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1 INTRODUCTION 

One of the key advances of Solvency II over Solvency I is that insurance companies’ assets and 

liabilities must be valued at economic or "fair value" (see Solvency II, article 75). Fair value is 

the amount for which an asset could be exchanged or a liability settled between knowledgeable, 

willing parties in an arm's length transaction. The valuation principles in the insurance context 

are set out by WÜTHRICH et al. [2008]. 

The Solvency II standards thus take an economic view of the balance sheet and introduce a 

harmonized European view of economic capital that represents the minimum capital 

requirement to give an insurance or reinsurance company 99.5% confidence of surviving a 

situation of economic ruin on a one-year horizon. Economic capital can be estimated using 

either a modular approach (standard formula) or by (partial) internal modelling. The latter 

involves a finer analysis of the company’s risks and requires the distribution of capital 

consumption to be defined over a one-year horizon. 

Also, Solvency II encourages companies to develop a more detailed approach to risk 

management. Article 45 of the Solvency II Directive sets the rules for this internal risk 

management. The framework for personalised risk management is the Own Risk and Solvency 

Assessment (ORSA), which is based on the identification, definition and monitoring of the 

company's key risk indicators1. 

In addition, for financial reporting purposes, insurance companies value their business using 

the Present Value of Future Profits (PVFP). This is based on the portfolio of insurance policies 

written at the calculation date, taking into account all the contractual obligations that flow from 

them and including the value of any embedded options. 

Finally, insurance companies must draw up a business strategy for a defined horizon. This 

strategy must project over the forecast horizon, based on a realistic set of assumptions: 

- the economic balance sheet and solvency capital requirement, 

- IFRS profit before tax and IFRS Balance Sheet. 

There are, then, many and various issues relating to a better understanding of risk. Valuations 

at t=0 can be based on the Monte Carlo approach and generally pose no major technical 

problem. However, the forward-looking projection is much trickier and raises real challenges 

(see DEVINEAU and LOISEL [2009]). There is no closed formula for valuing options in insurance 

liabilities and the economic value of the balance sheet depends on the information available at 

the time of valuation: it is therefore random. 

The purpose of this paper is to show how prospective modelling of an economic balance sheet 

using the least squares Monte Carlo (LSMC) approach is implemented in practice, making it 

possible to estimate the prospective value of its components. The LSMC technique is already 

used in the financial world to value exotic options (see LONGSTAFF and SCHWARZ [2001]). The 

first aim is to analyse the convergence properties of the LSMC estimator in the context of 

insurance as discussed by BAUER et al. [2010]. We pay particular attention to the practicalities 

of implementing such a technique in the real world. The paper also presents examples of the 

use of the evaluation function calibrated in this way. Section 2 reviews the difficulties of 

                                                 

1 EIOPA Final Report on Public Consultation No. 13/009 on the Proposal for Guidelines on Forward Looking 

Assessment of Own Risks (ref.: EIOPA/13/414) 
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implementing nested scenarios and summarises possible solutions, including LSMC 

techniques. Section 3 describes the LSMC method, discusses the convergence properties of the 

approach and emphasises the issues with practical implementation. Section 4 presents an 

application of LSMC to the most common savings contract sold in France: the euro fund. 

2 FROM NESTED SCENARIOS TO LEAST SQUARES MONTE CARLO 

A better understanding of portfolio risk means being able to anticipate how the economic 

balance sheet will react to certain identified risk factors. 
 

For instance, for any component C (net asset 

value, best estimate, etc.) of the economic 

balance sheet opposite, value at time t is 

written: 

      







 



t

T

tu

uQt FutDFCfEFC
t

1

,  

where: 

 
tF  represents the vector of risk factors (yield 

curve, equity index, lapses rate, etc.) at time t, 

 t
Q  is a risk-neutral measure at time t. 

  Cfu
 is the cash flow associated with 

component C at the time tu   , 

  utDF ,  is the discount factor for cash-

flows over the period tu   . 

 

 

 
 

In practice: there is no analytic formula for this conditional expectation as the terms of insurance 

contracts contain a number of embedded options (rate guarantee, profit sharing constraint, 

surrender option, etc.) because the cash flows  Cfu
 are path-dependent and there are 

interactions between liabilities and assets. 

 

 tFC  can be estimated using a Monte Carlo 

approach by: 

       
1 1
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IFERGAN [2013] shows that  ˆ
K t

C F  is a convergent 

estimator for calculation of the best estimate. 

 

 

Usually, this method is used to value the balance sheet at t=0: the economic value of the assets 

is observed on the market and the liabilities are valued by Monte Carlo simulation using the 
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valuation principles defined by EIOPA, IFRS or internal guidance. When 1t , tF  and  tFC  

become random variable. To determine the distribution of  tFC , we can use the “nested 

scenarios” approach: 

 

When using Monte Carlo 

method to estimate a large 

number N  of  tFC , 

  NnFC n

t ...1,   we talk 

about nested scenarios. 

