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ABSTRACT 
Whittaker-Henderson graduation has for some 

time been used by actuaries to smooth crude rate 
data. The goal of such a graduation is to im- 
prove the estimates for the individual points in 
a series. One of the problems of the Whittaker- 
Henderson is the amount of subjectivitity that 
enters into the determination of the degree of 
smoothness required. This paper suggests a way 
to use the Chi-square statistic to set the smooth- 
ing coefficient when using the Whittaker-Henderson 
graduation procedure. 

I. INTRODUCTION 
Actuaries routinely face the problem of es- 

timating a smoothed series of rates from crude 
rate data. The smoothed rates must estimate the 
probability of some outcome, such as death, for 
each point along an axis representing increasing 
age, length of service, or some other variable. 
Typically, there is some data for each point, as 
shown in table I, but prediction can be improved 
by making use of the surrounding observations. 
Techniques for performing such smoothing, or 
graduation, include moving averages, curve fit- 
ting, and graphical methods, as well as the Whit- 
taker-Henderson. 

The Whittaker-Henderson is really a venerable 

technique, it having first been proposed by Whit- 
taker in 1919. Subsequently, Henderson developed 
a practical procedure for implementing the method. 

One aspect of the Whittaker-Henderson that is 
left to the intuition of the analyst is how smooth 
the graduated series should be. Obviously, crude 
rates will be poor predictors unless they are 
based upon a large number of cases. As increasing 
smoothness is applied, however, there is a gradual 
loss of information. 

In this paper I want to describe the Whittaker- 
Henderson technique, to consider whether the Chi- 
square statistic can be helpful in determining the 
the degree of smoothness, and to compare results 
from Whittaker-Henderson graduation with the re- 
sults of fitting a polynomial to the same data se- 
ries using regression techniques. 

2. WHITTAKER-HENDERSON GRADUATION 
Whittaker-Henderson graduation assumes there is 

a simple trade-off between a measure inversely re- 
lated to fidelity, F, and a measure inversely re- 
lated to smoothness, S. The function F + kS is 
then minimized for a particular value of the 
smoothing coefficient, which is set by the person 
performing the graduation. 

The fidelity measure is given by 

~ " 
F = w.1 (ui - ui )2 

i=l 

Where w is the weight or exposure 

u'.' is the ungraduated rate 
I 

u. is the ungraduated rate 
l 

p is the number of points in the series 

The measure of smoothness is given by 

S = ~ (~Z u i)2 where /~z is a difference 

i=l 1 operator or order z 

For example, /~ u I = u 2 -Ul, 
2 

P_~ Ul=A I (~lu l)=/_k I (u2-u l)=u3-2u2-u 1 

In matrix notation S is defined as S = u'K'Ku, 
where u is the vector of graduated rates and K is 
a differencing matrix. For example, where n=7 
and z=2, K would be given as 

i -2 1 0 0 0 0 
0 i -2 1 0 0 0 

K = 0 0 1 -2 1 0 0 
0 0 0 I -2 I 0 
0 0 0 0 1 -2 1 

Note that smoothness is measured on the graduated 
rates, rather than the crude rates. An example 
of second differences is also shown in table i. 

It is shown by (Greville 1974, p. 53) that 
F + kS is minimized where 

(W + kK' K) u = Wu" 
where W is the square matrix with weights w., on 

i 
the main diagonal and u and u" are respectively 
the vectors of graduated and ungraduated rates. 

Greville (1974) also shows that the matrix 
W + kK'K is positive definite, so that u may be 
solved for in the above equation using Choleski 

factorization. The principle problem left to the 
analyst is to choose the smoothing coefficient. 

3. CHI-SQUARE 
Usually statisticians use the upper tail of a 

Chi-square statistic to see whether a test sta- 
tistic is larger than might be expected (at some 
probability level) under their null hypothesis. 
Here we are interested in both tails, since we 
also want to be able to test whether the gradu- 
ated rates fit the crude rates more closely than 
than might be expected, for a particular value of 
the smoothing coefficientz. Further, we want to 
see what happens if we iteratively reset the 
smoothing coefficient, k, until the probability 
of receiving a higher value of the Chi-square (or 
a lower value) is sufficiently cldse to .5. 

The Chi-square is obtained from a sum of inde- 
pendent normal random variables with mean 0 and 
variance I. We require that each of the p obser- 
vations in the series u" is based on enough 
cases, w., so that it may be approximated using 
a normalldistribution. 

