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The Term Structure of Real Rates
and Expected Inflation

ANDREW ANG, GEERT BEKAERT, and MIN WEI∗

ABSTRACT

Changes in nominal interest rates must be due to either movements in real interest
rates, expected inflation, or the inflation risk premium. We develop a term structure
model with regime switches, time-varying prices of risk, and inflation to identify these
components of the nominal yield curve. We find that the unconditional real rate curve
in the United States is fairly flat around 1.3%. In one real rate regime, the real term
structure is steeply downward sloping. An inflation risk premium that increases with
maturity fully accounts for the generally upward sloping nominal term structure.

THE REAL INTEREST RATE AND EXPECTED INFLATION are two key economic variables;
yet, their dynamic behavior is essentially unobserved. A large empirical litera-
ture has yielded surprisingly few generally accepted stylized facts. For example,
while theoretical research often assumes that the real interest rate is constant,
empirical estimates for the real interest rate process vary between constancy as
in Fama (1975), mean-reverting behavior (Hamilton (1985)), or a unit root pro-
cess (Rose (1988)). There seems to be more consensus on the fact that real rate
variation, if it exists at all, should only affect the short end of the term struc-
ture whereas the variation in long-term interest rates is primarily affected
by shocks to expected inflation (see, among others, Fama (1990) and Mishkin
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(1990)), although this is disputed by Pennacchi (1991). Another phenomenon
that has received wide attention is the Mundell (1963) and Tobin (1965) ef-
fect: The correlation between real rates and (expected) inflation appears to be
negative.

In this article, we seek to establish a comprehensive set of stylized facts
regarding real rates, expected inflation, and inflation risk premiums, and to
determine their relative importance for determining the U.S. nominal term
structure. To infer the behavior of these variables, we use a model with three
distinguishing features. First, we specify a no-arbitrage term structure model
with both nominal bond yields and inflation data to efficiently identify the term
structure of real rates and inflation risk premia. Second, our model accommo-
dates regime-switching (RS) behavior, but still produces closed-form solutions
for bond prices. We go beyond the extant RS literature by attempting to identify
the real and nominal sources of the regime switches. Third, the model accommo-
dates flexible time-varying risk premiums crucial for matching time-varying
bond premia (see, for example, Dai and Singleton (2002)). These features allow
our model to fit the dynamics of inflation and nominal interest rates.

This paper is organized as follows. Section I develops the model and discusses
the effect of regime switches on real yields and inflation risk premia. In Sec-
tion II, we detail the specification tests used to select the best model, analyze
factor dynamics, and report parameter estimates. Section III contains the main
economic results, which can be summarized as follows:

1. Unconditionally, the term structure of real rates assumes a fairly flat
shape around 1.3%, with a slight hump, peaking at a 1-year maturity.
However, there are some regimes in which the real rate curve is downward
sloping.

2. Real rates are quite variable at short maturities but smooth and persistent
at long maturities. There is no significant real term spread.

3. The real short rate is negatively correlated with both expected and unex-
pected inflation, but the statistical evidence for a Mundell–Tobin effect is
weak.

4. The model matches an unconditional upward-sloping nominal yield curve
by generating an inflation risk premium that is increasing in maturity.

5. Nominal interest rates do not behave procyclically across NBER business
cycles but our model-implied real rates do.

6. The decompositions of nominal yields into real yields and inflation compo-
nents at various horizons indicate that variation in inflation compensation
(expected inflation and inflation risk premia) explains about 80% of the
variation in nominal rates at both short and long maturities.

7. Inflation compensation is the main determinant of nominal interest rate
spreads at long horizons.

Finally, Section IV concludes.
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I. A Real and Nominal Term Structure Model with Regime Switches

A. Decomposing Nominal Yields

The nominal yield on a zero-coupon bond of maturity n, yn
t , can be decom-

posed into a real yield, ŷn
t , and inflation compensation, π e

t,n. The real yield
represents the yield on a zero-coupon bond perfectly indexed against inflation.
Inflation compensation reflects expected inflation, E t(π t+n,n), and an inflation
risk premium, ϕ t,n (ignoring Jensen’s inequality terms):

yn
t = ŷn

t + π e
t,n

= ŷn
t + Et(πt+n,n) + ϕt,n, (1)

where E t(π t+n,n) is expected inflation from t to t + n, that is,

Et(πt+n,n) = 1
n

Et(πt+1 + · · · + πt+n),

and π t+1 is one-period inflation from t to t + 1.
The goal of this article is to achieve this decomposition of nominal yields, yn

t ,
into real and inflation components ( ŷn

t , Et(πt+n,n), and ϕ t,n) for U.S. data. Un-
fortunately, we do not observe real rates for most of the U.S. sample. Inflation-
indexed bonds (the Treasury Income Protection Securities or TIPS) have traded
only since 1997 and the market faced considerable liquidity problems in its early
days (see Roll (2004)). Consequently, our endeavor faces an identification prob-
lem as we must estimate two unknown quantities—real rates and inflation
risk premia—from only nominal yields. We obtain identification by using a no-
arbitrage term structure model that imposes restrictions on the nominal yields.
That is, the movements of long-term yields are linked to the dynamics of both
short-term yields and inflation. These pricing restrictions uniquely identify the
dynamics of real rates and inflation risk premiums using data on inflation and
nominal yields. To pin down the average level of real rates, we further restrict
the one-period inflation risk premium to be zero.

The remainder of this section sets up the model to identify the various com-
ponents of nominal yields. Section I.B presents the term structure model and
discusses the economic background of our factors and parametric assumptions.
Importantly, both the empirical literature and economic logic suggest that the
process generating inflation and real rates may undergo discrete shifts over
time, which we model using an RS model following Hamilton (1989). We present
solutions to bond prices in Section I.C and discuss how regime switches affect
our decomposition in Section I.D. Section I.E briefly covers econometric and
identification issues. Finally, Section I.F discusses how our work relates to the
literature.

B. The Model
B.1. State Variable Dynamics

We employ a three-factor representation of yields, which is the number of
factors often used to match term structure dynamics in the finance literature
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(see, for example, Dai and Singleton (2000)). We incorporate an observed in-
flation factor, denoted by π t , which switches regimes. The other two factors
are unobservable term structure factors. One factor, f t , represents a latent RS
term structure factor. The other latent factor is denoted by qt and represents
a time-varying but regime-invariant price of risk factor, which directly enters
into the risk prices (see below). The factor qt plays two roles. First, it helps time-
varying expected excess returns on long-term bonds, as demonstrated by Dai
and Singleton (2002).1 Second, qt also accounts for part of the time variation of
inflation risk premia, as we show below.

We stack the state variables in the 3 × 1 vector X t = (qt f t π t)′, which follows

X t+1 = µ(st+1) + �X t + �(st+1)εt+1, (2)

where st+1 indicates the regime prevailing at time t + 1 and

µ(st) =

 µq

µ f (st)
µπ (st)

 , � =

�qq 0 0
� f q � f f 0
�πq �π f �ππ

 , �(st) =

σq 0 0
0 σ f (st) 0
0 0 σπ (st)

 .

(3)

The regime variable represents K different regimes, st = 1, . . ., K , and follows a
Markov chain with a constant transition probability matrix 
 = {pij = Pr(st+1
= j |st = i)}. These regimes are independent of the shocks εt+1 in equation (2).

In equation (3), the conditional mean and volatility of f t and π t switch
regimes, but the conditional mean and volatility of qt do not. The feedback
parameters for all variables in the companion form � also do not switch across
regimes. These restrictions are necessary to permit closed-form solutions for
bond prices.

We order the factors so that the latent factors appear first. As a consequence,
expected inflation depends on lagged inflation, other information captured by
the latent variables, as well as a nonlinear drift term. The inflation forecasting
literature strongly suggests that expected inflation depends on more than just
lagged inflation (see, for example, Stockton and Glassman (1987)). In addition,
by placing inflation last in the system, the reduced-form process for inflation
involves moving average terms. The autocorrelogram of inflation in data is well
approximated by a low order ARMA process.

B.2. Real Short Rate Dynamics

We specify the real short rate, r̂t , to be affine in the state variables:

r̂t = δ0 + δ′
1 X t . (4)

1 Fama and Bliss (1987), Campbell and Shiller (1991), Bekaert, Hodrick, and Marshall (1997),
and Cochrane and Piazzesi (2005), among many others, document time variation in expected excess
holding period returns of long-term bonds.
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For reference, we let δ1 = (δq δ f δπ )′. The real rate process nests the spe-
cial cases of a constant real rate (δ1 = 03×1), advocated by Fama (1975), and
mean-reverting real rates within a single regime (δ f = δπ = 0), following Hamil-
ton (1985). Allowing nonzero δ f or δπ causes the real rate to switch regimes.
If δq 
= 0, then the time-varying price of risk can directly influence the real
rate, as it would in any equilibrium model with growth. In general, if δπ 
=
0, then money neutrality is rejected and real interest rates are functions of
inflation.

The model allows for arbitrary correlation between the real rate and infla-
tion. To gain some intuition, we compute the conditional covariance between
real rates and actual or expected inflation for an affine model without regime
switches. First, δπ primarily drives the covariance between real rates and un-
expected inflation. That is, covt(r̂t+1, πt+1) = δπσ 2

π . Second, without regimes, the
covariance between expected inflation and real rates is given by

covt(r̂t+1, Et+1(πt+2)) = δq�πqσ 2
q + δ f �π f σ

2
f + δπ�ππσ 2

π .

The Mundell–Tobin effect predicts this covariance to be negative, whereas an
activist Taylor (1993) rule would predict it to be positive, as the monetary au-
thority raises real rates in response to high expected inflation (see, for example,
Clarida, Galı́, and Gertler (2000)). Clearly, the sign of the covariance is param-
eter dependent, and a negative δπ does not suffice to obtain a Mundell–Tobin
effect.

To compare the conditional covariance between real rates and expected in-
flation in our model with regimes, we derive covt(r̂t+1, Et+1(πt+2)|st = i) for K
= 2 regimes to be

covt(r̂t+1, Et+1(πt+2)|st = i) = δq�πqσ 2
q

+δ f �π f

[∑2
j=1 pij σ

2
f ( j ) + pi1 pi2(µ f (1) − µ f (2))2

]
+δπ�ππ

[∑2
j=1 pij σ

2
π ( j ) + pi1 pi2(µπ (1) − µπ (2))2

]
+δ f δπ�π f �ππ pi1 pi2[(µπ (1) − µπ (2))(µ f (1) − µ f (2))].

Relative to the one-regime model, the contribution of the factor variances for
the RS factors now depends on the regime prevailing at time t and has two
components namely, an average of the two regime-dependent factor variances
and a term measuring the volatility impact of a change in the regime-dependent
drifts. In addition, there is a new factor contributing to the covariance that
comes from the covariance between these regime-dependent drifts for f t and
π t .

B.3. Pricing Kernel and Prices of Risk

We specify the real pricing kernel to take the form

m̂t+1 = log M̂t+1 = −r̂t − 1
2

λt(st+1)′λt(st+1) − λt(st+1)′εt+1, (5)
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where the vector of time-varying and RS prices of risk λt(st+1) is given by

λt(st+1) = (γt λ(st+1)′)′,

where λ(st+1) is a 2 × 1 vector of RS prices of risk λ(st+1) = (λ f (st+1) λπ (st+1))′

and the scalar γ t takes the form

γt = γ0 + γ1qt = γ0 + γ1e′
1 X t , (6)

where ei represents a vector of zeros with a “1” in the ith position. In this
formulation, the prices of risk of f t and π t change across regimes. The variable
qt controls the time variation of the price of risk associated with γ t in equation
(6) but does not switch regimes. Allowing γ t to switch across regimes results in
the loss of closed-form solutions for bond prices.

We formulate the nominal pricing kernel in the standard way as Mt+1 =
M̂t+1 Pt/Pt+1:

mt+1 = log Mt+1 = −r̂t − 1
2

λt(st+1)′λt(st+1) − λt(st+1)′εt+1 − e′
3 X t+1. (7)

B.4. Real Factor and Inflation Regimes

We introduce two different regime variables, sf
t ∈ {1, 2}, affecting the drift

and variance of the f t process, and sπ
t ∈ {1, 2}, affecting the drift and variance of

the inflation process. Since both the f t and π t factors enter the real short rate
in equation (4), the real short rate contains both f t and π t regime components.
This modeling choice accommodates the possibility that sf

t captures changes
of regimes in real factors. Since f t enters the conditional mean of inflation in
equation (2), the f t regime also potentially affects expected inflation and can
capture nonlinear expected inflation components not directly related to past
inflation realizations.