 

 

This approach has the advantage to give an initial estimate of the empirical distribution of the 

economic balance sheet and to give precise results for the real-world situations analysed. But, 

on the other side, it has several drawbacks: 

- Heavy demands on processing resources (N x K simulations): 

- calculating time: 1 month for 1,000 x 1,000 at 3 seconds per scenario, 

- storage space: 250 GB for 1,000 x 1,000, 

- Robustness of tail distribution: just 5 scenarios determine VAR 99.5% for 1,000 x 

1,000 scenarios 

- No information on points between the outer scenario. 

Several solutions have been developed to get round these difficulties: 

- REVELEN [2011] sets out the replication approaches. These techniques struggle with 

the complexity of life insurance contracts (long duration, redemption options, profits 

sharing constraint, etc.), 

- DEVINEAU and LOISEL [2009] describe an acceleration algorithm that can be applied 

when using nested scenarios to calculate Solvency II economic capital. The 

algorithm works by reducing the number of outer scenarios. They are particularly 

interested in tail distribution. The focus of this method is on estimating economic 

capital and it is hard to apply to the mechanics of risk management and portfolio 

valuation. 

- NTEUKAM and PLANCHET [2012] are interested in cutting the number of inner 

scenarios and show that valuation error can be cut to less than 5% when inner 

scenarios are replaced by a few well-chosen composite scenarios. 

- BONNIN et al. [2014] try to approximate the market value of liabilities using 

analytical formulas, 

- BAUER et al. [2010] are the first to set out a detailed and documented application of 

LSMC in life insurance. However, the authors encounter problems in showing the 

convergence of the LSMC estimator due to the change in probabilities at t=1. The 

N real world scenarios

(outer scenarios)

K pricing scenarios

(inner scenarios)

t=1t=0 t=T
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authors also measure the impacts on a fictional portfolio and fail to address the 

problems applying these techniques to a real-world portfolio (complexity of 

liabilities and assets, processing time, storage space, calculation tools, etc.). Finally, 

the mechanism for selecting the regression base is not explained in detail. 

- Another approach that could overcome some of the problems with nested stochastics 

is to interpolate the results of the nested scenarios: so-called curve fitting. 

Of all these techniques, the LSMC approach is emerging as the standard for internal modelling 

in the life insurance industry, for several reasons: 

- it can estimate the value of economic capital, 

- it can be used to manage risk (ORSA): risk hedging, calculation of risk appetite 

indicators, 

- it is used in ALM studies: to determine optimal allocation, project portfolios, etc. 

Below, we present the application of LSMC for a portfolio of life insurance contracts. 

3 DESCRIPTION OF THE LSMC METHOD 

The core idea of the least squares Monte Carlo (LSMC) method is to mimic the behaviour of 

the liabilities using a function that includes all targeted risk factors as inputs (economic and/or 

non-economic variables). 

The precise behaviour (or pricing) function of the liabilities is unknown. It is approximated by 

an approach based on the Taylor series approximation. This technique approximates the 

behaviour of the function by a linear combination of basis functions applied to the targeted risk 

factors: 

   



M

i

tiit FLFC
1

  

- *M   is the number of regressors, 

-  1
, ,

k

t t t
F F F  represents the vector for the risk factors at time t, 

- *k , total number of targeted risk factors, 

-         1 2
, ,

M
L L L L     represents a series of functions (the “regression 

basis”), 

- i
  represents the impact of the term  ti FL  on the quantity  tFC . 

The idea2 beyond this approximation derives from the properties of conditional expectations in 

Lp -spaces, which are specific Hilbert spaces with countable orthonormal basis3. More 

precisely, because the conditional expectancy  ,
i

E Y Z i I  minimize the Euclidian distance 

between the random variable 2Y L , it can be computed as the orthogonal projection of Y on 

the subspace generated by the random variables ,
i

Z i I . Moreover, because, in the 

applications considered here the factors i
Z  are risk factors affecting the balance sheet of the 

                                                 

2 For a theoretical justification, see YOSIDA [1980] for the functional analysis part and NEVEU [1964] for the 

definition and properties of conditional expectation. 
3 See BECK et al. [2005] or YOSIDA [1980] p. 90.  
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insurer, one can assume, without restriction, that the set I is countable. For this reason, we will 

consider in the rest of this paper the particular case of conditional expectancy with respect to a 

subspace generated by a countable set of random variables. 

Because of this assumption,       







 



t

T

tu

uQt FutDFCfEFC
t

1

, , which is in 2L , can thus be 

expressed as a linear combination of a countable set of orthogonal functions measurable in 2L  

   
t

i

tiit FLFC 





1

  

where     
 iii  ,

,,1   are real numbers and       ,, 21  LLL an orthogonal basis4 

in 2L . If we choose *M  a strictly positive natural integer, we can write: 

     

   MFC

FLFLFC

tM

Mi

tii

M

i

tiit







 


 11  

with: 

-       t

Mt

M
M

i

tiitM FLFLFC  
1

, 

-    





1Mi

tii FLM  , 

-          M

M LLLL ,,, 21  , 

-     RiMiiM 


 ,
,,1  . 

We have   0M  in 2L  when M , we arrive at the approximation    ttM FCFC  . 