The most straight forward Chi-square occurs 
where the population probabilities are known. 
Where v. is the expected value of u'~ the expres- 

i l 

sion 
• )2 

y W i (u"-V l i 

~__ V i (l-v i) 

results in a Chi-square with p degrees of freedom 
(see, for example, Freund 1962). Using matrix 
notation, the same result is given by 

(u,,_v), I -I (u"-v). Here I is the square matrix 

with diagonal elements v i (l-vi)/ w i . 

527 



Since v is unknown, our problem is to con- 

struct a Chi-square using u"-u. From the Whitta- 

ker-Henderson sol~tion Au = Wu", it may be 9oted 
that u"-u = (I-A-~W)u". Defining B = (I-A-~W), 

then u"-u = Bu". 
Since B is not of full rank the n-vector Bu" 

has some observations which are linear combina- 
tions of the others. To get a valid Chi-square 

statistic it is necessary to pre-multiply B by 
P, a reducing matrix of order p-z by p (where 

z is the order of differencing used). 

This is accomplished with P=P P_. Here P2 is 
a p by p matrix of full rank, whlc~ sweeps out 
elements of B below a trial diagonal. The trial 

diagonal begins on the main diagonal but shifts 
one position to the right whenever a linear de- 

pendence is found. This will occur, in the sweep 
out process, when the current trial diagonal ele- 
ment and elements below it are zero. P. is an 

1 
p-z by p matrix with l's on the main diagonal and 

zeroes elsewhere. 
r- 

If u" is approximately distributed as N (v,,), 
then the linear transformation PB(u"-v) isPdis - 

tributed as N (0, PB~B'P'). (See Timm, 1975, 
p. 121). p-z 

Timm (1975, p.132) gives the very general re- 
suit, that in this situation 

[PB(u"-v)]' D [PB(u"-v)] is distributed as a Chi- 
square with degrees of freedom equal to the rank 
of ~_D- if and only if the product 

D(PBhB'P')D = D or D(PBIB'P') is idempotent 
To achieve this result we set D=(PB~B'P') -I,--" 

and the resulting Chi-square has degrees of free- 

dom equal to the rank of B. 
The rank of B may be obtained as a by-product 

of the computer program that finds P. This turns 

out to be less than full rank by the order of 

difference used in the definition of smoothness. 
This result is intuitively appealing when one 

considers that the Whittaker-Henderson preserves 
a nL~nber of moments equal to the order of differ- 

ences used. For third differences, for example, 
it may be seen that: 

[111 ..... 1]wu = [111 ...... 1]Wu" 

[i li 2 .... i ]Wu = [i il .... i ]Wu" p 1 p 

2 i2]Wu = [i 2 .2 i2]Wu ,, 
[i 2 i~. P 1 ~2 "" ' p 

This occurs because we set 
(W + kK'K)u = Wu" and 

.2 .i 2 K, = [ i 11 ..... 1 ]K TM [ i|i2...i ]K TM [ i21 12 .. ] O. 
Consequently, if ~he vector u is given an~ any 
p-z of the u" i' we may solve for the remaining 
z. 

4. ~IGHTED LEAST SQUARES REGRESSION 
To provide a further basis for comparison 

weighted least squares regression was also used. 
The basic model was 

Yx = bo + blX + b2x2 + b3x3 + b5x5 
where x is the age or 
length of service and 
Y is the rate at x 

However, terms w~ich were not significant were 

not added. The stepwise procedure in SAS (Good- 
night 1979) was used, with the MINR algorithm. 

This algorithm finds the best i variable solution, 
then adds^the independent variable which makes the 
minimum R z improvement. Next, MINR keeps substi- 

tuting a variable not being used as an indepen- 

dent variable for one which is, selecting the 

substitution which makes the minimum improvement 
in R-. When the best 2 variable solution is 

found a third variable is added and so forth. 
The MINR considers a good many models without 

performing all 63 possible. The~nalyst then 
usually finds a model with high R ~, which also 

has the desirable property that terms are signif- 
icant at a fairly high level. 

