of different exercise prices
and maturity dates. The biggest percentage differences are for deep-
out-of-the money options. The extended Vasicek model gives higher
prices than CIR for these options. This is because very low interest
rates (and, therefore, very high bond prices) have a greater chance
of occurring in the extended Vasicek model.

Since the Black’s model is frequently used by practitioners to value
bond options, it is interesting to compare it with the two models.10

The numbers in parentheses in Table 1 are the forward bond-price
volatilities implied by the option prices when Blacks model is used.
It will be noted that the implied volatilities decline dramatically as
the time to expiration of the option increases. In the limit, when the
expiration date of the option equals the maturity date of the bond,
the implied volatility is zero. For the extended Vasicek model, implied
volatilities are roughly constant across different exercise prices. This
is because the bond-price distributions are approximately lognor-
mal.11 Under CIR, the implied volatilities are a decreasing function
of the exercise price. If the same volatility is used in Black’s model
for all bond options with a certain expiration date, there will be a
tendency under a CIR-type economy for in-the-money options to be
underpriced and out-of-the-money options to be overpriced.
9 For both models, the bond option was decomposed into discount-bond options using the approach
described in Section 2.

10 Black’s model assumes that forward bond prices are lognormal in the case of options on discount
bonds, it is equivalent to the extended Vasicek model, but does not provide a framework within
which the volatilities of different forward bond prices can be related to each other.

11 For a discount bond, the bond-price distribution is exactly lognormal. For a coupon-beating bond,
it is the sum of lognormal distributions.
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Table 1
Prices of call options on a 5-year bond

Option
maturity Exercise price

(years) Model 95.0 97.5 100.0 102.5 105.0

0.5 Ext Vas 4.27 (4.50) 2.30 (4.51) 0.94 (4.51) 0.27 (4.52) 0.05 (4.52)
CIR 4.30 (4.73) 2.32 (4.63) 0.94 (4.52) 0.25 (4.40) 0.04 (4.28)

1.0 Ext Vas 4.28 (4.05) 2.51 (4.05) 123 (4.05) 0.50 (4.06) 0.16 (4.06)
CIR 4.32 (4.27) 2.54 (4.17) 1.24 (4.06) 0.46 (3.94) 0.13 (3.82)

1.5 Ext Vas 4.20 (3.59) 2.54 (3.59) 0.59 (3.60) 0.22 (3.60)
CIR 4.25 (3.81) 2.59 (3.71) 0.55 (3.49) 0.17 (3.37)

2.0 Ext Vas 4.06(3.13) 2.48(3.13) 1:31(3.14) 0.58 (3.14)
CIR

0.22 (3.14)
4.12(3.35) 2.52(3.25) 1.31 (3.14) 0.54 (3.03) 0.17 (2.91)

3.0 Ext Vas 3.68 (2.18) 2.16 (2.19) 1.05 (2.19) 0.40 (2.19)
CIR 3.73 (2.39) 2.21 (2.20) 1.05 (2.19) 0.36 (2.06)

4.0 Ext Vas 3.31 (1.16) 1.74 (1.16) 0.59 (1.16) 0.11 (1.16)
CIR 3.32 (1.34) 1.77 (1.26) 0.60 (1.16) 0.08 (1.05)

The bond has a face value of $100 and a coupon of 10% per annum paid semiannually. Current
short-term interest rate is 10% per annum. Interest rates are assumed to follow the original CIR
model with The extended Vasicek (Ext Vas) model is chosen to
lit the initial term structure of Interest rates and the initial term structure of interest-rate volatilities.
Numbers in parentheses are the forward bond price volatilities (% per annum) implied from the
option prices when Black’s model is used.
5.2 Interest-rate caps
Consider an option that caps the interest rate on $1 at Rx between
times tl and t2. The payoff from the option at time t2 is

where and R is the actual interest rate at time t1 for the
time period (t1, t2). (Both R and Rx are assumed to be compounded
once during the time period.)

The discounted value of this payoff is equivalent to

at time t1. Since 1/(1 + R ∆ t) is the value at time t1 of a bond maturing
at time t2, this expression shows that the option can be regarded as
1 + European puts with exercise price 1/(1 + and expi-
ration date t1 on a $1 face value discount bond maturing at time t2.
More generally, an interest rate cap is a portfolio of European puts
on discount bonds.