The M  coefficients are then estimated in two stages: 

1. Using the Monte Carlo method we generate N realisations of the random variables5 

   1C , , ...
n n

t t
F F n N , 

2. we calculate 
N

M  by least squares regression of  C
n

t
F  in  n

t

M FL  

    
2

1

: argmin C
M

N
N

n M n t
M t t M

n

F L F


 


    

                                                 

4 For ki ,...,1    iL  is defined by 
 

 tit

i

FLF

L
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  : k 
 

5 The  C
n

t
F  are realisations of the random variable       t

T
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
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,  such that  
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The result of this optimisation programme is the OLS estimator: 

       
1

, , ,
C

t t tN
M N N M N N M N N N N

M t t t t
L F L F L F F



    
  

 

with the M rows and N columns matrix: 

-          
Nn
Mk
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N
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1, ,...,  is an M N matrix, 

-       1
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N N N

t t t
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The LSMC function can be written 
   
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3.1 EXAMPLE 

Here, we consider an at-the-money European call option with maturity T=2. We assume the 

underlying is a geometrical Brownian motion, the risk-free rate is constant at 3.5% and the 

underlying’s implied volatility is 30%. The price of this European option is derived by the 

Black-Scholes formula: 

      

 

1 2
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1

2 1

1 1

2
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t
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d d T t
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       

    


  

 

The table shows two examples of LSMC functions (defined with the stock price t
x S )  for 

the option price at t = 1: 

 
 

The charts below compare the LSMC results to the Black-Scholes calculation. 

i Li(x)
LSMC 

(N=500,M=3)

LSMC 

(N=1000,M=2)

0 1         0.46                0.03 -                 

1.00  x 1̂ 1.52 -               0.21 -                 

2.00  x 2̂ 1.45                0.39                  

3.00  x 3̂ 0.25 -               -                     
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Fig. 1. B&S vs LSMC approximation 

  
 

Note the greater precision of the LSMC estimator when the number of fitting data is large. 

 

3.2 ISSUES WITH THE LEAST SQUARES MONTE CARLO METHOD 

In practice, applying LSMC to life insurance raises a number of issues. 

First, we need to identify characteristic risk factors tF . Many risk factors may affect an 

insurance firm’s economic balance sheet, both economic risks (rate risk, equity risk, property 

risk, credit risk, volatility, etc.) and non-economic risks (Lapse risk, mortality risk, expense 

risk, etc.). However, it is enough to target a limited number of risk factors. The LSMC function 

derived in this context gives an estimate of liabilities when only the targeted risk factors are 

random: it is therefore often called a partial internal model. 

The choice of regression basis function  ti FL  can have non-negligible effects on tail 

distribution. In a one-dimensional environment, there are many functions that have the property 

of orthogonality: Chebyshev, Hermite, Laguerre, Legendre, etc. (see ABRAMOWITZ and STEGUN 

[1964]). 

In general, we analyse the impact of k > 1 risk factors. To correctly measure the interaction of 

risk factors on the balance sheet it is important to specify the form of the orthogonal functions 

defined in multi-dimensional space. We have to choose the optimal dimension M to give the 

best approximation of  tFC ? In practice, it may prove impossible to calibrate the LSMC 

function when the number of regressors is very high. 

The choice of the methods can be used to determine optimal i
  coefficients touches on two 

issues: 

- definition of fitting data or calibration: how many calibration scenarios N does it 

take to get a best approximation  of 
 t

C F
 and how generate of the fitting data: 

Monte Carlo or quasi-Monte Carlo to accelerate convergence of the LSMC 

simulation, 

- Optimisation of the regression function: backward, forward, stepwise, etc. 
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3.3 CONVERGENCE OF THE LSMC 

3.3.1 CONVERGENCE OF THE LSMC UNDER THE RISK-NEUTRAL MEASURE tQ  

We show that  t

NLS

M FC ,
 converges in 2L  towards  tFC  under the risk-neutral measure tQ . 

The convergence is demonstrated in two stages:  

         t

i

tiiL
M

M

i

tiiL
N

M

i

ti

N

it

NLS

M FCFLFLFLFC    










 111

,
22   

The first stage is based on the convergence of the Monte Carlo estimator. It can be simply 

demonstrated using the law of large numbers and properties of orthogonal functions (see 

appendix) and the second stage is obvious (see also Bauer et al [2010] section 5.3). As 

mentioned in the very beginning of this section, this result is thru only because we assumed that 

the set of risk factors is countable. 

3.3.2 CONVERGENCE OF THE LSMC UNDER THE HISTORICAL MEASURE tP  

In insurance, the distribution of risk factors tF  is under the historical measure tP , implying that 

the distribution of  tFC  is obtained under tP . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We therefore need to establish the convergence properties under the historical measure. BAUER 

and al. [2010] specify that because of the change in measure at time t, the convergence of 

 t

NLS

M FC ,
 toward  tFC  under the measure tP  cannot be guaranteed. 
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
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uQt FutDFCfEFC
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In this section we will show that  t

NLS

M FC ,
 converges in probability toward  tFC  under the 

measure tP . True, convergence in probability is weaker than 2L  convergence, but it is still 

stronger than convergence in distribution and enough to demonstrate the relevance of the LSMC 

approach to valuing economic capital. 