The model with sf
t and sπ

t can be rewritten using an aggregate regime variable
st ∈ {1, 2, 3, 4} to account for all possible combinations of {sf

t , sπ
t } = {(1, 1), (1,

2), (2, 1), (2, 2)}. Hence, our model has K = 4 regimes. To reduce the number of
parameters in the 4 × 4 transition probability matrix, we consider two restricted
models of the correlation between sf

t and sπ
t . Case A represents the simplest case

of independent regimes.2

In an alternative case C, we specify a restricted form of the transition prob-
ability matrix so that the inflation regime at t + 1 depends on the stance of
the f t+1 regime as well as the previous inflation environment, but we restrict
future f t+1 regimes to depend only on current f t regimes. Intuitively, this
specification can capture periods in which aggressive real rates, for example,
captured by a regime with high f t , could successfully stave off a regime of high

2 Ang, Bekaert, and Wei (2007) consider another restricted case of correlated sf
t and sπ

t regimes.
This fits the data less well than Case C presented here.
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inflation. This leads to the following conditional transition probability:

Pr
(
s f
t+1 = j , sπ

t+1 = k|s f
t = m, sπ

t = n
)

= Pr
(
sπ
t+1 = k|s f

t+1 = j , s f
t = m, sπ

t = n
) × Pr

(
s f
t+1 = j |s f

t = m, sπ
t = n

)
= Pr

(
sπ
t+1 = k|s f

t+1 = j , sπ
t = n

) × Pr
(
s f
t+1 = j |s f

t = m
)
, (8)

where we assume that Pr(sπ
t+1|s f

t+1, sf
t , sπ

t ) = Pr(sπ
t+1|s f

t+1, sπ
t ) and Pr(s f

t+1 |sf
t ,

sπ
t ) = Pr(s f

t+1 |sf
t ). We denote Pr(s f

t+1 = 1|sf
t = 1) = p f and Pr(s f

t+1 = 2|sf
t =

2) = q f and parameterize Pr(sπ
t+1 = k|sf

t = m, sπ
t = n) as p“ j ”,“m”, where

j =
{

A if sπ
t+1 = s f

t+1 = 1

B if sπ
t+1 = s f

t+1 = 2.

The “j”-component captures (potentially positive) correlation between the f t
and π t regimes. The “m”-component captures persistence in π t regimes:

m =
{

A if sπ
t = 1

B if sπ
t = 2.

This formulation can capture instances in which a high real rate regime, as
captured by the high f t regime, contemporaneously influences the inflation
regime. Using the notation introduced above, the transition probability matrix

 for Case C takes the form:

This model has four additional parameters relative to the model with inde-
pendent real and inflation regimes. We can test Case C against the null of the
independent regime Case A by testing the restrictions

H0 : pBA = 1 − pAA and pBB = 1 − pAB.

We find evidence to reject the case of independent regimes in favor of this case
with a p-value of 0.033. Thus, our benchmark specification uses the probability
transition matrix of Case C.

C. Bond Prices

Our model produces closed-form solutions for bond prices, enabling both ef-
ficient estimation and the ability to fully characterize real and nominal yields
at all maturities without discretization error.
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C.1. Real Bond Prices

In our model, the real zero-coupon bond price of maturity n conditional on
regime st = i, P̂n

t (st = i), is given by

P̂n
t (i) = exp(Ân(i) + B̂nX t), (9)

where Ân(i) is dependent on regime st = i, B̂n is a 1 × N vector, and N is the
total number of factors in the model, including inflation. The expressions for
Ân(i) and B̂n are given in Appendix A. Since the real bond prices are given by (9),
it follows that the real yields ŷn

t (i) conditional on regime i are affine functions
of X t :

ŷn
t (i) = − log(P̂n

t )
n

= −1
n

(Ân(i) + B̂nX t). (10)

While the expressions for Ân(i) and B̂n are complex, some intuition can be
gained on how the prices of risk affect each term. The prices of risk γ 0 and
λ(st) enter only the constant term in the yields Ân(st), but affect this term in
all regimes. More negative values of γ 0 or λ(st) cause long maturity yields to
be, on average, higher than short maturity yields. In addition, since the λ(st)
terms differ across regimes, λ(st) also controls the regime-dependent level of
the yield curve away from the unconditional shape of the yield curve. Thus, the
model can accommodate the switching signs of term premiums documented
by Boudoukh et al. (1999). The prices of risk affect the time variation in the
yields through the parameter γ 1. This term only enters the B̂n terms. A more
negative γ 1 means that long-term yields respond more to shocks in the price of
risk factor qt .

The pricing implications of (10), together with the assumed dynamics of X t
in (2), imply that the autoregressive dynamics of inflation and bond yields
are constant over time, but the drifts vary through time, and shocks to infla-
tion and real yields are heteroskedastic. Hence, our model is consistent with
the macro models of Sims (1999, 2001) and Bernanke and Mihov (1998), who
stress changing drifts, induced for example by changes in monetary policy, and
heteroskedastic shocks. On the other hand, Cogley and Sargent (2001, 2005)
advocate models with changes in the feedback parameters, induced for example
by changes in systematic monetary policy, which we do not accommodate.

C.2. Nominal Bond Prices

Nominal bond prices take the form

Pn
t (i) = exp(An(i) + BnX t) (11)

for Pn
t (i), the zero-coupon bond price of a nominal n-period bond conditional on

regime i. The scalar An(i) is dependent on regime st = i and Bn is a 1 × N
vector. It follows that the nominal n-period yield conditional on regime i, yn

t (i),
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is an affine function of X t :

yn
t (i) = − log(Pn

t )
n

= −1
n

(An(i) + BnX t). (12)

Appendix B shows that the only difference between the Ân(i) and B̂n terms for
real bond prices and the An(i) and Bn terms for nominal bond prices are due to
terms that select inflation from X t . Positive inflation shocks decrease nominal
bond prices.

D. The Effect of Regime Switches

The key ingredient differentiating our model from the standard affine term
structure paradigm is the presence of regimes. In this section, we develop in-
tuition on how regimes affect the decomposition of nominal rates into real rate
and inflation components.

D.1. Expected Inflation

In our model, one-period expected inflation, E t(π t+1), takes the form

Et(πt+1|st = i) = e′
3E[µ(st+1)|st = i] + e′

3�X t

=
(

K∑
j=1

pij µπ ( j )

)
+ e′

3�X t .
(13)

This process is only different from a simple linear process because of the non-
linear drift, which can accommodate sudden discrete changes in expected infla-
tion. Because expected inflation depends on f t and π t , the contemporaneous
sf
t and sπ

t regimes also both affect expected inflation.

D.2. Inflation Compensation

With only one regime, one-period inflation compensation, π e
t,1 = y1

t − r̂t , is
given by

π e
t,1 =

(
µπ − 1

2
σ 2

π − σπλπ

)
+ e′

3�X t .

With multiple regimes, inflation compensation is more complex:

π e
t,1(i) = − log

[
K∑

j=1

pij exp
(

−µπ ( j ) + 1
2

σ 2
π ( j ) + σπ ( j )λπ ( j )

)]
+ e′

3�X t . (14)

The last term in the exponential represents the one-period inflation risk pre-
mium, which is zero by assumption in our model. The 1

2σ 2
π ( j ) term is the

standard Jensen’s inequality term, which now becomes regime dependent. The
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−µπ (st) term represents the nonlinear, regime-dependent part of expected in-
flation. The last term, e3

′� X t , represents the time-varying part of expected
inflation, which does not switch across regimes, and is the only term that is the
same as in the affine model.

In comparing expected inflation in equation (13) with inflation compensation
in equation (14), we see that the constant terms for π e

t,1 and E t(π t+1 |st) are
different. The constants in the inflation compensation expression (14) reflect
both a Jensen’s inequality term 1

2σ 2
π (st) and a nonlinear term, driven by taking

the log of a sum that is weighted by transition probabilities. Because exp (.) is
a convex function, Veronesi and Yared (1999) call this effect a “convexity bias.”
Like the Jensen’s term, this also makes π e

t,1 < E t(π t+1). In our estimations,
both the Jensen’s term and the convexity bias amount to less than one basis
point, even for longer maturities.

D.3. Real Term Spreads

The intuition for how regimes affect real term spreads can be readily gleaned
from considering a two-period real bond. We first analyze the case of the real
term spread, ŷ2

t − r̂t , in an affine model without regime switches:

ŷ2
t − r̂t = 1

2
(
Et(r̂t+1) − r̂t

) − 1
4

vart (r̂t+1) + 1
2

covt (m̂t+1, r̂t+1) . (15)

The first term, (Et(r̂t+1) − r̂t), is an Expectations Hypothesis (EH) term, the
second term, vart(r̂t+1), is a Jensen’s inequality term, and the last term,
covt(m̂t+1, r̂t+1), is the risk premium. In the single-regime affine setting, the
last term is given by

covt(m̂t+1, r̂t+1) = −γ0σq − λ f σ f − γ1σqqt . (16)

Hence, the price of risk factor qt determines the time variation in the term
premium.

The RS model has a more complex expression for the two-period real term
spread:

ŷ2
t (i) − r̂t = 1

2
(Et(r̂t+1|st = i) − r̂t) − 1

2
(
γ0σq + γ1σqqt

)
−1

2
log

(
K∑

j=1

pij exp
[
−δ′

1

(
µ( j ) − E

[
µ(st+1)|st = i

])
+1

2
δ′

1�( j )�( j )′δ1 + λ f ( j )σ f ( j )
])

,

(17)

for K regimes. First, the term spread now switches across regimes, explic-
itly shown by the dependence of ŷ2

t (i) on regime st = i. Not surprisingly, the
EH term (Et(r̂t+1|st = i) − r̂t) now switches across regimes. The time-varying
price of risk term, − 1

2 (γ0σq + γ1σqqt), is the same as in (16) because the
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process for qt does not switch regimes. The remaining terms in (17) are nonlin-
ear, as they involve the log of the sum of an exponential function of regime-
dependent terms that are weighted by transition probabilities. Within the
nonlinear expression, the term 1

2δ′
1�( j )�( j )′δ1 represents a Jensen’s inequal-

ity term, which is regime-dependent, and λ f ( j )σ f ( j ) represents a RS price
of risk term. Thus, the average slope of the real yield curve can potentially
change across regimes and produce a variety of regime-dependent shapes of the
real yield curve, including flat, inverse-humped, upward-sloping, or downward-
sloping yield curves. A new term in (17) that does not have a counterpart in
(16) is −δ′

1(µ( j ) − E [µ (st+1) |st = i]), reflecting the “jump risk” of a change in
the regime-dependent drift.

D.4. Inflation Risk Premia

The riskiness of nominal bonds is driven by the covariance between the real
kernel and inflation: If inflation is high (purchasing power is low) when the
pricing kernel realization (marginal utility in an equilibrium model) is high,
nominal bonds are risky and the inflation risk premium is positive. It is tempt-
ing to conclude that the sign of the inflation risk premium determines the
correlation between expected inflation and real rates. For example, a Mundell–
Tobin effect implies that when a bad shock is experienced (an increase in real
rates), the holders of nominal bonds experience a countervailing effect, namely,
a decrease in expected inflation, which increases nominal bond prices. This
intuition is not completely correct as we now discuss.

Consider the two-period pricing kernel, which depends on real rates both
through its conditional mean and through real rate innovations. Interestingly,
the effects of these two components are likely to act in opposite directions. High
real rates decrease the conditional mean of the pricing kernel; but, if the price of
risk is negative, positive shocks to the real rate should increase marginal utility.
We first focus on the affine model. By splitting inflation into unexpected and
expected inflation, we can decompose the two-period inflation risk premium,
ϕ t,2, into four components (ignoring the Jensen’s inequality term):

ϕt,2 = 1
2

[−covt(r̂t+1, Et+1(πt+2)) − covt(r̂t+1, πt+1)

+ covt(m̂t+1, Et+1(πt+2)) + covt(m̂t+1, πt+1)
]
. (18)

The first two terms reveal that a negative correlation between real rates
and both expected and unexpected inflation actually implies a positive risk
premium. Nevertheless, a Mundell–Tobin effect does not necessarily imply a
positive inflation risk premium because of the last two terms, which involve
the innovations of the pricing kernel. In the affine model equivalent of our RS
model, the last term is zero by assumption, but the third term is not and may
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swamp the others. In particular, for the affine specification:

ϕt,2 = −1
2

[
δπσ 2

π (1 + �ππ ) + �πq(σ 2
q + γ1σqqt) + �π f (σ 2

f + λ f σ f )
]
. (19)

Hence, the time variation in the inflation risk premium depends on qt , and
the mean premium depends on parameters that also determine the correlation
between real rates and inflation. In particular, if the correlation between real
rates and inflation is zero (requiring δπ = �π,q = �π, f = 0), then the inflation
risk premium is also zero. Note that the price of risk λ f plays a role in determin-
ing the inflation risk premium whereas it does not play a role in determining
the correlation between real rates and expected inflation.

Naturally, the RS model has a richer expression for the inflation risk pre-
mium than equation (19).3 Regime switches affect the inflation risk premium
in two ways, through the RS price of risk, λ f (st+1) and also through the RS
means. This gives the inflation risk premium the ability to capture sudden
shifts due to changing inflation environments.