Table 2 shows the prices given by the two models for caps on the
risk-free interest rate when the principal is $100. Again, we see that
the prices are very close for a range of different cap rates and maturi-
ties. The percentage differences between the prices are greatest for
deep-out-of-the-money caps. CIR gives higher prices than extended
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Table 2
Prices of caps on the risk-free interest rate

Life of
cap
(years) Model 8.0

Cap rate (% per annum)

9.0 10.0 11.0 12.0

1.0 Ext Vas
CIR

2.0 Ext Vas
CIR

3.0 Ext Vas
CIR

4.0 Ext Vas
CIR

5.0 Ext Vas
CIR

2.10 (19.68)
2.09 (18.56)
4.05 (18.42)
4.03 (1730)
5.86 (17.42)
5.82 (16.32)
7.52 (16.57)
7.44 (15.49)
9.03 (15.82)
8.92 (14.76)

1.21(18.63)
1.20 (18.11)
2.47 (17.59)
2.45 (17.08)
3.70 (16.70)
3.66 (16.20)
4.85 (15.92)
4.79 (15.44)
5.90 (15.24)
5.63 (14.77)

0.41 (17.73) 0.10 (16.94) 0.02 (16.24)
0.41 (17.72) 0.10 (17.36) 0.03 (17.04)
1.13 (16.81) 0.45 (16.04) 0.16 (15.27)
1.13 (16.80) 0.47 (16.46) 0.19 (16.07)
1.89 (15.99) 0.87 (15.25) 0.37 (14.48)
1.89 (16.00) 0.91 (15.66) 0.43 (15.26)
2.62 (15.28) 1.30 (14.56) 0.61 (13.79)
2.63 (15.28) 1.36 (14.97) 0.69 (14.56)
331 (14.64) 1.72 (13.95) 0.84 (13.19)
332 (14.65) 1.80 (14.36) 0.95 (13.95)

The principal is $100, interest payments are made every 6 months, and the cap rate is compounded
semiannually. The current short-term interest rate is 10% per annum. Interest rates are assumed to
follow the original CIR model with The extended Vasicek (Ext
Vas) model is chosen to fit the initial term structure of interest rates and the initial term structure
of interest-rate volatilities. The numbers in parentheses ate the forward rate volatilities implied by
the cap prices when Black’s model is used. The same volatility is applied to all forward interest
rates for the purposes of the calculations underlying this table.
Vasicek for these caps. This is because very high interest rates have
a greater chance of occurring under CIR.

Practitioners frequently use Black’s (1976) model for valuing caps.
The numbers in parentheses in Table 2 show the forward rate vola-
tilities implied by the cap prices when Black’s model is used. It can
be seen that the implied volatilities decrease as the life of the cap
increases for both the extended Vasicek and CIR models. This is a
reflection of the fact that the mean reversion of interest rates causes
the volatility of a forward rate to decrease as the maturity of the forward
contract increases. Implied volatilities also decrease as the cap rate
increases for both models. This means that, if the same volatility is
used for all caps with a certain life, there will be a tendency for Black’s
model to underprice in-the-money caps. and overprice out-of-the-
money caps.

6. Comparison with Two-Factor Models

In this section we test how well the extended Vasicek model can
duplicate the bond option prices given by a two-factor model. We
consider two different models. The first is a two-factor Vasicek model
where the risk-neutral process for r is

This means that σ 2 equals the long-term rate’s
instantaneous standard deviation. The second model is a two-factor
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CIR model where the risk-neutral process for r is

(31)

These types of models were analyzed by Langetieg (1980). In both
cases we assume zero correlation between dz1 and dz2.

Discount bond prices for both models are given by

where

denotes the price of a bond under the corresponding constant param-
eter one-factor model when the short-term rate is x1. When the extended
Vasicek model is fitted to the two-factor Vasicek model

and

When it is fitted to the two-factor CIR model

In both cases the prices of European call options on discount bonds
can be calculated using (17) and (19). We assume that σ (t) is constant.

For the two-factor Vasicek model the prices of European call options
on discount bonds are given by (17) with12

where

To compute option prices under the two-factor CIR model, we used
Monte Carlo simulation in conjunction with the antithetic variable
12 Note that an options on a coupon-bearing bond cannot be decomposed into a portfolio of options
on discount bonds in the case of the two-factor models considered here.