Property:  t

NLS

M FC ,
 converges in probability toward  tFC  under the historical measure tP  

Proof: 

In section 3.3.1, we showed that    tL
MN

t

NLS

M FCFC 2
,,   

 under the measure tQ . This 

implies that  t

NLS

M FC ,
 converges in probability toward  tFC  under the measure tQ . 

     lim 0 ,,

,t

N MLS N
QM t t t N M

C F C F Q A    

with       ,

,
;

LS N

N M M t t
A C F C F       and 0 . 

The probability measures tQ  and tP  are equivalent 0 ,L2  ff , tt dQfdP  , and f  

a random variable with 1 tdQf : 

  tAMNt dQfAP
MN
  ,

1 ,
. 

We have ff
MNA 

,
1 , Lebesgue’s dominated convergence theorem6 implies that: 

   1

 1

0

0

,

,

,
lim lim

lim

N M

N M

t N M A t

A t

t

P A f dQ

f dQ

dQ

 

 

 









 

 1 0
,

lim
N MA

f   because  t

NLS

M FC ,
 converges in probability toward  tFC  under the measure 

tQ  and the only possible values for 1
,N MA

 are 0 and 1. Thus  t

NLS

M FC ,
 converges in probability 

toward  tFC  under the measure tP   

3.4 CHOICE OF NUMBER OF SIMULATIONS AND NUMBER OF 

REGRESSORS 

i.e. *Met  N : the LSMC function that approximates the value of component C  of the 

economic balance sheet at time t is: 

   
tN

Mt

M

t

NLS

M FLFC ,
 

                                                 

6 If the sequence  n
f  converges pointwise to a function f and is dominated by some integrable function g in the 

sense that n
f g  for all numbers n in the index set of the sequence,  then f is integrable and the integral of n

f  

converge towards f.  
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We showed in the previous section that  t

NLS

M FC ,
 converges toward  tFC . Now, we are 

interested in fixed *Met  N , with an error between  t

NLS

M FC ,
 and  tFC : 

     
2

,, tt

NLS

M FCFCMN  . 

In absolute terms, this function does not have an optimum. Also, except in particular cases 

(financial assets) we do not know  tFC , so  MN,  is hard to quantify7. We can estimate it 

by measuring the deviation between  t

NLS

M FC ,
 and the results of nested scenarios. But this 

approach suffers from the major disadvantages of the nested scenarios approach (see section 

2). 

In practice, we measure the deviation between the  t

NLS

M FC ,
 function and a series of values for 

 tFC : we call these validation scenarios. The validation scenarios are chosen from the 

distribution set of  tFC . In general, some twenty points are enough to measure the quality of 

the LSMC function. 

The chart below shows the estimation error (sum of square of deviations) for the price of a 

European option from using the LSMC method: 

Fig. 2. SSE on validation scenario 

 

Note that the convergence is faster when N is very large: 

- When N = 10,000, the sum of the square of pricing errors falls to 0.04% for 

polynomial degree M = 3. 

- When N = 2,000, the sum of the square of errors is always more than 0.13% 

irrespective of the degree of the polynomial M. 

                                                 

7 The value     
2

1

min C
M

N
n M n t

t t M

n

F L F





   is not an estimator of  MN,  as  C
n

t
F  are realisations 

of the random variable    FutDFCfz
T

tu

u



1

,  and not values    zEFC
tQt    

M=3
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So, we fix a maximum acceptable error maxE , and try to determine  
maxmax

M , EEN  such that 

    max

2
,

Emax

max

 tt

NLS

M FCFC E

E
. To achieve this error we must fix N as high as possible: 

- Depending on calculation and storage capacity: in general8 100,000 scenarios 

provide good convergence of the LSMC result, 

- We combine this with variance reduction techniques to achieve a better 

convergence property. 

Having fixed the number of simulations, we choose the “optimal” polynomial degree by 

measuring the sum of the squares of errors observed in the validation scenarios: 

Fig. 3. Choice of the optimal degree 

 

3.5 REGRESSION BASIS FUNCTIONS 

3.5.1 ONE-DIMENSIONAL ORTHOGONAL BASIS FUNCTIONS 

LONGSTAFF and SCHWARTZ [2001] propose using orthogonal polynomials such as Laguerre, 

Legendre or Chebyshev polynomials, weighted with a falling exponential term (to prevent the 

polynomials exploding to infinity). A system of  xLn  functions is orthogonal over the interval 

 ba,  with weighting function  xw  if it verifies the following property: 

     
0b

n m

na

, si n  m
w x L x L x dx

C , si n m


   


  

                                                 

8 This number strongly depends on the number of risk factors. 
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Fig. 4. Examples of orthogonal functions 

Orthogonal 

basis 
 ba,   xw   xLn  C 

Hermite   ,   2/exp 2x      2/2/ 22

1 x

n

n
xn

n e
dx

d
exHe   

12

2

n
 

Chebyshev  1,1  
21

1

x
      nTn coscos   













0:
2

0:

mn

mn





 

Legendre  1,1  1     n

n

n

nn x
dx

d

n
xP 1

!2

1 2   !2 n  

Laguerre  ,0   xexp     nx

n

nx

n xe
dx

d

n

e
xL   1 

 

ABRAMOWITZ and STEGUN [1964] present other examples of orthogonal functions. The basis 

functions used in our study are weighted by their weighting function to prevent them exploding 

to infinity. 