E. Econometrics and Identification

We derive the likelihood function of the model in Appendix C. Our model
implies a RS-VAR for inflation and yields with complex cross-equation restric-
tions imposed by the term structure model. Since the model has latent factors,
identification restrictions must be imposed to estimate the model. We also dis-
cuss these issues in Appendix C. An important identification assumption is
that we set the one-period inflation risk premium equal to zero, λπ (st+1) = 0.
This parameter identifies the average level of real rates and the inflation risk
premium, and is very hard to identify without using real yields in the esti-
mation. This restriction does not undermine the ability of the model to fit the
dynamics of nominal interest rates and inflation well, as we show below. Mod-
els with nonzero λπ give rise to lower and more implausible real rates than our
estimates imply and have a poorer fit with the data.

Finally, we specify the dependence of the prices of risk for the f t and π t factors
on st . Because we set λπ = 0, we only need to model λ f (st+1). In general, there
are four possible λ f parameters across the four st+1 regimes. This potentially
allows real and nominal yield curves to take on different unconditional shapes
in different inflationary environments. When estimating a model where λ(st+1)
varies over all regimes, a Wald test on the equality of λ(st+1) across sπ

t+1 regimes
is strongly rejected with a p-value less than 0.001, while a Wald test on the
equality of λ(st+1) across s f

t+1 regimes is not rejected at the 5% level. Hence, in
our benchmark model, we consider prices of f risk to vary only across inflation
regimes, sπ

t+1.

3 The RS inflation risk premium is reported in Ang, Bekaert, and Wei (2007).



Term Structure of Real Rates and Expected Inflation 809

F. Related Models

To better appreciate the relative contribution of the model, we link it to three
distinct literatures: (i) the extraction of real rates and expected inflation from
nominal yields and realized inflation or inflation forecasts, (ii) the empirical RS
literature on interest rates and inflation, and (iii) the theoretical term structure
literature and equilibrium affine models in finance.

F.1. Time-Series Models

An earlier literature uses neither term structure data, nor a pricing kernel
to obtain estimates of real rates and expected inflation. Mishkin (1981) and
Huizinga and Mishkin (1986) simply project ex post real rates on instrumental
variables. This approach is sensitive to measurement error and omitted vari-
able bias. Other authors, such as Hamilton (1985), Fama and Gibbons (1982),
and Burmeister, Wall and Hamilton (1986), use low-order ARIMA models and
identify expected inflation and real rates using a Kalman filter under the as-
sumption of rational expectations. The time-series processes driving real rates
and expected inflation, with rational expectations, remain critical ingredients
in our approach, but we use inflation data and the entire term structure to
obtain more efficient identification. In addition, our approach identifies the
inflation risk premium, which this literature cannot do.

F.2. Empirical Regime-Switching Models

Many articles document RS behavior in interest rates (see, among many
others, Hamilton (1988), Gray (1996), Sola and Driffill (1994), Bekaert, Hodrick
and Marshall (2001), and Ang and Bekaert (2002)) without analyzing the real
and nominal sources of the regimes. Evans and Wachtel (1993) and Evans and
Lewis (1995) document the existence of inflation regimes, whereas Garcia and
Perron (1996) focus on real interest rate regimes. Our model simultaneously
identifies inflation and real factor sources behind the regime switches and
analyzes how they contribute to nominal interest rate variation.

F.3. Term Structure Models

Relative to the extensive term structure literature, our model appears to be
the first to identify real interest rates and the components of inflation com-
pensation in a model accommodating regime switches, while still admitting
closed-form solutions. Most of the articles using a pricing model to obtain es-
timates of real rates and expected inflation have so far ignored RS behavior.
This includes papers by Pennacchi (1991), Boudoukh (1993), and Buraschi and
Jiltsov (2005) for U.S. data and Barr and Campbell (1997) and Evans (1998) for
U.K. data. This is curious, because the early literature implicitly demonstrated
the importance of accounting for potential structural or regime changes. For
example, the Huizinga and Mishkin (1986) projections are unstable over the
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1979–1982 period, and the slope coefficients of regressions of future inflation
onto term spreads in Mishkin (1990) are substantially different pre- and post-
1979, which is also recently confirmed by Goto and Torous (2003).

The articles that have formulated term structure models accommodating
regime switches mostly focus only on the nominal term structure. Articles
by Hamilton (1988), Bekaert, Hodrick, and Marshall (2001), Bansal and Zhou
(2002), and Bansal, Tauchen, and Zhou (2004) allow for RS in mean rever-
sion parameters that we do not, but their derived bond pricing solutions, using
discretization or linearization, are only approximate. None of these models fea-
tures a time-varying price of risk factor like qt in our model. Naik and Lee
(1994) and Landén (2000) present models with closed-form bond prices, but
these models feature constant prices of risk and only shift the constant terms
in the conditional mean.

The RS term structure model by Dai, Singleton, and Yang (2006) incorpo-
rates regime-dependent mean reversions and state-dependent probabilities un-
der the real measure, while still admitting closed-form bond prices. However,
under the risk-neutral measure, both the mean reversion and the transition
probabilities must be constants, exactly as in our formulation. Dai et al. allow
for only two regimes, while we have a much richer RS specification. Another
point of departure is that in their model, the evolution of the factors and the
prices of risk depend on st rather than st+1. In contrast, our model specifies
regime dependence using st+1 as in Hamilton (1989), implying that the con-
ditional variances of our factors embed a jump term reflecting the difference
in conditional means across regimes. This conditional heteroskedasticity is ab-
sent in the Dai–Singleton–Yang parameterization. Our results show that the
conditional means of inflation significantly differ across regimes, while the con-
ditional variances do not, making the regime-dependent means an important
source of inflation heteroskedasticity.

There are two related articles that use a term structure model with regime
switches to investigate real and nominal yields. The first specification by
Veronesi and Yared (1999) is quite restrictive as it only accommodates switches
in the drifts. The second paper by Evans (2003) is most closely related to our
article. He formulates a model with regime switches for U.K. real and nomi-
nal yields and inflation, but he does not accommodate time-varying prices of
risk. Evans incorporates switches in mean-reversion parameters, but does not
separate the sources of the regime switches into real factors and inflation.

II. Model Estimates

A. Data

We use 4-, 12- and 20-quarter maturity zero-coupon yield data from CRSP
and the 1-quarter rate from the CRSP Fama risk-free rate file as our yield data.
We compute inflation from the Consumer Price Index—All Urban Consumers
(CPI-U, seasonally adjusted, 1982:Q4 = 100) from the Bureau of Labor Statis-
tics. Our data span the sample from 1952:Q2 to 2004:Q4. Using monthly CPI
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Table I
Nomenclature of Models

This table summarizes the models estimated. The affine models are single-regime models. In the
two- and three-regime models, the real rate factor and inflation share the same regimes, so st = sf

t
= sπ

t , which take values from {1, 2} or {1, 2, 3}, respectively. In the four- and six-regime models,
the regimes st reflect switches in both sf

t and sπ
t . In the four-regime model, sf

t ∈ {1, 2}, sπ
t ∈ {1,

2}, and the probability transition matrix can be one of two cases, independent (Case A) and the
correlated case (Case C) outlined in Section I.B.4. In the six-regime model, sf

t ∈ {1, 2}, sπ
t ∈ {1, 2, 3},

and sf
t and sπ

t are independent. The three-factor models contain the factors X t = (qt f t π t )′ with
qt a time-varying price of risk factor, f t is a latent RS term structure factor, and π t is inflation.
The dynamics of X t are outlined in Section B. The models denoted with w subscripts also contain
an additional factor representing expected inflation. These models are described in Appendix D.

Regime-Switching Models

Affine Two Regimes Three Regimes Four Regimes Six Regimes

3-Factor Models I II III IV A, IVC VI
4-Factor Models I w I I w – IVA

w, IVC
w –

figures creates a timing problem because prices are collected over the course
of the month and monthly inflation data are seasonal. Therefore, similar to
Campbell and Viceira (2001), we sample all data at the quarterly frequency.
For the benchmark model, we specify the 1-quarter and 20-quarter yields to be
measured without error to extract the unobserved factors (see Chen and Scott
(1993)). The other yields are specified to be measured with error and provide
overidentifying restrictions for the term structure model.4

B. Model Nomenclature

In Table I, we describe the different term structure models we estimate.
The top row represents models with the three factors (qt f t π t)′. In the bottom
row, we list alternative models that add an unobserved factor representing
expected inflation, which we denote by wt , that generalize classic ARMA models
of expected inflation. We describe these models in Appendix D.

To gauge the contribution of regime switches, we estimate single-regime
counterparts to the benchmark and unobserved expected inflation models. The
single-regime models I and I w are simply affine models. Model I is the sin-
gle regime counterpart of the benchmark RS model IV, described in Section I.
Model I w is similar to the model estimated by Campbell and Viceira (2001),
except that Campbell and Viceira assume that the inflation risk premium is
constant, whereas in all our models the inflation risk premium is stochastic. We
specifically contrast real rates and inflation risk premia from Model I w with
the real rates and inflation risk premia implied by our benchmark model below.

4 We estimate several of our models using alternative schemes where other yields are assumed
to be measured without error and find that the results are very similar.
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The remaining models in Table I are RS models. Models II and I I w contain
two regimes where sf

t = sπ
t . Two regime models are the main specifications

used in the empirical and term structure literature (see, for example, Bansal
and Zhou (2002)). Model III considers a similar model but the regime variable
can take on three values. Model IV represents the benchmark model, which has
four regimes, with the different cases describing the correlation of the sf

t and
the sπ

t regimes (Cases A and C as described in Section II.B). Model VI contains
two regimes for sf

t that are independent of the three regimes for sπ
t .

C. Specification Tests

We report two specification tests of the models, an unconditional moment test
and an in-sample serial correlation test for first and second moments in scaled
residuals. The former is particularly important because we want to decompose
the variation of nominal yields into real and expected inflation components. A
well-specified model should imply unconditional means, variances, and auto-
correlograms of inflation and yields close to the sample moments. We outline
these tests in Appendix E.

Table II reports the results of these specification tests. Panel A focuses on
matching inflation dynamics, while Panel B focuses on matching the dynam-
ics of yields. Of all the models, only Model IVC passes the inflation residual
tests and fits the mean, variance, and autocorrelogram of inflation (using au-
tocorrelations of lags 1, 5, and 10). About half of the models fail to match the
autocorrelogram of inflation. Inflation features a relatively low first-order auto-
correlation coefficient with very slowly decaying higher-order autocorrelations.
Generally, the presence of regimes and the additional expected inflation factor
help in matching this pattern. However, most of the models with the w-factor
fail to match the mean and variance of inflation. While Model VI passes all
moment tests, both residual tests reject strongly at the 1% level, eliminating
this model. The match with inflation dynamics is extremely important as the
estimated inflation process not only identifies expected inflation but also plays
a critical role in identifying the inflation risk premium. This makes Model IVC

the prime candidate for the best model.
Panel B reports goodness-of-fit tests for two sets of yield moments, namely,

the mean and variance of the spread and the long rate (all models fit the mean
of the short rate by construction in the estimation procedure), and the autocor-
relogram of the spread. Only four models fit the moments of yields and spreads:
I , III, IV A, and IVC. Unfortunately, apart from model IVC, these other models
fail to match the inflation moments in Panel A.

We also report the residual test for the short rate and spread equations in
Panel B. With the exception of model VI, most models produce reasonably
well-behaved residuals. While model IVC nails the dynamics of inflation in
Panel A and closely matches term structure moments, the model’s residual
tests for short rates and spreads are significant at the 5% level, but not at
the 1% level. Thus, there is some serial correlation and heteroskedasticity that
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Table II
Specification Tests

This table reports moment and residual tests of inflation (Panel A) and of yields (Panel B), which are
outlined in Appendix E. In the columns titled “Moment Tests,” we report the p-values of goodness-
of-fit χ2 tests for various moments implied by the different models. In Panel A, the first mo-
ment test matches the mean and variance of inflation, whereas in Panel B, the first moment test
matches the mean and variance of the long rate and the spread jointly. The long rate refers to the
20-quarter nominal rate y20

t and the spread refers to y20
t − y1

t , for y1
t the 3-month short rate. The

second autocorrelogram moment test matches autocorrelations at lags 1, 5, and 10. The columns
titled “Residual Tests” report p-values of scaled residual tests for the different models. The first
entry reports the p-value of a test of E (ε t ε t−1) = 0 and the second row reports the p-value of a
GMM-based test of E [(ε2

t − 1)(ε2
t−1 − 1)] = 0, where ε t is a scaled residual. P-values less than 0.05

(0.01) are denoted by ∗ (∗∗). Table I contains the nomenclature of the various models.