The stepwise procedure in SAS does not inci- 

dentally provide a weighted least squares option 
as such. It can be accomplished, however, by 
specifying no intercept, creating a dummy vari- 

able of l's, and multiplying all terms, including 
the dummy variable and the dependent variable, by 
the square root of the weighting factor. In this 
case an initial set of regressions was performed 

using the exposures w. as the weighting factor 
and a second set, usilg w./q (l-q.), where q. is 

i. i 1 
the predicted rate at i uslng the equation f~om 
the initial run. It may be seen that this pro- 
cess satisfies the asusmptions of weighted least 

squares (Draper and Smith, 1966) 

5. CROSS VALIDATION 
The results from the Whittaker-Henderson grad- 

uation and the regression were used to predict i0 
different rates. The predictors are based on 
grouped-data for the fiscal years 1977-79 and 

were used to predict fiscal 1980. Comparisons 

g'ving~ the proportion of explained 1980 variance, 
R , are given in table 2. 

The left-most coltmln of table 2 shows the rate 
being compared. Beside this is given the R- 
squared w~en the ungraduated 1977-79 rates were 

used to predict the 1980 rates. It should be 

noted that for comparisons 5, 6, 7 and 8 the un- 
graduated rates did as well as the Whittaker-Hen- 

derson graduations and in comparisons 6 and 8 did 
better than the regression estimates. 

The two Whittaker-lIenderson graduations were 
nearly equal in their performance. In the fourth 
comparison the intuitively set WhiSaker-llender- 
son had a higher cross-validation R ~. In the 
ninth the Chi-squared set Whittaker-Henderson did 

better. Otherwise the results are nearly equal. 
Except for comparisons 6, 8 and 9 ~he regres- 

sion based estimates had as high an R- as the 

Whittaker-Henderson. In the fourth comparison 

the regression estimates had a higher R-. 

R2 It should be noted that with the definition of 
used here, that it is possible for the R to 

be negative. This did occur in a few cases, 
where the 1980 values were not widely dispersed 
and the 1980 mean was closer to the 1980 rates 

than were~the 1977-79 predictions. The defini- 
tion of R 2 is given at the bottom of table i. 

6. DISCUSSION 

6.1 ANTICIPATED USE OF WHITTAKER-HENDERSON 
WITH CHI-SQUARE. 

In theory a Whittaker-Henderson solution using 

an analyst-set smoothing coefficient can yield 
better predictions than a Whittaker-Henderson 

where the smoothing coefficient is iteratively 
set to yield a 50th percentile Chi-square. If, 

by chance, an ungraduated series is already 
smooth, the Chi-square iterations would enhance 
peaks and valleys more than they should be. If 
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by chance, the ungraduated series is ragged, the 

50th percentile graduation may not be smooth 

enough. 
It is remarkable then that 50% percentile 

graduation does as well as the graduation with 
intuitively set coefficients. At the very least 

we can say that 50th percentile solution provides 
a good initial solution. If a more refined solu- 

tion is needed, one might proceed as follows: 
i. Arrive at the solution for the 50th 

percentile Chi- square. 

2. Bracket the solution in I, with solutions 

using higher and lower Chi-square levels. 

3. Examine the results of 2 noting changes 

in the measures of fidelity and smooth- 

ness as well as the Chi-square level. 

4. Proceed in the direction of the preferred 

solution until a satisfactory solution is 
found. 

6.2 WHITTAKER-HENDERSON vs. REGRESSION 

It will come as no surprise to statisticians 

that regression can do a credible job of smooth- 

ing, but it may come as a surprise to actuaries. 
Although some actuaries are ardent advocates of 

regression (Tenenbein and Vanderhoof), graduation 

is still more commonly used. The question that 
needs to be discussed is where one should use re- 

gression and where one should use graduation. 

First, it must be noted that when the correct 

model is known, regression will give minimum 

variance unbiased estimates. These are nice pro- 

perties, and they are not merely academic. In 

some cases the Whittaker-Henderson will do some 

very strange things in the tails of distributions 

where data are sparse enough to have little im- 
pact on the fidelity measure but where the 

smoothness measure is operating at full force. 

Interestingly, if we look at the results in table 

I, it will be seen that the only comparisons 

where regression did not do as well or better was 

comparisons 6 through 9. In all these compari- 

sons the ungraduated rates were already good pre- 

dictors. 

On the other hand, it seems foolish to throw 
away much of the information in a rate series 

based upon a large nunber of observations. The 

Whittaker-Henderson will in most cases help pre- 

diction and at least will do no harm. 
This suggests that a reasonable policy would 

be to use regression where data are sparse and to" 
use the Whittaker-Henderson where the n~nber of 

cases is large. 