It is important for the regression function to be orthogonal, to make sure that the regression 

program detailed at the very beginning of this section have a solution. Thus 

   , ,
t

M N N M N N

t t
L F L F  have to be invertible. 

3.5.2 MULTI-DIMENSIONAL ORTHOGONAL BASIS FUNCTIONS 

In general, we analyse the impact of k > 1 risk factors. In this context, it is important to specify 

the form of the orthogonal functions defined in k . In a Brownian environment where the risk 

factors being analysed are independent, a simple approach is to generalise the orthogonal 

functions defined in  . Given a system of orthogonal functions        xLxLxL n,1  over 

 ba, , for 
*

21 ,...,, knnn  we have: 

   

   






k

i

i

tntnnnt

nnn

FLFPF

baP

ik

k

1

,...,

k

,...,

21

21
 , : 


 

In dimension 2, it is clear that:      
   



 


not if

,, if0 ''

2121,, ''

, C

 mn mn , 
dxdxxwxwxPP

n

b

a

mnmn . 

In the Brownian case the weighted Hermite function  
   

2

12 xHen
xwHe n

n


  verifies the 

orthogonal property by virtue of the form of the weighting function  2/exp 2x . It remains to 

be shown whether this result can be generalised, as the risks analysed are not always mutually 

independent nor Brownian ones. 
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In our study, we are however going to use the set of functions     , 
k

1

,..., 21









 


nnP
j

jnnn k
 for 

*n  and a fixed one-dimensional basis function       1
, ,

n
L x L x L x . The table 

below shows an example application in dimension 3 for the first 3 terms in the univariate 

function. 

Fig. 5. Orthonormal basis function of dimension 3 

3 Risk factors New orthonormal basis function, up to 3 

degrees x1 x2 x3 

0 0 1 P_0_0_1(x1,x2,x3)=L1(x3) 

0 1 0 P_0_1_0(x1,x2,x3)=L1(x2) 

1 0 0 P_1_0_0(x1,x2,x3)=L1(x1) 

0 1 1 P_0_1_1(x1,x2,x3)=L1(x2)L1(x3) 

1 0 1 P_1_0_1(x1,x2,x3)=L1(x1)L1(x3) 

1 1 0 P_1_1_0(x1,x2,x3)=L1(x1)L1(x2) 

0 0 2 P_0_0_2(x1,x2,x3)=L2(x3) 

0 2 0 P_0_2_0(x1,x2,x3)=L2(x2) 

2 0 0 P_2_0_0(x1,x2,x3)=L2(x1) 

0 1 2 P_0_1_2(x1,x2,x3)=L1(x2)L2(x3) 

0 2 1 P_0_2_1(x1,x2,x3)=L2(x2)L1(x3) 

1 0 2 P_1_0_2(x1,x2,x3)=L1(x1)L2(x3) 

2 0 1 P_2_0_1(x1,x2,x3)=L2(x1)L1(x3) 

1 2 0 P_1_2_0(x1,x2,x3)=L1(x1)L2(x2) 

2 1 0 P_2_1_0(x1,x2,x3)=L2(x1)L1(x2) 

0 0 3 P_0_0_3(x1,x2,x3)=L3(x3) 

0 3 0 P_0_3_0(x1,x2,x3)=L3(x2) 

3 0 0 P_3_0_0(x1,x2,x3)=L3(x1) 

1 1 1 P_1_1_1(x1,x2,x3)=L1(x1)L1(x2)L1(x3) 

 

We find that there are 19 terms in this multi-dimensional function. The table below shows the 

number of terms in the multidimensional function as a function of the number of risk factors 

and degree of the one-dimensional function: 

Fig. 6. Maximum number of regressors 

 
 

                     Risk Factor

Polynomial degree

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 5 9 14 20 27 35 44

3 3 9 19 34 55 83 119 164

4 4 14 34 69 125 209 329 494

5 5 20 55 125 251 461 791 1286

6 6 27 83 209 461 923 1715 3002

7 7 35 119 329 791 1715 3431 6434

8 8 44 164 494 1286 3002 6434 12869

9 9 54 219 714 2001 5004 11439 24309

Maximum number of regressors
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3.6 REGRESSION MODEL  

In the previous section, we saw that the number of terms of the LSMC functions could be very 

high in the insurance context. There are various econometric techniques for selecting the best 

model from a set of possible candidates. For instance (see HOCKING [1976]): 

- Selection (forward): Start with a model containing only the constant, then add one 

variable at each stage: 

o at each stage, select the most significant variable, 

o repeat until all the most significant variables have been selected. 