Panel A: Matching Inflation Dynamics

Moment Tests

Model Mean/Variance Auto-correlogram Residual Tests

I 0.00∗∗ 0.02∗ 0.00∗∗
0.08

I w 0.08 0.00∗∗ 0.02∗
0.09

II 0.00∗∗ 0.01∗ 0.10
0.17

I I w 0.00∗∗ 0.16 0.03∗
0.31

III 0.02∗ 0.02∗ 0.67
0.22

IV A 0.15 0.04∗ 0.16
0.12

IVC 0.60 0.08 0.21
0.10

IVA
w 0.00∗∗ 0.27 0.26

0.26
IVC

w 0.00∗∗ 0.18 0.22
0.27

VI 0.50 0.13 0.00∗∗
0.00∗∗

(continued)

remains present in the residuals. Consequently, the unconditional moments
of unobserved real rates and inflation risk premia produced by model IVC will
imply nominal rates and inflation behavior close to that in the data, but the con-
ditional dynamics of real short rates and inflation risk premia may be slightly
more persistent or heteroskedastic than our estimates suggest.

D. Model Estimates

We focus on the benchmark model IVC, which is the model that best fits
the inflation and term structure data.5 We discuss the parameter estimates,

5 Estimates of other models are available upon request.
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Table II—Continued
Specification Tests

Panel B: Matching Yield Dynamics

Moment Tests Residual Tests

Mean/Var Spread Short
Model Long Rate/Spread Autocorrelogram Rate Spread

I 0.78 0.14 0.19 0.14
0.27 0.22

I w 0.00∗∗ 0.26 0.47 0.34
0.15 0.29

II 0.61 0.01∗∗ 0.05 0.65
0.02∗ 0.15

I I w 0.00∗∗ 0.01∗ 0.52 0.48
0.01∗∗ 0.34

III 0.12 0.09 0.05 0.05
0.04∗ 0.05

IV A 0.37 0.33 0.02∗ 0.96
0.04∗ 0.08

IVC 0.63 0.39 0.02∗ 0.34
0.04∗ 0.03∗

IVA
w 0.00∗∗ 0.06 0.31 0.11

0.08 0.35
IVC

w 0.00∗∗ 0.24 0.33 0.07
0.12 0.30

VI 0.04∗ 0.00∗∗ 0.01∗∗ 0.01∗
0.01∗∗ 0.00∗∗

the implied factor dynamics, and the identification and interpretation of the
regimes.

D.1. Parameter Estimates

Table III reports the parameter estimates. Inflation enters the real short
rate equation (4) with a highly significant, negative coefficient of δπ = − 0.49.
In the companion form � of the VAR, the term structure latent factors qt and
f t are both persistent, with correlations of 0.97 and 0.76, respectively. Their
effects on the conditional mean of inflation and thus on expected inflation are
positive with coefficients of 0.62 and 0.95, respectively. However, the coefficient
on f t is only borderline significant with a t-statistic of 1.85. Not surprisingly,
lagged inflation also significantly enters the conditional mean of inflation, with
a loading of 0.54. A test of money neutrality (δπ = �π,q = �π, f = 0) rejects with
a p-value less than 0.001.

The conditional means and variances of the factors reveal that the first sf
t = 1

regime is characterized by a low f t mean and low standard deviation. Both the
mean and standard deviations are significantly different across the two regimes
at the 5% level. For the inflation process, the conditional mean of inflation is
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Table III
Benchmark Model IVC Parameter Estimates

The table reports estimates of the benchmark RS model IVC with correlated sf
t and sπ

t outlined in
Section I. The stable probabilities of regime 1 to 4 are 0.725, 0.039, 0.197, and 0.038, with standard
errors of 0.081, 0.029, 0.052, and 0.018, respectively. We reject the null of independent regimes
(Case A) with a p-value of 0.033 using a likelihood ratio test.

Short Rate Equation r t = δ0 + δ1
′ X t

δ1

δ0 q f π

0.008 1.000 1.000 -0.488
(0.001) – – (0.056)

Companion Form �

q f π

q 0.975 0.000 0.000
(0.014) – –

f 0.000 0.762 0.000
– (0.012) –

π 0.618 0.954 0.538
(0.164) (0.516) (0.064)

Conditional Means and Volatilities
P-value

Regime 1 Regime 2 Test of Equality

µ f (sf
t ) × 100 −0.010 0.034 0.037

(0.005) (0.016)
µπ (sπ

t ) × 100 0.473 0.248 0.002
(0.082) (0.110)

σ q × 100 0.094 –
(0.011)

σ f (sf
t ) × 100 0.078 0.175 0.000

(0.019) (0.047)
σ π (sπ

t ) × 100 0.498 0.573 0.249
(0.028) (0.063)

(continued)

significantly different across the sπ
t regimes, with sπ

t = 1 being a relatively
high inflation environment. However, there is no significant difference across
regimes in the innovation variances. This does not mean that inflation is ho-
moskedastic in this model. The regime-dependent means of f t induce het-
eroskedastic inflation across the f t factor regimes.

Table III also reports that the price of risk for the qt factor is negative but
imprecisely estimated. The prices of risk for the f t factor are both significantly
different from zero and significantly different across the two regimes. Moreover,
they have a different sign in each regime, which may induce different term
structure slopes across the regimes.

The transition probability matrix shows that the sf
t regimes are persistent

with probabilities Pr(s f
t+1 = 1|sf

t = 1) = 0.93 and Pr(s f
t+1 = 2|sf

t = 2) = 0.77.
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Table III—Continued

Prices of Risk λ(sπ
t ) = (γ 1 qt λ f (sπ

t ) 0)′

λ f (sπ
t )

P-value
γ 1 Regime 1 Regime 2 Test of Equality

−17.1 −0.613 0.504 0.000
(15.7) (0.097) (0.151)

Transition Probabilities 


st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4

st = 1 0.930 0.000 0.065 0.005
(0.025) (0.008) (0.020) (0.002)

st = 2 0.125 0.804 0.019 0.052
(0.030) (0.029) (0.007) (0.016)

st = 3 0.228 0.000 0.716 0.056
(0.047) (0.002) (0.045) (0.024)

st = 4 0.031 0.197 0.205 0.567
(0.010) (0.041) (0.039) (0.064)

p f 0.930 q f 0.772
(0.021) (0.047)

pAA 1.000 pAB 0.135
(0.009) (0.031)

pAB 0.865 pBB 0.735
(0.031) (0.055)

Std Dev × 100 of Measurement Errors

y4
t y12

t

0.050 0.024
(0.003) (0.001)

The probability pAA = Pr(sπ
t+1 = 1|s f

t+1 = 1, sπ
t = 1) is estimated to be one.

Conditional on a period with a negative f t and relatively high inflation (regime
1), we cannot transition into a period of lower expected inflation unless the f t
regime also shifts to the higher mean regime. Thus, the model assigns zero
probability from transitioning from st = 1 ≡ (sf

t = 1, sπ
t = 1) to st+1 = 2 ≡ (s f

t+1

= 1, sπ
t+1 = 2). Similarly, starting in regime 3, st = 3 ≡ (sf

t = 2, sπ
t = 1), we

can transition into the low inflation regime (sπ
t+1 = 2) only with a realization

of s f
t+1 = 2, where f t is high and volatile. We demonstrate below that this

behavior has a plausible economic interpretation.

D.2. Factor Behavior

Table IV reports the relative contributions of the different factors driving the
short rate, long yield, term spread, and inflation dynamics in the model. The
price of risk factor qt is relatively highly correlated with both inflation and
the nominal short rate, but shows little correlation with the nominal spread.
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Table IV
Factor Behavior

The table reports various unconditional moments of the three factors: the time-varying price of
risk factor qt , the RS factor f t , and inflation π t , from the benchmark model IVC . The short rate
refers to the 1-quarter nominal yield and the spread refers to the 20-quarter nominal term spread.
The row labelled “Data π” refers to actual inflation data. The numbers between parentheses are
standard errors reflecting parameter uncertainty from the estimation, computed using the delta
method. The variance decomposition of the real rate is computed as cov(rt , zt )/var(rt ), with z t
respectively qt , f t , and δπ π t . The variance decomposition of expected inflation is computed as
cov(Et [πt+1], zt )/var(Et [πt+1]), with z t respectively �πq qt , �π f f t , and �ππ π t . Panel B reports
multivariate projection coefficients of inflation on the lagged short rate, spread, and inflation
implied by the model and in the data. Standard errors in parentheses are computed using the delta
method for the model-implied coefficients and are computed using GMM for the data coefficients.

Panel A: Moments of Factors

Correlation with

Contribution
Contribution to Expected Nominal Real
to Real Rate Inflation Short Nominal Short Real

St Dev Auto Variance Variance Inflation Rate Spread Rate Spread

q 1.70 0.98 0.51 0.28 0.61 0.90 −0.20 0.44 −0.09
(0.55) (0.01) (0.35) (0.08) (0.11) (0.05) (0.07) (0.21) (0.02)

f 0.68 0.74 0.09 0.09 0.24 0.43 −0.99 0.19 −0.24
(0.20) (0.02) (0.10) (0.05) (0.07) (0.11) (0.02) (0.17) (0.17)

π 3.50 0.76 0.40 0.62 1.00 0.69 −0.44 −0.34 0.59
(0.42) (0.05) (0.36) (0.08) – (0.08) (0.06) (0.29) (0.12)

Data π 3.16 0.72 0.68 −0.37

Panel B: Projection of Inflation on Lagged Instruments

Nominal
Short Nominal

Inflation Rate Spread

Model 0.52 0.39 −0.08
(0.06) (0.07) (0.17)

Data 0.49 0.29 −0.39
(0.06) (0.07) (0.15)

In other words, qt can be interpreted as a level factor. The RS term structure
factor f t is highly correlated with the nominal spread, in absolute value, so f t
is a slope factor. The factor f t is also less variable and less persistent than qt .
Consequently, f t does not play a large role in the dynamics of the real rate,
only accounting for 9% of its variation. The most variable factor is inflation,
which accounts for 51% of the variation of the real rate. Inflation is negatively
correlated with the real short rate, at −34%, as a result of the negative δπ

= − 0.49 coefficient, while qt is positively correlated with the real short rate
(44%). The model produces a 69% (−44%) correlation between inflation and the
nominal short rate (nominal 5-year spread), which matches the data correlation
of 68% (−37%) very closely.
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Panel A also reports how the different factors contribute to the expected in-
flation dynamics. The latent factor components play an important role in the
dynamics of expected inflation, with qt and f t accounting for 37% of the vari-
ance of expected inflation. Inflation itself accounts for 62% of the variance of
inflation. Expected inflation also has a nonlinear RS component. We calculate
the contribution of regimes to the variance of expected inflation by computing
the variance of expected inflation assuming we never transition from regime
1, relative to the variance of expected inflation from the full model. Uncon-
ditionally, RS accounts for 12% of the variance of expected inflation. We also
show later that regimes are critical for capturing sudden decreases in expected
inflation occurring occasionally during the sample.

The implied processes for expected inflation and actual inflation are both
very persistent. The first-order autocorrelation coefficient of one-quarter ex-
pected inflation is 0.89, which implies a monthly autocorrelation coefficient of
0.96 under the null of an AR(1). The autocorrelations decay slowly to 0.51 at 10
quarters. Fama and Schwert (1977) also note the strong persistence of expected
inflation using time-series techniques to extract expected inflation estimates.
For actual inflation, the first-order autocorrelation implied by the model is 0.76
and it is 0.35 at 10 quarters, matching the data almost perfectly at 0.72 and
0.35, respectively.6 It is this very persistent nature of inflation that many of
the other models cannot match. For example, in model I w, similar to Campbell
and Viceira (2001), the autocorrelations of actual inflation are 0.48 and 0.20 at
1 and 10 lags, respectively.

Because the factors are highly correlated with inflation, the nominal short
rate, and the nominal spread, these three variables should capture a substantial
proportion of the variance of expected inflation in our model. To verify this
implication of our model with the data, we project inflation onto the short rate,
spread, and past inflation both in the data and in the model. Panel B of Table IV
reports these results. When the short rate increases by 1%, the model signals
an increase in expected inflation of 39 basis points. A 1% increase in the spread
predicts an eight basis point decrease in expected inflation. These patterns are
consistent with what is observed in the data, but the response to an increase
in the spread is somewhat stronger in the data. Past inflation has a coefficient
of 0.52, matching the data coefficient of 0.49 almost exactly.

The model also matches other predictive regressions of future inflation. For
example, Mishkin (1990) regresses the difference between the future n-period
inflation rate and the one-period inflation rate onto the the n-quarter term
spread. In the data, this coefficient takes on a value of 0.98 with a standard
error of 0.36 for a horizon of 1 year. The model-implied coefficient is 0.97. Thus,
we are confident that the model matches the dynamics of expected inflation
well.