6.3 PROBLEMS AND REFINEMENTS 

The most serious problem with the Chi-square 

use here is the amount of computer time required. 

One solution to this is to simply use the ordin- 
ary Chi-square, substituting 

2 
w (u "-v ) 

~-- i i i , 
u. for v. in zi (l-v) 
1 l vi i 

but still using the reduced degrees of freedom. 
Doing this greatly reduced the computer time and 

gave results almost identical to those as shown 

in table 2. 
More conclusive results may be obtained using 

simulations rather than the I0 comparisons sum- 

marized in table 2. We, of course, cannot simu- 
late the judgment of an analyst, but some simula- 

tion results will be useful, nevertheless. 

Two further refinements that will also be in- 

teresting are the use of logarithms for the rates 

and the use of alternative definitions of smooth- 

ness. Certain of the rates are nearly linear in 

the logarithms, and there is no reason why the 

logarithmic smoothing cannot be done. Likewise, 
there are many possible definitions of smoothness 

other than the sum of the squares of differences 

used here. 
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Table 1 

Ungraduated and Graduated 
Enlisted Death Rates 

Number Crude Smoothed First Second 
Age of Cases Rates Rates Differences Differences 

17 15,821 .0021 .0018 
-.0001 

18 206,990 .0017 .0017 .0000 
-.0001 

19 452,647 .0016 .0016 .0000 
-.0001 

20 550,073 .0015 .0015 .0000 
-•0001 

21 511,732 .0014 .0014 .0000 
-.0001 

22 415,869 .0012 .0013 .0000 
-.0001 

23 335,864 .0011 .0012 .0000 
-.0001 

24 283,507 .0009 .0011 .0000 
-•0001 

25 241,594 .0010 .0010 .0000 
-.0001 

26 203,932 .0009 .0009 .0001 
.0000 

27 173,906 .0010 .0009 .0000 
.0000 

28 154,407 .0008 .0009 .0000 
.0000 

29 142,204 .0007 .0008 .0000 
.0000 

30 133,289 .0009 .0008 

Table 2 

Comparison of Graduation Techniques 

Cross Validation R 2 by Graduation Technique 

Whittaker-Henderson With 
Ungraduated Smoothing Coefficient Set 

Rate '77-'79 Rates Intuitively by Chi-s~uare 

I. Enlistee Death Rate 
(ages 17-60) .18 .222/ .222/ 

2. Officer Death Rate 
(ages 19-60) -.05 .2~ / .2~ / 

3. Regular Enlistee Permanent 
Disability Rate 
(Length of service 0-16) .53 .58 ~3/ .59 ~3/ 

4. Reserve Officer Permanent 
Disability Rate 
(Lengths of service 0-16) .08 .222/ .I~ / 

5. Re§erve Officer Retirement 

Rate (lengths of service .9033/ 13 / 
19-34) .91 .9 -- 

6. Regular Officer Retirement 

Rate .323 / 
(Lengths of service 19-27) .33 _ .3~/~33 

7. Regular Officer Other Loss 
Rate 
(Lengths of service 2-11) .95 .95 ~3/ .9~ / 

8. Reserve Officer Other Loss 

Rate .8~/ .813 / 
(Lengths of service 4-18) .80 

9. Regular Enlistee -.56 -.60 ~2/ -.512/ 
Temporary Disability Rate 
(20-37 years of service) 

I0. Regular Officer -.05 .012/ .00 ~/ 
Temporary Disability Rate 
(19 - 39 years of service) 

Weighted Least 
Squares 

Regression 

2 
.22 intercept, x,x 

x 2 x 3 , x 4 .25 x, , 

2 3 
.59 intercept ,x ,x ,x 

2 
.29 intercept,x 

2 
.91 intercept,x,x 

3 
.19 intercept ,x,x 

2 4 5  
.94 x,x ,x ,x 

• 77 intercept, x 

2 
-I.00 intercept ,x,x 

2 
.01 intercept, x 

i/ R 2 = 1 - I wi (u~ - u i)2 
~ wi(ui N,,)2 Where w i is the '80 exposure, u" the '80 ungraduated 

-- " - rate, u is the graduated '77-~9 rate or regression 
predication, and if" is the mean '80 rate• 

2/ Using second differences _ 

3/ Using third differences _ 
4/ The terms used in the regression equation are indicated in the right hand colunn. _ 
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