- Elimination (backward): Start with a model containing all regressors and eliminate 

one at each stage. 

o at each stage, eliminate the least significant variable, 

o repeat until all the least significant variables have been eliminated. 

- bidirectional: a combination of forward/backward approaches (stepwise). Start 

with a model containing only the constant. 

o Carry out a forward selection, leaving open the possibility of dropping any of the 

variables that becomes insignificant at each stage. 

o Repeat until all the variables selected are significant and all the eliminated 

variables are insignificant. 

There are many criteria for significance ( 2R , AIC , BIC , pC , etc.). BAUER et al. [2010] show 

that Mallow’s 
pC  criterion works well in an LSMC context as it gives the best results in the 

event of heteroskedasticity of residuals. The charts below show the number of regressors 

obtained using the different configurations analysed: 
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Fig. 7. Number of regressors of the fitting function based on the options analysed 

 

For these four model selection methods, the number of regressors increases with the maximum 

degree of the one-dimensional basis function. The stepwise method results in the fewest 

regressors. The backward and full model regression models explode if the polynomial degree 

and number of risk factors are higher than 7. 

4 APPLICATION 

In this section we look at the practical implementation of LSMC method. 

4.1 PRESENTATION 

Calibration of the LSMC function is done by determining the coefficients:   Mii 1  for a 

regression basis       1 2
, , ,

M
L L L    fixed such that    




M

i

tiit FLFC
1

 . In practice, this 

is a multi-stage process: 

 Stage 1: simulate a number N of outer scenarios: fitting scenarios, 

 Stage 2: simulate one inner scenario for each outer scenario (in practice, for faster 

convergence of LSMCs, we simulate 2 antithetical inner scenarios). 
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Fig. 8. ComputationAlgorithm 

 
 Stage 3: using the ALM model, value each balance sheet item by DCF for each inner 

scenario, 

 Stage 4: choose a regression basis and carry out a linear regression that gives least 

squares between the ALM results and the series of risk factors selected, 

 Stage 5: test the function's validity against the validation scenarios. 

 

Schematically, the process has the following architecture: 

Fig. 9. Model structure 

 

4.1.1 DESCRIPTION OF THE PORTFOLIO: CHOICE OF RISK FACTORS TO ANALYSE 

In France the life insurance market generated revenue of €108.8 billion in 2012 making it the 

fourth-largest in the world and the second-largest in Europe9. The total value of life contracts 

outstanding in France was €1,458.3 billion at 31/12/2012. More than 85% of this is made up of 

euro funds. Euro contracts are savings contracts that contractually guarantee the capital 

invested. The sums paid in cannot fall in value and are increased each year by a return, the 

minimum guaranteed rate (Rate Guarantee) plus a profit sharing bonus (based on the technical 

and financial returns on the assets representing regulated commitments). The insurer must pay 

out at least 85% of financial gains and 90% of technical profits to policyholders (Profit-sharing 

                                                 

9 See. www.ffsa.fr 

t=1t=0 t=T
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option). In addition, income earned each year is definitively accrued. The insurer effectively 

guarantees the accrued value of capital at all times (Surrender option). 

To cover these regulated commitments, French life insurers are invested in the following asset 

classes (Source: FFSA10): OECD sovereign debt: 32%, corporate bonds: 37%, equities, 

property, investment funds and other assets: 25% and money markets: 6%. Euro contracts are 

affected by market and technical risks. In this paper, we analyse the impact of the following 

market risks: 

- Rate risk, rise or fall, 

- Risk of a fall in equities markets, 

- Risk of a fall in the property market. 

Note that it is simple to extend the technique presented here to non-economic risks 

operationally. 

4.1.2 ALM MODELLING 

Results are based on the ALM model used by HSBC Assurances Vie. This software meets the 

insurer’s aim of having a powerful stochastic modelling tool with easily auditable results. This 

model is the reference tool used in all ALM work which allows us to value the economic balance 

sheet and its various sensitivities. Besides stochastic simulations, it provides the following 

functionalities: 

- compliance with insurance rules by carrying out accounting closes, 

- reproducing the insurer’s targets (including payments to policyholders), 

- the option of generating stresses that impede the insurers’ targets, 

- the option of using stochastic scenarios to value options embedded in the contracts. 

4.1.3 ESG: FITTING AND VALIDATION SCENARIOS 

We determined 100,000 fitting scenarios. To accelerate convergence of LSMC functions we 

use Sobol’s quasi-Monte Carlo (QMC) technique to simulate 50,000 outer scenarios coupled 

with antithetical variables for the inner scenarios11. Statistics for the fitting data are summarised 

below: 

Fig. 10. Statistics for the fitting data 

Statistics data 
fitting 

Yield Curve shock (bps) Capital Index shock (%) 

Short rate Long rate Equity Index Property Index 

MIN -30 -141 -100% -100% 

MAX 277 538 150% 150% 

MEAN 31 42 20% 30% 

STD 70 128 70% 70% 

 

                                                 