6 The autocorrelations of inflation vary only modestly across regimes, with the first-order au-
tocorrelation of inflation being highest in regime st = 1 at 0.77 and lowest in regime st = 4 at
0.74.
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Table V
Real Rates, Inflation Compensation, and Nominal Rates across

Regimes
We report means and standard deviations for real short rates, r̂t , the 20-quarter real term spread,
ŷ20

t − r̂t , 1-quarter ahead inflation compensation, π e
t,1, and nominal short rates, r t , implied by

model IVC across each of the four regimes. The regime st = 1 corresponds to (sf
t = 1, sπ

t = 1), st = 2
to (sf

t = 1, sπ
t = 2), st = 3 to (sf

t = 2, sπ
t = 1), and st = 4 to (sf

t = 2, sπ
t = 2). Standard errors reported

in parentheses are computed using the delta method.

Regime

st = 1 st = 2 st = 3 st = 4

Real Short Rate r̂t Mean 1.14 1.98 1.34 1.97
(0.39) (0.53) (0.35) (0.45)

Std Dev 1.40 1.55 1.55 1.68
(0.22) (0.29) (0.25) (0.29)

Real Term Spread ŷ20
t − r̂t Mean 0.15 −0.39 −0.03 −0.45

(0.31) (0.21) (0.28) (0.16)
Std Dev 1.12 1.26 1.31 1.42

(0.17) (0.25) (0.22) (0.25)
Inflation Compensation π e

t,1 Mean 3.92 2.46 4.43 3.20
(0.38) (0.79) (0.39) (0.67)

Std Dev 2.75 2.95 3.01 3.13
(0.50) (0.51) (0.48) (0.49)

Nominal Short rate r t Mean 5.06 4.45 5.77 5.17
(0.08) (0.38) (0.17) (0.34)

Std Dev 3.04 3.12 3.47 3.50
(0.74) (0.73) (0.65) (0.65)

D.3. Regime Interpretation

How do we interpret the behavior of the regime variable in economic terms?
In Table V, we describe the behavior of real short rates, one-quarter ahead
inflation compensation (which is virtually identical to one-period expected in-
flation except for Jensen’s inequality terms), and nominal short rates across
regimes. This information leads to the following regime characterization:

Real Short Rates Inflation % Time

st = 1 sf
t = 1, sπ

t = 1 Low and Stable High and Stable 72%
st = 2 sf

t = 1, sπ
t = 2 High and Stable Low and Stable 4%

st = 3 sf
t = 2, sπ

t = 1 Low and Volatile High and Volatile 20%
st = 4 sf

t = 2, sπ
t = 2 High and Volatile Low and Volatile 4%

All the levels (low or high) and variability (stable or volatile) are relative
statements, so caution must be taken in the interpretation. The last column
lists the proportion of time spent in each regime in the sample based on the
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population probabilities.7 The means of both real rates and inflation are driven
mostly by the sπ

t regime, while their volatilities are driven by the sf
t regime.

The first regime is a low real rate-high inflation regime, where both real rates
and inflation are not very volatile. We spend most of our time in this regime. As
we will see, it is better to characterize the relatively high inflation regime as
a “normal regime” and the low inflation regime as a “disinflation regime.” The
volatilities of real short rates, inflation compensation, and nominal short rates
are all lowest in regime 1. The regime with the second-largest stable probability
is regime 3, which is also a low real rate regime. In this regime, the mean of
inflation compensation is highest. Thus, in population we spend around 90%
of the time in low real rate environments. Regimes 2 and 4 are characterized
by relatively high and volatile real short rates. The inflation compensation
in these regimes is relatively low. Table V shows that these regimes are also
associated with downward-sloping term structures of real yields. Consequently,
the transition probability estimates imply that passing through a downward-
sloping real yield curve is necessary to reach the regime with relatively low
inflation. Finally, regime 4 has the highest volatility of real rates, inflation
compensation, and nominal rates.

D.4. Regimes over Time

In Figure 1, we plot the short rate, long rate, and inflation over the sample
in the top panel and the smoothed regime probabilities in the bottom panel
over the sample period. From 1952 to 1978, the estimation switches between
st = 1 and st = 3. Recall that these regimes feature relatively low real rates
and high inflation. In regime 3, inflation has its highest mean and is quite
volatile, leading to high and volatile nominal rates. These regimes precede the
recessions of 1960, 1970, and 1975.

Post-1978, the model switches between all four regimes. The period around
1979 to 1982 of monetary targeting is mostly associated with regime 4, char-
acterized by the highest volatility of real rates and inflation and a downward
sloping real yield curve. Before the economy transitions to regime st = 2 in
1982, with high real rates and low and more stable inflation, there are a few
jumps into the higher inflation regime 3.

Post-1982, regimes 2 and 4, with lower expected inflation, occur regularly.
These regimes are associated with rapid decreases in inflation and downward-
sloping real yield curves. From a Taylor (1993) rule perspective, these regimes
may reflect periods in which an activist monetary policy of raising real rates,
especially through actions at the short-end of the yield curve, achieved disin-
flation. Several features of the occurrence of these regimes are consistent with

7 If we identify the regimes through the sample by using the ex post smoothed regime probabil-
ities, then we spend less time in regime st = 1 in sample than the population frequency. Unlike
traditional two-regime estimations, like Gray (1996) and Bansal and Zhou (2002), this is not caused
purely by switching out of st = 1 during the monetary targeting period of 1979 to 1982. In contrast,
our model produces more recurring switches into regimes st = 2 and st = 4. Such switches also
occur during the early 1990s and early 2000s, which we discuss below.
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Figure 1. Smoothed regime probabilities, all regimes. The top graph plots the nominal short
rate (1-quarter yield) and nominal long rate (20-quarter yield) together with quarter-on-quarter
inflation. The top panel’s y-axis units are annualized and are in percentages. In the bottom graph,
we plot the smoothed probabilities of each of the four regimes, Pr(st = i|I T ), conditioning on data
over the entire sample, from the benchmark model IVC . NBER recessions are indicated by shaded
bars.
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this interpretation. First, transitioning into regimes 2 and 4 requires high real
rates. Second, these regimes only occur after the Volcker period, which is con-
sistent with Nelson (2004) and Meltzer (2005), who argue that U.S. monetary
authorities had sufficient credibility to change inflation behavior only after
1979. Third, it is also consistent with the econometric analysis of the Taylor
rule in Bikbov (2005), Boivin (2006), and Cho and Moreno (2006), among oth-
ers, who document a structural break from accommodating to activist monetary
policies around 1980.

Towards the end of the 1980s we transition back to the normal regime 1, but
just before the 1990 to 1991 recession the economy enters into regime 4, followed
by regime 2, which lasts until 1994. During the late 1990s, the normal regime
st = 1 prevails with normal, stable inflation and low real rates. During the
early 2000s, quarter-on-quarter inflation was briefly negative, and the model
transitions to the disinflation regimes st = 2 and st = 4 around the time of the
2001 recession. At the end of the sample, December 2004, the model seems to
be transitioning back to the normal st = 1 regime.

In Figure 2, we sum the four st regimes into their sf
t and sπ

t sources. In the top
panel, we graph the real short and long 20-quarter real rates, together with one-
period expected inflation and long-term inflation compensation for comparison.
The real short rate exhibits considerable short-term variation, sometimes de-
creasing and increasing sharply. There are sharp decreases of real rates in the
1958 and 1975 recessions and after the 2001 recession. Real rates are highly
volatile around the 1979–1982 period and increase sharply during the 1980
and 1983 recessions.8 Consistent with the older literature like Mishkin (1981),
real rates are generally low from the 1950s until 1980. The sharp increase in
the early 1980s to above 7% was temporary, but it took until after 2001 before
real rates reached the low levels common before 1980. Over 1961–1986, Garcia
and Perron (1996) find three nonrecurring regimes for real rates: 1961–1973,
1973–1980, and 1980–1986. In Figure 2, these periods roughly correspond to
low but stable real rates, very low to negative and volatile real rates, and high
and volatile real rate periods. We generate this behavior with recurring sf

t and
sπ

t regimes. The Garcia–Perron model could not generate the gradual decrease
in real rates observed since the 1980s. The long real rate shows less time varia-
tion, but the same secular effects that drive the variation of the short real rate
are visible.

In the middle panel of Figure 2, we plot the smoothed regime probabilities
for the regime sf

t = 1, which is the low volatility f t regime associated with
relatively high nominal term spreads. The high variability sf

t = 2 regime occurs
just prior to the 1960 recession, during the OPEC oil shocks of the early 1970s,
during the 1979–1982 period of monetary targeting, during the 1984 Volcker
disinflation, in the 1991 recession, briefly in 1995, and in 2000.

In the bottom panel of Figure 2, the smoothed regime probabilities of sπ
t

look very different from the regime probabilities of sf
t , indicating the potential

8 The 95% standard error bands computed using the delta method are very tight and well within
20 basis points, so we omit them for clarity.
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Figure 2. Smoothed regime probabilities. The top panel graphs the real short rate, r̂t , real
long rate, ŷ20

t , 1-quarter expected inflation, E t (π t+1), and long-term inflation compensation, π e
t,20,

all implied from the benchmark model IVC . The top panel’s y-axis units are annualized and are in
percentages. The middle and bottom panels plot smoothed regime probabilities using information
from the whole sample. The middle panel shows the smoothed probabilities Pr(sf

t = 1|I T ) of the
f factor regimes, sf

t . The bottom panel graphs the smoothed probabilities Pr(sπ
t = 1|I T ) of the

inflation factor regime, sπ
t . NBER recessions are indicated by shaded bars.



824 The Journal of Finance

importance of separating the real and inflation regime variables. We transition
to sπ

t = 2, the disinflation regime, only after 1979, with the 1979–1982 period
featuring some sudden and short-lived transitions to sπ

t = 2. The second infla-
tion regime also occurs after 1985, during a sustained period in the early 1990s,
and after 2000. In this last recession, there were significant risks of deflation.
Clearly, the model accommodates rapid decreases in inflation by a transition
to the second regime.9

Standard two-regime models of nominal interest rates (both empirical and
term structure models) predominantly select the late 1970s and early 1980s
as one regime change. These two-regime models identify the pre-1979 period
and the period after the mid-1980s as a low mean, low volatility regime (see,
for example, Gray (1996), Ang and Bekaert (2002), and Dai et al. (2006)).
Our regimes for real factors and inflation have more frequent switches than
two-regime models. In fact, the famous 1979–1982 episode is a period of both
high real rates and high inflation in the late 1970s (regime 3), combined with
high real rates and a transition to the second inflation regime caused by a dra-
matic decrease in inflation in the early 1980s (regime 4). Hence, our regime
identification does not seem to be driven by a single period, but rather reflects
a series of recurring regimes.

III. The Term Structure of Real Rates and Expected Inflation

We describe the behavior of real yields in Section III.A. Section III.B dis-
cusses the behavior of expected inflation and inflation risk premia. Combining
real yields with expected inflation and inflation risk premia produces the nom-
inal yield curve, which we discuss in Section III.C, before turning to variance
decompositions in Section III.D.

A. The Behavior of Real Yields

A.1. The Real Term Structure

We examine the real term structure in Figure 3 and Table VI. Figure 3 graphs
the regime-dependent real term structure. Every point on the curve for regime
i represents the expected real zero-coupon bond yield conditional on regime i,
(E[ ŷn

t |st = i]).10 The unconditional real yield curve is graphed in the circles,
which show a slightly humped real curve peaking around a 1-year maturity
before converging to 1.3%. Panel A of Table VI reports that in the normal regime
(st = 1), the long-term rate curve assumes the same shape but is shifted slightly
downwards, ranging from 1.14% at a 3-month horizon to 1.29% at a 5-year
horizon.

9 The inflation regime identifications of Evans and Wachtel (1993) and Evans and Lewis (1995)
are not directly comparable as their models feature a random walk component in one regime (with
no drift) and an AR(1) model in the other.

10 These computations are detailed in Ang et al. (2007). It is also possible to compute the more
extreme case E[ ŷ n

t |st = i, ∀t], that is, assuming that the process never leaves regime i. These curves
have similar shapes to the ones shown in the figures but lie at different levels.
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Figure 3. Real-term structure. We graph the real yield curve, conditional on each regime and
the unconditional real yield curve implied from the benchmark model IVC . The x-axis displays
maturities in quarters of a year. The y-axis units are annualized and are in percentages.

In regimes 2 and 4, real rates start just below 2% at a 1-quarter maturity
and decline to 1.59% for regime 2 and 1.52% for regime 4 at a 20-quarter ma-
turity. Finally, regime 3, a low real rate-high inflation and volatile regime, has
a humped, nonlinear, real term structure. This real yield curve peaks at 1.54%
at the 1-year maturity before declining to the same level as the unconditional
yield curve at 20 quarters. Thus, we uncover our first claim:

CLAIM 1: Unconditionally, the term structure of real rates assumes a fairly flat
shape around 1.3%, with a slight hump, peaking at a 1-year maturity. However,
there are some regimes in which the real rate curve is downward sloping.