588



Pricing Interest-Rate-Derivative Securities

Table 3
Values of European call options on a five-year discount bond with a face value of $100

Model

Exercise price

0.96 0.98 1.00 1.02 1.04

1.0 Ext Vas 2.80 1.93 1.24 0.74 0.40
Two-factor Vas 2.80 1.93 1.24 0.73 0.40

2.0 Ext Vas 2.86 2.00 132 0.81 0.46
Two-factor Vas 2.85 1.99 1.31 0.80 0.46

3.0 Ext Vas 2.69 1.79 1.08 0.59 0.29
Two-factor Vas 2.69 1.78 1.07 0.58 0.28

4.0 Ext Vas 2.47 1.41 0.63 0.20 0.04
Two-factor Vas 2.47 1.40 0.62 0.20 0.04

Interest rates are assumed to follow the two-factor Vasicek model described by Equation (30). The
parameter values are and the initial values
of both x1 and x2 are 0.05. The extended Vasicek (Ext Vas) model is chosen to fit the initial term
structure of interest rates and the initial term structure of interest-rate volatilities. The exercise price
is expressed as a proportion of the forward bond price.
technique. Each price was based on a total of 40,000 runs and the
maximum standard error was 0.0043.

The results are shown in Tables 3 and 4. The extended Vasicek
model produces prices that are very close to those of the other models.
Other tests similar to those reported here have been carried out. In
all cases we find that the extended Vasicek model provides a good
analytic approximation to other more complicated models.

7. Conclusions

This paper has shown that the Vasicek and CIR interest-rate models
can be extended so that they are consistent with both the current-
Table 4
Values of European call options on a five-year discount bond with a face value of $100

Model 0.96

Exercise price

0.98 1.00 1.02 1.04

1.0 Ext Vas 2.54 1.55 0.81 0.12
Two-factor CIR 2.55 1.56 0.81 0.11

2.0 Ext Vas 2.56 1.60 0.87 0.40 0.15
Two-factor CIR 2.58 1.61 0.06 0.38 0.13

3.0 Ext Vas 2.49 1.47 0.71 0.27 0.08
Two-factor CIR 2.51 1.48 0.70 0.24 0.06

4.0 Ext Vas 2.43 1.27 0.41 0.06 0.00
Two-factor CIR 2.44 1.28 0.40 0.05 0.00

Interest rates are assumed to follow the two-factor CIR model described by Equation (31). The
parameter values are and the Initial
values of both x1 and x2 are 0.05. The extended Vasicek (Ext Vas) model is chosen to fit the initial
term structure of interest rates and the initial term structure of interest-rate volatilities. The exercise
price is expressed as a proportion of the forward bond price.
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term structure of spot or forward interest rates and the current-term
structure of interest-rate volatilities. In the case. of the extension to
Vasicek’s model, the parameters of the process followed by the short-
term interest rate and European bond option prices can be deter-
mined analytically. This makes the model very attractive as a practical
tool.

The extended Vasicek model can be compared to another interest-
rate model by fitting it to the initial term structure of interest rates,
the initial term structure of interest-rate volatilities, and the expected
future instantaneous standard deviation of short rate volatilities given
by the other model, and then testing to see whether the interest-rate
option prices it gives are significantly different from those of the other
model. We have tested it against a variety of different one- and two-
factor models in this way. Our conclusion is that it provides a good
analytic approximation to the European option prices given by these
other models.

Appendix

In this appendix we derive the relationship between B(t, T) and the
current-term structure of spot rate and forward rate volatilities. As is
the usual convention, the term “volatility” will be used to refer to
the standard deviation of proportional changes, not actual changes,
in the value of a variable.

Define

price at time t of a discount bond maturing at time
T;
continuously compounded interest rate at time t
applicable to period (t, T);
forward rate at time t corresponding at the time
period (T1, T2);
volatility of r at time t;
volatility of R(r, t, T);
volatility of F(r, t, T1, T2).

In both models, P has the functional form

(A1)
Since

it follows that
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and

From Ito’s lemma,

Hence,

(A2)

The forward rate, F, is related to spot rates by

Since R(r, t, T1) and R(r, t, T2) are instantaneously perfectly corre-
lated in a one-state variable model, it follows from (A2) that

or

Equation (A2) enables B(0, T)  be determined for all T from the
current term structure of spot rate volatilities. Equation (A3) enables
B(0, T) to be determined from the current term structure of forward
rate volatilities. A(0, T) can be determined from B(0, T) and the
current term structure of interest rates using (A1). Thus, A(0, T) and
B(0, T) can be determined for all T from the current-term structure
of interest rates and the current-term structure of spot rate or forward
rate volatilities.
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