10 https://www.ffsa.fr/sites/jcms/p1_1292377/fr/lassurance-francaise-en-2013?cc=fn_7345 
11 This is an efficient way of generating random numbers, because the Sobol is a small discrepancy sequence (see 

JUILLARD et al. [2011]) page 181. 

https://www.ffsa.fr/sites/jcms/p1_1292377/fr/lassurance-francaise-en-2013?cc=fn_7345
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The validation scenarios were chosen to measures the individual effects and interactions of the 

target variables on the economic balance sheet. They are shown below: 

Fig. 11. Individual effects 

Validation 
scenario 

Yield Curve shock (bps) Capital Index shock (%) 

Short rate Long rate Equity Index Property Index 

1 -29 -133 0% 0% 

2 0 0 -50% -50% 

3 0 0 80% 80% 

4 0 0 -50% 80% 

5 0 0 80% -50% 

6 115 281 0% 0% 

7 90 -14 0% 0% 

8 -25 46 0% 0% 

9 112 228 -50% 50% 

10 -21 32 50% -50% 

11 -27 -124 -70% -70% 

12 139 324 80% 80% 

13 0 0 0% 80% 

14 0 0 -70% 0% 

 

4.1.4 REGRESSION TOOLS 

The LSMC function was calibrated using 100,000 results taken from the ALM model. The 

regression tool used is the “reg” procedure in the SAS software package. We analysed 20 

LSMC approaches, composed of the following combinations of regression basis functions and 

selection methods: 

Fig. 12. Regression basis/selection method 

Regression 

basis/selection method 
Ordinary Laguerre Legendre Hermite Chebyshev 

Full Model x x x x x 

Forward x x x x x 

Backward x x x x x 

Stepwise x x x x x 

 

4.2 REGRESSION QUALITY 

4.2.1 DETAILED EXAMPLES 

 Laguerre function/full model 
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The table below shows an example of the LSMC function obtained. The one-dimensional basis 

for the regression is the Laguerre function. The maximum degree is 2 and the balance sheet 

item being modelled is net asset value (NAV). 

Fig. 13. A sample of LSMC function 

Term 
Degree of Laguerre function 

Coeff. 
Short rate Long rate Equity Index Property Index 

Intercept 0 0 0 0 3.10 

P1 0 0 0 1 -0.15 

P2 0 0 0 2 0.02 

P3 0 0 1 0 -0.71 

P4 0 0 1 1 -0.51 

P5 0 0 2 0 0.00 

P6 0 1 0 0 0.40 

P7 0 1 0 1 0.04 

P8 0 1 1 0 0.62 

P9 0 2 0 0 -1.06 

P10 1 0 0 0 -0.20 

P11 1 0 0 1 0.04 

P12 1 0 1 0 0.00 

P13 1 1 0 0 1.19 

P14 2 0 0 0 -0.07 

 

No selection method was used on the regressors and the LSMC function therefore has 14 terms. 

Note, however, that the coefficients of terms P5 and P12 are zero. The chart shows the quality 

of the NAV fitting to the validation scenarios. 

Fig. 14. Test of the quality of the regression (degree 2) 

 

The average valuation error on NAV for this LSMC function is -0.7%. The maximum error is 

6%. 

 Ordinary polynomial/stepwise 
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The chart below shows the quality of the regression for another LSMC function used to simulate 

NAV. Here, we used a stepwise selection method and the one-dimensional regression basis 

function was an ordinary polynomial with a maximum degree of 5: 

Fig. 15. Test of the quality of the regression (degree 5) 

 

We find this gives a better quality of regression. The average relative error is 0.02 %. The 

maximum relative error is 1.8% of the value of the validation scenario. The chart below shows 

how this LSMC function works for economic capital: 

Fig. 16. LSMC function works for economic capital 

 

Note that the validation scenarios are well spread out along the NAV distribution. Economic 

capital exposed to rate, equity and property risk is estimated by this LSMC function. 
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4.2.2 STATISTICS FOR THE TEST CASES 

In this section, we present the statistics for the results of all the cases we tested. We tested 20 

configurations of possible regression models (see section 3.6) with one-dimensional functions 

of degrees between 2 and 6. The charts below show average and maximum fitting errors for 

NAV for each option analysed: 

Fig. 17. Average error of the fitting function from the options analysed 

 

Fig. 18. Maximum error of the fitting function from the options analysed 

 

Note that: 

- The shape of the curves is comparable whatever regression technique is used 

(although the backward, forward and stepwise methods result in fewer regressors 
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than the full model, see section 3.6): valuation error falls with the degree of the 

polynomial. However, implementing LSMC technique in practice becomes 

impossible with a polynomial degree of more than 12. 

- Note a substantial error margin (maximum error of over 2% when the basis 

polynomial function has degree less than 3, in all cases). Valuation error starts to 

stabilise at 4. The choice of optimum degree must therefore be either 4 or 5, 

- The ordinary and Legendre polynomial both give very similar results because of the 

constant weighting function (see appendix). The Laguerre polynomial stabilises 

more quickly. The Hermite and Chebyshev polynomials are the least stable. 