Panel A of Table VI also reports that while the standard deviation of real
short rates is lowest in regime 1 at 1.40%, the standard deviations of real long
rates are approximately the same across regimes, at 0.55%. We compute uncon-
ditional moments of real yields in Panel B, which shows that the unconditional
standard deviation of the real short rate (20-quarter real yield) is 1.46% (0.55%).
These moments solidly reject the hypothesis that the real short rate is constant,
but at long horizons real yields are much more stable and persistent. This is
reflected in the autocorrelations of the real short rate and 20-quarter real rate,
which are 60% and 94%, respectively. The mean of the 20-quarter real term
spread is only 7 basis points. The standard error is only 28 basis points, so that
the real term structure cannot account for the 1.00% nominal term spread in
the data. Hence:

CLAIM 2: Real rates are quite variable at short maturities but smooth and
persistent at long maturities. There is no significant real term spread.
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A.2. The Correlation of Real Rates and Inflation.

Panel C of Table VI reports conditional and unconditional correlations of real
rates and inflation. At the 1-quarter horizon, the conditional correlation of real
rates with actual inflation is negative in all regimes and hence also uncondi-
tionally. The negative estimate for δπ mostly drives this result. The correlations
with expected inflation are smaller in absolute value, but still mostly negative.
However, the differences across regimes are not large in economic terms and
the correlations are overall not significantly different from zero. Consequently,
we do not find strong statistical evidence for a Mundell–Tobin effect:

CLAIM 3: The real short rate is negatively correlated with both expected and
unexpected inflation, but the statistical evidence for a Mundell–Tobin effect is
weak.

This negative correlation between real rates and inflation is consistent with
earlier studies such as Huizinga and Mishkin (1986) and Fama and Gibbons
(1982), but their analysis implicitly assumes a zero inflation risk premium
so their instrumented real rates may partially embed inflation risk premiums.
The small Mundell–Tobin effect we estimate is consistent with Pennachi (1991),
who uses a two-factor affine model of real rates and expected inflation, but
opposite in sign to Barr and Campbell (1997), who use U.K. interest rates and
find that the unconditional correlation between real rates and inflation is small
but positive. As each regime records a negative correlation between real rates
and inflation, we do not find any evidence that the sign of the correlation has
changed over time, unlike what Goto and Torous (2006) find using an empirical
model that neither employs term structure information nor precludes arbitrage.

The correlations between real yields and actual or expected inflation turn ro-
bustly positive at long horizons. Some of these correlations are statistically sig-
nificant, although again most are not precisely estimated. The positive signs at
long horizons result from the positive feedback effect of the � coefficients dom-
inating the negative effect of the δπ coefficient in the short rate equation. This
indicates that the Mundell–Tobin effect is only a short-horizon phenomenon.
Over long horizons, real yields and inflation are positively correlated.

A.3. The Effect of Regimes on Real Rates

Introducing regimes allows a further nonlinear mapping between latent fac-
tors and nominal yields not available in a traditional affine model, so that the
dynamics of real long yields are not just linear transformations of nominal yield
factors. To compare the effect of incorporating regimes, we contrast our model-
implied real yields with those implied by model I w. Figure 4 plots real yields
from models I w and IVC, and we characterize the differences between the real
yields from each model in Table VII.

Panel A of Table VII reports the population moments of real yields from mod-
els I w and IVC. The mean real short rate in model I w is 1.42%, very close to
the 1.39% mean of the 1-quarter real yield for a similar model estimated by
Campbell and Viceira (2001). This is slightly higher, but very similar to the
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Table VII
Effect of Regimes on Real Rates

The table reports various characteristics of real yields from model Iw, an affine model similar
to Campbell and Viceira (2001), and our model IV C . In Panel A we report population means,
standard deviations, and autocorrelations of real 1-quarter short rates and real 20-quarter long
yields, together with their correlation. Standard errors reported in parentheses are computed using
the delta method. In Panel B, we report statistics on the differences between the real yields implied
by model Iw and model IV C over the sample.

Panel A: Real Yield Characteristics

Model Iw Model IV C

Real Short Rate r̂t Mean 1.42 1.24
(0.31) (0.38)

St Dev 1.59 1.46
(0.29) (0.23)

Auto 0.72 0.60
(0.09) (0.08)

Real Long Rate ŷ20
t Mean 1.69 1.32

(0.30) (0.40)
St Dev 1.04 0.55

(0.34) (0.32)
Auto 0.96 0.94

(0.02) (0.05)
Correlation r̂t , ŷ20

t 0.79 0.64
(0.08) (0.06)

Panel B: Comparisons of Iw and IV C over the Sample

Real Short Rate r̂t Differences Std Dev 1.40
Min −2.61
Max 6.01

Real Long Rate ŷ20
t Differences Std Dev 0.54

Min −1.06
Max 1.85

mean level of short rates from our model IVC, at 1.24%. The standard devia-
tions of real short rates are also similar across the two models, at 1.59% and
1.46%, for models I w and IVC, respectively. However, Model I w ’s real short
rates are somewhat more persistent, at 0.72, than the autocorrelation of short
rates from model IVC, at 0.60. There are bigger differences for population mo-
ments for real long yields between the models. The long end of the real yield
curve for model I w is, on average, 40 basis points higher than for model IVC and
twice as variable, with standard deviations of 1.04% and 0.55%, respectively.
The correlation between short and long real rates is higher for model I w, at
0.79, than for model IVC, at 0.64. Thus, the addition of regimes has important
consequences for inferring long real rates.

Figure 4 plots the real short and long yields over the sample from the
two models. The top panel shows that the real short rates from models I w and
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Figure 4. Comparing Model IVC real yields with Model Iw. The figure compares the 1-
quarter real short rate (5-year real long yield) of the benchmark model IVC and model I w in the
top (bottom) panel over the sample period.
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IVC follow the same secular trends, but the correlation between the two model
implied real rates is only 0.57. The main difference occurs during the late 1970s.
Model IVC documents that real short rates were fairly low during this period,
consistent with the early estimates of Mishkin (1981) and Garcia and Perron
(1996). In contrast, model I w ’s real rates are much higher during this period.
To quantify these differences, Panel B of Table VII reports summary statistics
on the difference between r̂t from model I w and r̂t from model IVC. The largest
difference of 6.01% occurs during the 1974 recession. In the bottom panel of
Figure 4, we graph the real long yield from the two models. While the higher
variability of the I w-implied real long yield is apparent, the two models clearly
share the same trends. In fact, the real long rates from the two models have a
0.95 correlation.

In a traditional affine model, there is a direct linear mapping between the
latent factors and nominal yields, which may imply that real rates, which are
linear combinations of the latent factors, are highly correlated with nominal
yields. This is the case for model I w. The bottom panel of Figure 4 shows that
real long yields from model I w start from below zero in 1952 and reach close to
5% in 1981, before declining to 30 basis points in 2005. These long real rates
are highly correlated with long nominal rates, with a correlation coefficient of
0.98. Incorporating regimes in model IVC reduces the correlation between real
and nominal long rates to 90%. In contrast to model I w, real long yields implied
by model IVC are more stable and have never been negative. This appears to
be a more economically reasonable characterization of real long yields.

B. The Behavior of Inflation and Inflation Risk

B.1. The Term Structure of Expected Inflation

Table VIII reports some characteristics of inflation compensation, π e
t,n, ex-

pected inflation, E t(π t+n,n), and the inflation risk premium, ϕ t,n. We focus
first on the inflation compensation estimates. The most striking feature in
Table VIII is that the term structure of inflation compensation slopes upwards
in all regimes. Regime st = 1 is the normal regime, and in this regime the
inflation compensation spread is π e

t,20 − π e
t,1 = 1.17%, very close to the uncon-

ditional inflation compensation spread of 1.14%. In regimes st = 2 and st = 4,
inflation compensation starts at a lower level because these are the regimes
with downward-sloping real yield curves and a disinflationary environment.
However, the inflation compensation spreads are roughly comparable to the
unconditional compensation spread, at 1.34% and 1.16% for regimes st = 2
and st = 4, respectively. We report the term structure of expected inflation in
the second panel of Table VIII. Expected inflation always approaches the un-
conditional mean of inflation as the horizon increases in all regimes, because
inflation is a stationary process.

B.2. The Inflation Risk Premium

Since the term structure of inflation compensation is upward sloping but
expected inflation converges to long-run unconditional expected inflation, the
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Table VIII
Inflation Compensation, Expected Inflation, and Inflation Risk

Premiums
The table reports means of inflation compensation, the difference between nominal and real yields,
expected inflation, and the inflation risk premium all implied from the benchmark model IVC .
Standard errors reported in parentheses are computed using the delta method.

Qtrs st = 1 st = 2 st = 3 st = 4 Unconditional

Inflation Compensation π e
t,n

1 3.92 2.46 4.43 3.20 3.94
(0.38) (0.78) (0.39) (0.67) (0.38)

4 4.20 2.49 4.95 3.34 4.25
(0.34) (0.70) (0.39) (0.59) (0.35)

20 5.09 3.80 5.45 4.36 5.08
(0.41) (0.45) (0.43) (0.42) (0.38)

Expected Inflation E t (π t+n,n)
1 3.93 2.47 4.44 3.21 3.94

(0.38) (0.79) (0.39) (0.67) (0.38)
4 3.89 2.63 4.48 3.47 3.94

(0.38) (0.73) (0.41) (0.65) (0.38)
20 3.91 3.39 4.20 3.82 3.94

(0.38) (0.49) (0.39) (0.46) (0.38)

Inflation Risk Premium ϕ t,n
4 0.31 −0.14 0.47 −0.13 0.31

(0.09) (0.06) (0.15) (0.09) (0.10)
20 1.18 0.42 1.25 0.55 1.14

(0.36) (0.23) (0.42) (0.31) (0.36)

increasing term structure of inflation compensation is due to an inflation risk
premium:

CLAIM 4: The model matches an unconditional upward-sloping nominal yield
curve by generating an inflation risk premium that is increasing in maturity.

The third panel of Table VIII reports statistics on the inflation risk premium
ϕ t,n. In the normal regime st = 1 and unconditionally, the 5-year inflation risk
premium is around 1.15%, which is almost the same magnitude as the 5-year
term spread generated by the model of 1.21%. The inflation risk premium is
higher in regime st = 3 with higher and more variable inflation than in regime
st = 1. In the high real rate regimes st = 2 and st = 4, the inflation risk premium
is less than 55 basis points. In regime st = 4, the inflation risk premium is not
statistically different from zero. In Campbell and Viceira’s (2001) one-regime
setting, ϕ t,40 is approximately 0.42%, accounting for about half of their model-
implied 40-quarter nominal term spread of 0.88%.11 We obtain inflation risk
premiums of this low magnitude only in high real rate regimes, and in normal

11 Campbell and Viceira (2001) report that the difference in expected holding-period returns
on 10-year nominal bonds over nominal 3-month T-bills in excess of the expected holding-period
returns on 10-year real bonds over the real 3-month short rate is approximately 1.1% and define
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Figure 5. Inflation risk premiums. The figure graphs the time-series of the 20-quarter inflation
risk premium, ϕ t,20, with two standard error bounds, implied from the benchmark model IVC .
NBER recessions are indicated by shaded bars.

times assign almost all of the positive nominal yield spread to inflation risk
premiums.

The time variation of the inflation risk premium is correlated with the time
variation of the price of risk factor, qt , but the correlation of the inflation risk
premium with qt is small, at 9.5% for a 20-quarter maturity. To calculate the
proportion of the variance of ϕ t,20 due to regime changes, we compare the un-
conditional variance of ϕ t,20 varying across all four regimes with the variance of
ϕ t,20 if the model never switched from st = 1. We find that a significant fraction,
namely 40%, of the variation of ϕ t,20 is due to regime changes.

Figure 5 graphs the 20-quarter inflation risk premium over time and shows
that the inflation risk premium decreased in every recession. During the 1981
to 1983 recession, the inflation premium is very volatile, increasing and de-
creasing by over 75 basis points. The general trend is that the premium rose
very gradually from the 1950s until the late 1970s before entering a very volatile
period during the monetary targeting period from 1979 to the early 1980s. It
is then that the premium reached a peak of 2.04%. While the trend since then
has been downward, there have been large swings in the premium. From a

this to be the inflation risk premium. In our model, the corresponding number for this quantity at
a 20-quarter maturity is E[ln(P 19

t+1/P 20
t ) − y1

t ] − E[ln(P̂ 19
t+1/P̂ 20

t ) − r̂t ] = 1.46%.
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Figure 6. Nominal term structure The figure graphs the nominal yield curve, conditional on
each regime and the unconditional nominal yield curve from the benchmark model IVC . The x-axis
displays maturities in quarters of a year. The y-axis units are annualized and are in percentages.
Average yields from data are represented by “x,” with 95% confidence intervals represented by
vertical bars.

temporary low of 50 basis points in the mid-1980s it shot above 1%, coinciding
with the halting of the large dollar appreciation of the early 1980s. The infla-
tion premium dropped back to around 50 basis points in the late eighties and
reached a low of 0.38% in 1993. The sharp drops in the inflation risk premium
coincide with transitions to regimes with high real short rates. During 1994, the
premium shot back up to 1.37% at the same time the Federal Reserve started
to raise interest rates. During the late 1990s bull market inflation risk pre-
miums were fairly stable and declined to 0.15% after the 2001 recession when
there were fears of deflation. At the end of the sample in December 2004, the
inflation risk premium started to increase again edging close to 1%.