The charts below show the value of economic capital (RBC) estimated using the different 

options analysed: 

Fig. 19. Value of risk based capital using the options analysed 

 

Fitting quality is comparable whatever regression method is used. This is because the use of 

optimisation techniques for the LSMC functions does not reduce the precision of the results. 

The main difference is in the regression bases, with greater convergence from the Laguerre 

polynomial which stabilises more quickly. Note that the LSMC simulation gives a lower value 

of economic capital than the standard formula for all basis functions of degree 4 or more. 
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4.3 ANALYSIS OF THE LSMC FUNCTION 

In this section, we examine the characteristics of the LSMC function. The function analysed 

here is obtained from the degree 4 Laguerre polynomial basis function using a stepwise 

selection method. 

4.3.1 IMPACT OF RISK FACTORS 

The purpose of this section is to check that the behaviour of the LSMC function is consistent 

with what we know about the portfolio. 

The chart below plots the value of the LSMC function as a function of long-term rates (all else 

being equal). 

Fig. 20. NAV as a function of long-term yields 

 

The long duration of their liabilities makes life insurance contracts highly sensitive to 

movements in long-term interest rates. The curve is a bell curve reflecting the opposing effects 

of the rate guarantee and surrender option on NAV. A strongly negative change in long rates 

means that the rise in the guarantee rate outweighs the fall in value of the redemption option. 

Vice-versa, a drastic rise in the long rate would drive sharply up the value of the surrender 

option outweighing the impact of the fall in the rate guarantee. The curve below plots the value 

of the LSMC function as a function of short-term interest rates (all else being equal). 

Fig. 21. NAV as a function of short-term rates 

 

The curve is falling. This reflects the impact of a progressive inversion of the rate curve. 
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The following charts show the value of the LSMC function as a function of equity and property 

indices (only an equity risk shock is modelled): 

 

Fig. 22. NAV as a function of equity risk 

 

Fig. 23. NAV as a function of property 

risk 

The curves are rising, reflecting the beneficial impact on NAV of rising equity markets and 

property prices. All the individual effects analysed above are consistent with what we know 

about portfolio risks. 

The chart below shows the LSMC function as a function of long rates and the equity index. 

Fig. 24. NAV as a function of long rate risk and equity risk 

 

The chart shows the combined impact of long rates and equities on NAV. 

4.3.2 CALCULATION OF ECONOMIC CAPITAL: MODULAR APPROACH VS LSMC MODELLING 

The standard formula for valuing economic capital is to apply shocks to the balance sheet at 

t=0. The value of economic capital results from the combination of individual shocks and a 

matrix aggregating individual items’ consumption of capital. The chart below compares the 

values of economic capital derived using the standard formula and the LSMC function: 
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Fig. 25. Economic capital: LSMC vs modular approach 

 

Although the impact of stresses on the standard formula is lower, the value of economic capital 

derived is still comparable to that from the LSMC model, mainly due to greater diversification 

in the LSMC approach. 

5 CONCLUSION 

In this paper, we are interested in how least squares Monte Carlo technique (LSMC) can be 

used in the field of life insurance. The levels of convergence under the historical measure 

suggests that LSMC is effective in valuing economic capital. Results obtained show a good 

quality fit (average error in NAV of less than 0.02% and maximum error of 1.8%). Also, the 

LSMC function accurately reflects the behaviour of the liability being analysed. 

Regarding the choice of regression technique, we saw that that stepwise selection method led 

to the simplest LSMC function without impairing the precision of the results. When the number 

of risk factors is higher than 7 and the degree of the basis polynomial function is higher than 7 

only forward and stepwise selection give good results. 

Regarding the basis functions analysed, we found that all functions examined gave good results. 

Laguerre functions stabilised fastest. However, for practical implementation of LSMC 

technique, the use of aggregation techniques (clustering, etc.) is essential due to the massive 

calculation times required. 

Also, it is hard to interpret the parameters of the LSMC function. In some cases, where the 

number of terms in the function is very high, the LSMC function becomes unreadable. The 

number of risk factors that can be analysed thus quickly reaches a limit. 

Also, although the empirical results are relevant, further work is needed on the multi-

dimensional analysis of the orthogonality property of the functions analysed in this study. 

Finally, in life insurance, it is essential to incorporate non-economic risk factors but here the 

convergence properties remain unproven, mainly because of the change in probability. The 

stability of the function over time makes it tempting to introduce initial wealth as a parameter 
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as this reflects a capacity to absorb liability shocks. Calibration of the LSMC function over 

multiple periods should be the next step. 

6 APPENDICES 

Convergence 
t

Q  of the LSMC estimator 

Let *M , we saw (see section 3) that we could approximate  tFC  by: 
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Because of the orthogonality property of       ,, 21  LLL , the matrix 
MA is a diagonal 

matrix and all the elements on the diagonal must be greater than 0. It is therefore invertible.  

The LSMC estimator is written as    
tN

Mt

M

t
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M FLFC ,  where 
N
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Applying the law of large numbers; 
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13 Without impairing the general proof, we need only show that this is true for the cases N=2 and M=2.  
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