C. Nominal Term Structure

Figure 6 graphs the average nominal yield curve. The unconditional yield
curve is upward sloping, with the slope flattening out for longer maturities. The
benchmark model produces a nominal term spread of y20

t − y1
t = 1.21%, well in-

side a one-standard error bound of the 1.00% term spread in data. Strikingly, in
no regime does the benchmark model generate a conditional downward-sloping
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Table IX
Conditional Moments across NBER Business Cycles

The table reports various sample moments of real rates, nominal rates, and inflation compensation
from the benchmark model IVC , conditional on expansions and recessions as defined by the NBER.
Standard errors reported in parentheses are computed using the delta method on sample moments.

Mean Std Dev

Maturity
Qtrs Expansion Recession Expansion Recession

Real Rates ŷn
t 1 1.45 1.23 1.30 2.06

(0.20) (0.20) (0.04) (0.08)
20 1.33 1.43 0.65 0.87

(0.38) (0.38) (0.18) (0.25)
Nominal Rates yn

t 1 5.03 5.95 2.59 4.07
(0.09) (0.14) (0.27) (0.41)

20 6.05 6.85 2.46 3.71
(0.20) (0.22) (0.26) (0.38)

Inflation Compensation π e
t,n 1 3.57 4.73 2.23 3.62

(0.19) (0.17) (0.18) (0.28)
20 4.72 5.42 1.89 2.93

(0.37) (0.39) (0.38) (0.57)

nominal yield curve. In regimes st = 2 and st = 4, the real rate term structure
is downward-sloping, but the upward-sloping term structure of inflation risk
premiums completely counteracts this effect. Thus, regimes are important for
the shape of the real, not nominal yield curve.

The first regime (low real rate-normal inflation regime) displays a nominal
yield curve that almost matches the unconditional term structure. In the second
regime, the yield curve is shifted downwards but is more steep because rates
are lower than in the first regime due to lower expected inflation and inflation
risk. In the third regime, the term structure is steeply upward sloping at the
short end but then becomes flat and slightly downward sloping for maturities
extending beyond 10 quarters. Nominal interest rates are the highest in this
regime because in this regime, expected inflation is high and the level of real
rates is about the same as in regime 1. In regime 4, the real interest rate curve
is downward sloping, starting at a high level. Inflation compensation, however,
is low in this regime (resulting in nominal yields of an average level), and is
upward sloping, making the nominal yield curve upward sloping on average.
Yet, in both regimes 2 and 4, a slight J-curve effect is visible at short maturities
with nominal rates decreasing slightly before starting to increase.

Interest rates are often associated with the business cycle. The business cycle
dates reported by the NBER are regarded as benchmark dates by both aca-
demics and practitioners. According to the conventional wisdom, interest rates
are procyclical and spreads countercyclical (see, for example, Fama (1990)).
Table IX shows that this is incorrect when measuring business cycles us-
ing NBER recessions and expansions. Interest rates are overall larger during
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Table X
Unconditional Variance Decomposition of Nominal Yields

The table reports unconditional variance decompositions of nominal yields, yn
t , into real rate,

expected inflation, and inflation risk premium components, denoted by ŷn
t , Et (πt,n), and ϕ t,n, re-

spectively, implied from model IVC . This is done using the equation:

1 = var( yn
t , yn

t )
var( yn

t )
= cov( ŷn

t , yn
t ) + cov(Et (πt+n,n), yn

t ) + cov(ϕt,n, yn
t )

var( yn
t )

.

Standard errors reported in parentheses are computed using the delta method on population mo-
ments.

Maturity Real Expected Inflation
Qtrs Rates Inflation Risk

1 0.20 0.80 0.00
(0.09) (0.09) (0.00)

20 0.20 0.71 0.10
(0.09) (0.09) (0.08)

NBER recessions. However, when we focus on real rates, the conventional story
obtains:

CLAIM 5: Nominal interest rates do not behave procyclically across NBER busi-
ness cycles but our model-implied real rates do.

This can only be the case if expected inflation is countercyclical. Table IX
shows that this is indeed the case, with inflation compensation averaging 4.73%
in recessions but only 3.57% in expansions. Veronesi and Yared (1999) also find
that real rates are procyclical in an RS model. In contrast, the real rates im-
plied by model I w are actually countercyclical, averaging 1.58% (1.80%) across
NBER expansions (recessions). Thus, the presence of the regimes helps to in-
duce the procyclical behavior of real rates. Finally, Table IX also illustrates that
recessions are characterized by more volatility in real rates, nominal rates, and
inflation.

D. Variance Decompositions

Table X reports the population variance decomposition of the nominal yield
into real rates and inflation compensation. The variance decompositions, condi-
tioning on the regime, are very similar across regimes and so are not reported.
The results show that:

CLAIM 6: The decompositions of nominal yields into real yields and inflation
components at various horizons indicate that variation in inflation compensa-
tion (expected inflation and inflation risk premia) explains about 80% of the
variation in nominal rates at both short and long maturities.

This is at odds with the conventional wisdom that expected inflation pri-
marily affects long-term bonds (see, among others, Fama (1975) and Mishkin
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Table XI
Unconditional Variance Decomposition of Nominal Yield Spreads

The table reports unconditional variance decompositions of nominal yield spreads, yn
t − y1

t ,
into real rate, expected inflation, and inflation risk premium components, denoted by ŷn

t −
r̂t , Et (πt+n,n) − Et (πt+1), and ϕ t,n, respectively, implied from model IVC . This is done using the

equation:
1 = var( yn

t − y1
t , yn

t − y1
t )

var( yn
t − y1

t )

= cov( ŷn
t −r̂t , yn

t − y1
t )+cov(Et (πt+n,n)−Et (πt+1), yn

t − y1
t )+cov(ϕt,n, yn

t − y1
t )

var( yn
t − y1

t )
.

Standard errors reported in parentheses are computed using the delta method on population mo-
ments.

Panel A: Unconditional

Maturity Real Expected Inflation
Qtrs Rates Inflation Risk

4 0.44 0.56 −0.01
(0.15) (0.15) (0.00)

20 0.19 0.85 −0.05
(0.18) (0.18) (0.02)

Panel B: Conditional on Regime

Maturity Real Expected Inflation Real Expected Inflation
Qtrs Rates Inflation Risk Rates Inflation Risk

Regime st = 1 Regime st = 2

4 0.14 0.87 −0.01 0.08 0.93 −0.01
(0.19) (0.19) (0.00) (0.22) (0.22) (0.00)

20 0.04 1.03 −0.08 −0.02 1.07 −0.05
(0.20) (0.20) (0.03) (0.22) (0.22) (0.03)

Regime st = 3 Regime st = 4

4 0.69 0.32 −0.00 0.64 0.36 −0.00
(0.12) (0.12) (0.00) (0.13) (0.13) (0.00)

20 0.31 0.71 −0.02 0.29 0.73 −0.02
(0.16) (0.16) (0.01) (0.17) (0.17) (0.01)

(1981)). The single-regime model I w attributes even less of the variance of long-
term yields to inflation components: At a 20-quarter maturity, variation in real
yields accounts for 37% of movements in nominal rates compared to 28% at a
1-quarter maturity. This may be caused by the poor match of inflation dynam-
ics using an affine model calibrated to inflation data. Pennachi’s (1991) affine
model identifies expected inflation from survey data and finds that expected
inflation and inflation risk show little variation across horizons. Table X also
reports that the inflation risk premium accounts for 10% of the variance of a
20-quarter maturity nominal yield.

In Table XI, we decompose the variation of nominal term spreads into real
rate, expected inflation, and inflation risk premium components. Uncondition-
ally, inflation components account for 55% of the 4-quarter term spread and
80% of the 20-quarter term spread variance. For term spreads, inflation shocks
only dominate at the long end of the yield curve. In the regimes with relatively
stable real rates (regimes 1 and 2), inflation components account for over 100%
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of the variance of long-term spreads. In regimes 3 and 4, real rates are more
volatile, and expected inflation accounts for approximately 35% of the variation
in the 4-quarter term spread, increasing to over 70% for the 20-quarter term
spread. Hence, the conventional wisdom that inflation is more important for
the long end of the yield curve holds, not for the level of yields, but for term
spreads:

CLAIM 7: Inflation compensation is the main determinant of nominal interest
rate spreads at long horizons.

The intuition behind this result is that the long and short ends of nominal
yields have large exposure to common factors, including the factors driving in-
flation and inflation risk. It is only after controlling for an average effect, or
by computing a term spread, that we can observe relative differences at dif-
ferent parts of the yield curve. Thus, only after computing the term spread
do we isolate the factors that differentially affect long yields controlling for
the short rate exposure. The finding that inflation components are the main
driver of term spreads is not dependent on having regimes in the term struc-
ture model. Mishkin (1990, 1992) finds consistent evidence with simple regres-
sions using inflation changes and term spreads, as do Ang, Dong, and Piazzesi
(2006) in a single-regime affine model. In model I w, the attribution of the un-
conditional variance of the 20-quarter term spread to inflation is also close to
100%.

IV. Conclusion

In this article, we develop a term structure model that embeds regime
switches in both real and nominal factors, and incorporates time-varying prices
of risk. The model that provides the best fit with the data has correlated regimes
coming from separate real factor and inflation sources.

We find that the real rate curve is fairly flat but slightly humped, with an
average real rate of around 1.3%. The real short rate has an unconditional
variability of 1.46% and has an autocorrelation of 60%. In some regimes, the
real rate curve is downward sloping. In these regimes, expected inflation is low.
The term structure of inflation compensation, the difference between nominal
and real yields, is upward sloping. This is due to an upward-sloping inflation
risk premium, which is unconditionally 1.14% on average. We find that ex-
pected inflation and inflation risk account for 80% of the variation in nominal
yields at both short and long maturities. However, nominal term spreads are
primarily driven by changes in expected inflation, particularly during normal
times.

It is interesting to note that our results are qualitatively consistent with Roll’s
(2004) analysis on TIPS data, over the very short sample period since TIPS
began trading. Consistent with our results, Roll also finds that the nominal
yield curve is more steeply sloped than the real curve, which is also mostly
flat over our overlapping sample periods. Roll also shows direct evidence of an
inflation premium that increases with maturity.
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Our work here is only the beginning of a research agenda. In future work, we
could use our model to link the often-discussed deviations from the Expectations
Hypothesis (see, for example, Campbell and Shiller (1991)) to deviations from
the Fisher Hypothesis (Mishkin (1992)). Although we have made one step in
the direction of identifying the economic sources of regime switches in interest
rates, more could be done. In particular, a more explicit examination of the role
of business cycle variation and changes in monetary policy as sources of the
regime switches is an interesting topic for further research.

Appendix A. Real Bond Prices

Let N1 be the number of unobserved state variables in the model (N 1 = 3 for
the stochastic inflation model, N 1 = 2 otherwise) and N = N 1 + 1 be the total
number of factors, including inflation. The following proposition describes how
our model implies closed-form real bond prices.

PROPOSITION A: Let X t = (qt f t π t)′ or X t = (qt f t wt π t)′ follow (2), with the
real short rate (4) and real pricing kernel (5) with prices of risk (6). The regimes
st follow a Markov chain with transition probability matrix 
 = {pij}. Then the
real zero-coupon bond price for period n conditional on regime i, P̂n

t (st = i), is
given by

P̂n
t (i) = exp(Ân(i) + B̂nX t). (A1)

The scalar Ân(i) is dependent on regime st = i and B̂n is a 1 × N vector that is
partitioned as B̂n = [B̂nq B̂nx], where B̂nq corresponds to the q variable and B̂nx

corresponds to the other variables in X t . The coefficients Ân(i) and B̂n are given
by

Ân+1
(
i
) = −

(
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nqσqγ0

)
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)
B̂n+1 = −δ′

1 + B̂n� − B̂nqσqγ1e′
1, (A2)

where ei denotes a vector of zeros with a “1” in the ith place and � x(i) refers to
the lower N 1 × N 1 matrix of �(i) corresponding to the non-qt variables in X t .
The starting values for Ân(i) and B̂n are

Â1(i) = −δ0

B̂1 = −δ′
1. (A3)
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Proof: We first derive the initial values in (A3):

P1
t

(
i
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j pi j Et
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. (A4)

Hence,

P̂1
t (i) = exp(Â1(i) + B̂1 X t),

where A1(i) and B1 take the form in (A3).
We prove the recursion (A2) by induction. We assume that (A1) holds for

maturity n and examine P̂n+1
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Evaluating the expectation, we have
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But, we can write

B̂n�
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Expanding and collecting terms, we can then write

P̂n
t (i) = exp(Ân(i) + B̂nX t),

where Ân(i) and B̂n take the form of (A2). Q.E.D.
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Appendix B. Nominal Bond Prices

Following the notation of Appendix A, let N1 be the number of unobserved
state variables in the model (N 1 = 3 for the stochastic inflation model, N 1 = 2
otherwise) and N = N 1 + 1 be the total number of factors including inflation.
The following proposition describes how our model implies closed-form nominal
bond prices.

PROPOSITION B: Let X t = (qt f t π t)′ or X t = (qt f t wt π t)′ follow (2), with the
real short rate (4) and real pricing kernel (5) with prices of risk (6). The regimes
st follow a Markov chain with transition probability matrix 
 = {pij}. Then the
nominal zero-coupon bond price for period n conditional on regime i, Pn

t (st =
i), is given by:

Pn
t (i) = exp(An(i) + BnX t), (B1)

where the scalar An(i) is dependent on regime st = i and Bn is an N × 1 vector:
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where ei denotes a vector of zeros with a “1” in the ith place, A(i) is a scalar
dependent on regime st = i, Bn is a row vector, which is partitioned as Bn =
[Bnq Bnx], where Bnq corresponds to the q variable, and � x(i) refers to the lower
N 1 × N 1 matrix of �(i) corresponding to the non-qt variables in X t . The starting
values for An(i) and Bn are
A1

(
i
) = −δ0 + log

∑
j

pi j exp
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(
j
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2
e′
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)
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)
λ

(
j
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B1 = − (
δ′

1 + e′
N �

)
. (B3)

Proof: We first derive the initial values (B3) by directly evaluating

P1
t

(
i
) =

∑
j

pi j Et

[
M̂t+1|St+1 = j

]
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(B4)
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Note that e′
N �( j )λt( j ) = e′

N1
�x( j )λ( j ). Hence

P1
t

(
i
) = exp

(
A1

(
i
) + B1 X t

)
,

where A1(i) and B1 are given by (B3).
To prove the general recursion we use proof by induction:
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Now note that
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(B6)

where Bn = [Bnq Bnx ].
Hence, collecting terms and substituting (B6) into (B5), we have:

Pn+1
t

(
i
) = exp

[
An+1

(
i
) + Bn+1 X t

]
,

where An(i) and Bn are given by (B2). Q.E.D.
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Appendix C. Likelihood Function and Identification

A. Likelihood Function

We specify the set of nominal yields without measurement error as Y 1t(N 1 ×
1) and the remaining yields as Y 2t(N 2 × 1). There are as many yields measured
without error as there are latent factors in X t . The complete set of yields are
denoted as Y t = (Y ′

1t Y ′
2t)′ with dimension M × 1, where M = N 1 + N 2. Note

that the total number of factors in X t is N = N 1 + 1, since the last factor,
inflation, is observable.

Given the expression for nominal yields in (11), the yields observed without
error and inflation, Z t = (Y ′

1t π t)′, take the form

Zt = A1(st) + B1 X t , (C1)

A1(st) =
[
An(st)

0

]
, B1 =

[
Bn
e′

N

]
, (C2)

where An(st) is the N 1 × 1 vector stacking the − An(st)/n terms for the N1
yields observed without error, and Bn is a N 1 × N matrix that stacks the −
Bn/n vectors for the two yields observed without error. Then we can invert for
the unobservable factors:

X t = B−1(Zt − A1(st)). (C3)

Substituting this into (C1) and using the dynamics of X t in (2), we can write

Zt = c(st , st−1) + �Zt−1 + �(st)εt , (C4)

where

c(st , st−1) = A1(st) + B1µ(st) − B1�B−1
1 A1(st−1)

� = B1�B−1
1

�(st) = B1�(st).

Note that our model implies an RS-VAR for the observable variables with com-
plex cross-equation restrictions.

The yields Y 2t observed with error have the form

Y2t = A2(st) + B2 X t + ut , (C5)

where A2 and B2(st) follow from Proposition B and u is the measurement error,
ut ∼ N (0, V ), where V is a diagonal matrix. We can solve for ut in equation
(C5) using the inverted factor process (C3). We assume that ut is uncorrelated
with the errors εt in (2).

Following Hamilton (1994), we redefine the states s∗
t to count all combinations

of st and st−1, with the corresponding redefined transition probabilities p∗
ij =
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p(s∗
t+1 = i | s∗

t = j ). We rewrite (C4) and (C5) as:

Zt = c(s∗
t ) + �Zt−1 + �(s∗

t )εt ,
Y2t = A2(s∗

t ) + B2 X t + ut .
(C6)

Now the standard Hamilton (1989, 1994) and Gray (1996) algorithms can
be used to estimate the likelihood function. Since (C6) gives us the conditional
distribution f (π t , Y 1

t |s∗
t = i, I t−1), we can write the likelihood as:

L =
∏

t

∑
s∗
t

f (πt , Y1t , Y2t |s∗
t , It−1)Pr(s∗

t |It−1)

= ∏
t
∑

s∗
t

f (Zt |s∗
t , It−1) f (Y2t |πt , Y1t , s∗

t , It−1)Pr(s∗
t |It−1),

(C7)

where

f (Zt |s∗
t , It−1) = (2π )−(N1+1)/2|�(s∗

t )�(s∗
t )′|−1/2

exp
(

−1
2

(Zt − c(s∗
t ) − �Zt−1)′[�(s∗

t )�(s∗
t )′]−1(Y2t − c(s∗

t ) − �Zt−1)
)

is the probability density function of Z t conditional on s∗
t and

f (Y2t |πt , Y1t , s∗
t , It−1)

= (2π )−N2/2|V |−1/2 exp
(

−1
2

(Y2t − A2(s∗
t ) − B2 X t)′V −1(Y2t − A2(s∗

t ) − B2 X t)
)

is the probability density function of the measurement errors conditional on s∗
t .

The ex ante probability Pr(s∗
t = i|I t−1) is given by

Pr(s∗
t = i|It−1) =

∑
j

p∗
j i Pr(s∗

t−1 = j |It−1), (C8)

which is updated using

Pr(s∗
t = j |It) = f (Zt , s∗

t = j |It−1)
f (Zt |It−1)

= f (Zt |s∗
t = j , It−1)Pr(s∗

t = j |It−1)∑
k f (Zt |s∗

t = k, It−1)Pr(s∗
t = k|It−1)

.

An alternative way to derive the likelihood function is to substitute (C3) into
(C5). We then obtain an RS-VAR with complex cross-equation restrictions for
all variables in the system (Z t

′ Y 2t
′)′. Note that unlike a standard affine model,

the likelihood is not simply the likelihood of the yields measured without error
multiplied by the likelihood of the measurement errors. Instead, the regime
variables must be integrated out of the likelihood function.

B. Identification

There are two identification problems. First, there are the usual identi-
fication conditions that must be imposed to estimate a model with latent
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variables, which have been derived for affine models by Dai and Single-
ton (2000). In a single-regime Gaussian model, Dai and Singleton show that
identification can be accomplished by setting the conditional covariance to
be a diagonal matrix and letting the correlations enter through the feed-
back matrix (�), which is parameterized to be lower triangular, which we do
here.

The RS model complicates identification relative to an affine model. The
parameterization in equations (2) to (7) already imposes some of the Dai and
Singleton (2000) conditions, but some further restrictions are necessary. Since
qt and f t are latent variables, they can be arbitrarily scaled. We set δ1 =
(δq δ f δπ )′ = (1 1 δπ )′ in (4). Setting δq and δ f to be constants allows σ q and
σ f (st+1) to be estimated. Because qt is an unobserved variable, estimating µq
in (3) is equivalent to allowing γ 0 in (6) or δ0 in (4) to be nonzero. Hence, qt
must have zero mean for identification. Therefore, we set µq = 0, since qt does
not switch regimes. Similarly, because we estimate λ f (st+1), we constrain f t to
have zero mean.

The resulting model is theoretically identified from the data, but it is well
known that some parameters that are identified in theory can be very hard to
estimate in small samples. This is especially true for price of risk parameters.
Because we are using four nominal yields, we should be able to identify all
three prices of risk. However, Dai and Singleton (2000) note that it is typically
difficult to identify more than one constant price of risk. Hence, we set γ 0 = 0
in (6) and instead estimate the RS price of risk λ f (st+1).

We also set �fq = 0 in equation (3). With this restriction, there are, in addition
to inflation factors, two separate and easily identifiable sources of variation in
interest rates: An RS factor and a time-varying price of risk factor. Identifying
their relative contribution to interest rate dynamics becomes easy with this
restriction and it is not immediately clear how a nonzero coefficient would help
enrich the model.

As qt and f t are zero mean, the mean level of the real short rate in (4) is
determined by the mean level of inflation multiplied by δπ and the constant
term δ0. We set δ0 to match the mean of the nominal short rate in the data,
similar to Ang et al. (2006) and Dai et al. (2006).

Finally, we set the one-period price of inflation risk equal to zero, λπ (st+1)
= 0. Theoretically, this parameter is uniquely identified, but in practice the
average level of real rates and the premium is largely indeterminate without
further restrictions. It turns out that the first-order effect of λπ on real rates
and the inflation risk premium is similar and of opposite sign. Because of this,
the parameter is not only hard to pin down, but also essentially prevents the
identification of the average level of real rates and the average level of the in-
flation risk premium. Models with a positive one-period inflation risk premium
will imply lower real rates and higher inflation premiums than the results we
report.
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Appendix D. A Regime-Switching Model with Stochastic
Expected Inflation

In a final extension, motivated by the ARMA-model literature (see Fama
and Gibbons (1982), Hamilton (1985)), we allow inflation to be composed of a
stochastic expected inflation term plus a random shock:

πt+1 = wt + σπεπ
t+1, Appendix D.

where wt = E t [π t+1 ] is the one-period-ahead expectation of future inflation.
This can be accomplished in our framework by expanding the state variables
to X t = (qt f t wt π t)′, which follow the dynamics of equation (2), except now:

µ(st) =


µq

µ f (st)

µw(st)

0

 , � =


�qq 0 0 0

� f q � f f 0 0

�wq �wf �ww �wπ

0 0 1 0

 , (D1)

and �(st) is a diagonal matrix with (σ q σ f (st) σ w(st) σ π (st))′ on the diagonal.
Note that both the variance of inflation and the process of expected inflation are
regime-dependent. Moreover, past inflation affects current expected inflation
through �wπ .

The real short rate and the regime transition probabilities are the same as in
the benchmark model. The real pricing kernel also takes the same form as (5)
with one difference: The regime-dependent part of the prices of risk in equation
(6) is now given by

λ(i) = (λ f (i) λw(i) λπ (i))′,
but we set λw(i) = 0 for identification.

Appendix E. Specification Tests

A. Moment Tests

To enable comparison across several nonnested models of how the moments
implied from various models compare to the data, we introduce the point
statistic:

H = (h − h̄)′�−1
h (h − h̄), (E1)

where h̄ are sample estimates of unconditional moments, h are the uncondi-
tional moments from the estimated model, and �h is the covariance matrix of
the sample estimates of the unconditional moments, estimated by GMM with
four Newey and West (1987) lags. In this comparison, the moments implied
by various models are compared to the data, with the data sampling error �h
held constant across the models. The moments we consider are the first and
second moments of term spreads and long yields, the first and second moments
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of inflation, the autocorrelogram of term spreads, and the autocorrelogram of
inflation.

Equation (E1) ignores the sampling error of the moments of the model, im-
plied by the uncertainty in the parameter estimates, making our moment test
informal. However, this allows the same weighting matrix, computed from the
data, to be used across different models. If parameter uncertainty is also taken
into account, we might fail to reject, not because the model accurately pins down
the moments, but because of the large uncertainty in estimating the model
parameters.

B. Residual Tests

We report two tests on in-sample scaled residuals ε t of yields and inflation.
The scaled residuals ε t are not the same as the shocks εt in (2). For a variable
xt , the scaled residual is given by εt = (xt − Et−1(xt))/

√
vart−1(xt), where xt are

yields or inflation. The conditional moments are computed using our RS model
and involve ex ante probabilities p(st = i|I t−1). Following Bekaert and Harvey
(1997), we use a GMM test for serial correlation in scaled residuals ε t :

E[εt εt−1] = 0. (E2)

We also test for serial correlation in the second moments of the scaled residuals:

E
[
(ε2

t − 1) (ε2
t−1 − 1)

] = 0. (E3)
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